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Shell structures are indispensable in virtually every industry. However, in the design, 
analysis, fabrication, and maintenance of such structures, there are many pitfalls 
leading to various forms of disaster. The experience gained by engineers over some 
200 years of disasters and brushes with disaster is expressed in the extensive archival 
literature, national codes, and procedural documentation found in larger companies. 
However, the advantage of the richness in the behavior of shells is that the way is 
always openfor innovation. In this survey, we present a broad overview of the dynamic 
response of shell structures. The intention is to provide an understanding of the basic 
themes behind the detailed codes and stimulate, not restrict, positive innovation. Such 
understanding is also crucial for the correct computation of shell structures by any 
computer code. The physics dictates that the thin shell structure offers a challenge 
for analysis and computation. Shell response can be generally categorized by states 
of extension, inextensional bending, edge bending, and edge transverse shear. Simple 
estimates for the magnitudes of stress, deformation, and resonance in the extensional 
and inextensional states are provided by ring response. Several shell examples demon
strate the different states and combinations. For excitation frequency above the exten
sional resonance, such as in impact and acoustic excitation, a fine mesh is needed 
over the entire shell surface. For this range, modal and implicit methods are of limited 
value. The example of a sphere impacting a rigid surface shows that plastic unloading 
occurs continuously. Thus, there are no short cuts; the complete material behavior 
must be included. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Although the shell is just a special case of contin
uum mechanics, there are several features that 
cause difficulty. These features are generally dis
cussed in the vast literature on shells and shell 
structures. However, it is a formidable task, re
quiring literally years of diligent effort to deci
pher, assimilate, and use this information. Proba
bly the majority of analysts who have 
responsibility for shell structures have neither the 

time nor the inclination to become such a special
ist. Therefore, we assume only that the reader 

has familiarity with the concepts of dynamic re
sponse of a system with a finite number of degrees 
offreedoffi. We wish to extract the basic features 
of shell behavior, some of which are similar to 

the usual finite degree of freedom system, and 
some of which differ radically. The subject of 
shell stability is perhaps even more complex, but 

will not be touched upon in this article. 
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The difficulties associated with shell analysis 
from a computational viewpoint are indicated by 

a quote from MacNeal (1994): 

Curved shell elements include all of the features of 

two-dimensional elastic elements and plate bending ele

ments, plus new complexities arising from the curved 

geometry. Shell elements are considered to be the most 

difficult of all elements and are the constant subject of 

advanced research. 

An indication of the intrinsic difficulty in the anal
ysis of shells is that the simplest linear, first ap-
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proximation theory for shells was established to 
the satisfaction of most research workers only 

around 1960, beginning with Sanders (1959). In 

the field of finite element methods, no shell ele

ment with cllrvature in both directions has yet 
achieved such a consensus. On more than one 
occasion it has been mentioned that from a com
putational standpoint, general three-dimensional 

problems are easier than shells. Consequently, it 
is often the case that an analyst will abandon shell 
elements and use three-dimensional brick elments 
in layers through the shell thickness. At the oppo

site, analysts often approximate the shell with 
facets of flat-plate elements. The bricks greatly 
increase the number of elements required, and 
the replacement of a smooth surface with flat fac
ets can greatly increase the error, particularly for 

smooth surface loading. 
Nevertheless, substantial progress has been 

made with shell elements and is continuing to be 
made at a rapid rate. A number of computer codes 
can produce excellent results. Furthermore, the 
user preparation time, which not too long ago was 
measured in man-months for a shell structure of 
modest complexity, has been shortened to days 
if not hours, by advances in automated mesh gen
eration and postprocessing. There are a number 

of publications that document the details of this 
advance, including Brebbia (1985), Hughes and 
Hinton (1986), Kardestuncer (1987), and Noor 
et al. (1989). Two of the many basic texts on 
the finite element method are by Hughes (1987) 
and Cook et al. (1989). Of the many texts on 
shells, Calladine (1983) places the most emphasis 
on basic physical understanding. Highly recom
mended is the guidance in detailed modeling of 
real shell structures provided by Bushnell (1974). 
Leissa (1973) collects all available results, com
putational and experimental, for the vibration 
of shells. Soedel (1994) provides a text devoted 
to shell vibration, containing many significant 
equations and results. Perhaps the most exten
sive collection of formulas for shells, including 
statics, dynamics, and stability, is given by 
Pilkey (1994). 

Although shell structures cause difficulties for 
analysis, remember that they are also structures 
of marvelous beauty and high efficiency. In many 
applications, for example large domed stadiums, 
pressure vessels of all sizes, and hydrospacel 
aerospace vehicles, there is no other form to use 
because of the efficiency. So, let us deal with 

them. 

CHARACTERISTICS OF SHELL RESPONSE 

With all the complexity of a shell structure, there 
are a few crucial parameters that delineate the 
static and dynamic response of a shell segment. 
It is absolutely essential that the user of any code 

or method has some idea of what the correct re
sponse is. This is possibly more of a requirement 

for shells than with other structures, because the 
response of displacement and stress can differ by 
orders of magnitude, depending on the geometry 
and constraints. We attempt to provide a broad 
understanding by classifying the solutions in the 
following categories. 

Extensional State 

The extensional state, or membrane state, corre
sponds to stress and deformation for which the 
average stress across the wall is dominant, while 
the bending stress in the wall is relatively small. 
The prototype for this state is a balloon inflated 
with air, or the pressure can be external, as in 
an underwater vehicle. (Compressive stress, of 
course, causes the possibility of instability.) The 
key feature of the extensional state is that the 

deformation and stress vary smoothly and slowly 

along the shell surface. A slowly varying distribu
tion is one that changes significantly in a distance, 
say, greater than one-eighth of the radius of the 
curvature of the surface. When the boundary con
ditions and loading are such that the extensional 
behavior dominates, the shell is very efficient in 
load carrying. The characteristic parameters, ob
tained from the axisymmetric behavior of a ring, 

are the magnitude of stress (FE' displacement WE' 

and the extensional frequency (in Hz) IE: 

(FE = pRlt 

WE = pR2/Et 

IE= 2~R (~r2 

(1) 

(2) 

(3) 

in which p is the magnitude of surface load, E 

is Young's modulus, p is the density, t is the 
thickness, and R is the radius of curvature of the 
boundary. More exactly, 11 R is the dot product 
of the curvature vector of the boundary curve 

and the unit normal to the surface. Whether a 
complete shell of revolution or a smooth shell 



segment such as a panel, whether the shell con
sists of an isotropic or anisotropic composite ma
terial, these magnitude estimates are useful and 

can be made with local or averaged values ofload, 
modulus, density, thickness, and radius of cur

vature. 

Inextensional State 

The inextensional state is opposite to the mem
brane state, corresponding to a deformation for 
which the bending stress in the wall is dominant, 
while the average stress across the wall, i.e., the 
extension of the wall, is small. An example for 
this state is a sheet of paper initially flat and then 
rolled into the shape of a cone or cylinder. A 
substantial change in the curvature of the surface 
takes place, while the extension of the surface is 
entirely negligible. The significant strain energy 
is due to the bending stress associated with the 
change of curvature. Like the extensional state, 
this state is also slowly varying. When the bound
ary conditions and loading are such that the inex
tensional solution dominates, the structural effi
ciency of the shell is very poor. However, if 
flexibility is desired, as in rolling the sheet of 
paper, so that large displacements are gained for 
little load, then the inextensional is the preferred 

state. The parameters, obtained from the non
symmetric behavior of a ring, are the typical mag
nitude of stress if I , displacement WI' and the inex

tensional frequency II: 

if I = pR21t2 (4) 

WI = 3pR41Et3 (5) 

t 
fJ=IEIi' (6) 

To compare this with the extensional state, con
sider a shell with Rlt = 100. The stress is two 
orders of magnitude larger, the displacement four 
orders of magnitude larger, and the fitst reso

nance frequency two orders of magnitude 

smaller. As seen by this comparison, for struc
tural purposes the main design objective is to 
reinforce the shell properly to restrict the inexten
sional state, so that the primary state is exten
sional, (1)-(3), rather than inextensional, (4)-(6). 

Generally, this means that the shell needs stiffen

ers on the edges and at intersections of different 

shell segments. 
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Edge Bending State 

The edge bending state is significant in a zone 
near the boundary. The width of this boundary 
zone, which we refer to as the decay distance 

measure, () EB, is called the characteristic length 
by MacNeal (1994): 

(7) 

Because the stress and deformation of this state 
change significantly in the relatively small decay 
distance, this type of solution is referred to as 
rapidly varying. For this state, both the average 
and bending stress in the wall are significant. The 
decay distance parameter is critical in the design 
of shells. For example, the rule of thumb for noz
zles and openings is that reinforcement should be 

concentrated within the decay distance, where it 
is needed. When more than one nozzle is present, 

they should be spaced greater than () EB , to prevent 
significant interaction of the stress fields. When 
an opening or crack in the shell is smaller than 

()EB' the local self-equilibrating stress can be ap
proximated by flat plate analysis. 

Generally, when a shell is properly stiffened, 
the load is supported throughout the main portion 
of the shell by the extensional state. However, 
peaks in stress occur at boundaries and stiffeners, 
due to a combination of the extensional and edge 
bending states. The peak stress causes the initia
tion of cracks and local plastic flow. For static 
and low cycle loading of a shell made of a ductile 
material, the local plastic yielding causes an alle
viation of the peak stress. Therefore, in conven
tional pressure vessel analysis the membrane 
stress is considered as "primary," and the edge 
bending as "secondary." However, in some 
cases the edge bending stress is much larger than 
the extensional and will not be alleviated with a 
little plastic flow. Generally, for high cycle vibra
tion loading, the edge bending stress is of great 
significance. Inadequate analysis of this will cost 
in failure or the need for increased inspection 

and maintenance. 

Edge Transverse Shear State 

The edge shear state is even more localized, to 
a zone near the boundary of width equal to the 

shell wall thickness. This edge effect does not 
occur in the equations of classical plate and shell 
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FIGURE 1 The effect of shell thickness on localization. This shows results for the distribu

tion in the axial direction of the stress components in a cylindrical shell with free ends and 

axisymmetric ring load at the center. Except for the thickness, the parameters for each 

case are the same (steel, R = 2 m, L = 10 m, f = 5 Hz, n = 0). The radius-to-thickness 

ratio Rtt is (a) 2, (b) 20, (c) 200, and (d) 2000. Local detail requires a very fine mesh for 

very thin shells. 

theory. In the Reissner - Mindlin theory, some
times referred to as a thick shell theory, trans
verse shear deformation is included that produces 
this additional edge state. Composites usually 
have a relatively soft matrix, so it is more neces
sary to include the transverse shear deformation. 

Indeed, to deal with composites properly, there 
are many higher order theories in use and being 
proposed on a daily basis. Particularly in the vi
cinity of a free edge, a layered composite requires 

essentially a three-dimensional solution. In addi
tion, for either a composite or a homogeneous 
shell, material nonlinearity often occurs first in 
the shear layer and remains localized until failure. 

Examples for Vibration 

All four types of solutions are generally present 
to some degree, and in some problems, such as 
the cylindrical shell with a nozzle, are difficult 
to unscramble. However, only the edge bending 
state is present in Fig. I, which shows the stress in 
a cylindrical shell with a uniform circumferential 

ring line load at the middle. This is the exact 

solution of the shell equations with transverse 
shear deformation included. The purpose of this 
figure is to emphasize that the localization be
comes severe as the shell becomes thin. Figure 
2 isolates the local shear layer. For this, at the 
center line the displacement and the meridional 
rotation are constrained while an external unit 
twisting moment is prescribed. The stress decays 
in about one shell thickness for the homogeneous 
shell. For a composite or sandwich shell for which 
the core or matrix is relatively soft, the shear layer 
will extend much further away from the edge. 

Figure 3 shows the response of a cylindrical 
shell with a ring load at the center and free ends. 
However, instead of axisymmetric as in Fig. l(c), 

the ring load varies around the circumference 
with cos 48, where 8 is the circumferential angle. 
This is the term n = 4 in a general Fourier decom
position possible for a shell of revolution. For 
this situation, the inextensional state is not re

stricted and the frequency of excitation is above 
II. The result is a combination of all states. The 
slowly and rapidly varying parts can be clearly 
seen in the stress distribution Fig. 3(b). A conical 



6 

'\I' 
B I 

CI 

;C .. .. -6 
GI ... OsBid O:;Bod .. 
'" 

-12 

B 2 

Meridional Rrclength s 

FIGURE 2 Local shear layer. This is for the same 

shell as in Fig. l(c) (steel, R = 2 m, L = 10 m,1 = 

5 Hz, n = 2) showing the region of axial distance equal 

to three thicknesses on each side of the center. At the 
center, a unit twisting moment is prescribed, with the 

center displacement and the meridional rotation all con

strained. The shear stress (usB) is dominate for this 

loading and decays within one thickness. 

shell is shown in Fig. 4 for low frequency excita

tion. With free ends for cos 28 (n = 2), the defor

mation is almost purely inextensional. Even in 
the stress, Fig. 4(b) , only a small effect of the 

edge bending state is apparent at the central line 

load and at the free ends. In contrast, Fig. 5 shows 
the same problem but with clamped ends. The 

peak stress is reduced by one order of magnitude 

with the clamping. The rapid and slow compo

nents are clear in the stress distribution in Fig. 
5(b). 

For a higher frequency, above the extensional 

frequency IE' a typical displacement is shown in 
Fig. 6. In this frequency range the "edge bend-
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FIGURE 4 Conical shell 45° with free ends with a 

ring load at the center, oscillating at a frequency 1 = 

5 Hz, near the inextensional ring frequency ofthe larger 

endII = 3.4 Hz (n = 2,1£ = 438 Hz, R/t = 200). More 
than for the cylinder in Fig. 2, no effect of the localized 

load is seen in the deformation (a) and only a little in 

the stress (b). A computation with a course mesh can 

easily capture this behavior. 
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FIGURE 3 Effect of excitation frequency 1 = 50 Hz, above the ring inextensional fre

quency (II = 4 Hz) for free ends. The deformed meridian is shown in (a) and the stress in 

(b). This is the same shell as in Fig. 1(c) (steel, R/t = 200, L/R = 10), but for harmonic 

of circumferential variation in the ring load n = 4. The lack of end constraint permits the 

nearly inextensional deformation that varies slowly along the meridian. The local effect in 
Fig. l(c) is still present, strongly in the stress and less so in the displacement. 
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FIGURE 5 Conical shell 45° as in Fig. 4, but with clamped ends (n = 2, f = 5 Hz, fE = 438 Hz, 

h = 3.4 Hz, Rtt = 200). The end constraint greatly restricts the nearly inextensional component of 

deformation that reduces the total deformation (a) and the stress (b). The response is a combination 

of the slowly varying membrane behavior and the localized bending. 

ing" changes to waves throughout the shell with 

a spatial wavelength on the order of magnitude 

of the decay distance DEB' The important point 

is that the "decay distance" in static problems 

becomes the wavelength in dynamic response for 

frequencies above IE' An additional very impor

tant significance of IE can be seen in Fig. 7. This 

shows the dispersion relation for the cylindrical 

shell in Fig. l(c). If this cylindrical shell has length 

L = 5 m and simply supported ends, then the 

resonant frequencies occur near integer values of 

the dimensionless wave number k* R. The lower 

branch of the dispersion relation in Fig. 7 starts 

with a steep slope, then abruptly flattens near 

the frequency IE' Consequently many resonant 
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FIGURE 6 Distribution of stress component for exci

tation frequency f = 500 Hz, a little above the ring 

extensional frequency (fE = 438 Hz). This is the same 

shell as in Fig. l(c), (steel, Rtf = 200, LlR = 10, 

clamped ends), but for the harmonic of circumferential 

variation in the ring load n = 2. The significant wave

length is the same order as the static decay distance 

in Fig. l(c) for this and the many modes with frequen

cies near fE' 

frequencies occur slightly above IE' This is similar 

for all the low circumferential harmonics and for 

any type of boundary conditions on any shell seg

ment. For the particular cylinder in Fig. 6, there 

are around 100 resonances near IE' Thus the typi

cal thin shell is similar to a complex frame struc-
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FIGURE 7 Dispersion relation for cylindrical shell 

(steel, R = 2 m, t = 0.01 m, n = 0). The resonances 

are at discrete values of the dimensionless wave num

ber k*R. For a length L = 10 and simply supported 

ends, these are close to every integer value of k*R. 

The abrupt kink in the lower branch occurs near the 

ring extensional frequency fE' Slightly above this there 

are around 10 resonances, or eigenfrequencies, at close 

to the same value that correspond to mode shapes 

similar to that in Fig. 4, i.e., with short wavelength. 

The higher branches give a number of resonances at 

high frequencies that correspond to long wavelength 

axial and shear modes. Each of the low circumferential 

harmonics has a similar behavior. In total there are 

around 100 eigenfrequencies close to the ring exten

sional frequency. 



ture, in which many of the substructure units have 
resonances at nearly the same frequency. This 

must be anticipated when using modal decompo
sition techniques. To put it bluntly, modal decom
position is not useful in this frequency range. 

For transient excitation, the speed of energy 
propagation is important. This is the group veloc
ity, given by the slope of the curve in Fig. 7. Two 
branches are steep and correspond to extensional 

and shear waves. These have low wave number, 
i.e., long wavelength, so they are slowly varying, 
but travel very fast. Typically these are important 

on the microsecond scale of time. The lower 
branch in Fig. 7 gives waves with short wave 

lengths, on the order of magnitude of l)EB. These 
waves travel slowly, and are important on a 
longer time scale, typically milliseconds. 

Joining Shell Segments 

In a typical shell structure there are many shell 
segments. A common approximation is to join the 
segments on the respective reference surfaces as 
indicated in Fig. 8(a). This is appealing because 
the shell equations reduce all variables to quanti
ties defined on the reference surface. However, 

when the shell thickness is shown, as in Fig. 8(a), 
the approximation appears questionable because 
there is a gap on one side of the intersection and 
overlapping material on the other. When the slope 
of the two surfaces has a discontinuity as in Fig. 
8(a), there is a further problem with the Reissner 
shell theory because the twisting moment vector 
has a discontinuity in direction. One way to bal
ance this is to introduce the drill moment at the 
shell edge. This has been controversial (MacNeal, 
1994), and informal reports indicate poor results 

(a) (b) 
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when it is included in a shell element. A preferable 
treatment consists of a model with a ring at the 
intersection as indicated in Fig. 8(b) or for the 
intersection of several shell segments in Fig. 8(c). 
The ring or beam can support all three compo
nents of moment and force, so there is no incon
sistency in equilibrium nor in the kinematics. In
cluding transverse shear deformation in 

orthogonal directions of the ring cross section is 
exactly consistent with including transverse shear 

deformation in the plates and shells at the inter
section. Furthermore this yields reasonable re

sults for the case of the shell segments having 
substantially different thicknesses. Such a ring is 
used for the static nozzle intersection problem by 
Steele and Steele (1983). In subsequent work, 

excellent agreement was found between the shell 
calculation and three-dimensional photoelastic 
results when such a ring is used. To tie shell 
segments together only at the reference surface 
as in Fig. 8(a), it may be better to set the twisting 

moment equal to zero at the intersection rather 
than introduce the drill moment. The error will 
most likely only be in the small edge shear layer 
shown in Fig. 2. MacNeal (1994) recommends 
using solid elements in the vicinity of intersec
tions. For modeling full details of fillets and weld 
seams, this is necessary. We are suggesting, how

ever, that considerable accuracy can be gained 
with the ring element at virtually no cost in com
plexity. As pointed out by Schweizerhof et al. 
(1992), three-dimensional elements have the dis
advantage of introducing many high frequency, 
through-thickness modes of response that require 
a very fine time step in an explicit calculation 
of the dynamic response. The through-thickness 
modes would appear in Fig. 7 as additional high 

frequency branches. 

(c) 

FIGURE 8 Joining shell segments. Often plates and shells are joined at the meridian as 

in (a). However, this is physically inconsistent and causes the concern for the drilling 

degree of freedom at the intersection. Introducing a ring or beam element at the intersection 

of two shells (b) or more shells (c), is easy, physically reasonable, avoids any need for 
consideration of the drill, and yields much better agreement with the experiment. 
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COMPUTATION 

The physical behavior just described provides a 
substantial challenge for numerical computation. 
Equations that have rapidly varying solutions, 
either in boundary layers or in waves, are referred 
to as "stiff." For stiff systems, most popular 
methods of numerical analysis are not applicable. 

Direct application of forward integration in the 
spatial coordinates with "shooting" is not practi

cal. Similarly, the transfer matrix method that is 
useful for some problems such as beam frame
works, can be used only for short, thick shells. 
Also, the boundary element method, which is 
very useful for many problems in mechanics, has 
found only restricted application for shells. The 
main drawback is that simple, fundamental point 

load solutions for a general surface are not avail
able. In much of the literature on the numerical 
analysis of stiff systems, restrictive assumptions 
are invoked that exclude most significant shell 
problems, such as in Kreis (1992). Thus the most 
widely used approach is with finite elements in a 
spatially implicit formulation. However, as dis
cussed by MacNeal (1994), the search for the ideal 
shell element continues. Rather than consider the 
details of element architecture and the various 
difficulties, which is well documented in the refer
ences, we focus on the general problems of mod
eling shell response with any spatially implicit, 
discrete method. 

Mesh Spacing 

A criticism of most commercial codes is that the 

important matter of mesh generation is entirely 
left to user judgment. The situation is improving 
with current research codes having the capability 
for automated, adaptive mesh refinement. Addi
tionally, the p-element codes provide automatic 
error checking and enhancement of the shape 

functions within the element. The indication is 
that these techniques are being implemented in 

the general commercial codes. In the meantime, 
some of the current mesh generators produce 
mesh size that is "small," "medium," or 
"large," at the users discretion, without much 

hint of the consequences of such a selection. Of 
course, a good check on the validity of the solu
tion is to rerun with double the number of ele
ments. For a complex shell structure, it is often 
the case that such a mesh refinement study is not 
practical. So, let us consider the sort of mesh 

necessary to get a good solution the first time. 
Consider the mesh required to capture the local

ization shown in Fig. 1 for low frequency and the 
short wavelength for high frequency shown in 

Fig. 6. Generally, at least four low order finite 
elements are needed in the decay distance 8EB • 

For p-element refinement, the shape functions are 
enhanced by higher order polynomials within the 
element. However, the polynomials become un

stable when fitting strong exponential or oscilla
tory behavior, so there is a limit to the order of 
the polynomial. This limits the size of the p ele
ment to, say, one decay distance 8EB • The p ele
ments are not as versatile for nonlinear behavior, 
however, so we consider only the low order ele
ment. For a uniform mesh of square elements, 
four per decay distance, the total number of ele

ments NEB needed to capture the edge bending 
is then: 

l\T _ 27T'RL _ 327T'L 
lVEB - Rtl16 - -(-. (8) 

To capture the transverse shear edge zone the 
number of elements is N ES, given by: 

(9) 

For the dimensions of the shell in Fig. 1, the 

values of N ES and NEB are shown in Table 1. For 
the thin shell the number of elements is large. 
Because a typical shell structure consists of many 
such shell components-spheres, cylinders, 
cones, rings, stiffeners-using a mesh to meet 
(8), not to mention (9), in the entire structure is 
generally not practical. 

What is the consequence of not meeting (8) 
and (9)? There does not seem to be a clear answer 
to this. However, there are many examples for 
the static and low frequency response range, with 
frequency less than IE (3), that show that only 

the edge effects are lost. Thus an important and 

Table 1. Number of Square Elemeuts in Uniform 

Mesh Needed to Capture Edge Effects in Cylinder 

with LIR = 5 

Rlt 

20 
200 

2000 

NEB for Edge Bending N ES for Edge Shear 



comforting fact is that correct results are obtained 

for the slowly varying extensional and inexten

sional solutions. Of course, for local loading, such 

as the line load in Figs. 1-3 and 5, the main part 

of the solution, the peak stress, is lost when the 

mesh is too coarse. For the shell with unre
strained ends, for which the purely inextensional 

deformation is possible such as in Fig. 4, the main 

part of the solution is inextensional. The deforma
tion of the meridian Fig. 5(a) consists of almost 

a rigid rotation. This is easily captured with a 

coarse mesh. In the stress Fig. 5(b), all that is 

lost with a coarse mesh is the little bump in the 

middle under the load and the details at the ends. 
However for distributed loading, such as pres

sure, acting on a shell with proper stiffening to 

restrain the inextensional solution, the exten

sional state is the main component of the solution. 

All that is lost is the edge region of bending, that 
typically gives a stress concentration around 2-3. 

So, be aware. Most finite element calculations 

of shells we have examined miss peak stress by 

this factor of around 2. A special effort must be 
made to get the peak stress. Also be aware that 

at unreinforced slope discontinuities in shells, 

such as the intersection of a cone and a cylinder 

or a nozzle in a cylinder, a coarse mesh can miss 

the peak stress by a factor of as much as 10. A 
basic problem with finite elements is that the edge 

stress is obtained by extrapolation from interior 

values, which tends to undershoot the edge value 

in regions of exponential variation. It can be 

added that this is also a problem with experimen

tal strain gage measurements of thin shells. It is 

difficult to get a gage close enough to the intersec
tion to catch the peak stress. 

For the low frequency range, frequency less 

than IE (3), the correct resolution is reasonable 
and practical. Use a variable mesh spacing, with 

a coarse mesh in the main part of the shell compo

nent graded to a fine mesh near regions of discon

tinuity of load and geometry. For a distance of 

at least 3 x 8EB near the boundary of discontinuity 
pack in, say, 12 elements. To capture the edge 

transverse shear, a finer mesh should be used, 

consisting of, say, at least four elements within 

a distance of two thicknesses. Do the calculation 

of 8EB , and do not depend on what looks like a 

reasonably fine mesh. For a thin shell, what ap

pears to be sufficiently fine may not be at all. A 

coarse mesh will give a smooth result for the 

distribution of stress and displacement. This is 

not necessarily an indication that the results are 
valid. 
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If peak stress is not important, and only the 

overall response of a shell structure in the low 
frequency range is desired, such as for a launch 

vehicle, then a coarse mesh is probably adequate. 

Popular validation problems for finite elements 

(MacNeal, 1994) are the pinched hemisphere, the 

pinched cylinder, and the Scordelis-Lo roof. 

These are all problems with free edges in which 

the inextensional state (or nearly inextensional in 

the Scordelis-Lo roof) dominates. Thus a coarse 

mesh can capture the deformation. The stress, 

which requires a finer mesh, is often not consid

ered in validation problems. However, the prob

lems with dominant inextensional state are non

trivial test problems, because the boundary 

conditions at a free edge are nearly singular for 

a thin shell. Users should be aware that a mesh 

that just passes these tests will not be adequate 
for the important local effects. 

The mesh requirement for a thin shell is a for

midable obstacle for finite elements. Conse

quently there is ongoing research on alternate 

approaches, which might be classified as "large 

element" approaches. In these a complete set of 

exact solutions are used, so that one element can 

contain multiple cracks and holes. Excellent re

sults for plates and two-dimensional elasticity 

have been obtained by the hybrid-Trefftz method 

of Jirousek (1987), and the edge function method 

of Quinlan (1987). A glance at the localization for 

a thin shell in Fig. 1 suggests that a combination of 

asymptotic analysis and the edge function method 
should be applicable for shells. A beginning is 

represented by the F AST2 program of Steele and 

Steele (1983), in which a large, thin cylindrical 

shell with a hole is treated as one "element." 

Work is in progress toward generalizing the ap

proach. As pointed out by Kreiss (1992), after all 

the analytical effort that has been expended on 

asymptotic analysis of such systems of equations, 
it is surprising that little of this analysis has been 

converted into efficient numerical methods. 

Modal Analysis 

Once the stiffness, damping, and mass matrices 

are determined for a shell structure from the finite 

element or other formulation, the modal method 

provides a convenient means for determining the 
response in the frequency or time domain. In stan

dard modal analysis the displacement and forcing 

functions are expressed as a sum of the eigenvec

tors of the corresponding eigenproblem. When 

the damping matrix is written in an orthogonal 
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form such as for Raleigh damping, the orthogonal

ity property of the eigenvectors can be used to 

uncoupled the equations of motion. A solution is 

then found for each eigenmode either exactly or 

numerically. The modal solutions are then super

posed to reconstruct the total structural response. 

For any continuum, the solution is approximate 

because a truncation must be made in the number 

of modes used. The accuracy of the approxima

tion is dependent on how well the modes selected 

can represent the forcing and displacement. 

For excitation of a complex shell structure in 

the low frequency range, I < IE for each compo
nent, this standard modal approach is generally 

successful. Particularly when only the global re

sponse characteristics are desired, the local ef

fects are ignored and a coarse mesh used. The 

helicopter is a good example of a complex struc

ture for which the dynamic response is crucial. 

In a fairly recent model the first production heli

copter had the frequency of the torsional mode 

of the tail at exactly the blade strike frequency. 
To avoid such occurrences, several companies 

joined in an effort to improve and document the 

use of NASTRAN as a predictive tool in design, 

as reported by K vaternik (1993). The results show 

that the first few resonances can be predicted. All 

the simulations must be considered as "coarse," 

modeling the shell structure as rings and stiffeners 

connectd by shear panels and assuming a fixed 
2% modal damping. However, after the first few 

modes, the agreement with the experimentally 

determined response is not satisfactory. Improve

ment may come with better modeling of the 

curved panels as shells and with better identifica

tion and modeling of the damping. It appears that 

the use of composites will increase, correspond
ing to larger panels that carry a larger portion of 

the load. Therefore the need for accurate shell 
capability will increase. Another study involving 

many companies is reported by Kielb et al. (1985). 

In this the resonant frequencies of a twisted plate 

were considered, because this is of fundamental 

concern in the design of turbomachinery blades. 

The frequencies were computed independently 

by a number of finite element codes, and the re

sults compared with an experiment and an exact 

calculation. Although some of the best-known 

computational procedures were used by analyists 

with great experience, the numerical results ob

tained showed considerable disagreement. Some 

even showed the incorrect trend of frequency 

change with increasing angle of twist for the first 

mode. Use of large numbers of elements did not 

necessarily lead to accurate results. We presume 

that the codes by the present time have been 

improved to give the correct behavior on this 

particular problem. However, careful validation 

remains important. 

For the high frequency range of response, 

I> IE for some components, the modal approach 

encounters difficulties for shell structures. The 

first resonant mode for each shell may look like 

that in Fig. 7. Thus the fine mesh with the number 

of elements NEB in Table I is necessary for each 

component. Calculation of the eigenvalues and 
corresponding eigenvectors is expensive for such 

a large system. Second, the number of resonances 

near the extensional frequency IE can be large. 
There is a major problem in identifying all these 

eigenvalues. Furthermore, methods designed for 

systems with discrete eigenvalues, with perhaps 

the provision for handling two or three repeated 
eigenvalues, may not be appropriate when, say, 

100 eigenvalues are in close proximity. Generally, 

for thin shell structures, different components 

have different values of IE' so several clusters 
of resonant frequencies are present. For these 

reasons, the modal approach is limited in dealing 

with high frequency response. 

Direct Integration Methods 

Following is a brief outline of the basic features 

of direct integration methods. The time deriva

tives in the equation of motion are replaced by 
finite difference approximations. The nature of 

the difference equations can be grouped as either 

explicit or implicit in time. In the explicit scheme 

the current solution is described exclusively in 

terms of past values. In the implicit scheme the 
solution is expressed in terms of past and current 

values. The difference equations reduce the prob

lem to the solution of a system similar to the static 
case at each time step. Thus these methods are 

readily adaptd to nonlinear problems. 

Explicit methods in general have the property 

that when diagonal mass and damping matrices 

are used the system of equations to be solved 

uncouple and can be advanced in time directly, 

without the computational cost of solving a simul

taneous system. However, this advantage may 

be offset by the limitation imposed by conditional 

stability. A commonly used explicit algorithm is 

the central difference method. It is conditionally 

stable and second-order accurate. For the central 

difference method, stability requires that the time 

step be less than twice the inverse of the highest 



natural frequency of the system. Because too 

small a time step increases the cost of the time 

history analysis , it is important to have a good 

estimate of the maximum frequency present. If 

an eigenvalue calculation is not available , then 

an upper bound on the maximuQ frequency can 

be found by calculating the highest natural fre

quency of a constituent element. 

Explicit schemes are most efficient when high 

frequency components are of critical interest , 

such as is typical of impact and wave propagation 

problems. The computational simplicity of ad van

cing the solution in time makes the cost per time 

step small. However, explicit methods may be 

impractical when a long time history is required. 

Implicit schemes may be better suited to the 

large time solution requirements because they can 

be unconditionally stable . Some examples of im

plicit algorithms in use are the trapezoid rule , 

Houbolt method , Park method , 0' method , and 

the Wilson-(I method. These share the properties 

of unconditional stability and second-order accu

racy. Excluding the trapezoidal rule , these meth

ods also contain numerical damping that can be 

useful in removing the contribution from unde

sired high modes that may be spurious relics of 

the discretization process. 

The time step used in these implicit schemes 

is limited by the desired solution accuracy. Typi

cally , at least 10-20 time steps per period of the 

highest desired mode are required to accurately 

capture that mode . Solutions at large times may 

be dominated by a few low frequencies only. In 

this case large time steps that are orders of magni

tude greater than possible in the explicit schemes 

may be used to quickly bring the solution to equi

librium. While the per time step computations are 

expensive due to the necessity of solving a large 

system of equations , the unconditionally stable 

behavior may make the implicit method more ef

ficient for problems where only a small number 

of modes contribute to the solution at a desired 

instant in time. 

One aspect of the computational difficulty of 

shells, compared with solids and plates , is appar

ent in Fig. 7. The lower branch is important for 

the long-time response and requires a fine mesh . 

The higher two branches correspond to slowly 

varying waves that can be captured with a coarse 

mesh , but have a high speed of energy propaga

tion , on the order of magnitude of the compres

sion and shear waves in a solid. Very small time 

steps are required in an explicit solution to cap

ture the fast waves . However, a fine mesh is re-
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quired to capture the short wavelength modes 

given by the lower branch , which have a very 

significant effect at long times. Thus for the shell 

we have the double demand for a fine mesh over 

the entire surface and very short time steps. For 

the implicit scheme , the larger time steps permit 

the computation of the longer time response , at 

a loss of the short-time detail. However, it is 

typically the case , that the significant deformation 

and stress occurs at the longer time scale at which 

the short wavelengths are significant. Thus the 

fine mesh is still required. 

Examples 

The experienced analyst can reduce the number 

of elements required in a particular case. Figure 

9 is taken from Prantil et al. (1986) , and shows the 

permanent deformation resulting from explosive 

loading of a cylindrical shell. The loading oc

curred in 80 [LS , while the maximum strain mea

sured in experiment occurred at around 1 ms , 

in correspondence to the previous discussion on 

resonant freq uencies. The calculation was per

formed with DYNA3D , using a modified 

Hughes-Lu shell element. The R l t ratio was se

lected so the response would have significant elas

tic and plastic effects . For thinner shells elastic 

effects dominate , and for thicker shells plastic 

FIGURE 9 Final form of a cylindrical shell subject 

to blast loading. An explosive pad was distributed on 

half of the shell length and half of the circumference 

(R /t = 270 , LI R = 3.4). A dis tribution of imperfection 

was assumed that produced good qualitative agreement 

wi th the final deformation in the experiment , using 

10 ,080 elements in DYNA3D . Adapted from Prantil et 

al. (1986). 



424 Steele, Tolomeo, and Zetes 

flow is most significant. According to (8), this 

shell requires 90,700 uniform and square ele

ments. In fact 10,080 were used to obtain good 

qualitative agreement with the experimental re

sults. These elements were not uniform but con

centrated in the central portion of the shell. Fur

thermore the elements were selected to have 

twice the length in the axial direction as in the 

circumferential. As seen in Fig. 9, the sharp spa

tial variation occurs in the circumferential direc

tion. Thus with knowledge of the significant de
formation pattern for a specific loading, the 

number of elements can be reduced from the esti
mate (8), while retaining good results. It should 

be noted, however, that the laboratory (SRI) had 

30 years of experience in the analysis and compu

tation of this problem, and the developer of the 

code (Hallquist, 1994) assisted in this computa

tion. Even with the advances in the last few years, 

good results for such problems are not to be con

sidered routine. Finally note in the title that the 

shell is considered as very thin, with 
R/t = 267. In fact many liquid storage vessels, 

rocket motor cases, and reactor containment ves
sels are in the range R/ t = 1000-4000. From Table 

I, the number of elements for such shells becomes 

large indeed. In other types of explosive loading 

of the shell, full resolution in the axial direction 
is required. In Fig. 10 is the response for a step 

load moving along a beam on an elastic founda

tion. The behavior is similar to that of a shell of 

revolution with a step pressure, say a shock wave 

in air, moving along the shell in the axial direction. 

The stiffness of the elastic foundation varies. In 

Fig. lO(a), the load is moving to the stiffer end, 

corresponding to a wave moving from the big end 

of a conical shell toward the smaller; in Fig. 10(b) 

the load moves in the opposite direction. The 

correct solution requires the capture ofthe waves 

moving ahead of the load, which have the wave

length on the order of magnitude of ?lEB' 

In the large deformation of thin shells, just as 

in crumpling a sheet of paper (or in Fig. 9), the 

deformation pattern can be recognized as consist

ing of regions in which the inextensional state 

dominates connected by narrow ridges in which 

the edge bending state dominates. A simple exam

ple of this is in Fig. II(a) that shows the impact 

of a thin spherical shell against a rigid wall. In 

Fig. ll(b) the spherical shell is impacted by a 

small mass. In both cases, an inverted dimple 

forms. The Gaussian curvature of the dimple is 

the same as before, because changing the Gauss

ian curvature requires a high amount of exten-
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FIGURE 10 Step pressure load moving along a beam 

on an elastic foundation of varying foundation modu

lus. This is the behavior of a conical shell subject to a 

blast wave in the surrounding air traveling along the 

axis. In (a) the load is moving from the soft to the stiff 

region, i.e., from the big end to the small end of the 

cone; in (b) the load is moving from the stiff to the soft 

region. (Computations from P. Underwood.) 

sional state energy. The outer region and the in

verted dimple region are connected by a narrow 

region of high bending stress. The significant 

strain energy and/or plastic flow occurs in the 

narrow region. Thus a fine mesh is needed to 

capture this behavior. However, the location of 

the rim is changing as the dimple increases in 

size, so either an adoptive mesh technique or a 

fine mesh everywhere is required. For thicker 

shells the narrow bending region is dominated by 

plastic flow. At first glance this would seem to be 

pure loading as the dimple progresses. However, 
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FIGURE 11 Impact of shells. For large deformation 

of shells, the shell will generally have regions of inex

tensional bending divided by narrow regions of edge 

bending . In (a) a spherical shell impacts a rigid wall 

and in (b) a mass strikes a spherical shell. In both a 

dimple forms with the same curvature as the original 

shell. For elastic deformation , the significant strain en

ergy is in the narrow transition region. When the elastic 

limit is exceeded , plastic flow occurs in the transition 

region. Note that a fixed point on the shell experiences 

plastic bending and then reversed bending, so unload

ing must be handled properly. As the dimple progresses 

further , as ymmetric bifurcations in the deformation 

shape usuall y take place . 

a point on the meridian initially has the radius of 

curvature R. As the bending region reaches the 

point , the radius of curvature decreases substan

tially , causing plastic flow. As the bending region 

passes the point , the bending of the point reverses 

direction and ends up with the negative radius of 

curvature - R. Thus significant unloading takes 

place , which must be taken into consideration for 

correct results. As the dimple progresses further, 

bifurcations of the bending region into asymmet

ric modes takes place. 

Figure 12 shows the side impact of a cylindrical 

shell on a rigid plate, from Lovejoy and Whirley 

(1 990). The regions of the nearly inextensional 

state and the narrow regions of the edge bending 

state can be seen , even for this fairl y thick shell. 

For this computation , a uniform mesh of brick 
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FIGURE 12 Impact of a cylindrical shell on a rigid 

plate with DYNA3D. Adapted from Lovejoy and Whir

ley (1990). 

elements is used. Finally , a very challenging prob

lem of the simulation of an automobile crash is 

shown in Fig. 13 , taken from Hallquist (1994). 

Such a structure contains many solid , plate , and 

shell elements. Future lighter weight designs are 

moving in the direction of more thin shell-like 

components , so more of the thin shell difficulties 

discussed in this article will have to be met. The 

capability for complete analysis of such struc

tures is being aggressively pursued by several 

automobile companies. 

CLOSURE 

The message has gotten across in many areas of 

industry that the gain in understanding through 

computation is far less expensive than extensive 

experimental studies , and far , far, less expensive 

than recalls and court settlements resulting from 

inadequate design. Nonetheless , there are reports 

from designers who seem to be under more pres

sure than ever. The high competition and shorter 

design cycle allows insufficient time for either 

proper experimental testing or computational 

simulation . However, we expect the increase in 

computer power and the sophistication ofnumeri

cal simulation to continue unabated. We hope 

FIGURE 13 Automobile crash simulation with 

LS-DYNA3D. Adapted from Hallquist (1994). 
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that the points mentioned in this article will aid 

in a realistic understanding of the present and 
near future capability for the analysis of shell 

structures. 
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