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In this work a machine cam with five different profiles was used to investigate the linear and nonlinear dynamical behavior of
asymmetric Stockbridge damper with excitation frequencies in the range of 5 ≤ f ≤ 17 Hz. The experimental vibration signals
were acquired through accelerometers placed along the sample. The loss factor and the Young’s modulus were estimated through
approximation of the experimental and numerical results using Genetic Algorithms (GAs). Linear and nonlinear mathematical
models were used to adjust the data. The two parameters are dependent on the excitation frequency and the amplitude of the
base displacement. The results are validated comparing typical impedance curves obtained in conventional testing using an
electromechanical shaker.

1. Introduction

The Stockbridge damper is presently the most common type
of transmission line damper. In general, the absorber consists
of two weights attached to the end of stranded cables, which
are known as messenger wires.

A detailed mathematical description of conductor mo-
tion is difficult due to the stranded construction of a
conductor. An example of this problem is the study carried
out by Nawrocki and Labrosse [1], where the cable is mod-
eled using each individual wire model and all possible con-
tacts are investigated. However, in order to get good results
for the static analysis, this model was not applied for dynamic
problems and the dynamic friction between the individual
wires of the cable was also not studied.

In Stockbridge dampers of transmission line, mechanical
energy is dissipated in wire cables “damper or messenger
cables”. The damping mechanism is due to statical hysteresis
resulting from Coulomb (dry) friction between the individ-
ual wires of the cable undergoing bending deformation. In
order to test this dynamical model of Stockbridge damper,
the typical experimental impedance curves are compared

with numeric results. This procedure was used by [2] who
uses the masing model for modeling the nonlinear damping
behavior of the damper cable of the Stockbridge damper.

Zhu and Meguid [3–5] analyzed the behavior of cables
considering curved beam models. Due to difficulties in
modeling the hysteretic damping, the standard Rayleigh
damping was used. The numerical and experimental results
presented good approximation.

López and Venegas [6] analyzed the dynamic behavior
of Stockbridge dampers through dynamic and fatigue tests
and showed that the damping ratio decreases linearly with
the excitation motion amplitude.

In this work, the physical parameters are adjusted
through the comparison between numerical and experimen-
tal results. The numerical models are obtained using the
Finite Element Method. The experimental results are ob-
tained using a cam machine with five different eccentricities.
This way, the motion amplitude of the excitation is main-
tained constant. The experimental results are compared with
linear and nonlinear numerical results. The nonlinear system
contains nonlinear stiffness and damping elements. The
dynamic responses of the linear and nonlinear systems are
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Figure 1: References and admissible displacements.

also compared with the experimental results (impedance
curves) obtained through conventional testing using an elec-
tromechanical shaker to excite the system.

2. Mathematical Models

The mathematical models of the Stockbridge damper system
are shown in this section.

2.1. Messenger Wire Model. The messenger wire is modeled
by the Euler-Bernoulli beam finite element. In this element,
the transversal displacement is interpolated using the well-
known Hermitian interpolation polynomials with C1 conti-
nuity, and the degrees of freedom (d.o.f) in each node are
the transversal displacement and the rotation, {v, θ}. The
dynamic equation for this element can be written as:
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where ρA is the linear density of the cable, L is the finite
element length, EI is the cable flexural (bending) stiffness
and ÿo is the base acceleration (the acceleration imposed by
the cam machine).

In order to take into consideration the cable hysteretic
damping in (1), it is enough to consider the flexural stiffness
as [6];

EI = EIo
(
1 + ηi

)
, (2)

where η is the hysteretic damping constant and i =
√
−1.

2.2. Damper Mass Model. The suspended masses of the
Stockbridge damper are modeled with a rigid body plane
motion hypothesis and the admissible displacements are
shown in Figure 1.

After assembling all the elements of the messenger wire,
each weight of the Stockbridge damper contributes to two
terms of the dynamical equilibrium. The first contribution is
in the mass matrix (inertia force)

[MS]
{
q̈n
}
=
[
m mx
mx In

]{
v̈n
θ̈n

}
(3)

and another parcel is in the vector force due to base accelera-
tion

{
fs
}
= −

{
m
mx

}
ÿo, (4)

where m is the mass of the Stockbridge damper weight, x is
the center of mass coordinate and In is the inertia moment
with the reference fixed in node n.

These two terms are obtained using the first variation
of the kinetic energy (Hamilton Principles) and the rigid
body plane motion hypothesis for modeling the suspended
Stockbridge damper weight. With the convention defined in
Figure 1, the kinetic energy of each weight of the Stockbridge
damper can be written by taking node n (the node of the
finite element mesh connected to the messenger wire) as a
reference. This expression is

T = 1

2
mṙn · ṙn + ṙn · [ω ×mx] +

1

2
ω ·

∫

m
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[
ω× ρn

]
dm,

(5)

where ṙn is the velocity of node n, ω is the damper weight
angular velocity and ρn is the particle position of dm mass
with the origin fixed in node n.

Taking into consideration the hypotheses of plane mo-
tion of rigid body, ω = θ̇nk, and symmetry in y, (y = 0),
the expression for the damper weight kinetic energy can be
rewritten after integration as

T = 1
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(6)

The variation of T can be written as δT = ∂T/∂u̇nδu̇n +
∂T/∂v̇nδv̇n +∂T/∂θ̇nδθ̇n. Integrating by parts the terms in δv̇n
and δθ̇n and neglecting the boundary terms, it is found in (3)
and (4).
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2.3. Finite-Element System of Equations. The Stockbridge
damper dynamical equilibrium equation is obtained after
assembling all finite elements and it can be conventionally
written as

[M]
{
q̈
}

+ [K]
{
q
}
=
{
fo
}
ÿo(t), (7)

where [M] and [K] are the mass and stiffness matrices,
respectively, and { fo} is the force vector. The vector com-
ponents {q} are the finite-element node displacements and
rotations, v and θ and ÿo is the acceleration in node 1 (base
shaker acceleration).

Considering the base excitation as harmonic, ÿo(t) =
| ÿo|eiωt, the solution q(t) becomes q(t) = qoeiωt. Substituting
this supposed solution into the motion equation (7) yields

[
−ω2[M] + [K]

]{
qo
}
=
∣∣ ÿo

∣∣{ fo
}
. (8)

The amplitude of the displacement vector is calculated
solving Equation (8) for each frequency ω and the amplitude
of the acceleration vector is easily calculated with the product
of ω2{qo}.

2.4. The Nonlinear Formulation. The parameter estimation
of the nonlinear system can be made by approximating the
numeric and experimental Frequency Response Function
(FRF) curves. The analysis can be exemplified considering
the motion equation of a simple oscillator subjected to a har-
monic excitation [7–11] (Harmonic Balance Method):

m ÿ + g̃
(
ẏ, y

)
= f sinωt, (9)

where g̃( ẏ, y) encloses all the restoring forces and supposing
it is a nonlinear function of the velocity and displacement
( ẏ, y) of the mass m.

It is possible to find a linearized coefficient ν̃( ẏ, y) which
provides the best average of the true restoring force. This
coefficient acts on the fundamental harmonic of the non-
linear response (Ỹ 1st) for a single load cycle, in such way that
[8]

g̃
(
ẏ, y

)
≈ ν̃

(
ẏ, y

)
· y, for y≈ Ỹ 1st sin(ωt + θ) = Ỹ 1st sin τ.

(10)

In order to find the nonlinear coefficient ν̃( ẏ, y), the
restoring force g̃( ẏ, y) is expanded around y via a Fourier
series, neglecting all the higher order terms:

g̃
(
ẏ, y

)
≈ ν̃

(
ẏ, y

)
· y = σ1st

a y + σ1st
b y

+ σ1st
c y + σ1st

d y + · · · ,
(11)

where the σ functions are given by

σ1st
a = 1
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∫ 2π

0
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(
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)
sin τ dτ, (12)
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)
cos τ dτ. (13)

The nonlinear coefficient ν̃( ẏ, y) is defined by (using only
the first two terms of (11)):

ν̃

(
ẏ, y

)
= σ1st

a + σ1st
b . (14)

The mathematical model of a cubic stiffness element can
be expressed as [8]:

g̃k
(
ẏ, y

)
= ky + βy3, (15)

where the coefficient k represents the linear component of
the spring and the coefficient β accounts for the nonlinear
effects due to the term y3. Introducing (15) into (12) and
(13) and dropping the superscript first and after many mani-
pulations, it can be found that the first-order representation
of a cubic stiffness element is [8]:

ν̃k

(
ẏ, y

)
= k +

3βỸ 2

4
, (16)

where the second term on the right side of (16) represents
the nonlinear part of the coefficient.

The nonlinear friction damping can be obtained using
a similar approach to the cubic stiffness development. The
nonlinear restoring force becomes

g̃d
(
ẏ, y

)
= c ẏ + γ

ẏ∣∣ ẏ
∣∣ . (17)

The linearized coefficient ν̃c( ẏ, y) is found to be

ν̃c

(
ẏ, y

)
= iωc + i

4γ

πỸ
. (18)

The g̃( ẏ, y) restoring forces presents in (9) involves the sum
of (15) and (17).

Expanding the idea of the simple oscillator introduced in
(9) to a MDOF system, we have

[M]
{
ÿ
}

+
{
G̃
(
ẏ, y

)}
= {F}eiωt, (19)

where [M] is the mass matrix; { ÿ}, { ẏ} and {y} are the
acceleration, velocity and displacement vectors, respectively,
and {F} is the harmonic excitation vector operating at fre-
quency ω.

For additive nonlinearities, it is possible to expand the
nonlinear vector into individual nonlinear restoring forces,
as follows:
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where N is the size of the system (in DOFs). Each nonlinear
function g̃i j represents a restoring force acting between DOFs
i and j, while terms with repeated indexes g̃ii represent a
restoring force between DOF i and the ground.

Introducing the newly redefined nonlinear coefficients
into (20), a matrix of nonlinear coefficients is formed:

{
G̃
(
ẏ, y

)}
= [ν̃]

{
Ỹ
}
. (21)
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Figure 2: Schematic cam machine.

The motion equation of a general nonlinear system sub-
jected to harmonic excitation can be described by the follow-
ing nonlinear ordinary differential equation:

[M]
{
ÿ
}

+ [C]
{
ẏ
}

+ i[D]
{
y
}

+ [K]
{
y
}

+
{
G̃
(
ẏ, y

)}
= {F}eiωt,

(22)

where [M], [C], [D], and [K] are the mass, viscous damping,
hysteretic damping, and stiffness matrices, respectively, of the
underlying linear system; { ÿ}, { ẏ}, and {y} are the accelera-
tion, velocity and displacement vectors, respectively, and {F}
is the harmonic excitation vector operating at frequency ω.

The nonlinear component of the system is represented by

the nonlinear vector{G̃} , which is a function of all displace-
ments and velocities in the general case.

Considering a harmonic response {y(t)} = {Ỹ}eiωt,

where {Ỹ} = {|Ỹ |eiθ} is a nonlinear complex vector allowing
it to accommodate phase, the motion equation is further
reduced to

(
−ω2[M] + iω[C] + i[D] + [K]

){
Ỹ
}

+
{
G̃
(
ω, Ỹ

)}
= {F}.

(23)

The linear receptance can be defined as

[α] =
(
−ω2[M] + iω[C] + i[D] + [K]

)−1
(24)

and its inverse, [Λ] = [α]−1, as

[Λ] = −ω2[M] + iω[C] + i[D] + [K]. (25)

Inserting (16) and (20) into (18), we have

([Λ] + [ν̃])
{
Ỹ
}
= {F} (26)

leading to the final compact representation of the nonlinear
function:

[
Λ̃

]{
Ỹ
}
= {F}, where:

[
Λ̃

]
= [Λ] + [ν̃], (27)

where [Λ̃] is a composite matrix, enclosing linear and non-
linear coefficients and it is formulated for the current state
[ ẏ, y,ω]. It can be considered the system matrix. Obtaining

the determinant roots of [Λ̃] yields the frequency-dependent
nonlinear natural frequencies and damping ratios. The sys-

tem response {Ỹ} can be obtained solving (27).
The solution of (27) can be used to adjust and/or update

the parameters in numerical models obtained through the
finite-Element method by comparing numerical and experi-
mental results [12]. Satisfactory results were obtained using
the genetic algorithms method [13] to make the approxi-
mation of the numeric and experimental values. The GA’s
parameters used in this application are mutation rate =0.02,
population size =50, and number of generations =5000. The
objective function is defined by

f =
np∑

i=1

∣∣∣Paaexp − PaaFEM

∣∣∣, (28)

where Paaexp is the acceleration ratio (acceleration of the
reference sensor/acceleration of the accelerometer on the
cable); PaaFEM is the same acceleration ratio estimated using
GA; np is the number of points (normally np = 47).

3. Results

Figure 2 shows the schematic representation of the machine
cam used in the experimental testing of the Stockbridge
damper with controlled oscillation (displacement). The
experimental data are obtained through three accelerometers
placed in the half sample. One accelerometer was placed in
the center (A2) and another at the end of the messenger wire
(A3). A third accelerometer (reference) was placed on the
connecting rod (A1).

Figure 3 shows the cam machine with Stockbridge
damper coupled and two accelerometers positioned on the
weight. The data acquisition system is composed of a signal
analyzer (HP 3567) and modal accelerometers (PCB 333AX,
sensitivity ≈100 mv/g). The cam machine with radial flat-
faced follower is manually operated.

Five different disk cams with eccentricities of 0.25, 0.5,
0.75, 1.25, and 1.5 mm were used. The tests were carried
out varying the excitation frequency between 5 and 17 Hz
with increments of 0.25 Hz. This lower frequency range was
used due to the mechanical limitation of the excitation sys-
tem. Figures 4 and 5 show the experimental curves of the
acceleration ratio obtained for the accelerometers placed in
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Figure 3: Cam machine with Stockbridge damper coupled.

4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Frequency (Hz)

A
cc

el
er

at
io

n
 r

at
io

 P
a

a

0.25

0.5

0.75

1.25

1.5

Figure 4: Acceleration ratio curves of accelerometer 1.

the center (accelerometer 1) and at the end (accelerometer 2)
of the messenger wire. The natural frequency changes with
the motion amplitude can be noticed. The frequency varia-
tion is inversely proportional to the motion amplitude.
Figures 6(a) and 6(b) show the variation of the natural
frequency and the damping ratio (adjusted with the linear
system) versus the amplitude of the base excitation. It can
be noted that parameters, the natural frequency, and the
damping ratio vary inversely with the increase of the base
motion amplitude. López and Venegas [6] found slightly
different results in experimental tests.

The linear and nonlinear parameters used in the numer-
ical models were adjusted considering five different cam
profiles. The results are shown in Table 1. The linear para-
meters adjusted are the Young’s modulus E and the loss factor
η according to (2).

To simulate the hysteretic damping of the system, it was
considered η = ηi/ω (frequency dependent parameter). For
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Figure 5: Acceleration ratio curves of accelerometer 2.

the nonlinear system, these two parameters and the other
nonlinear parameters of stiffness (β1 and β2) and damping
(γ1 and γ2), described in (16) and (18) using the procedure
described in [8] and only considering the main terms of the
nonlinear stiffness and damping matrixes (main diagonal),
were adjusted. The error column (Table 1) represents the
sum of the absolute errors (difference between the linear and
nonlinear FRF) obtained for a limited range of frequencies
(approximately 2 Hz in the resonance region) divided by the
number of points.

Figure 7(a) shows the reference base displacement curve
obtained in a conventional testing using an electromechan-
ical shaker for excitation. The base displacement variation
with the excitation frequency can be noted. The real accel-
eration measured at Stockbridge damper was considered as
input for the mathematical system (Figure 7(b)).

Figures 8(a) and 8(b) show the fitted curves of EI (bend-
ing stiffness) and η (loss factor) as a function of the base
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Figure 6: Curves of natural frequencies and damping ratio versus base displacement.
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Figure 7: Base displacement and acceleration.

Table 1: Parameters adjusted for the linear and nonlinear systems

Eccentricity (mm) Absolute error EI (Nm2) ηi β1 (N/m3) β2 (N/m3) γ1 (N) γ2 (N)

0.25
linear 0.589 1.90 9.82

nonlinear 0.600 1.98 11.46 −7.9e9 −0.0036 −0.0264 −0.0502

0.5
linear 0.454 1.74 6.21

nonlinear 0.480 1.69 7.68 −9.59e8 −0.0308 −0.0416 −0.0964

0.75
linear 0.496 1.65 4.40

nonlinear 0.464 1.67 6.57 −4.59e8 −0.0077 −0.0445 −0.0084

1.25
linear 0.568 1.52 2.94

nonlinear 0.569 1.54 3.72 −1.67e8 −0.0182 −0.0490 −0.0537

1.5
linear 0.828 1.43 2.56

nonlinear 0.797 1.08 11.24 −5.20e8 −0.1601 −0.0147 −0.0996
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Figure 8: Curve of the flexural stiffness and loss factor versus base displacement.
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motion amplitude. These curves are used as a reference for
adjusting the Stockbridge damper parameters tested in an
electromechanical shaker.

Figure 9 shows the experimental and adjusted cable
acceleration curves using a linear numerical model. The
curves present good agreement for f <= 10 Hz (region of
the first vibration mode). As the frequency testing is lower
than 17 Hz, it is not possible to extrapolate the results for
f > 17 Hz.

Figure 10 shows a typical experimentally measured im-
pedance curve and the corresponding numeric curve fitted
(linear model) with the parameters shown in Figure 8. It is
possible to notice the good agreement between the numeric
and experimental curves.
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Figure 10: Impedance curves.

4. Conclusions

The results showed that the natural frequency of the system
varies with the amplitude of the excitation motion, that is,
the higher the motion amplitude is the lower the natural
frequency gets. The same behavior was verified for the damp-
ing ratio of the system, that is, the higher the motion ampli-
tude is the lower the damping ratio gets.

It was verified that the real and imaginary parts of
the complex Young modulus decrease with the motion
amplitude increase when the parameters are fitted for a linear
system.

For the frequencies range 5 ≤ f ≤ 17 Hz and the motion
displacement smaller than 3 mm, the system response with
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nonlinear parameters did not show improvements in relation
to the linear system response.

As the test was done with a full Stockbridge damper, it
is possible that the smallest cable and the smallest mass have
influenced the results. The mathematical model was based
only on the Stockbridge damper half model containing the
largest weight.

When the tests are performed with constant base motion
amplitude, it is possible to fit a single value of the parameters
according to the motion amplitude.

When the tests are carried out using an electromechanical
shaker, the motion amplitude is varied according to the exci-
tation frequency. In this case, the fitted parameters are fre-
quency dependent.

The typical numerical and experimental impedance
curves present good agreement.
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