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Dynamic analysis of the Empact CVT
Ratio and slip dependent, non-minimum phase dynamics

T.W.G.L. Klaassen, B.G. Vroemen and M. Steinbuch
Eindhoven University of Technology, Department of Mechanical Engineering
P.O. Box 513, 5600MB Eindhoven, The Netherlands

Abstract

The dynamics of an electromechanically actuated metal V-belt (Empact) CVT is analyzed by

studying a simplified linear model of the actuation system and a driveline model which includes

the slip dynamics of the variator. The actuation system shows several CVT ratio depending

modes. Linearization of the slip dynamics shows that the location and, moreover, the damping

of the modes depends significantly on the amount of slip in the variator. Using pole-zero loca-

tions of the system it is shown that due to high overclamping a coupling between the primary

and secondary side of the variator occurs with very large damping and due to underclamping

the input and output sides of the variator are decoupled with low or even negative damping,

resulting in an unstable system. Furthermore non-minimum phase behavior of the actuation is

described. Using identification results from a non-linear model of the Empact CVT the interac-

tion of the actuation and driveline dynamics is analyzed. Finally, measurements on a prototype

of the Empact show similar behavior, however with very large damping of all of the modes.

1 Introduction

The pulleys of a pushbelt or chain type CVT are actuated axially to adjust transmission ratio

and to apply slip-preventing belt clamping force. In conventional CVTs this is done using hy-

draulics. Hydraulic losses are however substantial. To reduce the energy consumption, an

electromechanically actuated CVT is developed [6], also referred to as the Empact CVT. By

using a double epicyclic gear system and a screw mechanism at both shafts of the CVT (fig-

ure 1), it is possible to actuate the metal V-belt CVT with two servomotors at the fixed world.

That means that the rotation of the servomotors is decoupled from the rotation of the input and

output shaft of the CVT. By rotating the primary servomotor, a relative rotation between the two

sun gears of the epicyclic sets is realized. This results in a translation of the spindles at both

pulleys. At the secondary side, by adjusting the torque delivered by the secondary servomotor,
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Figure 1: Electro-mechanically actuated CVT

the clamping force in the variator can be set and controlled. This system has the advantage

that only mechanical power is needed when the CVT is shifting or when the clamping force is

changed. The energy losses are reduced to a minimum in this way.

For analysis, control design and testing of the Empact CVT, a simulation model is built. This

model is described in [4]. Due to its complexity and nonlinear behavior, this model is not

suitable for control design. To use modern control design techniques like µ-synthesis, linear

transfer functions from all inputs to all outputs must be known. Klaassen et al. [3] presents

the identification of a linearized model from the non-linear simulation model using approximate

realization techniques.

This paper first gives a dynamical analysis of the Empact CVT by studying the modes of the ac-

tuation system and the driveline separately. Furthermore non-minimum phase behavior of the

system will be described. The interaction of these dynamics are described using identification

results from a non-linear model of the Empact CVT in section 3. Finally to validate the analytic

model, results from identification measurements will be shown.

2 Dynamic analysis

The model described in [4] includes all major driveline components and the electromechani-

cally actuated CVT. A detailed model of the variator is implemented, which gives an accurate

estimation of the clamping forces and slip in the system. In this model the worm gear with its
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Figure 2: Transfer function from Tmp (Input 1) and Tms (Input 2) to rg (Output 1) and ν (Output

2) at rg = 0.5 (-), rg = 1 (- -) and rg = 2 (-.)

bearing support, the chain at the secondary actuation and the thrust bearings, which support

the axial force between the sun gears of the epicyclic gears at the primary and secondary side,

are modeled as spring elements. As described in [3] and [1], the controlled variables are the

geometric ratio rg and the slip ν in the variator. The control inputs are the primary and sec-

ondary servo torque, Tmp and Tms respectively. Linearization of the nonlinear model from these

inputs to the outputs using approximate realization from step responses result in slip and ratio

dependent transfer functions [3]. Figure 2 shows the transfer functions at ratio low, medium

and overdrive. To get more insight in the resonances visible in the transfers function, the sys-

tem is divided into two parts, i.e. a linear model for the actuation system and a model for the

driveline, in this case the testbench. Furthermore non-minimum phase behavior resulting from

the geometry of the variator will be described.
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2.1 Actuation system

The first part is a linear, lumped parameter representation of the actuation system as shown in

figure 3. In this model the pushbelt is represented as a flexible element. The stiffness of this el-

ement is the longitudinal stiffness of the steel bands of the pushbelt, combined with the stiffness

of the pushing segments on the tense side. The thrust bearings are modeled as translational

springs which support the screw output in longitudinal direction. The worm is represented as

a rotational spring between the output of the worm and the ring gear of the epicyclic gear at

the primary side. Finally the chain which connects the secondary servo to the ring gear of

the epicyclic set is modeled as a flexible element. All flexible elements are subjected to pro-

portional damping. Other non-conservative forces that act on the system are viscous friction

in both servos and screws and a damping force that acts on the pulleys according to Shafai’s

model [5].

The epicyclic sets are modeled as a normal gear with a ratio of 2, which is the ring to sun ratio.

The carriers and planets of the epicyclic sets are not modeled as separate bodies, but their in-

ertias are combined with the ring inertia. The screws make the connection from the translating

to the rotating part by their kinematic relation xin − xout = s (θin − θout) where xin and xout are

the input (nut) and output (bolt) translations, θin and θout are the input and output rotations and

s is the pitch. For clarity, the part of the screw that is connected to the corresponding pulley

is called the output side. The inertias of the screws are combined with the inertias of the sun

gears, whereas the mass of the output of the screw is combined with the mass of the pulley.

Using Lagrange’s equations of motion a dynamic model can be derived for this system. Six

generalized coordinates are required to describe the system, that is the rotation of the primary

servo q1, the rotation of the secondary servo q2, the rotation of the primary sun gear at the out-

put side of the screw q3, the rotation of the secondary sun gear at the input side of the screw q4,

the translation of the primary pulley q5 and the translation of the secondary pulley q6. Note that

by the coupling of the ring gear between the primary and secondary side, the rotation of the

sun at the output side of the secondary screw can also be expressed as q3. Furthermore, the

translation of the input of the primary and secondary screw can be expressed as q7 = sq3 + q5

and q8 = s (q4 − q3) + q6 respectively.
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Figure 3: Linear representation of the actuation system

Undamped eigenmodes

By forming the mass matrix M and stiffness matrix K, the undamped eigenfrequencies fr and

corresponding eigenvectors can be calculated. The eigenfrequencies are listed in table 1. The

eigenvectors are mass-normalized and normalized for the gear and screw ratios so that they

all have the same order of magnitude. Figure 4 shows the eigenvectors for rg = 1. Here also

the normalized displacements of q7 and q8 are shown. For the sake of clarity, the high frequent

modes are plotted in the right figure. Furthermore, figure 5 shows the normalized potential

energy of the five spring elements in each mode. Here spring numbers 1 to 5 are the worm,

chain, pushbelt, primary and secondary thrust bearing respectively. The sign of the energy

shows whether the spring is elongated or shortened. From these two figures it is possible to

see the influence of the bodies and springs on each mode. For matter of convenience, the

normalized eigenvectors are referred to as displacements q̃1−8.

As expected a rigid body mode is present, where q̃1 to q̃6 are equal and q̃7 = q̃8 = 0. The

potential energy is of course zero here. The second eigenvector with fr = 10.7 [Hz] originates

from the worm stiffness in combination with belt and thrust bearings. In this case the rotation

of q̃1 and q̃3 is in the same direction. The third mode at fr = 17.3 shows similar behavior, but in

this case q̃1 and q̃3 are opposite in direction. For the mode at fr = 47.9 [Hz] it is clear that this

originates from the chain at the secondary servo. The potential energy of the other elements

are close to zero in this mode. The two translational modes are both at very high frequency.

Mode number 5 is an in-phase translation of both pulleys, whereas mode 6 is an out of phase
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Table 1: Undamped actuation eigenfequencies

fr [Hz]

mode rg = 0.5 rg = 1 rg = 2

1 0 0 0

2 10.9 10.7 10.5

3 17.4 17.3 17.2

4 48.1 47.9 47.7

5 2.74 ·103 2.74 ·103 2.75 ·103

6 3.93 ·103 3.92 ·103 3.91 ·103
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Figure 4: Undamped eigenvectors of the actuation model at rg = 1

translation of the pulley. As can be seen from the potential energy in these modes, in mode 5

the pushbelt is not actuated, whereas in mode 6 the pushbelt is elongated.
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Figure 5: Normalized potential energy at rg = 1
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Figure 6: Transfer functions from servo torque to position, undamped (–), moderate damping

(-.), and large damping (- -)

Damped eigenmodes

To determine the actual influence of each eigenmode, damping is added to the model. Figure 6

shows the transfer functions from primary servo torque Tmp to position q1 = θmp and secondary

servo torque Tms to position q2 = θms with increasing damping. It can be seen that when adding

damping (moderate damping), the resonances are smaller in magnitude and shift to lower

frequencies. When adding large damping, most modes become invisible. For low frequencies

both transfer functions now show a -1 slope and for high frequencies a -2 slope.

2.2 Driveline

The model of the driveline, in this case the testbench, is shown in figure 7. The torque converter

lockup clutch is modeled as a rotational stiffness at the input shaft. The inertia of the torque

converter is incorporated in the primary shaft of the CVT. The pushbelt is here modeled as

a chain element with a certain rotational stiffness between the primary and secondary pulley.

Furthermore, at the output of the CVT, the driveshaft is also modeled as a rotational stiffness.

Note that this situation differs from that in a vehicle, because the inertias of the driving and load
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Figure 7: Schematic representation of the driveline

Table 2: Undamped driveline eigenfrequencies

fr [Hz]

mode rg = 0.5 rg = 1 rg = 2

1 0 0 0

2 3.52 4.14 5.38

3 24.0 22.5 19.7

4 236 205 184

motor are different from the inertias in a vehicle.

The generalized coordinates are the angular rotation of the four bodies. Table 2 and figure 8

show the eigenfrequencies, normalized eigenvectors and normalized potential energy of the

system. The first eigenmode is again a rigid body mode. The second mode at fr = 4.14 [Hz] is

mainly due to the driveshaft stiffness as can be seen from the potential energy plot. The third

eigenmode at fr = 22.5 [Hz] can be allocated to the torque converter stiffness. The last mode

at relatively high frequency is due to the pushbelt stiffness.
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Figure 8: Undamped eigenvectors and potential energy at rg = 1
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Slip dynamics

If the pushbelt is modeled as a spring element like in the aforementioned model, by definition

no slip would be present. However, if in the limiting case the pushbelt stiffness is zero, slip can

be present. In practise, the coupling between the primary and secondary pulley is realized by

the transmitted belt torque [2] given by

Tb =
2µ(ν, rg)FsRs

cos(β)
(1)

where µ(ν, rg) is a slip and ratio dependent traction coefficient, Fs is the clamping force at the

secondary pulley, Rs is the running radius of the belt on the secondary pulley and β is the pulley

wedge angle. Slip in the variator is defined as

ν = 1 −

ωsRs

ωpRp
(2)

where ωp = q̇2 and ωs = q̇3 corresponding to the driveline model and Rp is the running radius

of the belt on the primary pulley. The ratio rg = Rp/Rs is referred to as the geometric ratio.

If this belt torque is linearized with respect to the state vector x = [q1 . . . q4 q̇1 . . . q̇4]
T and the

input u = Fs, around a certain operating point x = x0+x̃ and u = u0+ũ at a constant geometric

ratio rg, this results in

T̄b =
2µ′(ν0, rg)u0Rp

q̇20 cos(β)rg

(

q̇30

q̇20

˜̇q2 −
˜̇q3

)

+
2µ(ν0, rg)Rs

cos(β)
ũ (3)

where µ′(ν0, rg) is the slope of the traction curve at the corresponding slip value. Hence, the

belt torque can be modeled as a linear damper with damping constant cb =
2µ′(ν0,rg)Fs0

Rp

q̇20 cos(β)rg

[Ns/rad] between the primary and secondary pulley, i.e. between the generalized coordinates

q2 and q3.

In case the damping constant of this damper is small, the primary and secondary side of the

driveline are decoupled. In this situation two rigid body modes are present, one mode of the

primary side at fr = 15.5 [Hz] and one mode of the secondary side at fr = 24.6 [Hz]. However,

with increasing damping cb coupling between the primary and secondary side occurs. Figure 9

shows the root locus of the system for increasing cb. It can be seen that the damping of the

complex pole pair at 15.5 [Hz] increases as it turns towards the real axis. At the real axis, one

of these poles goes to −∞, whereas the other goes towards 0. Due to increasing coupling be-

tween both shafts, one of the rigid body mode poles goes from 0 towards negative real values.

At a certain point the two real poles become one complex conjugate pair. A further increase of
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Figure 9: Root locus of driveline poles with increasing damping
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the damping makes this pole pair turn towards the undamped eigenfrequency of the coupled

system at fr = 4.14 [Hz]. The primary and secondary side are fully coupled again. The last

pole pair at 24.6 [Hz] turns to the undamped eigenfrequency fr = 22.5 [Hz] as cb increases.

The damping cb depend significantly on the slope of the traction coefficient. Figure 10 shows µ

at three different ratios. It can be seen that with increasing ν, µ also increases until a certain

maximum value is reached. For higher slip values µ even shows a decrease at some ratios,

resulting in a negative damping coefficient.

Figure 11 shows the poles of the model for increasing ν at rg = 1, Fs0
= 10 [kN] and q̇20

= 300

[rad/s]. It can be seen that the poles turn towards the imaginary axis for increasing ν or de-

creasing µ′ (indicated by the arrows). This means that the damping of the corresponding pole

decreases. When µ′ becomes negative, some poles turn to the right half plane, indicating un-

stable behavior. The values of ν, Fs0
and q̇20

chosen here do not result in a strongly coupled

system, as the resonance frequencies are close to the eigenfrequencies of the uncoupled sys-
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tem, however at higher clamping forces and lower angular velocities the damping increases

such that the system becomes strongly coupled.

Figure 12(a) shows corresponding transfer functions from the clamping force Fs to the output

of the system, that is the linearized slip ν̄ = 1
q̇20

rg

(

q̇30

q̇20

˜̇q2 −
˜̇q3

)

. At ν = 0.1 [%] the system is fully

coupled. The system shows complete different behavior in this high overclamping situation.

Both resonances clearly show a decrease of damping for an increase of ν. The phase plot

shows again the unstable behavior at ν = 4.0 [%], indicated by the increase of phase at both

resonance frequencies. The figure shows also that two zeros are present in the transfer func-

tion. With the chosen input and output, the location of these zeros depend on the geometric

ratio. Figure 12(b) shows the transfer function at different ratio, whereas figure 13 shows the

root locus of the zeros with increasing ratio.

2.3 Non-minimum phase behavior

An important property of the variator is that, while shifting, the translation of the primary and

secondary pulley are not equal. This is due to the fact that the wrapped angle of the pushbelt

on the pulleys depends on the ratio. This angle can be expressed as

ϕ = arcsin

(

Rp − Rs

a

)

(4)

The translation of the pulley is a linear function of the running radius of the belt at the corre-

sponding pulley, i.e. xp,s = (Rp,s − R0) tan(β). Hence, the difference in translation between

both pulleys can be written as

∆x = a sin(ϕ) tan(β) (5)
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Figure 12: Transfer function from Fs to ν̃
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where ∆x = xp − xs. This means that if the variator shifts from low to medium ratio ∆x > 0,

whereas for ratio shifts from medium to overdrive ∆x < 0.

The length of the pushbelt can be expressed as

L = 2a cos(ϕ) + (π + 2ϕ)Rp + (π − 2ϕ)Rs (6)

Now consider the situation when the secondary servo actuation position is constant. If the ratio

is changed by means of only rotating the primary servo, the translation of both pulleys would

be equal. However, when shifting from low to medium ∆x > 0. As a result the length of the belt

decreases, and with that the clamping force in the system decreases and therefor the slip in

the system would increase. If the ratio is changed from medium to overdrive, ∆x < 0, L and Fs

increase and ν decreases. Of course when shifting from overdrive to low the opposite is true.

If a small ratio change is applied and a constant torque Tms is applied at the secondary servo,

the slip would first change as described above and then stabilize at a constant value. With

respect to the transfer function from Tmp to ν, this phenomenon results in a minimum phase

behavior if ∆x > 0, and in a non-minimum phase behavior if ∆x < 0.

3 Interaction of actuation and driveline

When changing the ratio or the slip in the CVT, also the belt torque is changed and the driveline

modes are actuated. From the other side, if the load at the CVT is changed, the servomotors of

the actuation system must counteract to these disturbances to control the ratio and the slip in

the CVT. To get a complete understanding of the dynamics of the Empact CVT, this interaction

between the actuation and the driveline dynamics must be analyzed. For this, the transfer

functions of the linearized non-linear model (see figure 2) are used. It can be seen that both

the modes of the actuation system and the modes of the driveline are present in the system. A

few difference can be noticed. The first difference is that the damping in the nonlinear model

is much larger than in the linear model, resulting in a large coupling between the modes. A

second difference is that the zeros of the mode from the actuation model at fr = 48 [Hz] are at

a higher frequency than the poles of this mode. This zero appears to be non-minimum phase

for rg = 0.5 and minimum phase for rg = 2 as explained in section 2.3. This also holds for zeros

in other elements of system.
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(a) FRF from Tmp to θmp and Tms to θms at
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(b) FRF from Tms to θms at ν0 = 0 % and

rg = 0.5

Figure 14: Measured frequency response functions

4 Measured Frequency Response Functions

To validate the results obtained from the model, identification measurements are performed at

a testrig. Figure 14 shows the measured frequency response functions from Tmp to θmp, Tms to

θms and Tms to ν. The measurement are strongly influenced by the friction in the CVT, mainly

in the spindles of the actuation, but some conclusions can be drawn from these results.

As expected, the FRF from Tmp to θmp shows a -1 slope at low frequencies. The modes of the

system are also strongly damped. The mass decoupling at the primary actuation is present,

indicated by the phase increases between 2-6 [Hz] and the resonance at 13 [Hz]. Also between

40-50 [Hz] a small mass decoupling is present, probably due to the secondary actuator. The

FRF from Tms to θms shows similar behavior, however with the first resonance around 20 [Hz].

The FRF from Tms to ν shows similar behavior to the transfer function from the nonlinear model,

however the disturbances on these measurement are too high and more measurements should

be performed to obtain better results.
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