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Abstract 

Elastic rings are common rotor supporting structure, which have been widely used in aeroengine rotor-

support system. However, large inertia force and gyroscopic moment may occur during the operation 

of aeroengine, which may lead to contact between elastic ring and bearing pedestal, and then introduce 

variable stiffness into the rotor-support system. In this paper, a mathematical model of variable stiffness 

of elastic ring is proposed and this model is subsequently verified by comparison with simulation 

analysis and experimental results. Based on this model, a variable stiffness model of an elastic ring-

supported rotor is developed by coupling the kinetic equations of the rotor with the deformation of the 

combined support. Then, the spectrum cascades are used to analyze the dynamic characteristics of the 

rotor system. In addition, the influences of the variable stiffness of elastic ring on the critical speed of 

the system are also examined. Finally, some simulation results are verified by experiments on a 

combined test bench of an elastic ring-supported rotor.  

Keywords: Variable stiffness; Elastic ring; Mathematical model; Dynamic characteristics; 

Experimental verification. 
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Nomenclature 

 

x, y displacements in x and y directions 

e eccentricity 

Ui displacement of inner bulges 
i the ith inner bulge 

n number of inner bulges 
I moment of inertia 

E elastic modulus 

L length of the ring section 

b width of the ring 

h thickness of the ring 

Fx, Fy force of each ring segment in the x and y directions 

K1 linear segment of the elastic ring 

K2 contact stiffness of the elastic ring 

ΔR radius difference between bearing pedestal and elastic ring 

hmin minimum wall thickness of bearing pedestal 
Ker variable stiffness of elastic ring 

kb stiffness of bearing 

ksq stiffness of squirrel cage 

mi, mo mass of the inner and outer race of the bearing 

us, ud displacement vector of the shaft, displacement vector of the disk 

Qs, Qd excitation vector of the shaft, excitation vector of the disk 

MS 
T , MS 

R translating inertial matrix of beam element, rotating inertial matrix of beam element 
Gs, KS 

B gyroscopic moment matrix of beam element, stiffness matrix of beam element 
Md 

T , Md R, Gd translating inertial matrix of disk element, rotating inertial matrix of disk element, 
gyroscopic moment matrix of disk element 

Mr, Gr mass matrix of rotor substructure, gyroscopic matrix of rotor substructure 

Kr, C stiffness matrix of rotor substructure, damping matrix of rotor substructure 

Fe, Fb, Fg unbalance vector, bearing force vector, gravity vector 
fn1, fn2 first and second natural frequency of the rotor system 

ξ1, ξ2 first and second modal damping ratios 

kB, ksq contact stiffness of bearing, stiffness of squirrel cage 

r0, Nb, θj bearing clearance, number of ball elements, angle location 

xr, xo, yr, yo translation of shaft and outer rings of the bearing along the x and y axes 
wc angular velocity of the cage 

Rb, rb radius of outer race, radius of inner race 

nsq, bsq, hsq, Lsq number of cage strips, section width of cage strips, section height of cage strips, length 
of cage strips 

ferx, fery elastic ring force in the x and y directions 

fsqx, fsqy squirrel cage force in the x and y directions 
Fsq, Fer, Fb squirrel cage force vector, elastic ring force vector, bearing force vector 
  

Greek symbols  

Δ height of the outer bulge 

α angle between inner and outer bulge 

λ flexibility 

δ depth of the contact 
Ω rotational speed 

  

Abbreviations 

FE finite element 
DOF degrees of freedom 

ER elastic rings 

ERSFD elastic ring squeeze film damper 



 

 

1. Introduction 

Supports with elastic rings (ER) have been widely used in aero-engine rotor system [1], which 

are applied to adjust the rotor critical speed from the operating mode in order to reduce the vibration. 

To limit the deformation of elastic supports, limiting amplitude structures are set up [2]. However, the 

aero-engine rotor system with ER is usually exposed to great evolutionary overloading [3]. If the 

limited structure parameters are selected too small or the circumferential distribution is uneven, in 

extreme cases, due to the action of large inertia forces, the elastic supports will contact with the limiting 

structures, and the supporting stiffness will change, so that the system will become a rotor support 

system with variable stiffness [4]. Hence, in order to study the variable stiffness characteristics 

effectively, it’s necessary to develop the combined support rotor system model with ER and analyze 

the dynamic characteristics of the variable stiffness rotor system. 

Among the existing ER solution methods, IS [3], Artemov, Hronin and Finite element model (FE) 

are the most common methods to solve the stiffness [5]. However, the above methods only consider 

the deformation of ER within the allowable range. Thus, these methods are not suitable for the rotor 

with great unbalanced forces and huge weight. To limit the deformation of elastic support, Ma et al. 

[2] presented a novel structure with the amplitude limiting bulges. However, in extreme cases, the ER 

will contact the base, resulting in nonlinear stiffness of the ER. Luo et al. [6] proposed the finite element 

model of ER and the static stiffness test device of ER was designed based on the Guo’s test [7]. Then, 

the characteristic of piecewise linear stiffness of ER was revealed by comparison between experiment 

and FE simulation. As ER exists contact stiffness，it's necessary to study contact mode. Pereira et al. 

[8] and Machado et al. [9] established a non-coordinated contact model of the shaft-hole with clearance. 

Persson et al. [10] and Ciavarella et al. [11,12] ignored the influence of hole’s thickness on the contact 

characteristics of the shaft-hole, and established the contact force model of the shaft-hole. Li et al. [13] 

considered the hole’s thickness and established the shaft-hole coordinated contact model. This model 

could provide reference for the study of contact and collision between the shaft and the hole. 

From above literatures, emphasis is put on the stiffness of ER and the dynamic analysis of the 

rotor system is not considered. Li et al. [14,15] adopted numerical and experimental methods to analyze 

the dynamic properties and stability of a rotor system with bolted joint. Sun et al. [16] investigated the 

responses of a dual-rotor system with rub-impact, and analyzed the stability of system. Considering 

the influences of clearance and unbalance on rotor system, Villa et al. [17] established the rolling 



 

 

bearing model with the internal clearance and Hertz nonlinearity, and presented the dynamic analysis 

of a rotor system with ball bearings. Hou et al. [18] analyzed the primary resonance of a dual-rotor 

system with ball bearings. In order to analyze the complex rotor system with combined support, Luo 

et al. [19] established a combined support rotor model and analyzed the dynamic response at different 

speeds. Chen et al. [20] proposed a novel coupling model and investigated the vibration performances 

of the aero-engine. In recent years, the elastic ring squeeze film damper (ERSFD), which is installed 

in many modern aero-engine, has been grown by many scholars. Zhang et al. [21] established a coupled 

oil film Reynolds equation and dynamic equation of a rotor system with ERSFD and investigated the 

dynamic parametric characteristics of the ERSFD. Considering the contact between the journal and 

the ER, Wang et al. [22,23] proposed an analytical method to investigate the dynamic properties of the 

ERSFD. Chen et al. [24] established the spiral bevel gear drive model with ERSFD and studied the 

dynamic characteristics of this system. Han et al. [25,26] proposed a semi-analytic method to analyze 

the oil film force of ERSFD and established a Jeffcott rotor model with ERSFD. Subsequently, this 

model was solved by Runge-Kutta method and the dynamic response of the ERSFD-rotor was analyzed. 

But there are relatively few studies on the dynamic analysis of the ER-rotor with variable stiffness [6]. 

Aiming at the existing issues, a variable stiffness model of ER is presented and the Newmark-β 

method is applied to reveal the dynamic characteristics of the variable stiffness ER-rotor system. 

Meanwhile, the correctness of the model is evaluated by the variable stiffness experiment of ER and 

some dynamic properties of ER-rotor are substantiated by numerical and experimental researches. 

Moreover, the research results of ER-rotor system can be a stepping stone in other rotor systems 

containing elastic rings. 

The structure of this paper is as follows. The theoretical framework and basic idea of the variable 

stiffness model of ER are introduced and the kinetic equations of the ER-rotor with variable stiffness 

are established in Section 2. Then in Section 3, the nonlinear characteristics of rotor system caused by 

the ER are analyzed in detail. In Section 4, two experimental studies are illustrated to verify the ER 

model and some of the simulation results. Finally, the conclusions are summarized in Section 5.  

2. Mathematical model and equations of motion 

To conduct the dynamic investigation of a rotor system with variable stiffness elastic rings, the 

kinetic equations of the ER-rotor system shown in Fig. 3 are established in this section. Moreover, the 

variable stiffness model of elastic ring is divided into two parts according to the displacement of the 



 

 

elastic ring: the linear stiffness model (Fig. 1) and the contact stiffness model (Fig. 2). Finally, 

according to the literature [19, 20, 27-29], the differential equations of the combined support rotor 

system with ER are developed.  

2.1. The variable stiffness model of elastic ring 

The displacement of the inner bulge of the elastic ring is related to the displacement of the rotor 

system. When the displacement of the inner bulge is less than the outer bulge height as shown in 

equation (1), the elastic ring is linear stiffness and the force analysis is shown in Fig. 1. One inner 

bulge is selected for analysis, and the other inner bulges are similar. F1 represents the radial force of 

the inner bulge, and its components in the x and y axes are Fx and Fy, respectively. o1 and o2 are the 

centroid of ER (bearing pedestal) and journal, respectively.  

 
2 2

e x y= +    (1)  

where e represents the radial displacement of the journal; x and y indicate the journal’s displacement 

in the x and y directions; Δ is the height of the outer bulge. 

(a)

e

(b)

Bearing pedestal

Outer bushing

Outer bulge

Inner bushing

Inner bulge

Shaft

Outer bulge 

Inner bulge Elastic ring before deformation

Elastic ring after deformation

α
α

αα
α

y

x

F1 F1y

x

A

B

o1 o1

C

DU1

o2(x,y)

 

Fig. 1 Schematic of force analysis of the elastic ring with linear stiffness (a) ER model (b) detailed view 

Since the inner and outer bulges of the elastic ring are in directly contact with the inner and outer 

bushing, it is assumed that the bulges of the elastic ring are rigid body, whose stiffness is much greater 

than the rest of the elastic ring [24]. The displacement of the inner bulges under the operating mode 

can be expressed as follows:  

 
cos(2 )+ysin(2 )   (

0 els

1,2..., ), 0

e

i
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x i i U
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= 
 ，                            

  (2) 

where Ui represents the displacement of the inner bulges; i is the ith inner bulge and n is the number 



 

 

of the inner bulges; α indicates the angle between inner and outer bulge. 

The flexibility of the ring section is assumed as the flexibility at the central section of the fixed 

beam at both ends. 
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where λ represents the flexibility at the central section of the ring section; L is the length of the ring 

section; E is the elastic modulus of ring material; I indicates the moment of inertia of ring section; b is 

the width of the ring; h is the thickness of the ring. 

The sum of the components of the force of each ring segment in the x and y directions are Fx and 

Fy, and the magnitude of the components can be expressed as: 
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Finally, the stiffness of the linear segment of the elastic ring can be written as: 
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1

x yF F
K

e

+
=   (6) 

When the displacement of the inner bulge is greater than the outer bulge height, the elastic ring is 

in contact with the bearing pedestal and its stiffness becomes contact stiffness. Before establishing the 

contact model between the elastic ring and the bearing pedestal, the following assumptions are put 

forward: (1) Since the height of the bulge is much smaller than the elastic ring, the bulge height is 

ignored. (2) The journal, inner bushing and elastic ring are approximated as shaft model. (3) The outer 

bushing and bearing pedestal are approximated as hole model. Then the shaft-hole contact model is 

introduced into the elastic ring contact model and the force analysis of the ER contact model is shown 

in Fig. 2. F represents the radial force, and its components in the x and y axes are Fx and Fy, respectively. 

o1, o2 and o3 are the centroid of the bearing pedestal, the journal without contact deformation and the 

journal under contact deformation, respectively. 
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Fig. 2 Schematic of force analysis of the elastic ring with contact stiffness (a) 2D contact model (b) detailed view 

According to the literature [13], the nonlinear contact stiffness of the ER can be expressed as 

follows: 

 
( ) ( )
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 2 1R R R = −  (8)  

 e = −  (9)  

where K2 represents the contact stiffness of the ER; R1 is the ER radius and R2 is the bearing pedestal 

radius; E is the elastic modulus of ring material; δ indicates the depth of the contact; ΔR indicates the 

radius difference between bearing pedestal and ER; hmin is the minimum wall thickness of bearing 

pedestal. 

Then, when the displacement is greater than the height of the outer bulge, the overall force of the 

elastic ring can be expressed as: 

 1 2F K K= +  (10)  

The overall force’s components in the x and y directions are Fx and Fy, and the magnitude of the 

components can be written as: 
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Finally, the variable stiffness of elastic ring can be expressed as: 
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2.2. Motion equations of the ER-rotor system 

In order to analyze the rotor system with variable stiffness combined support, the rotor system is 

divided into rotor substructure and support substructure as shown in Fig. 3. Then, the finite element 

method and the lumped mass method are used to establish rotor substructure model and support 

substructure model respectively, where kb , ksq and ker denote the stiffness of bearing, squirrel cage and 

ER, respectively. mi is the mass of bearing inner race and mo represents the mass of bearing outer race. 

The gyroscopic moment and rotational inertia of the shaft is considered to investigate the bending 

vibration of the shaft depicted in Fig. 3. Meanwhile, the rotor substructure is divided into several finite 

element units and each unit node has four DOFs (x, y, θx, θy). 
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Fig. 3 Mathematical model of the rotor system with variable stiffness 

The equation for the elastic shaft element is given as: 

 ( )s s s s s s s s

T R Bu u u+ − + =M M G K Q  (13) 

where  , s
u and sQ represent the rotating speed, the displacement vector and the excitation vector of 

the shaft; s

TM  , s

RM  , s
G  , s

BK   are the translating inertial matrix, the rotating inertial matrix, the 

gyroscopic moment matrix and the stiffness matrix of the beam element, which are described in 

reference [29-31]. 

Because the disk is assumed as a rigid disk, the strain energy is ignored and only consider the 

kinetic energy. Then, the differential equation of the disk which is obtained by Lagrange’s equations is 

given as: 



 

 

 ( )d d d d d d

T R u u+ − =M M G Q  (14) 

where d
u and dQ represent the displacement vector and the excitation vector of the disk; d

TM , d

RM ,

d
G  are the translating inertial matrix, the rotating inertial matrix and the gyroscopic moment matrix 

of the disk element, which are given in reference [19]. 

Finally, the dynamic equation of the rotor substructure is obtained as follows by assembling the 

motion equation of the disk, the motion equation of the shaft and the supporting force. 

 ( ) e b

r r r r r r

gu u u+ + + = + −M C G K F F F  (15)  

where the displacement vector ur can be written as: 

  1 1 1 1

r

x y n n xn ynu x , y , , ,...,x , y , ,   =  (16)  

and r
M , r

G , r
K and C are mass matrix, gyroscopic matrix, stiffness matrix and damping matrix of the 

rotor substructure; Fe is the unbalance vector; Fb is the bearing force; Fg is the gravity vector and n is 

the number of the nodes of the rotor substructure. 

The matrix of Rayleigh damping (C) can be expressed as: 

 r r = +C M K  (17) 

where 
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where fn1, fn2 represent the first and second natural frequency of the rotor system and ξ1, ξ2 are the first 

and second modal damping ratios. 

The combined support substructure consists of the squirrel cage, ER and the rolling bearing. 

Meanwhile, the supporting substructure and the rotor substructure are connected by the displacement 

and the interaction force of the bearing inner race and bearing outer race. Then, based on the theory 

of Hertz contact [32, 33], the bearing force can be expressed as: 
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where kB is the contact stiffness of bearing; r0 is the clearance of bearing; Nb is the number of ball 

elements; xr, xo, yr, yo are the translation of shaft and outer rings of the bearing along the x and y axes; 

θj is the angle of the jth ball, which can be expressed as [34, 35]: 

 
( )2 1

j

b c

j

N w t


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−
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where wc is the angular velocity of the cage, wc=w×rb/(Rb+rb); Rb and rb are the radius of bearing inner 

and outer race, respectively. 

The nonlinear force of the ER is computed based on the variable stiffness model. It can be 

expressed as: 

 
erx er o

ery er o

f K x

f K y

=
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 (21) 

The squirrel cage force can be expressed as [36-38]: 
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where nsq is the number of cage strips; E is the elastic modulus of material; bsq and hsq are the width 

and height of cage strips, respectively; Lsq is the length of cage strips. 

According to the coupling relationship among the squirrel cage, ER, the bearing and rotor 

substructure as shown in Fig. 3, the kinetic equation of the combined support rotor system can be 

written as: 
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where Fsq, Fer and bF are the squirrel cage force vector, the ER force vector and the bearing force 



 

 

vector of the support substructure and Fsq, Fer and bF could be acquired according from Eqs. (19) to 

Eqs. (23). 

3. Numerical study and discussion 

In this section, the linear stiffness model and the variable stiffness model of the ER are introduced 

into the rotor system, and the Newmark-β method is used to solve the linear and nonlinear ER-rotor 

system respectively. Then, by analyzing the characteristics of linear and nonlinear ER-rotor systems, 

the influence of variable stiffness on dynamic characteristics of ER-rotor system is illustrated. In 

Section 3.1, the spectrum cascades under different motor speeds of the two system are presented to 

illustrated the influence of variable stiffness on frequency domain characteristics. The influence of 

unbalance force on critical rotational speed of the variable stiffness rotor-system is illustrated by the 

amplitude frequency responses of the two systems under different unbalance forces. (Section 3.2). 

Finally, the influence of clearance on critical rotational speed of ER-rotor system is analyzed in Section 

3.3. 

3.1. Spectrum cascades analysis 

As illustrated in Fig. 3, the combined support ER-rotor system is adopted in this section, which 

is modeled by using the FE method [39-42]. The ER-rotor system is divided into 6 sections, 13 beam 

elements of Timoshenko and 2 support elements. The Timoshenko beam element has 2 translational 

and 2 rotational degrees of freedom, as illustrated in Fig. 3. The dimensional parameter values of the 

ER-rotor system as illustrated in Fig. 3 are given in Table 1. The disk is located at node 7 and the 

bearings are considered as nonlinear, which are, respectively, located at node 4 and node 12. The 

configurations of the ball bearings are shown in Table 2. The squirrel cages are simplified as spring 

elements which are computed from Eqs. (23) and the configurations of the squirrel cages are shown in 

Table 3. The model used for ER is shown in Section 2.1 and the dimensional parameter values of the 

ER are given in Table 7. 

 

 

 

 

 



 

 

Table 1 Dimensional parameter values of the ER-rotor system 

Parameter value Parameter value 

Length of Section 1 (m) 0.025 Outer radius of Section 1 (m) 0.021 

Length of Section 2 (m) 0.025 Outer radius of Section 2 (m) 0.023 

Length of Section 3 (m) 0.02 Outer radius of Section 3 (m) 0.025 

Length of Section 4 (m) 0.864 Outer radius of Section 4 (m) 0.028 

Length of Section 5 (m) 0.02 Outer radius of Section 5 (m) 0.025 

Length of Section 6 (m) 0.013 Outer radius of Section 6 (m) 0.023 

m (kg) and Jp (kg.m2) of disk 6.8943,0.0447 Inner radius of Section 1-6 (m) 0 

Elastic modulus (GPa) 210 Density (kg/m3) 7850 

Shear modulus (GPa) 80 Poisson ratio of the shaft 0.3 

 

Table 2 Configurations of the ball bearing 

Parameter value Parameter value 

Radius of bearing outer race Rb (mm) 31 Number of bearing balls Nb 10 

Radius of bearing inner race rb (mm) 12.5 Contact stiffness kB (N/m3/2) 13.34×109 

 

Table 3 Configurations of the squirrel cage 

Parameter value 

Number of cage strips nsq 10 

Width of cage strips bsq (mm) 3 

Elastic modulus of material (GPa) 210 

Length of cage strips Lsq (mm) 40 

Height of cage strips hsq (mm) 3 

 

The ER-rotor system models with linear stiffness (the ER is simplified as a linear spring model.) 

and variable stiffness of ER (the ER is considered as variable stiffness model.) are established to 

compare the frequency domain characteristics of these two models through the spectrum cascades. In 

addition, the dimensional parameter values of these two models are the same. The spectrum cascades 

for the ER-rotor system with rotational speed, varying from 500 rev/min to 2800 rev/min, are acquired 

as shown in Fig. 4.  

 

Fig. 4 Spectrum cascades of the ER-rotor system (a) the ER model with linear stiffness (b) the ER model with 
variable stiffness 



 

 

The results from the spectrum cascades show that only the fundamental frequencies are prominent 

in the spectrum cascades of the model with linear stiffness (see Fig. 4a). As a contrast, for the model 

with variable stiffness, the spectrum cascades not only have the fundamental frequencies, but also 

emerge other frequency components (1.1fn, 2fn and 3fn). Thus, the complex frequency components will 

have the significant influence on the ER-rotor system. 

3.2. Influence of the unbalanced mass  

In order to study the influence of the unbalanced mass on the critical speed of the ER-rotor system, 

in this section, the configurations of the ER-rotor system are the same except for the parameters of the 

unbalanced mass. The different parameter combinations of the unbalanced mass are given in Table 4. 

The amplitude frequency responses under four different unbalanced masses are acquired, which is 

shown in Fig. 5. 
Table 4 Configurations of the unbalanced mass 

Model Unbalanced mass M (Kg) Eccentric distance e (mm) 
Um1 0.0118 40 

Um2 0.0097 40 

Um3 0.0069 40 

Um4 0.002 40 
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Fig. 5 Comparison of the amplitude frequency responses under four different unbalance force (a) the ER model 
with linear stiffness (b) the ER model with variable stiffness 

Figure 5a depicts the amplitude frequency responses (the ER model with linear stiffness) 

corresponding to different unbalanced mass. It can be found that the first order critical speed does not 

change and the amplitude increases with the increase of unbalance mass. As illustrated in Fig. 5b, the 

amplitude frequency responses (the ER model with variable stiffness) are different from Fig. 5a. The 



 

 

critical speed remains unchanged in the relatively low unbalanced mass (case3 and case4), but the 

relatively high unbalanced mass causes the first-order critical speed shift right (case1 and case2), 

which is because of the variable stiffness of the ER. 

3.3. Influence of the clearance 

The amplitude frequency responses for the present ER-rotor system with rotational speed 

(500rpm~2800rpm), are obtained as shown in Fig. 6. The configurations of the ER-rotor system are 

shown in Table 1-Table4. The author prefers to assigned the two parameters (M=0.0118Kg, e=40mm) 

directly to study the effect of different clearance on the critical speed. Meanwhile, the different 

parameter values of the clearance are shown in Table 5. It can be concluded that with the increase of 

clearance, the critical speed decreases, while the vibration amplitude increases accordingly (both Fig. 

6a and Fig. 6b have the same trend). 
Table 5 Parameter values of the clearance 

Set No. Clearance clc (mm) Set No. Clearance clc (mm) 
C1 0.0525 C3 0.0175 

C2 0.035 C4 0 
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Fig. 6 Comparison of the amplitude frequency responses under different clearances (a) the ER model with linear 

stiffness (b) the ER model with variable stiffness 

The last simulation study concerned on the influence of the unbalanced mass of the critical speed 

under certain clearance. Due to the existence of clearance, the stiffness of ER presents the 

characteristics of piecewise linear stiffness (the ER model with linear stiffness) and variable stiffness 

(the ER model with variable stiffness). Define clc=0.005mm and e=40mm as basic control parameters, 



 

 

and the parameters of the rotor system remain unchanged. The control parameters of the unbalanced 

mass are given in Table. 6 and the amplitude frequency responses of the unbalanced mass under certain 

clearance are shown in Fig. 7. Obviously, the amplitude frequency response curves exhibit in Fig. 7 

show that the clearance which is caused by design and machining will make the critical speed change. 

From Fig. 7a, the relatively low unbalanced mass makes the critical speed shift right, while the critical 

speed does not change when the unbalance mass reaches a certain degree. Different from Fig. 7a, Fig. 

7b show that the clearance results in an increase of the critical speed at the relatively low unbalanced 

mass and the critical speed remains unchanged at the relatively high unbalanced mass. When the 

unbalanced mass is large, the critical speed continues to move to the right and this is due to the action 

of clearance and variable stiffness. 
Table 6 Parameter values of the unbalanced mass under certain clearance 

Set No. Unbalance mass M (Kg) Set No. Unbalance mass M (Kg) 
U1 0.0118 U4 0.0055 

U2 0.0097 U5 0.003 

U3 0.0069 U6 0.0015 
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Fig. 7 Amplitude frequency responses under different unbalanced mass (a) the ER model with linear stiffness (b) 

the ER model with variable stiffness 

4. Experimental verification 

In this section, two experiments are carried out to verify the variable stiffness model of elastic 

ring and the partial dynamic characteristics of rotor system with elastic rings. The purpose is to 

demonstrate the existence and applicability of the variable stiffness model and provide guidance for 

the application of elastic rings in aeroengine rotor system. 



 

 

4.1. Test verification of variable stiffness of elastic ring 

In order to definitively prove the simulation results of the ER model with variable stiffness，the 

experiment about the displacement of the ER under different load has been completed on an ER 

stiffness test bench as shown in Fig. 8. The ER stiffness test bench consists of electro-hydraulic test 

machine, ER, inner and outer bushing, clamp, loading frame and rigid shaft, and more importantly, the 

electro-hydraulic test machine can provide the load in the vertical direction and record the 

displacement of the ER under the corresponding load. Then, the stiffness of ER is obtained by drawing 

load and displacement curves.  

Electro-hydraulic

 test machine

Hydraulic 

clamp
Test device

Clamp

Rigid shaft

Loading frame

Outer bushing

Elastic ring

Inner bushing

Inner bulges

Outer bulges

Oil hole

(a) (b) (c)  

Fig. 8 Variable stiffness test of elastic ring (a) test equipment (b) enlarged view (c) elastic ring 

In order to verify the correctness of the variable stiffness model, Table 7 summarize the 

parameters of the test device used in this study. Then, the stiffness of elastic ring at different 

circumferential positions is experimentally studied and three groups of special positions of inner bulges, 

holes and outer bulges are selected respectively for vertical loading, as shown in Fig. 8a, b and c. 
Table 7 Parameter values of the test device 

Parameter value Parameter value 

R1 (mm) 40.5 R2 (mm) 40.7 

n 6 α π/6 

L (mm) 42.4 E 2×1011 

b (mm) 17 h (mm) 1.3 

Δ (mm) 0.2 ΔR (mm) 0.2 

Fig. 9 depicts the stiffness test and simulation comparison diagram of elastic ring at different 

circumferential positions. It is worth noting that the variable stiffness test of elastic ring has two aspects 

to emphasize:(1) the correctness of the variable stiffness model is verified by comparing the simulation 

results with the experimental results. Meanwhile when the displacement is greater than the thickness 

of the bulges, the elastic ring appears variable stiffness. (2) Through the comparison of test and 



 

 

simulation results at different circumferential positions, it is proved that the variable stiffness model is 

not only suitable for a single position, but also suitable for all circumferential positions. 

(a) (b) (c)

Inner bulges

 Hole

Outer bulges

Inner bulges
Outer bulges

Inner bulges

Outer bulges

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

200

400

600

800

1000

1200

F
o

rc
e(

N
)

Displacement(m)

 Experimental results

 Simulation results

×10-4
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

200

400

600

800

1000

1200

F
o

rc
e(

N
)

Displacement(m)

 Experimental results

 Simulation results

×10-4

(d) (e) (f)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

200

400

600

800

1000

1200

F
o

rc
e(

N
)

Displacement(m)

 Experimental results

 Simulation results

×10-4

 

Fig. 9 Stiffness test and simulation comparison diagram of elastic ring at different circumferential positions (a) 
Inner bulges downward (b) Hole downward (c) Outer bulges downward (d) Inner bulges downward contrast 

diagram (e) Hole downward contrast diagram (f) Outer bulges downward contrast diagram 

4.2. Experimental study of ER-rotor system 

To verify the correctness of the simulation results for the ER-rotor system with variable stiffness, 

the experiment about the critical speed of the ER-rotor system under different unbalance mass has been 

completed on the ER-rotor test bench as shown in Fig. 10a. The ER-rotor test bench consists of a motor, 

disk, LMS, eddy current sensor, combined support, etc. The combined support consists of bearing, 

squirrel cage, and ER as shown in Fig. 10b. Meanwhile, the combined support is fixed on the bearing 

pedestal by bolts. The motor powers the rotor system and the rotating speed varies from 0 to 3000rpm. 

The combined supports at both ends of the shaft have the same configuration and the parameter values 

of the ER-rotor are given in Table 1, Table 2, Table 3, and Table 4. The Eddy current displacement 

sensors are installed on both ends of the disk and the combined support which are used to measure the 

displacements of the combined support and the disk. The sensitivities of the eddy current displacement 

sensors are 2000mV/mm and the sampling frequency is 1024Hz. The LMS is connected to the 

computer and the eddy current displacement sensors. Meanwhile, the displacement data of the disk 



 

 

and the combined support are collected by the computer. The amplitude frequency responses curves of 

the ER-rotor are drawn by processing the displacements under different unbalanced masses as shown 

in Fig. 11. The critical speed appears near 2240 rpm, which is close to the simulation result 2260 rpm. 

The correctness of the ER-rotor system model is verified. As concluded in Section 3.2, the critical 

speed will remain unchanged with the relatively low unbalanced mass and the critical speed will shift 

towards right with the high unbalanced mass, this phenomenon is demonstrated in the experimental 

study as shown in Fig. 11. 
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Fig. 10 (a) The ER-rotor test bench (b) The combined support 
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Fig. 11 Comparison of the critical speed of the ER-rotor test bench under different unbalanced mass (a) the 

combined support (b) the disk 

It is worth mentioning that the purpose of the simulation and experimental study is to acquire 



 

 

some dynamic characteristics of the variable stiffness support rotor system with elastic rings. 

Simulation and test results show that the variable stiffness of the ER will cause the critical speed to 

increase under certain conditions. 

5. Conclusion 

Considering that the large inertia force and gyroscopic moment may occur during the operation 

of aeroengine, which may lead to contact between elastic ring and bearing pedestal. This paper 

proposes a variable stiffness model of elastic rings and this model is subsequently verified by 

comparison with simulation analysis and experimental results. Meanwhile, the dynamic model of the 

ER-rotor is established, and the nonlinear time-varying stiffness of ER is introduced in the simulated 

analysis. By comparing the spectrum cascades and the amplitude frequency responses of the two ER-

rotor system, the dynamic properties of the variable stiffness ER-rotor system are revealed. Finally, 

the correctness of the ER-rotor system model and simulation results are verified by the experimental 

research on the ER-rotor test bench. The conclusions are as follows: 

(1) The numerical results show that only the fundamental frequencies are prominent in the ER-

rotor system with linear stiffness, but the ER-rotor system produces complex frequency components 

(1.1fn, 2fn and 3fn) due to the variable stiffness of the elastic rings.  

(2) The variable stiffness of the elastic rings has no effect on the critical speed of the rotating 

system at lower unbalance mass. However, due to the large unbalance mass, the displacement of the 

ER-rotor system increases, which leads to contact deformation of the elastic ring, and the critical speed 

of the ER-rotor system increases accordingly.  

(3) The clearance of the elastic rings can reduce the critical speed of the system, and the critical 

speed of the ER-rotor system will be different with the increase of the unbalanced mass.  

The research in this paper is helpful to understand the influence of variable stiffness of elastic 

rings on the dynamic characteristics of rotating system, and those characteristics can be used to detect 

the change of elastic ring stiffness in the ER-rotor system. 
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