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Abstract

In this paper, we establish a unilateral diffusion Gompertz model of a single

population in two patches in a theoretical way. Firstly, we prove the existence and

uniqueness of an order-one periodic solution by the geometry theory of differential

equations and the method of successor function. Secondly, we prove the stability of

the order-one periodic solution by imitating the theory of the limit cycle of an

ordinary differential equation. Finally, we verify the theoretical results by numerical

simulations.
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1 Introduction

Modern biologists think that the habitat has been deteriorated by an excessive exploitation

of resource, and to dodge predators and find suitable habitat, the migration of population

becomes necessary [1]. Many researchers focus on this phenomenon and have done a lot

of work on it. Skellam [2] investigated the random-walk issue of biological migration and

concluded that the balance of the system is related to the size of the habitat. In 1974, Levin

and Paine [3] establishedmodels of plaque-migratory population dynamics and discussed

the influence of the diffusion of population on its survival and extinction. With the de-

velopment of the research concerned with population diffusion model, more and more

people pay attention to diffusion systems. In 1989, Freedman et al. [4] discussed the dif-

fusion system of a single population between two patches and showed that there exists a

continuous global asymptotic stable state. In 1994, Zeng et al. [5] focused on the contin-

uous time-diffusion systems and obtained that such a system has a positive and periodic

solution.

However, in recent years people have found that the continuous time-diffusion model is

not an appropriate description of certain biological phenomena. Some populations spread

from one patch to another patch at a fixed time such as the seasonal migration of birds

and fish migration. With this in mind, the mathematical model of diffusion with pulse

has been established, which makes the research more significant [6–14]. In particular,

impulsive differential equations are very important in the research of populationmigration
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phenomenon [15–24]. Jiao et al. [25] established a SIR model with pulse vaccination and

proved the existence of a disease-free periodic solution, and a large pulse vaccination rate

was a sufficient condition to eradicate the disease. Zou et al. [26] considered a population

dynamic system with the delays and impulses and obtained sufficient conditions for the

coexistence of two populations. For more applications of differential equations, see [27–

38].

Recently, Jiao et al. [39] focused on the diffusion predator-prey model of population be-

tween two patches and proved that the diffusion rate of the pests and natural enemies in

the patch greatly influenced the pest control. Xu et al. [40] established a diffusion model

with pulse and proved that the pulse migration was beneficial to the balanced develop-

ment of the white headed leaf monkey in the fragile environment. Shi et al. [41] built the

diffusion system of giant panda in different patches and obtained conditions of pandas’

persistence and extinction. However, few researches have been conducted on the dynam-

ics of unilateral diffusion of single population in two patches. Inspired by [39–43], we

discuss the following unilateral diffusion Gompertz model [44, 45]:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′(t) = ax(t) ln( K
x(t)

),

y′(t) = –by(t),

⎫

⎬

⎭

x < τ ,

△x(t) = –cx(t),

△y(t) = cx(t),

⎫

⎬

⎭

x = τ ,

(1)

where x(t) and y(t) indicate the population densities in the two patches at time t, K is the

maximum environmental carrying capacity, a is the birth rate of the population, b is the

natural mortality of the population within patch two, 0 < c < 1 is the migration rate of the

population from patch one to patch two, and 0 < τ < K is the threshold. In our works, all

the parameters are positive.

The paper is organized as follows. In Section 2, we recall some basic results about order-

one periodic solutions. In Section 3, we discuss the existence and uniqueness of an order-

one periodic solution of system (1) in terms of geometry theory of differential equations

and monotonicity of successor function. The stability of an order-one periodic solution is

discussed by imitating the theory of the limit cycle of an ordinary differential equation in

Section 4. In Section 5, we verify the theoretical results by numerical simulation an make

a conclusion.

2 Preliminaries

Definition 2.1 ([43]) Consider the following state-dependent impulsive differential func-

tions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′(t) = P(x, y),

y′(t) =Q(x, y),

⎫

⎬

⎭

(x, y)�MI{x, y},

△x(t) = ξ (x, y),

△y(t) = ζ (x, y),

⎫

⎬

⎭

(x, y) ⊆MI{x, y}.

(2)

The dynamic system composed of a solution mapping defined by system (2) is called a

semicontinuous dynamic system, denoted by (�,F ,ϕ,MI), where the function ϕ is a con-

tinuous mapping that meets ϕ(MI) = M+
I . For convenience, we denote by MI{x, y} and
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Figure 1 Schematic diagram of successor point B+ of

point B.

M+
I {x, y} the straight lines or curves in the plan R+

2 = {(x, y)|x ≥ 0, y ≥ 0}, whereMI{x, y} is
called the impulse set, andM+

I {x, y} is called the phase set.

Remark 2.1 For system (1), we have MI{x, y} = {(x, y) ∈ R+
2 |x = τ , y ≥ 0} and M+

I {x, y} =
{(x, y) ∈ R+

2 |x = (1 – c)τ , y ≥ 0}. The impulse mapping is ϕ : (x, y) ∈ MI → ((1 – c)τ ,

cτ + yA) ∈ R+
2 .

Definition 2.2 ([43]) As shown in Figure 1, the trajectory of system (1) beginning from

point B intersects withMI at point B
′, then point B′ jumps to point B+ ∈M+

I , and thus the

successor function of point B is f (B) = yB – yB+ .

Lemma 2.1 ([43]) The successor function is continuous.

According to Lemma 2.1, we obtain the following conclusions.

Definition 2.3 ([43]) If there exists a point B of system (1), then we say that the trajectory

passing through point B is an order-one periodic solution of system (1) if f (B) = 0.

Lemma 2.2 ([43]) The system has an order-one periodic solution if there exist two points

C ∈ M+
I and D ∈ M+

I such that the successor function f (C)f (D) < 0.

Remark 2.2 This lemma is used to prove the existence of order-one periodic solution of

system (1) in Section 3.

Lemma 2.3 ([43]) If the successor function of system (1) is amonotonic function, then there

exists a unique order-one periodic solution.

Remark 2.3 In Section 3, this lemma is used to prove the uniqueness of order-one peri-

odic solution of system (1).

System (1) with neglected impulse (c = 0) is of the form

⎧

⎨

⎩

x′(t) = ax(t) ln( K
x(t)

),

y′(t) = –by(t).
(3)
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Figure 2 Phase diagram of system (3) with

a = 0.5, K = 5, b = –0.4.

Solving the equations

⎧

⎨

⎩

ax(t) ln( K
x(t)

) = 0,

–by(t) = 0,
(4)

we obtain one equilibrium E∗(K , 0). Thus, we have the following theorem.

Theorem 2.1 [43] System (3) has a boundary equilibrium, which is a locally stable node.

Proof We discuss the stability of the equilibrium. The Jacobian of system (3) is

J0 =

(

a ln(K
x
) – a 0

0 –b

)

.

At E∗(K , 0), we have

JE∗ =

(

–a 0

0 –b

)

with characteristic roots λ1 = –a and λ2 = –b. Obviously, E∗(K , 0) is a locally stable node.

The proof is completed. �

Furthermore, by Theorem 2.1 we have that E∗(K , 0) is locally stable (see Figure 2).

In this paper, we restrict ourselves to the biologically meaningful region F = {(x, y)|
x ≥ 0, y≥ 0}.

3 Existence and uniqueness of order-one periodic solution of system (1)

In this section, we prove the existence and uniqueness of order-one periodic solution of

system (1) by geometry theory of differential equations and monotonicity of successor

function. As shown in Figure 3, the x-isoline dx
dt

= 0 of system (1) intersects with x-axis at

point E∗(K , 0), and the trajectory passing through point E intersects with impulse set MI

at point E′(τ ,h), and then E′(τ ,h) jumps to the phase set at point E+((1 – c)τ ,h + cτ ). By
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Figure 3 The successor function of point E is

negative.

the same method we obtain M+((1 – c)τ , cτ ), which is the successor point of M, and the

impulse set MI{x, y} and the phase set M+
I {x, y} intersect with x-axis at points M′ and M,

respectively.

Lemma 3.1 If h <
aτ ln( Kx )

b
, then kE′E+ < kE′ .

Proof By computing two slopes

kE′E+ =
yE′ – yE+

xE′ – xE+
=

cτ

(1 – c)τ – τ
= –1,

kE′ =
dy

dx

∣

∣

∣

∣

E′(τ ,h)
=

(

dy

dt
·
dt

dx

)
∣

∣

∣

∣

E′(τ ,h)
=

–bh

aτ ln(K
τ
)
,

we get that if kE′E+ < kE′ , then –1 < –bh

aτ ln( Kτ )
, The proof is completed. �

Remark 3.1 The point E+ is under the point E when the slope of the trajectory of system

(1) at the point E′ is greater than the slope of the line E′E+, and so we prove that the

successor function of point E is negative.

Lemma 3.2 If h > aK
ec
, then the straight line E′E+ is not a cutting line of system (1).

Proof The derivative of straight line E′E+ : L = y + x – h – τ is

dL

dt

∣

∣

∣

∣

L=0

=

(

dy

dt
+
dx

dt

)
∣

∣

∣

∣

t=0

=

[

–cy + ax ln

(

K

x

)]
∣

∣

∣

∣

t=0

= –ch – c(τ – x) + ax ln

(

K

x

)

.

Since τ > x, we have

dL

dt

∣

∣

∣

∣

L=0

≤ –ch + ax ln

(

K

x

)

< 0,
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Figure 4 The trajectory of system (1) cannot be so.

Figure 5 The order-one periodic solution of system

(1).

that is,

ax ln

(

K

x

)

< ch.

Let f (x) = ax ln(K
x
) = 0. Then we get a maximum x = K

e
. That is to say, if h > aK

ec
, then

dL
dt

|L=0 < 0, and the trajectory EE′ of system (1) cannot occur as shown in the situation (see

Figure 4). The proof is completed. �

Theorem 3.1 System (1) has an order-one periodic solution if aK
ec

< h <
aτ ln( Kτ )

b
(see Fig-

ure 5).

Proof According to Lemmas 3.1 and 3.2, if the point E+ is under the point E, then the

condition aK
ec

< h <
aτ ln( Kτ )

b
is satisfied. The successor function of point E is

f (E) = yE+ – yE < 0.

On the other hand, we choose any point in the pulse set such that the successor function

is positive. Based on the condition ẋ|y=0 > 0, we can choose a pointM((1–c)τ , 0) ∈MI{x, y}
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and its trajectory passing through the point M′(τ , 0) along a straight line. Then point M′

jumps to point M+ owing to impulsive effect, and thus the successor function of pointM

is

f (M) = yM+ – yM = cτ > 0.

In summary, according to Lemma 2.2, in the pulse set M+
I {x, y}, there exists a point B

between the pointsE andM such that f (B) = 0, that is, system (1) has an order-one periodic

solution. �

Theorem 3.2 System (1) has a unique order-one periodic solution if aK
ec

< h <
aτ ln( Kτ )

b
and

the successor function of system (1) is monotonic.

Proof In the phase setMI
+, we choose any two points F(xF , yF ) and J(xJ , yJ ) between point

M(xM, yM) and point E(xE, yE) so that the point J(xJ , yJ ) is under the point F(xF , yF ), and

thus their trajectories intersect at points F ′(xF ′ , yF ′ ) and J ′(xJ ′ , yJ ′ ) with impulse set MI ,

respectively, and yF > yJ (see Figure 6).

We obtain

yF ′ – yF =

∫ τ

(1–c)τ

dy

dx
dx =

∫ τ

(1–c)τ

–byF

ax ln(K
x
)
dx

and

yJ ′ – yJ =

∫ τ

(1–c)τ

dy

dx
dx =

∫ τ

(1–c)τ

–byJ

ax ln(K
x
)
dx,

because yF > yJ . Then

∫ τ

(1–c)τ

–byF

ax ln(K
x
)
dx <

∫ τ

(1–c)τ

–byJ

ax ln(K
x
)
dx,

yF ′ – yF < yJ ′ – yJ ,

Figure 6 System (1) has a unique order-one

solution.
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and the successor functions of point F and point J are as follows:

f (F) = yF ′ – yF ,

f (J) = yJ ′ – yJ ,

f (F) – f (J) = (yF ′ – yF ) – (yJ ′ – yJ ) < 0.

Because the successor function of system (1) is monotonic, an order-one periodic solu-

tion of system (1) is unique. The proof is completed. �

4 Stability of the order-one periodic solution

Definition 4.1 ([42] (� limit set)) On the positive half-trajectory of system denoted

by g(p,T+),T+ = (0,+∞), let {0 ≤ t1 < t2 < · · · < tn < · · · } be a time series such that

limn→+∞ tn = +∞. If P∗ is a limit point of the point range g(p, tn), n = 1, 2, . . . , then we

say that P∗ is an � limit point. The set of all � limit points is called the � limit set.

Definition 4.2 ([42]) Suppose Ŵ′ is an order-one periodic solution of semicontinuous dy-

namic system. This periodic solution is called stable if it has a sufficiently small neighbor-

hood
⋃

(Ŵ′) such that the � limit set of trajectories starting from any point Q ∈
⋃

(Ŵ′)

is Ŵ′.

According to Section 3, we obtain that system (1) has a unique periodic solution. Based

on [42, 43], using a similar method, we choose any point A′ ∈MI
+, and the path that con-

sists of the curve Â′B′C′ and the segment of line C′A′ is an order-one periodic solution,

and we denote it by Ŵ′. Then we choose a point series {T∗
0 ,T

∗
1 , . . . ,T

∗
k ,T

∗
k+1}, where T∗

i+1 is

the subsequent point of T∗
i , i = 0, 1, . . . ,k, . . . . Build the coordinates on M+

I . The support

of the coordinate of A′ is 0. Denote by t0, t1, . . . , tk , tk+1 the coordinates of the point series

T∗
0 ,T

∗
1 , . . . ,T

∗
k ,T

∗
k+1, where tk = –dk when A′ is on right side of T∗

k , otherwise, tk = dk when

A′ is on left side of T∗
k , and the distance between T∗

k and A′ is dk (see Figure 7).

Proposition 4.1 ([43]) For system (1), there exists an order-one periodic solution such that

its trajectory is through the point A′ in the phase set M+
I . For any point T

∗
0 sufficiently close

to the point A′, there exists a point series T∗
0 ,T

∗
1 , . . . ,T

∗
k ,T

∗
k+1, . . . → A′(k → ∞), that is,

t0, t1, . . . , tk , tk+1, . . . → 0, and thus the order-one periodic solution of system (1) is stable. If

Figure 7 T1,T2, . . . ,Tk ,Tk+1, . . . are the subsequent points of T0,T1, . . . ,Tk ,

Tk+1, . . . , respectively.
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ti < 0 (ti > 0) for i = 0, 1, . . . ,k, . . . , then the order-one periodic solution is unidirectionally

stable.

Using the result in [43] and a similar method as in [42], we can prove the following

results, which will prove the main result of Theorem 4.3. The main idea is to set up a rect-

angular coordinate to debate the theorems for ascertain the stability of order-one periodic

solution.

For system (1), we have a hypothesis that the equations P(x, y) andQ(x, y) have any order

partial derivatives, where the partial derivatives of P and Q are denoted by Pxn , Pyn , Qxn ,

Qyn . We assume that the closed orbit Ŵ′ is an order-one periodic solution of system (1),

where A′ ∈ M+
I {x, y} and C′ ∈ MI{x, y}. Suppose that the period from A′ to C′ is T , so T

is also the period of Ŵ′. In the area very close to Ŵ′, we build a new coordinate system

(s,n). The length of the arc connecting the point A′ and the corresponding point is the

coordinate s, and the length of the normal line segment is coordinate n, and we suppose

downside as the negative direction. Letting s be the parameter, the function of Â′B′C′ is

⎧

⎨

⎩

x = ϕ(s),

y = φ(s).
(5)

Suppose the coordinate of point A′ is (ϕ(s),φ(s)). Then, let the normal line of trajectory

Ŵ′ pass through A′, and let it intersect the trajectory starting from C′ at Dk . The curve
̂D′

kETk+1D
′
k+1 will tend to the Ŵ′(A′B′C′A′) as k → +∞. Then the periodic solution Ŵ′ is

stable (see Figure 8). Thus, the relation between the orthogonal coordinate (s,n) and rect-

angular coordinate (x, y) of point A′ is

⎧

⎨

⎩

x = ϕ(s) – nφ′(s),

y = φ(s) + nϕ′(s),
(6)

where

⎧

⎪

⎨

⎪

⎩

ϕ′(s) = dx
dt

|A′ = P0√
P20+Q

2
0

,

φ′(s) = dy

dt
|A′ = Q0√

P20+Q
2
0

,
(7)

Figure 8 Establish coordinate system (s;n) on point A.
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P0 and Q0 represent the values of the functions P and Q at point A′, respectively, that is,

P0 = P
(

ϕ(s),φ(s)
)

,

Q0 =Q
(

ϕ(s),φ(s)
)

.

From systems (2) and (5) we have

dy

dx
=

φ′(s) + ϕ′(s) dn
ds

+ nϕ′′(s)

ϕ′(s) – φ′(s) dn
ds

– nφ′′(s)
=
Q(ϕ(s) – nφ′(s),φ(s) + nϕ′(s))

P(ϕ(s) – nφ′(s),φ(s) + nϕ′(s))
.

Then we have

dn

ds
=
Qϕ′ – Pφ′ – n(Pϕ′′ +Qφ′′)

Pϕ′ +Qφ′ � F(s,n). (8)

We know that n = 0 is a solution of system (8). The function F(s,n) has continuous order-

one partial derivative with respect to n, and we get

dn

ds
= F ′

n(s,n)|n=0 · n + o(n). (9)

Because P0ϕ
′′ +Q0φ

′′ = 0, if n = 0 (see [43]), then we get

dn

ds
�H

(

s′
)

n,

where H(x) denotes the curvature of orbit at point A′ for system (2). Therefore the linear

approximate function of system (9) is

dn

ds
=H(s)n,

and thus the solution is

n = n0e
∫ s
0 H(s′)ds′ . (10)

Theorem 4.1 ([43]) If k is the length of arc Â′B′C′ which is a segment of the one-order

periodic solutionŴ′ of system (2), then the order-one periodic solutionŴ′ is stable (unstable)

when

∫ k

0

H(s)ds < 0 (> 0). (11)

Theorem 4.2 ([43]) Assume that the area neared by an order-one periodic solution tra-

jectory Ŵ′ is convex. If

∫ T

0

(Px0 +Qy0 )dt < 0,

then Ŵ′ is stable.
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Proof Because ds =
√

P2
0 +Q2

0 dt, we have

∫ k

0

H(s)ds =

∫ T

0

P2
0Qy0 – P0Q0(Py0 +Qx0 ) +Q2

0Qy0

P2
0 +Q2

0

dt

=

∫ T

0

[

Px0 +Qy0 –
P2
0Px0 + P0Q0(Py0 +Qx0 ) +Q2

0Qy0

P2
0 +Q2

0

]

dt

=

∫ T

0

(Px0 +Qy0 )dt –
1

2

∫ T

0

d

dt

[

ln
(

P2
0 +Q2

0

)]

dt.

Because Ŵ′ is the order-one periodic solution trajectory, we have

1

2

∫ T

0

d

dt

[

ln
(

P2
0 +Q2

0

)]

dt = 0.

If

∫ T

0

(Px0 +Qy0 )dt < 0,

then
∫ k

0
H(s) < 0. By Theorem 4.1, Ŵ′ is stable. The proof is completed. �

Thus, we get the following conclusions.

Theorem 4.3 ([43]) The order-one periodic solution Ŵ′ of system (1) is stable if

∫ T

0

(

∂P

∂x
+

∂Q

∂y

)

dt < 0.

Proof Based on the Bendixson-Dulac theorem (see, e.g., [43]), we can find that system (1)

is the topological equivalence system of the following system (12). Let v(x, y) = 1
x
; then

⎧

⎨

⎩

ẋ = p(x, y)v(x, y) = a ln(K
x
) = p1(x, y),

ẏ = q(x, y)v(x, y) = –by
x

= q1(x, y).
(12)

Thus

∂p1

∂x
+

∂q1

∂y
= –

a

x
–
b

x
=
–a – b

x
< 0.

Therefore the order-one periodic solution of system (1) is stable. The proof is com-

pleted. �

5 Numerical simulations and conclusion

5.1 Numerical simulations

In Sections 3 and 4, we have proved that system (1) has a unique stable order-one periodic

solution. Here we give an example to verify the results.

Let a = 0.5, K = 5, b = 0.4, c = 0.8, and let the initial condition be x0 = 5, y = 2. By The-

orems 3.1, 3.2, and 4.3 system (1) has a unique stable order-one periodic solution. The

numerical simulation conforms the result; see Figure 9.
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Figure 9 The numerical simulation of system (1). (a) Phase portrait of x(t) and y(t) on τ = 3.65. (b) Time

series of x(t). (c) Time series of y(t).

5.2 Conclusion

In the previous studies, we always used the Poincaré theorem to prove the stability of

order-one periodic solution. However, this method is not suitable for all systems.

In this paper, we compare the slope of pulse line and the trajectory at the pulse point.

We get the condition that the successor function is negative, and we prove that system (1)

has an order-one periodic solution.

Secondly, we use the monotonicity of the successor function, the geometric theory of

differential equations, and the definition of the successor function to prove the uniqueness

of an order-one periodic solution.

Finally, we consider a new method to prove the stability of an order-one periodic solu-

tion. In Proposition 4.1, the unidirectional stability of an order-one periodic solution can

be used to determine that there is no closed orbit around the order-one periodic solution.

Using the method of approximating time, we get the same conclusion of the limit cycle

theory. So we rewrite Theorem 4.1 to Theorem 4.3. This method solves the problem that

the subsequent function is difficult to calculate in the Cartesian coordinate system and

also makes the problem simple.

Our main purpose is to prove the existence, uniqueness, and stability of an order-one

periodic solution of system (1). However, does there exist a periodic solution for the mi-

gration of two- or multipopulation? If it does, then is the periodic solution stable? We

leave these for our future work.
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