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Abstract

In this paper, we addresspower-aware schedulingof peri-
odic hard real-timetasksusingdynamicvoltage scaling. Our
solutionincludesthreeparts: (a) a static(off-line) solutionto
computetheoptimalspeed,assumingworst-caseworkloadfor
each arrival, (b) an on-linespeedreductionmechanismto re-
claimenergybyadaptingto theactualworkload,and(c)anon-
line, adaptiveandspeculative speedadjustmentmechanismto
anticipateearly completionsof future executionsby usingthe
average-caseworkload information. All thesesolutionsstill
guaranteethat all deadlinesare met. Our simulationresults
showthat the reclaimingalgorithm savesa striking 50% of
theenergy over thestaticalgorithm. Further, our speculative
techniquesallow for anadditionalapproximately20%savings
over thereclaimingalgorithm. In this study, wealsoestablish
that solvingan instanceof the staticpower-aware scheduling
problem is equivalentto solving an instanceof the reward-
basedschedulingproblem[1, 4] with concavereward func-
tions.

1 Intr oduction

In the last decade, the researchcommunity has ad-
dressedthe low power systemdesignproblemswith a multi-
dimensionaleffort [7, 18]. Suchon-goingresearchhas im-
portantimplicationsfor real-timesystemsdesign,simply be-
causemostof the applicationsrunningon power-limited sys-
temsinherentlyimposetemporalconstraintson the response
time(suchasreal-timecommunicationin satellites).

The variablevoltage scheduling(VVS) framework, which
involves dynamically adjusting the voltage and frequency�
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(hencetheCPUspeed),hasrecentlybecomea majorresearch
areafor power-aware computersystems. For real-timesys-
tems, the proposedVVS schemesfocus on minimizing en-
ergy consumptionin thesystem,while still meetingthedead-
lines. Yao et al.[23] provided a staticoff-line schedulingal-
gorithm, assumingaperiodictasksand worst-caseexecution
times. Heuristics for on-line schedulingof aperiodic tasks
while not hurting the feasibility of periodicrequestsarepro-
posedin [9]. Non-preemptive power awareschedulingis in-
vestigatedin [8]. Concentratingon periodictaskswith identi-
cal periods,theeffectsof having an upperboundon the volt-
agechangerateareexaminedin [10], alongwith a heuristic
to solve the problem. Slowing down the processorwhenever
there is a single task eligible for executionwas explored in
[21]. Lorch andSmithaddressedthevariablevoltageschedul-
ing of taskswith softdeadlinesin [14]. Thestaticsolutionfor
thegeneralperiodicmodelwheretaskshavepotentiallydiffer-
entpowerconsumptioncharacteristicsis providedin [2].

However, mostof theschedulingschemespresentedin these
studies, while using exclusively worst-caseexecution time
(WCET) to guaranteethe timelinessof the system,lack the
ability to dynamicallytake advantageof unusedcomputation
time. In fact,real-timeapplicationsusuallyexhibit alargevari-
ationin actualexecutiontimes;for example[5] reportsthatthe
ratio of the worst-caseexecutiontime to the best-caseexecu-
tion timecanbeashigh as10 in typicalapplications.

Consequently, dynamicallymonitoringand reclaimingthe
‘unused’ computationtime can be (and, as we show later in
this paper, is in fact) a powerful approachto obtainconsider-
ablepower savings and to minimize the effectsof designing
the systemwith WCET information,which is usuallya very
conservative predictionof the actual executiontime. Addi-
tional improvementsarepossiblethanksto thestatisticalwork-
loadinformation;in this paper, we investigatealsoaggressive
schemeswherewe anticipatethe early completionsof future
executionsandspeculativelyreducethe CPU speed.This ap-
proachimmediatelyraisestwo intertwinedquestions,namely,
(a) the level of aggressivenessundera given probability dis-
tribution of actualworkload;and(b) theissueof guaranteeing
the timing constraintseven in aggressive modes. It is obvi-
ousthat the solutionsto theseproblemsshouldbe simultane-
ouslypracticalandefficient, in orderto beapplicableon-line.



It goeswithout sayingthatdynamicreclaimingand/oraggres-
sive techniquesshouldpreserve thefeasibility of thetasksys-
tem (i.e., no deadlineshouldbe missed),evenundera worst-
casescenariothat may take placeafter any speedadjustment
decision.

We mustnote that a recentstudy [11] addresseddynamic
energy reclaimingissues(withoutspeculation)in power-aware
schedulingfor cyclic andperiodictaskmodels,in thecontext
of systemswith two (discrete)voltagelevels. However, sys-
temswhich areableto operateon a (moreor less)continuous
voltagespectrumarerapidly becominga reality thanksto ad-
vancesin power-supplyelectronicsand CPU design[6, 17].
For example,theCrusoeprocessoris ableto dynamicallyad-
just clock frequency in 33 MHz steps[22]. To the bestof
our knowledge,the conceptof “speculative speedreduction”
wasfirst introducedby theauthorsin [16]; however, only tasks
sharinga commondeadlinewereconsidered.
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In this paper, we identify andaddressthreedimensionsof

power-awareschedulingfor real-timesystemsanddevelopef-
ficient algorithmsfor the periodic task model. Effectiveness
in reducingtheenergy consumptioncanbe improvedonly by
a simultaneousconsiderationof thesethreedimensions,since
they complementeachother. Thus,wepresent:

1. A static(off-line) solutionto computethe optimal speed
at the tasklevel, assumingworst-caseworkloadfor each
arrival " (Section3). In the samesection,we alsoshow
thatsolvinganinstanceof thethestaticpower-awarereal-
time schedulingproblemis equivalent to solving an in-
stanceof thereward-basedschedulingproblem[1].

2. An on-line speedadjustmentmechanismto dynamically
reclaimenergy not usedby tasksthat completewithout
consumingtheirworst-caseworkload(Section4).

3. An on-line, adaptive and speculative speedadjustment
mechanismto anticipateandcompensateprobableearly
completionsof futureexecutions(Section5).

We emphasizeonceagainthat, in the context of real-time
systems,all thesecomponentsshouldbedesignednot to cause
any deadlinesto bemissedevenundertheworst-casescenario:
the aim is to meet the timing constraints while simulta-
neouslyand dynamically reducing power consumption as
much aspossible.

2 SystemModel and Notation

Thereadytime anddeadlineof eachreal-timetask #%$ will
be denotedby &'$ and ()$ , respectively. The indicator of the
worst-caseworkloadin variablevoltage/speedsettings,thatis,*

Dueto thenatureof VVS, theactualexecutiontime is dependenton the
CPUspeed,andthereforetheworst-casenumberof requiredCPUcyclesis a
moreappropriatemeasureof theworst-caseworkload(seeSection2).

theworst-casenumberof processorcyclesrequiredby #%$ , will
bedenotedby +,$ . Note that,undera constantspeed- (given
in cyclespersecond),theexecutiontime of thetask # $ is . $0/1�23 . A scheduleof real-timetasksis saidto be feasibleif each
task # $ receivesat least 45+ $ CPU cyclesbeforeits deadline,
where 46+ $87 + $ is the actualnumberof CPUcycles(actual
workload)of # $ .

We assumethat the CPU speedcan be changedbetween
a minimum speed-�9 $;: (minimum supplyvoltagenecessary
to keepthe systemfunctional)anda maximumspeed- 9�<>= ,
andthat ? 7 - 9 $;: 7 - 9@<A= /CB ; that is, we normalizethe
speedvalueswith respectto - 9�<>= . In our framework, thevolt-
age/speedchangestake placeonly at context switch time and
while statesaving instructionsexecute.Pouwelseet al. report
in [19] that thevoltage/speedchangecanbeperformedin less
than140 D s in StrongARM SA-1100processor. If not negli-
gible, the ’voltagechangeoverhead’canbe incorporatedinto
theworst-caseworkloadof eachtask.

We assumethat the processdescriptorof the task #%$ has
two extra fields relatedto speedsettings,in additionto other
conventionalfields.Thefirst one, - $ , denotesthecurrentCPU
speedat which # $ is executing.Theotherfield - $ denotesthe
nominal speedof # $ , which is the indicator of the “default”
speedof # $ . For eachtask that is dispatched,the operating
systemsets-�$ / -E$ , prior to any dynamicspeedadjustment.

Thepowerconsumptionof theprocessorunderthespeed-
is givenby F�GH-JI , which is assumedto bea strictly increasing
convex function, representedby a polynomialof at leastsec-
onddegree[10]. If the task #%$ occupiesthe processorduring
thetime interval K . "AL .NMPO , thentheenergyconsumedduringthis
interval is QRG;. ">L .NMSI / TVUTHW F�GX-�G;.PINIH(A. .In ourdetailedanalysisof periodicpower-awarescheduling,
we will considera set Y /[Z # "\L^]>]>]^L #%:�_ of ` periodic real-
time tasks. The periodof #�$ is denotedby ab$ , which is also
equalto thedeadlineof thecurrentinvocation.We referto thec Ted invocationof task #%$ as #�$Xf g . All tasksareassumedto be
independentandreadyat . / ? . Hence,thereadytime of #�$Xf g
is & $�f g / G cih B Ikjlak$ , andits deadlineis ()$Xf g / c j'ab$ .

We define m TenoT asthe total utilization of the tasksetunder
maximumspeed- 9@<A= /pB , that is, m TenqT / :$sr "

1�2t�2 . Note
that the schedulabilitytheoremsfor periodic real-time tasks
[12] imply that m TenoT 7uB is a necessarycondition to have at
leastone feasibleschedule;hence,throughoutthe paper, we
will assumethat m TenqT /

:$sr "
1�2t�2 7vB .

3 Optimal Static Solutionw�x�y z�{ ��|}��~�������������� ������
�
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R!k~��E�����~���������� { ���J���������
Before analyzing the periodic model in depth, we cor-

relate the reward-basedscheduling [1, 3] framework to the
power-aware schedulingof real-time tasks. The reward-
basedschedulingframework encompassesreal-timeschedul-
ing modelssuchasImpreciseComputation[13] andIncreased-



Reward-with-Increased-Service[4] thatexploit the timeliness
andprecisiontrade-off. We underlinethat thecorrelationthat
we prove is preserved regardlessof the task model (aperi-
odic/periodicor preemptive/nonpreemptive), as long as our
aim is to reacha solutionfor agiven(worst-case)workload.

In the reward-basedschedulingframework, eachreal-time
task # $ comprisesa mandatorypart � $ andan optionalpart� $ . The worst-caseexecution times of � $ and

� $ are de-
notedby � $ and � $ , respectively. The mandatorypart runs
first, producingan outputof acceptablequality, which is sub-
sequentlyenhancedby the optional part within the limits of
availablecomputationalcapacity. To quantify the quality im-
provement,a non-decreasingrewardfunction �b$oGV.q$NI is associ-
atedwith eachoptionalexecutionwhere .q$ 7 �>$ denotesthe
servicetime

� $ receives.Most of therealisticapplicationsare
bestrepresentedby concave rewardfunctions[1, 3, 4, 20]. In
any feasiblereward-basedschedule,each mandatorypartmust
befully executedby thetaskdeadline('$ , however, theoptional
partsmayremainpartiallyexecutedby thedeadlines.Now we
canformally definethereward-basedschedulingproblem.

Reward-Based Scheduling Problem: Consider the
uniprocessorschedulingof a reward-basedreal-timetask set� /�Z # "\L>]^]>]^L #%:�_ . Givena time point ��� , determinetheop-
timal schedulein the interval K ? L � � O , whereeachmandatory
part � $ completein a timely fashionbeforethe taskdeadline( $ , andeachoptionalpart receivesservicefor . $@7 � $ unitsof
timesoasto maximizethetotal systemreward $ � $ GV. $ I .

Thedeterminationof theoptimalscheduleclearly involves
thecomputationof optimaloptionalservicetimes.Noting that
therewardaccruedby eachoptionalpart

� $ doesnot increase
beyondtheupperbound� $ , this computationcanbeexpressed
as an optimizationproblemwherethe objective is to find . $
valuesM soasto:

maximize ��V��*�� � �V¡o�£¢ (1)

subjectto ¤R¥ ¡q� ¥�¦ � §©¨«ªP¬�­\­\­\¬£® (2)

¯±°�²\³X²´²\µ ¶¸·X¹X·bº¼»;² ºH·X¶s½�¾¸²�·X¿N°�²\À�Á�¾¸²EÂ±¶¸¹X°8ÃNÄ ��Å ºHÆ�À5Ã ¡ ��Å�Ç ºN¾¸Á�²q· (3)

On the other hand, the real-timepower-awarescheduling
problemcanbestatedasfollows.

Real-TimePower-AwareScheduling(RT-PAS) Problem:
Considera CPUwith variablevoltage/speed-ÈGX- 9 $;: 7 - 7-E9@<A=EI facility, where the power consumptionis given by a
strictly increasingconvex function F�GX-JI , which is a polyno-
mial of at leastseconddegree.Givena set

� /�Z # " L>]^]>]^L # : _
of real-timetasks,in which eachtask # $ is subjectto a worst-
caseworkloadof + $ expressedin thenumberof requiredCPU
cycles,anda time point � � , determinethe scheduleand the
processorspeed -JGV.PI soasto minimize thetotal energy con-
sumptionQRGÉ? L ����I / Ê6ËÌ F�GX-�G;.PINIH(A. in theinterval K ? L ��� O .

Í
Whenconsideringtheperiodictaskmodel,theexecutiontimeof eachtask

instance(Î �¸Ï ) shouldbeconsideredasaseparateunknown.

Beforerelating two schedulingproblems,we observe that
theconvexity of speed/power functionallowsusto deducethe
following (a formalproofcanbefoundin [3]).

Proposition1 One can safely commit to a constantCPU
speedduring theexecutionof a task # $ requiring + $ CPU cy-
cles,withoutincreasingtheenergyconsumption.

Notethatthedeterminationof - $ in theRT-PAS problemis
now effectively equivalentto determiningthe CPU time allo-
cationto #%$ , which will bedenotedby Ðb$�G;Ð�$ / 1 23S2 I . We are
now readythe establishthe connectionbetweenRT-PAS and
Reward-BasedSchedulingproblems.

Proposition2 Solving an instance of RT-PAS problem is
equivalentto solvingan instanceof Reward-BasedScheduling
problemwith concavereward functions.

Proof: To prove the statement,we will first formulate the
computationof optimalspeedvaluesasanoptimizationprob-
lem. The total energy consumption,thanksto the constant
speedassumptionper task,cannow be expressedas Q TenqT /:$¸r " Ð $ j�F�GX- $ I /

:$sr " Ð $ jAF�G
1�2= 2 I . Further, observe that the

minimum andmaximumspeedboundsimposenaturallower
andupperboundson CPU allocationof # $ . In otherwords,
theinequality

1 23SÑ�ÒoÓ 7 Ð $�7 1 23SÑ�2ÕÔ shouldbesatisfied.Hence,
thecomputationof optimalCPUallocationassignmentscanbe
formalizedasanoptimizationproblem:

minimize ��V��*�Ö �¼×NØ � Ù
2Ú 2 ¢ (4)

subjectto Ù 2Û Ñ�ÒoÓ ¥ Ö � ¥ Ù 2Û Ñ�2sÔ §Ü¨«ª)¬�­q­\­\¬£® (5)¯±°�²\³X²E²qµl¶¸·X¹X·�ºS»Õ² ºN·X¶¸½�¾¸²E·X¿o°�²\À�Á�¾s²´Â±¶¸¹X°8Ã Ö � Å�Ç ºH¾sÁ�²\· (6)

Now, consider the variable transformation �Ý$ /1�23 Ñ�ÒoÓ L .q$ / Ðb$ h �Ý$ L �>$ / 1�23 Ñ�2sÔ h 1�23 Ñ�ÒNÓ L�Þ�ß�à �b$qG;.q$qI /h G;. $�á 1�23 Ñ%ÒNÓ IVF�G 1�2
T 2¸âäã 2å Ñ%ÒNÓ I .

This transformationcanbe interpretedasfollows: First, #%$
mustbe assignedat least

1 23¼Ñ�ÒNÓ units of CPU time (“manda-
tory” execution). Any allocation exceedingthis minimum
amountwill be consideredas“optional” execution,while the
totalCPUallocation(�æ$ á .q$ ) cannotexceedtheupperbound1 23 Ñ�2ÕÔ . Finally, the more we allocateCPU time to #%$ by in-
creasing.q$ , the more we increasethe energy savings thanks
to the speed/power relation. It is not difficult to see that,
by using the above transformationand by re-writing the op-
timizationproblemgivenby (4), (5) and(6), onereachesonce
again the formulation of the generalreward-basedschedul-
ing problemdefinedby Equations(1), (2) and (3). Further,
the reward function � $ GV. $ I above is clearly concave, sinceG;. $%á 1 23¼Ñ�ÒNÓ I;F�G 1 2

T 2¸âäã 2å Ñ�ÒNÓ ) is convex. To seethis,we canusethe

result from [15] statingthat if ç and è areboth convex func-
tionsandif ç is increasing,then ç�GXè^GVÐ±INI is alsoconvex. Thus,
by setting ébG;.q$qI / 1 2

T 2Õâ ã 2å Ñ�ÒoÓ , andobservingthat the multipli-

cationby GV.q$ á 1 23SÑ�ÒoÓ I doesnot affect theconvexity, we justify
theconcavity of �k$qG;.q$qI / h F�GHékGV.q$NINI . ê
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In this section,we presentthe static optimal solution to

the variablevoltageschedulingproblemfor the periodictask
model,assumingthat each taskpresentsits worst-casework-
load to theprocessorat everyinstance. We underlinethatone
canusetheequivalenceobtainedin Section3.1andtheresults
from [1] to justify the proposition(as formally donein [3]);
however, onecanalsoreachthesameconclusionby usingthe
first principlesasoutlinedbelow.

Proposition3 Theoptimalspeedto minimizethetotal energy
consumptionwhile meetingall the deadlinesis constantand
equalto ð- / ��ç^Ð Z - 9 $;: L m TenqT _ . Moreover, whenusedalong
with thisspeedð- , anyperiodichard real-timepolicywhich can
fully utilize the processor(e.g., EarliestDeadlineFirst, Least
LaxityFirst) canbeusedto obtaina feasibleschedule.

Proof: First,observethattheconvex natureof thepower-speed
function suggeststhat we should try to maintaina uniform
speedwhile fully utilizing theCPUto theextentit is possible.
If m TenqT

ñ -E9 $Õ: , thenusingthespeed ð- / m TenoT leadsclearlyto
a schedulewhich is fully utilized (i.e., no idle time), through
stretchingout eachtaskin equalproportions(in otherwords,
in this case,we areachieving a total effectivetaskutilization
of

:$¸r "
1 2ò3kó t¼2 /uô�õVö£õò3 /÷B ). However, if m TenqTùø - 9 $;: , then

we shouldusethe minimum CPU speedavailable, to stretch
out taskexecutionsasmuchaspossible.In any case,usingthe
speedð- / �úç^Ð Z - 9 $;: L m TenqT _ will resultin atotaleffectivetask
utilization which is no greaterthan1. Hence,any scheduling
policy whichcanachieveup to 100%CPUutilization(Earliest
DeadlineFirst, LeastLaxity First) canbeusedto completeall
thetaskinstancesbeforetheir deadlineswith thespeed ð- . ê
4 Dynamic Reclaiming Algorithm

The dynamic reclaiming algorithm is basedon detecting
earlycompletionsandadjusting(reducing)thespeedof other
taskson-the-flyin order to provide additionalpower savings
while still meetingthedeadlines.To thisaim,weperformcom-
parisonsbetweenthe actualexecutionhistory andthe canon-
ical scheduleû�ü < : , which is the static optimal scheduleon
which every instancepresentsits worst-caseworkloadto the
processorandrunsat the constantspeed ð- . The CPU speed
is adjustedonly at task dispatchtimes: thus, we shouldbe
able to saywhetherthe task is beingdispatchedearlier thanû�ü < : , andif so,determinetheamountof additionalCPUtime
the dispatchedtask can safely use to slow down its execu-
tion; we will refer to this additionalCPU time as the earli-
nessof thedispatchedtask.Beforeproviding thedetailsof our
approach,we underlinethat a simple approachthat equates
earlinesswith previously unusedCPU time and and blindly
slows down the processoris not a safe approach. To see
this, considera 3-tasksystemwith the following parameters:+ " /vý L a " /þB ? L +©M /ÿý L a�M / B ? L + � / � L a � /�� ? . The
worst-caseutilizationof thetasksetis equalto 1.00,hencethe

optimalspeedfor thestaticversionis ð- / - 9@<A= /�B ] ?l? (from
Proposition 3). If every taskpresentsits worst-caseworkload
at every instanceandwe useEDF, thentheschedulein Figure
1 (û�ü < : ) would beobtained.Now, supposethat # � completes

T1

T2 T2

T1

T2

T1

T 3 T 3 T 3

0 4 10 14 20 24 30

0 4 14 24 30

0 10 20 30

8 18 28

8 18 28

Figure 1. The static optimal schedule, û�ü < :
earlyat . / B ? , leaving anunusedcomputationtimeof 4 units
beforeits deadline.If these4 units of CPU time areusedby# " f M (recall that # $Xf g is the

c Ted instanceof task � ), # M f M will
missits deadline,if both # " f M and# M f M requiretheirworst-case
workload.

As we cansee,computingandmanagingearlinessis not a
trivial task.Dueto theperiodicnatureof thetasksweconsider,
it is clearly impracticalto a priori produceandkeeptheentire
static optimal scheduleû�ü < : during the execution. In order
to simultaneouslyaddressthe problemsof feasibility andef-
ficiency, while tasksexecute,complete,re-arrive dynamically
andtheactualscheduleis produced,wechooseto keepandup-
dateadatastructure(called � -queue)thathelpsto computethe
earlinessof taskswhenthey aredispatched.At any time . dur-
ing actualexecution,the � -queuecontainsinformationabout
tasksthatwould be active (i.e., runningor ready)at time . in
the worst-casestatic optimal scheduleû�ü < : (in other words,� -queueis thereadyqueueof û�ü < : at time . ). We assumethat
the following informationcanbe obtainedfor eachtaskfrom
the � -queueat any time . :
� � , theidentity of thetask(i.e., tasknumber),� & $�f g , thearrival timeof theinstance(i.e.,theperiodbound-

ary earlierthan. ),� ('$�f g , thedeadlineof theinstance(i.e.,theperiodboundary
laterthan. ), and� &	�o� $Xf g GV.PI , the remainingexecutiontime of # $Xf g at time .
in û�ü < : , underthestaticoptimalspeed ð- .

Clearly, given . , the & $Xf g and ( $�f g valuescanbeeasilycom-
putedfor the periodic task model. Note that the � -queueat
time . containsinformationaboutall instances# $Xf g suchthat&'$Xf g 7 . 7 ()$Xf g , and &	�o�æ$Xf g G;.PI�
v? . The � -queuecontainsat
most ` elements,sincethenumberof tasksin thereadyqueue



can never exceedthe total numberof tasksin any schedule.
Therefore,wewill omit theinstancenumberwhile referringto� -queueelements,wheneverclarity is not compromised.

Our approachassumesthat tasksarescheduledaccording
to EDF* policy. EDF* is thesameasEDF (EarliestDeadline
First [12]), except that, amongtaskswhosedeadlinesarethe
same,thetaskwith theearliestarrival timehasthehighestpri-
ority (FIFOpolicy); in casethatbothdeadlineandarrival times
areequal,thetaskwith thelowestindex hasthehighestprior-
ity. This EDF* priority ordering is essentialin our approach
becauseit providesa total orderon thepriorities. Further, we
assumethatthe � -queueis alsoorderedaccordingto EDF* pri-
orities. We denotetheEDF* priority-level of the task � by (
�$
(low valuesdenotehighpriorities).

At this point, we arereadyto relatethe � -queuewith the
computationof earlinessfactor. Let � 3$ GV.PI denotetheremain-
ing worst-caseexecutiontime of task # $ underthespeed- at
time . . Further, setthenominalspeed- $±/ ð- for eachtask# $ .
Proposition4 For any task #%= which is about to execute,
any unusedcomputationtime (slack) of any task in the � -
queuehavingstrictly higher priority than #%= will contribute
to the earlinessof #%= along with alreadyfinishedwork of #%=
in the actual schedule. That is, total earlinessof #%= is no

lessthan � = G;.PI / $�� ��� 2�� � � Ó &	�o�æ$qG;.PI á &	�o� = G;.PI h � 3 Ó= G;.PI /
$�� ��� 2�� � � Ó &	�o�Ý$oGV.PI h � 3¼Ó= G;.PI .

To understandtheaboveresult,notethatwhen#%= is beingdis-
patched,taskswith higherpriority thatarestill in the � -queue
mustbealreadyfinishedin the actualschedule(since# = cur-
rently hasthehighestEDF* priority), but they would havenot
yet finishedin û�ü < : .

Implementing the � -queue: The � -queuecan be easily
implementedusingthefollowing rules:

R1. Initially the � -queueis empty.

R2. Uponarrival, eachtask#�g ”pushes”its worst-caseexecu-
tion time undernominalspeed-Eg / ð- to the � -queuein
thecorrectEDF* priority position(thishappensonly once
for eacharrival, no re-pushat ’returnfrom preemptions’).

R3. As time elapses,theelementsin the � -queueareupdated
(consumed)accordingly:the&	�N�Ý$Xf g fieldattheheadof � -
queueis decreasedwith a rateequalto thatof thepassage
of time. Whenever the &	�o� $Xf g field of the headreaches
zero,that elementis removed from � -queueandthe up-
datecontinueswith thenext element.No updateis done
whenthe � -queueis empty.

Observation 1 At time t, the � -queue, updatedaccording to
therulesR1,R2andR3,containsonly thetasksthatwouldbe
readyat timet in thestaticoptimalscheduleû@ü < : . Further, the&	�o�æ$Xf g fieldcontainstheremainingallottedtimeof each active
instance#%$Xf g at timet in û�ü < : .

Observation1 stemsfrom thefollowing: (a) � -queueis or-
deredaccordingto EDF* order, (b) every arriving taskpushes
its remainingworst-caseexecutiontime(undernominalspeed)
into the � -queueonly once,(c) the queueis updatedonly at
the head,reflectingthe fact that only the taskwith the high-
est EDF* priority would be running in û@ü < : , and (d) a task
thatwouldhavefinishedin û�ü < : is removedfrom the � -queue.
This effectively yieldsa dynamicimage of thereadyqueueinû�ü < : at time . .

Notethatthedynamicreductionof &	�o�æ$Xf g in R3abovedoes
not needto be performedat every clock cycle; instead,for
efficiency, we performthe reductionwhenever a task is pre-
emptedor completes,by taking into accountthe time elapsed
sincethe lastupdate.Theabove approachrelieson two facts:
first, the speedadjustmentdecisionwill be taken only at ar-
rival/preemptionandcompletiontimes,andit is necessaryto
haveanaccurate� -queueonly at thesepoints(if speedsareto
be changedat otherpoints,the updateof &��o� $�f g mustreflect
that). Second,betweenthesepoints, eachtask is effectively
executednon-preemptively.

Wearenow readyto presentourGenericDynamicReclaim-
ing Algorithm, GDRA, shown in Figure2. ProcedureSpeed-
ReduceG;# = L � L -JI , in Figure3, will be usedby GDRA to re-
ducethespeed- of # = , by allocatinganextra

�
unitsof time

to # = underworst-caseremainingload, subjectto - 9 $;: con-
straint. GDRA is “generic” in the sensethat the amountof
additionaltimeallocation � in step5.2 is not specified,it may
assumeany valuebetween0 and � = G;.PI without compromising
thecorrectness.

The following theoremestablishesthat the schedulespro-
ducedby GDRA arealwaysaheadof û�ü < : .

Theorem1 At any time . during the execution of GDRA,

� 3 2$ G;.PI 7 &��o� $ GV.PI , for anyreadytask# $ .
Theformalproofof thistheoremcanbefoundin [3]. Focus-

ing exclusively on taskcompletiontimes,thetheoremimplies
thatin theactualschedulenotaskinstancecompleteslaterthan
its completiontime in û�ü < : (which is feasible),proving the
correctnessof GDRA:

Corollary 1 GDRA yields a feasiblescheduleunder EDF*
priority for a workloadno greaterthan the worst-casework-
load.

Note that any specificalgorithm shouldspecify the exact
amountof earlinessparameter� , to usefor speedreduction.
Onenaturalchoicein Rule5.2of Figure2 is to use� / � = G;.PI ,
thatis, to reducethespeedsoasto profit from thefull earliness.
We call this variationsimply DynamicReclaimingAlgorithm
(DRA).��x�y � �J��!%��
6!������ ���J� ���J� z ��� î � �±� �E��� ��!��! � z �#" z �E� { ���%$±�J�

As presentedin [21], onecanfurtherslow down execution
whenthereis only onetask in the readyqueueandits worst



Rulesfor GDRA

1. Compute &' (asin Section3) andassign
' �)( Ï0¨ &'+* §o¬�, .

2. Initialize the - -queueto theempty-list.

3. At every new arrival, insert into the - -queueinformation

regardingthenew task. � with /�0 Ä � �V¡q¢�¨21 Û 2� valuein the
correctEDF* order.

4. At every event (arrival/completion),considerthe headof
the - -queueanddecreaseits /30 Ä � valueby theamountof
elapsed-timesincethelastevent. If /30 Ä � is smallerthanthe
time elapsedsincethe last event, remove the head,update
the time elapsedsincethe lastevent, andrepeattheupdate
with thenext element.This is doneuntil all “elapsedtime”
is used.

5. Whenever . Ú is aboutto bedispatchedat time ¡ :
5.0. Set

' Ú ¨ ' Ú .
5.1. Consultthe - -queueandcompute4 Ú �V¡\¢ (indicatorof

theearlinessamountof . Ú )
5.2. Reducethespeedof task . Ú by giving . Ú anextra 5

timeunits:' Ú = Speed-Reduce� . Ú ¬ 5 ¬ ' Ú ¢ , where ¤�¥65 ¥4 Ú �V¡q¢
6. At everyeventof preemptionor completionof atask,say. � ,

decreasethevalueof theremainingexecutiontime: 1 Û 2� ¨1 Û 2�87:9<; , where 9+; is the time elapsedsincethe task . �
waslastdispatched.

Figure 2. Generic Dynamic Reclaiming Algorithm

ProcedureSpeed-Reduce� . Ú ¬�= ¬ ' ¢ :
1. Set

' Ú ¨ > åÓ> åÓ@?BA × '
2. If

' Ú�C '	D � � ,
' Ú ¨ '�D � �3. return

' Ú
Figure 3. Speed Reduction Procedure

casecompletiontime (underthe currentspeed)doesnot ex-
tendbeyondthenext event(next arrival/closestdeadlineof any
task). Sincethis techniquecan be usedin conjunctionwith
any schedulingpolicy, we adda new rule 5.3 to further im-
prove (G)DRA. Let E #R4 bethenext arrival time of any task
instancein the systemafter . , andrecall that - = is the speed
from step5.2in (G)DRA and. is thetime # = is dispatched.

5.3. If # = is theonly readytaskand F / E #R4 h . h � 3 Ó= G;.PIG
? , - = = Speed-Reduce(# = L F L - = ).

In otherwords,reducethespeedof # = soasto usetheidle CPU
up to time E #R4 . We call this improvedtechniqueDR-OTE.

Clearly, thefollowing holds.

Proposition5 If all instancesmeet their deadlinesunder
DRA, they will also meettheir deadlinesunderthe algorithm
DR-OTE.��x�ë �H�±
6�E���%I ���±� ��� |}��� ����� �

In order to experimentally evaluate the performanceof
DRA, we implementeda periodic schedulingsimulator for
EDF* policy. We implementedthe following schemes:(a)
Static usesconstantspeed ð- , and switchesto power-down
mode (i.e., - / - 9 $Õ: ) whenever there is no ready task;
(b) OTE: Static optimal speedschemein conjunctionwith
OneTaskExtension(but withoutdynamicreclaiming),and(c)
DRA, whichis implementedin two variations:with or without
theOTE technique(DR-OTE andDRA, respectively).

In our experiments,we investigatedthe averageperfor-
manceof theschemesovera largespectrumof worst-caseuti-
lization ( m TenqT ) and variability in actualworkload. In partic-
ular, we focusedon the averageenergy consumptionof 100
tasksets,eachcontaining30 tasks. The periodsof the tasks
werechosenrandomlyin theinterval [1000,32000].Themin-
imum speed- 9 $;: is setto 0.1. Thenominalspeed ð- is settom TenqT , astheoptimality of this choicewasshown in Section3.
Thevariability in theactualworkloadis achievedbymodifying
the J 1LKNMO 1NKLM ratio (that is, theworst-caseto best-caseexecution
time ratio). We ran experimentswherethe actualexecution
time follows a normalprobability distribution function

�
. The

meanandthestandarddeviation aresetto J 1LKNM âGO 1NKLMM andJ 1NKLMGP O 1LKLMQ respectively, for a given J 1LKLMO 1LKNM , assuggested
in [21]. Thesechoicesensurethat, on the average,99.7%of
theexecutiontimesfall in theinterval K � +iQ@# L3R +iQ@#5O . For
eachtasksetwesimulatedtheexecutionupto SJ+i� 10times,
whereLCM is theLeastCommonMultiple of a "AL^]>]^]>L ab: , and
measuredtheaverageenergy consumptionperexperimentus-
ing acubicpower/speedfunction[10].

Oneremarkableresultis the following: AlthoughtheOTE
schemeprovides substantialimprovementsover techniques
that continuouslyuse -�9�<>= during the executionwithout re-
claimingasshown in [21], throughouttheentirespectrum,DR-
OTE only provides a marginal (less than 1%) improvement
over pure DRA. This result indicatesthat almost the entire
powersavingsareobtainedby initially committingto ð- which
fully utilizes the CPU (staticscheme)and to the dynamicre-
claiming algorithm itself. To improve the readabilityof the
graphs,we show below only theresultsof DR-OTE, sincethe
resultsfor thelatterarealmostidenticalto pureDRA.
Effect of Utilization: Figure4 shows theenergy consumption
of thetechniquesvaryingwith theutilizationof thetaskset(i.e.T

The resultswith a uniform probability distribution function are rather
similar[3]. We alsorepeatedthe simulationswith tasksetshaving different
numberof tasks. The full resultscanbe found in [3], in the lack of space,
we only mentionthat the main trendsremainsimilar to that of 30-tasksys-
tem. This is expected,sincethemaindeterminantof theworkloadis thetotal
utilizationandthevariability in theactualworkload.
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Figure 4. Normalized energy consumption (30 tasks).J 1NKLMO 1NKLM /:V

m TenqT ), when J 1LKNMO 1NKLM is equalto 5. The resultsarenormalized
with respectto Static which doesnot reclaimunusedcompu-
tationtime. Onecanobservethefollowing majorpatterns:� Thenormalizedenergy consumptionof all threeschemes

areratherinsensitive to thevariationsin m TenqT . This is due
to the fact that, for a given scheme,the useof optimal
nominalspeed ð- resultsin having very similar effective
utilization, for any valueof m TenqT . In otherwords,when
theutilization decreases,thespeeddecreasesmakingthe
CPUfully utilized.

� DRA hasa definitive advantageover StaticandOTE for
all utilizationvalues:theenergy consumptionof asystem
usingDRA is only around40% of a systemwhich uses
Staticor OTE.

� OTE performsbetterthanStatic,but the improvementis
usuallylessthan10%. This implies that the largepower
savingsreportedover continuouslyusing - 9@<A= for some
tasksetsin [21] areduelargelyto theshuttingdownof the
processorwhenthe processoris idle asthe resultof the
actualworkload. If andwhenonestartswith theoptimal
staticspeed,the potential(additional)savings dueto the
OTE techniqueitself becomesratherlimited.

Effect of J 1NKLMO 1NKLM ratio: Thesimulationresultsconfirmedour
predictionthattheenergyconsumptionwouldbehighlydepen-
denton the variability of actualworkload. The (normalized)
averageenergy consumptionof the tasksets,asa function ofJ 1NKLMO 1NKLM ratio (with m TenqT / ? ] � ) is shown in Figure5. In terms
of shapeand percentagedifference,the curves for other uti-
lization valuesarefairly similar. From theseexperimentswe
arrivedat thefollowing conclusions:

� When J 1NKLMO 1NKLM / B , thereis no CPU time to reclaimdy-
namically, andthusthe energy consumptionis the same
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Figure 5. Effect of variability in actual workload (30 tasks);

load = 60%

for all three techniques,as expected. However, once
the actualworkloadstartsdecreasing(that is, increasingJ 1NKLMO 1LKLM ), OTE andDRA areableto reclaimunusedcom-
putationtimeandthey areableto saveadditionalenergy.� The DRA is capableof providing considerablyhigher
power savings than OTE; and the differenceincreases
rapidly with J 1LKLMO 1LKNM ratio. For instance,the savings of
DRA even for J 1LKNMO 1LKNM / B ] B is better than the perfor-
manceof OTE throughouttheentirespectrum.� Oncewe increasethe J 1NKLMO 1NKLM beyond4, powersavingsof
DRA continueto increase,but the improvementis not as
impressive as the casewherethat ratio is 7pý . This is
becausethe expectedworkloadof the systemconverges
rapidly to 50% of the worst-caseworkloadwith increas-
ing J 1LKNMO 1LKNM ratio (rememberthat the meanof our proba-
bility distribution is J 1NKLM âNO 1NKLMM ).

5 AggressiveSpeedReduction

TheDRA andDR-OTE algorithmsprovidesounddynamic
speedreclaimingmechanisms,however they guaranteefeasi-
bility by alwaysbeing’ahead’of thestaticworst-caseoptimal
scheduleû�ü < : (i.e., tasksneveractuallystartor finishafterthe
scheduledtime in û@ü < : ). û�ü < : is feasibleat any time,yet it is
optimalonly undertheassumptionthatall futureinstanceswill
presenttheir worst-caseworkload. Whenever, underconstant
speed,the actualexecutiontimesof a task’s instancesexhibit
largevariation,startinga taskwith this assumptioncanbetoo
conservative. Instead,whenever the currentsystemstatesug-
gests,wemayassumespeculatively that the curr ent and fu-
tur e instanceswill most probably presenta computational
demandwhich is lower than the worst-case. Hence,we can
adoptan ”aggressive” approachbasedon reducingthe speed



of therunningtaskundercertainconditionsto a level which is
evenlower thantheonesuggestedby DR-OTE. But this spec-
ulativemovemightshift thetask’sworst-casecompletiontime
to apoint laterthantheonein û�ü < : underanactualhighwork-
load. And if this pessimisticscenarioturnsout to be true,we
shouldbe readyto increasethe CPU speedbeyond ð- later
to guaranteefeasibility of futur e tasks. This would hamper
significantpower savings sincethe convexity of power/speed
curve suggestsa uniform speedto achieve a given average
speedvalueover any interval of time. On the otherhand,in
casethat the actualworkload turns out to be lower than the
worst-case,theactualschedulewill still beaheadof û�ü < : , even
with the low speed,therebyachieving evenhigherpower sav-
ings.

A powerful systemdesignprinciple is to make the com-
moncasemoreefficient. This translates(in settingswherethe
worst-caseworkloadoccursonly rarely) into having a power-
efficient schedulefor averageor closeto averagecases,which
canbeachievedby reducingfurthertheCPUspeed.After hav-
ing presentedthe rationaleof aggressive speedmanagement
techniques,we shouldaddressandprovide solutionsfor two
importantissues.

The first one is feasibility: whenwe reducethe speedof# = aggressively, we shouldbe readyto guaranteethe timing
constraintsof #%= andthatof any othertask,sincetheschedule
mayno longerbe’ahead’of û�ü < : . Thesecondissueis thede-
termination of the aggressivenesslevel: eventhoughit may
bepossibleto show theexistenceof a feasibleschedule(under
a very aggressive speedreductionfor #%= ), if sucha move is
not justified by the expectedworkloadof the system,it may
bereasonableto adoptamoreconservativespeedreduction,to
decreasethe probability of speedincreaseswhich causehigh
energy consumption.A naturalsolutionis to usea pre-defined
speedreductionbound( -0è ) below which we never attemptto
decreasethe CPU speedduring an aggressive speedadjust-
ment.Observingthatthe”averageworkload” is anappropriate
estimatorfor the actualcomputationaldemand,we chooseto
parameterizetheaggressivenesslevel with respectto theopti-
mal speedunderanaverageworkload( - nXW\T <�Y[Z ). Morespecif-
ically, - n\W\T <�Y[Z is the optimal speedfor the workload where
eachinstancerequiresexactly its averagecomputationalde-
mand(determinedby aprobabilitydistributionfunction).Gen-
erally, wemayset -,è to ]�j>- nXW\T <�Y[Z , where] is aconstantsuch
that - 9 $;: 7 -0è 7 - 9@<A= (i.e.,

3 Ñ�2ÕÔ3 ö_^oõ Òa`Xb 7 ] 7 3 Ñ%ÒNÓ3 ö_^oõ Òa`cb ). Ob-
serve that changing] in this rangeprovidesa completespec-
trum of ”aggressive techniques”.At oneendof thespectrum,] / 3 Ñ�2ÕÔ3 ö_^oõ Òa`Xb (which is usuallymuchsmallerthan1.0) corre-
spondsto the ”extremeaggressiveness”wherewe attemptto
obtainthe lowestspeedlevel for therunningtask;this is only
subjectto feasibilitywhichmightbeachievedlateronly by ex-
ecutingthefollowing taskswith very high speeds(i.e.,by this
choice,wearesupposingthatthecurrentworkloadwill bewell
below theworst-caseworkload).At theotherendof thespec-
trum,setting] / 3SÑ%ÒNÓ3 ö_^oõ Òa`cb reflectstheDR-OTE algorithmitself.

Anothermainpoint in thespectrumis theschemewhich lim-
its theaggressivenessspeedboundby exactly - n\WqT <3Y[Z , that is,] / B ; this reflectstheview thatslowing down theCPUbelow- n\W\T <�Y[Z will hurt theaggregatepowersavingsin thelong run.

d�x�y e ����� �%fJ��������gÿío!�������������� � �%h������ { �BI �E�
As mentionedabove, whenwe attemptto aggressively re-

ducetheCPUspeed,werisk exceedingworst-casecompletion
times of û@ü < : in the currentschedule,both for the running,
readyandyet-to-arrive tasks. In general,to checkthe conse-
quencesof suchanaggressivedecisionis anon-trivial problem
(linkedwith response-timeanalysiscomplicationsof EDF),es-
pecially if it is to be addressedin a dynamicfashion,at run-
time. In this study, we adopta simpleapproachthat restricts
theaggressive power managementto occuronly whenwe can
limit their effectsupto the next event (arrival/deadlineof any
task).As theresultsin Section5.4below indicate,theaggres-
sive schemeshave thepotentialof providing additionalpower
savings,evenwith thisconservativefeasibilitytestwith limited
horizon.

Whenever we canpredict that the completiontime of the
currentlyreadytask #%= will not extendbeyondthenext event
(arrival/deadline),wecanspeculatively reducethespeedof #%=
while guaranteeingthat it will still completebeforethe next
event(which is, by definition,earlierthanor equalto thedead-
line of # = ). However, caremuststill betakenin orderto guar-
anteethe timely completionsof other readytaskswhich are
waiting on the readyqueueat a lower priority level than # = ,
sincethe execution/completionof thesetaskswill be delayed
until # = completes.

A possibleway to guaranteethefeasibility in this caseis to
increasethespeedof anothersuitableandreadytask#Ni which
will runafter# = . This is effectivelyequivalentto increasingthe
time allocationof # = , while decreasingthe time allocationof#Ni by thesameamount.Clearly, from thispointon,thesystem

cannotblindly decreasethespeedof #Ni to its original -Bi (i.e.,
we shouldalsochange-Bi for thatinstance).

One can even generalize this with the following: if# "�L #bM L>];]Õ];L #Nj are readytasksthat areguaranteedto run con-
secutively andall to completebeforethenext taskarrival time
( E #R4 ) even underworst-caseworkload, we can arbitrarily
swapCPUtimeallocationsamongthem(in particularto reduce
thespeedof # " while increasingthespeedsof oneor moreof#�M L^]Õ];]ÕL #Nj ). In fact, if it exists,even thehighestpriority ready
taskthat is not guaranteedto completebefore E #�4 (namely#Nj â " ) mayprovideaportionof its timeallocationundercertain
conditions.However, wemuststill guaranteethat# " L # M L^]Õ];];L # j
will completebefore E #R4 and # j â " will completeno later
thanbeforethetimeallocationswapping,undertheworst-case
scenario. Further, in all thesecomputations,we shouldtake
into accountthe slack-timeof alreadycompletedtasksin the� -queue(with EDF* priority lower than # " ) that may con-
tributeto theworst-caseCPUallocationof #�M L^]>]>]>L #Nj L #Nj â " in



thefuturethroughdynamicreclaiming.Finally, all thesespeed
adjustmentsshouldadhereto - 9 $;: L - 9�<>= and -,è bounds.

To incorporatetheaggressivespeedreductiontechnique,we
addanew rule5.4,to thepreviousalgorithm,therebyobtaining
thenew algorithmAggressive-DR:

5.4. If F / E #R4 h . h � 3¼Ó= G;.PIk
 ? andthereareotherready
tasks in addition to # = , call Aggressive-Speed-
Adjustment.

ProcedureSpeed-Increase(Figure7) increasesthespeed-
of # = so asto remove at most l units of time allocationun-
der worst-caseremainingworkloadof # = with respectto the
speed- , subjectto - 9�<>= . In procedureAggressive-Speed-
Adjustment,whenever # " transfersslack-timefrom #%g , we
perform the speedincreasefor #�g , increasing-Eg , the nomi-
nal speedof #�g . Whenever #%g is aboutto be dispatched,its
currentspeedwill be set to -�g by rule 5.0; rules5.1 and5.2
shouldconsiderthis new (increased)speedwhentrying to re-
ducespeeddueto a (possible)earlinessdetection.Finally, # g
shouldassumethenew nominalspeed-Eg whenit returnsfrom
preemption,sincethis is the lowestspeedknown to guaran-
teea feasibleschedulein the casewhereevery taskpresents
its worst-caseloadto theprocessorafteraggressive speedad-
justments.However, we underlinethat the nominalspeed- g
of future instancesof # g are unchangedand equal to ð- . A
formal proof regardingthecorrectnessof theAggressive-
Speed-Adjustment routineis providedin [3].d�x�ë �Hhk��������� ��!�� !�íR� { � �����%����� � �%h�� ��� { �mI �

Weconductedexperimentsto assesstheperformanceof the
aggressivescheme(abbreviatedby AGR), in thesamesettings
asSection4.2. Thespeedbound -,è for thespeculative speed
adjustmentis equalto - nXW\T <�Y[Z , that is, theaggressivenessfac-
tor ] is setto 1. In Figure8, the relative energy consumption
of AGR with respectto DRA is shown, for 30-tasksetsand
normaldistribution,asafunctionof theutilization. Theresults
show aconsistentadvantageof AGRoverDRA throughoutthe
spectrum(around15%). The improvementdecreasesas the
utilization approaches100%,whereall tasksassumea nom-
inal (default) speed ð- / B ] ? andaggressive speedreduction
at the expenseof increasingthe speedof othersis not always
possible.

Theeffectof variability in actualworkloadis shown in Fig-
ure 9. Again, AGR provided betterperformancethan DRA
with various J 1LKNMO 1LKNM ratios. Increasingthis ratio improvesthe
relative performanceof AGR,sincethespeculative movesare
justifiedmorefrequently.d�xÕw n !%��� !��C��
����E����!%�J��� |}��� � ������� ��!����

Anotherpossibleapproachfor usingtheaggressivescheme
is to adhereto the ’parameterizedspeedbound’ even when
reducing the speedin Step 5.2 thr ough dynamic reclaim-
ing. This approachassumesthat reducingthe speedbelow

ProcedureAggressive-Speed-Adjustment
Notation: Thealgorithmis invokedattime ¡ . Thereadytaskwith
thehighestEDF* priority is denotedby . * . Theothertasksthat
areready, or that arecompletedbut have their unusedcomputa-
tion time in the - -queuewith EDF* priority lower than that of. * , aredenotedby . Í ¬q­s­¸­¸¬ . D ¬po ¥ Ä ¥ ® , in decreasingor-
derof priorities. Throughoutthealgorithm,at thecostof a slight
abuseof notation,we will alsousetheexpression1 Û 2� �V¡q¢ to refer
to qr0 Ä � �V¡\¢ valueof any completedtask. � in the - -queueattime¡ . Thecurrentspeedassignmentsaredenotedby

' * ¬\­¸­¸­¸¬ ' D , and
thenext taskarrival after ¡ will occurat time s .ut .

Algorithm:v
If
' * ¥ ÄHw Ö Ã ' D � � ¬\x ×

'zy�{ ;_|X}X~ Å return;(thatis, weshould
notdecreasethespeedany further)v
Determinethe maximumamountof additionalCPU time,�

, that canbeassignedto . * , subjectto
' D �

� andtheag-
gressivenesslevel constraints:

� ¨ � ' *ÄHw Ö � ' D � � ¬�x ×
'By�{ ;_|X}X~ ¢ 7 ªc��1 Û W* �V¡\¢H­v

Adjust
�

in ordernot to extendbeyond s .ut :
if s .ut 7 ¡ 7 1 Û W* �V¡\¢ C � then

� ¨ s .ut 7 ¡ 7 1 Û W* �V¡q¢ .v � | ¨ ¤ (alreadytransferredslackamount).v
If 1 Û UÍ �V¡\¢L� � then

Ã / ¨«ª��[��¨ ¤ Å
elsefind thelargest/ ��o ¥�/i¥ Ä

)
suchthat ��¨ ��;�´Í 1 Û 2� �V¡q¢ ¥ � .v

Increasethe speedof . Í ¬\­¸­s­¸¬ . D � � �
D ( � ? *�� while reducing

thespeedof . * :
– ,5¨:o
– while ��, ¥ Ä §É®�� Ä ¬ /�� ª^¢ w ®	� � | C � ¢� if ��, C /�� ªP¢ then� Ö ¡ / w ¡�§ Ä 0 ¨ � 7 � |

else� Ö ¡ / w ¡£§ Ä 0 ¨ � 7 �� if . Ï is readythen:× ' Ï = Speed-Increase� . Ï ¬ � Ö ¡ / w ¡�§ Ä 0 ¬ ' Ï ¢× =�¨ � Û[�Û[� 7 ªP¢ × 1 Û��Ï
× ' Ï ¨ ' Ï (that is, commit to thenew

' Ï as
thedefault speedof thatinstance)� if . Ï is completedbut is in the - -queuethen=�¨ Ä §É®�� � Ö ¡ / w ¡£§ Ä 0 ¬ qp0 Ä Ï ¢� ,5¨2, � ª� � | ¨ � | � =� ' * = Speed-Reduce� . * ¬�=�¬ ' * ¢

Figure 6. Aggressive Speed Adjustment Procedure

]ùj - nXW\T <�Y[Z will hurt thetotalperformancein thelong run,and
preventsdoing so even when the earlinessfactor would jus-
tify doing so. To distinguishtwo variationsof the aggressive
scheme,wewill denotetheoriginalschemeandthenew varia-
tion by Aggressive-DR-1andAggressive-DR-2, respectively
(or, AGR1andAGR2,for short).

The correctnessof the new schemefollows from the cor-



ProcedureSpeed-Increase� . Ú ¬���¬ ' ¢
1.
' Ú ¨ > åÓ ?B�> åÓ

2. If
' Ú�� '	D | Ú then

' Ú ¨ '	D | Ú ;
3. return

' Ú
Figure 7. Speed Increase Procedure

25

30

35

40

45

50

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n 
w

ith
 r

es
pe

ct
 to

 S
ta

tic

�

Utilization(%)

DRA
AGR

Figure 8. Normalized energy consumption ( J 1LKNMO 1NKLM /�V I
rectnessof AGR1,sinceAGR2never slows down theproces-
sormorethanAGR1.

d�x�� �Hhk��������� ��!�� !�íR��� | y ���J� ���æ| ë
In this section,we presentresultsof simulationsperformed

to comparealgorithmsAGR-1andAGR-2.Thesimulationset-
tingsareidenticalto thoseof Section4.2.Whentheutilization
or the J 1NKLMO 1LKLM ratio is changed,theperformanceof AGR1and
AGR2arehardlydistinguishable[3].
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Figure 9. Effect of variability in actual workload (load = 60%)

However, unlike theutilization and J 1NKLMO 1LKLM ratio, changing
the aggressivenesslevel deeplyaffects the results,asshown
in Figure 10. The curvesshown are for 60% utilization andJ 1NKLMO 1NKLM /�V ; otherparametersettingshaveverysimilarbehav-
ior. Theperformancesof DRA andStaticareinsensitive to the
parameter] . Themaximumpowersavingsis areobtainedwith
algorithmAGR2 typically when ] / ? ] � . This representsa
further5% improvementover ] /ÿB , yielding a netadvantage
of 20% over DRA. AGR1 reachesits minimum energy con-
sumptionusuallywith ] /�B . Further, thecurve suggeststhat
unboundedor extremeaggressiveness(smallvaluesof ] ) hin-
dersthe power savings: for instance,both schemesconsume
60%moreenergy thanDRA for ] 7 ? ] � .

Yet, aswe increasethevalueof ] andmove towardsmore
’balanced’aggressivenesslevels, the aggressive schemesbe-
comepreferableto DRA: AGR1andAGR2outperformsDRA,
for ] ñ ? ]�� V and ] ñ ? ]�� , respectively. After the power
savings reachtheir maximum at ] / ? ] � (for AGR2) and] /pB ] ? (for AGR1), the performancestartsto degrade. Re-
markably, for ] ñ B ] B , AGR2 consumesconsiderablyhigher
energy thanAGR1: this is dueto the fact thatwhenthealgo-
rithm is run with large valuesof ] , the algorithmis reluctant
to reclaimor transferCPU-time,evenwhenthespeedis higher
than - n\W\T <�Y[Z . AGR1 doesnot suffer from this effect, sinceit
automaticallyusestheearlinessinformationto performanini-
tial speedreductionand considersthe speedbound -,è only
whenaggressively reducingspeed.Hence,evenfor largeval-
uesof ] , AGR1 remainsbetterthanDRA, andis guaranteed
to convergeto it for ] / ò33 ö_^oõ Òc`cb / M

" â2� ã
�@ ¡ ã��@  , which is 1.66

for this example.On theotherhand,AGR2convergesto OTE
(not shown in Figure10) for the samevalue; this is because
the actualspeedstartswith ð- , andthe aggressive or dynamic
reclaimingis never possiblesince -,è / ð- . In this case,CPU
speedis reducedonly throughOTE.

In summary, keeping] in therangeK ? ] �´L B O andcommitting
to anaggressivenesslevel which aimsto achieve very closeto- n\W\T <�Y[Z producesbestresults,yieldingadditional(i.e.,beyond
DRA or DR-OTE) energy savings which may be as high as
20%.

6 Conclusions

In thispaperwepresentedtechniquesfor power-awarereal-
time computingthroughvariablevoltagescheduling.Our so-
lution comprisedthreeparts(a)astaticsolutionto computethe
optimalspeedbasedontheworst-caseworkload,(b) anon-line
speedadjustmentmechanismthat reclaimsunusedtime based
on theactualworkload,and(c) aspeculativespeedadjustment
mechanismbasedon the expectedworkload. To our knowl-
edge,this is the first time that aggressive and provenly safe
techniquesare usedto anticipateand provision for the early
completionsin periodicreal-timescheduling.

Our simulationresultsshow that the reclaimingalgorithm
savesa striking 50% of the energy over the staticalgorithm,
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whichtakesinto accounttheloadin thesystem.Thisquitesig-
nificantresultshowsthatthelifetime of mobileor otherbattery
operateddevicescanbeextendedonaverageto twicethelevels
of staticsolutions.Consideringalsothedatapresentedin our
previouswork [16], weconcludethatbatteriescanbeextended
to lastupto oneorderof magnitudelongerovernopowerman-
agementschemes.

Further, our preliminaryaggressive techniquesallow for an
additional 20% savings over the reclaiming algorithm. We
concludethat, beingtoo aggressive or not aggressive enough
causesthe algorithmsto perform ratherpoorly. We are cur-
rently studyinglessconservativeapproaches(that is, not stop-
ping the aggressivenessby the “next event”) that we believe
will leadto furtherenergy savings.
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