Dynamic and Aggressve SchedulingTechniques
for Power-Aware Real-Time Systems'

HakanAydin{ RamiMelhent DanielMoss} PedroMejia-AlvareZ

Abstract

In this paper we addresspoweraware schedulingof peri-
odic hard real-timetasksusingdynamicvoltage scaling Our
solutionincludesthreeparts: (a) a static(off-line) solutionto
computethe optimal speedassumingvorst-casevorkloadfor
ead arrival, (b) an on-line speedreductionmedanismto re-
claimenegybyadaptingto theactualworkload,and(c) anon-
line, adaptiveand speculatie speedadjustmenmedhanismto
anticipateearly completionsof future executionsby usingthe
average-casavorkload information. All thesesolutionsstill
guaranteethat all deadlinesare met. Our simulationresults
showthat the reclaimingalgorithm savesa striking 50% of
the enepgy over the static algorithm. Further, our speculative
techniquesallow for an additionalapproximately20%savings
over thereclaimingalgorithm. In this study we also establish
that solvingan instanceof the staticpoweraware scheduling
problemis equivalentto solving an instanceof the reward-
basedsdedulingproblem[1, 4] with concavereward func-
tions.

1 Intr oduction

In the last decade, the researchcommunity has ad-
dressedhe low power systemdesignproblemswith a multi-
dimensionaleffort [7, 18]. Suchon-goingresearchhasim-
portantimplicationsfor real-timesystemsdesign,simply be-
causemostof the applicationsrunning on powerlimited sys-
temsinherentlyimposetemporalconstraintson the response
time (suchasreal-timecommunicatiorin satellites).

The variable voltage scheduling(VVS) framework, which
involves dynamically adjusting the voltage and frequeng

*Thiswork hasbeensupportedy theDefenseAdvancedResearclProjects
Ageng throughthe PARTS project(ContractF33615-00-C-1736).

fComputerScienceDepartment,Geoge Mason University, Fairfax VA
22030. E-mail: aydin@cs.gmu.eduWork donewhile the authorwas with
the University of Pittshurgh.

fComputerScienceDepartmentUniversity of Pittsturgh, Pittsturgh PA
15260.E-mail: melhem@cs.pitt.edu.

§ ComputerScienceDepartment,University of Pittshurgh, Pittshurgh PA
15260.E-mail: mosse@cs.pitt.edu.

TCINVESTAV-IPN. Seccbn de Computaddn, Av. I.P.N. 2508,Zacatenco,
México, DF 07300. E-mail: pmejia@computacion.cs.g@stavmx. Work
donewhile the authorwasvisiting the University of Pittsturgh.

(hencethe CPU speed)hasrecentlybecomea majorresearch
areafor power-aware computersystems. For real-time sys-
tems, the proposedvVS schemedocus on minimizing en-
ergy consumptiorin the systemwhile still meetingthe dead-
lines. Yao et al.[23] provided a static off-line schedulingal-
gorithm, assumingaperiodictasksand worst-caseexecution
times. Heuristicsfor on-line schedulingof aperiodictasks
while not hurting the feasibility of periodicrequestsare pro-
posedin [9]. Non-preemptre power awvare schedulingis in-
vestigatedn [8]. Concentratingpn periodictaskswith identi-
cal periods,the effects of having an upperboundon the volt-
agechangerate are examinedin [10], alongwith a heuristic
to solve the problem. Slowing down the processomwheneer
thereis a single task eligible for executionwas exploredin
[21]. Lorch andSmithaddressethe variablevoltageschedul-
ing of taskswith softdeadlinesn [14]. The staticsolutionfor
thegeneraberiodicmodelwheretaskshave potentiallydiffer-
entpower consumptiorcharacteristicés providedin [2].

However, mostof theschedulingschemegresentedh these
studies, while using exclusively worst-caseexecution time
(WCET) to guaranteghe timelinessof the system,lack the
ability to dynamicallytake advantageof unusedcomputation
time. In fact,real-timeapplicationsusuallyexhibit alargevari-
ationin actualexecutiontimes;for example[5] reportsthatthe
ratio of the worst-casesxecutiontime to the best-casexecu-
tion time canbeashighas10in typical applications.

Consequentlydynamicallymonitoring and reclaimingthe
‘unused’ computationtime can be (and, as we shaw laterin
this paper is in fact) a powerful approacho obtain consider
able power savings andto minimize the effects of designing
the systemwith WCET information, which is usually a very
consenative prediction of the actual executiontime. Addi-
tionalimprovementsarepossiblethanksto thestatisticalwork-
loadinformation;in this paper we investigatealsoaggressive
schemesvherewe anticipatethe early completionsof future
executionsandspeculativelyreducethe CPU speed.This ap-
proachimmediatelyraisestwo intertwinedquestionsnamely
(a) the level of aggressienessundera given probability dis-
tribution of actualworkload;and(b) theissueof guaranteeing
the timing constraintseven in aggressie modes. It is obvi-
ousthatthe solutionsto theseproblemsshouldbe simultane-
ously practicalandefficient, in orderto be applicableon-line.

It goeswithout sayingthatdynamicreclaimingand/oraggres-
sive techniqueshouldpresere the feasibility of the tasksys-
tem i.e., no deadlineshouldbe missed),even undera worst-
casescenaricthat may take placeafter any speedadjustment
decision.

We mustnote that a recentstudy[11] addressedlynamic
enegy reclaimingissuegwithout speculation)n power-aware
schedulingfor cyclic andperiodictaskmodels,in the contect
of systemsawith two (discrete)voltagelevels. However, sys-
temswhich areableto operateon a (moreor less)continuous
voltagespectrumarerapidly becominga reality thanksto ad-
vancesin power-supply electronicsand CPU design[6, 17].
For example,the Crusoeprocessors ableto dynamicallyad-
just clock frequeny in 33 MHz steps[22]. To the bestof
our knowledge, the conceptof “speculatve speedreduction”
wasfirstintroducedby theauthorsn [16]; however, only tasks
sharingacommondeadlinewereconsidered.

Paper Organization

In this paper we identify and addresgshreedimensionsof
power-awareschedulingor real-timesystemsanddevelopef-
ficient algorithmsfor the periodictask model. Effectiveness
in reducingthe enegy consumptiorcanbe improvedonly by
a simultaneousonsideratiorof thesethreedimensionssince
they complementachother Thus,we present:

1. A static(off-line) solutionto computethe optimal speed
at the tasklevel, assumingwvorst-casevorkloadfor each
arrival' (Section3). In the samesection,we also shawv
thatsolvinganinstanceof thethe staticpower-awarereal-
time schedulingproblemis equialentto solving an in-
stanceof thereward-basedchedulingoroblem[1].

2. An on-line speedadjustmenimechanisnto dynamically
reclaim enegy not usedby tasksthat completewithout
consumingheir worst-casevorkload(Section4).

3. An on-line, adaptve and speculatre speedadjustment
mechanisnto anticipateand compensat@robableearly
completionsof future executiong(Sectionb).

We emphasizeonceagainthat, in the contet of real-time
systemsall thesecomponentshouldbedesignedhotto cause
ary deadlinego be missedevenundertheworst-casescenario:
the aim is to meet the timing constraints while simulta-
neouslyand dynamically reducing power consumption as
much aspossible

2 SystemModel and Notation

The readytime anddeadlineof eachreal-timetask7; will
be denotedby r; and d;, respectiely. The indicator of the
worst-casevorkloadin variablevoltage/speedettingsthatis,

1Dueto the natureof VVS, the actualexecutiontime is dependenbn the
CPU speedandthereforethe worst-casenumberof requiredCPU cyclesis a
moreappropriateneasuref theworst-casavorkload(seeSection2).

theworst-casanumberof processocyclesrequiredby T, will
be denotedby C;. Notethat,undera constanspeedS (given
in cyclespersecond)the executiontime of thetaskT; ist; =
% A scheduleof real-timetasksis saidto befeasibleif each
taskT; recevesatleast AC; CPU cyclesbeforeits deadline,
where AC; < C; is the actualnumberof CPU cycles(actual
workload)of T;.

We assumethat the CPU speedcan be changedbetween
a minimum speeds,,,;,, (minimum supply voltage necessary
to keepthe systemfunctional) and a maximumspeedS,,,q.,
andthat0 < S,.in < Smez = 1; thatis, we normalizethe
speedvalueswith respecto S,,,..- In ourframework, thevolt-
age/speedhangedake placeonly at context switchtime and
while statesaving instructionsexecute.Pouwelseet al. report
in [19] thatthe voltage/speedhangecanbe performedn less
than140 usin StrongARM SA-1100processarlf not negli-
gible, the 'voltagechangeoverhead’canbe incorporatednto
theworst-casevorkloadof eachtask.

We assumethat the processdescriptorof the task 7; has
two extra fields relatedto speedsettings,in additionto other
corventionalfields. Thefirst one,S;, denoteghe currentCPU
speedat which T; is executing. The otherfield .S; denoteshe
nominal speedof T;, which is the indicator of the “default”
speedof T;. For eachtaskthatis dispatchedthe operating
systemsetsS; = S;, prior to ary dynamicspeedadjustment.

Thepower consumptiorof the processounderthe speedS
is givenby ¢(S), which is assumedo be a strictly increasing
convex function, representedby a polynomial of at leastsec-
ond degree[10]. If thetaskT; occupiesthe processoduring
thetime intenal [¢1, t2], thenthe enegy consumediuringthis

intenvalis E(t1,ts) = jf g(S(t))dt.

In ourdetailedanalysisof periodicpower-awarescheduling,
we will considera set7= {T1,...,T,} of n periodicreal-
time tasks. The period of T; is denotedby P;, which is also
equalto the deadlineof the currentinvocation.We referto the
4t invocationof taskT; asT; ;. All tasksareassumedo be
independenandreadyatt = 0. Hence thereadytime of T; ;
isr;; = (j—1)- P, anditsdeadlinéis d; ; = j - P;.

We defineU,,; asthetotal utilization of the tasksetunder
maximumspeeds, ., = 1, thatis, Uiy = 1, % Note
that the schedulabilitytheoremsfor periodic real-time tasks
[12] imply thatU;,: < 1 is a necessarygonditionto have at
leastone feasibleschedulehence,throughoutthe paper we
will assuméhatUs,; = >1 % <1.

3 Optimal Static Solution

3.1 The Reward-Based Approach to Power-

Aware Scheduling

Before analyzing the periodic model in depth, we cor
relate the reward-basedscheduling[1, 3] framework to the
power-aware schedulingof real-time tasks. The reward-
basedschedulingframenork encompasseseal-time schedul-
ing modelssuchasIimpreciseComputatiorj13] andincreased-

Reward-with-Increased-Servidd] that exploit the timeliness
andprecisiontrade-of. We underlinethatthe correlationthat
we prove is presered regardlessof the task model (aperi-
odic/periodicor preemptve/nonpreemptie), as long as our
aimis to reacha solutionfor a given (worst-casejvorkload.

In the reward-basedchedulingframework, eachreal-time
task T; comprisesa mandatorypart M; andan optional part
0O;. The worst-caseexecutiontimes of M; and O; are de-
notedby m; ando;, respectiely. The mandatorypart runs
first, producingan outputof acceptablejuality, which is sub-
sequentlyenhancedy the optional part within the limits of
available computationaktapacity To quantify the quality im-
provementanon-decreasingaward function F;(¢;) is associ-
atedwith eachoptionalexecutionwheret; < o; denoteshe
servicetime O, receves. Most of therealisticapplicationsare
bestrepresentetdy concare reward functions[1, 3, 4, 2Q]. In
ary feasiblereward-basedchedulegach mandatorypartmust
befully executedby thetaskdeadlined;, however, theoptional
partsmay remainpartially executedby thedeadlinesNow we
canformally definethe reward-basedchedulingproblem.

Reward-Based Scheduling Problem: Consider the
uniprocessoschedulingof a reward-basedeal-timetask set
T = {Th,...,T,}. Givenatime point A s, determinethe op-
timal schedulein the interval [0, A], whereeachmandatory
part M; completein atimely fashionbeforethe taskdeadline
d;, andeachoptionalpartrecevesservicefor ¢; < o; units of
time soasto maximizethetotal systemreward ", F;(t;).

The determinatiorof the optimal scheduleclearly involves
the computatiorof optimal optionalservicetimes. Noting that
therewardaccruedoy eachoptionalpartO, doesnotincrease
beyondthe upperbouna;, this computationcanbe expressed
as an optimization problemwherethe objectie is to find ¢;
value¢ soasto:

maximize

> Fi(ts) 1)

subjectto i=1,...,n 2

There exists a feasible schedule with {m; } and {¢;} values (3)

On the other hand, the real-time power-aware scheduling
problemcanbe statedasfollows.

Real-Time Power-Aware Scheduling(RT-PAS) Problem:
Considera CPU with variablevoltage/speed (S, < S <
Smaz) facility, wherethe power consumptionis given by a
strictly increasingcorvex function ¢(.5), which is a polyno-
mial of atleastseconddegree.GivenasetT = {Ty,...,T,}
of real-timetasks,in which eachtaskT; is subjectto a worst-
caseworkloadof C; expressedn the numberof requiredCPU
cycles,anda time point A, determinethe scheduleandthe
processorspeed S(t) so asto minimize thetotal enegy con-

sumptionE (0, Ay) = [O))dt in theinterval [0, A f].

2Whenconsideringhe periodictaskmodel theexecutiontime of eachtask
instancg(t; ;) shouldbe considerechsa separateinknavn.

Beforerelatingtwo schedulingproblems,we obsene that
the corvexity of speed/pwer functionallows usto deducethe
following (aformal proof canbefoundin [3]).

Proposition1 One can safely committo a constantCPU
speedduring the executionof a task7; requiringC; CPU cy-
cles,withoutincreasingtheenegy consumption.

Notethatthedeterminatiorof S; in the RT-PAS problemis
now effectively equivalentto determiningthe CPU time allo-
cationto 73, which will bedenotedby z; (z; = g—) We are
now readythe establishthe connectionbetweenRT-PAS and
Reward-Basedchedulingproblems.

Proposition2 Solving an instance of RT-PAS problem is
equivalentio solvingan instanceof Revard-BasedSceduling
problemwith concavereward functions.

Proof: To prove the statementwe will first formulate the
computatiorof optimal speedvaluesasan optimizationprob-
lem. The total enegy consumption,thanksto the constant
speedassumptiorper task, cannow be expressedas F;,; =
S wi-g(Si) = Y1, @i - g(£4). Further obserethatthe
minimum and maximumspeedboundsimposenaturallower
and upperboundson CPU allgcation of T;. In otherwords
;<
thecomputauorof opt|maICPU aIIocatlonaSS|gnmentsanbe
formalizedasanoptimizationproblem;

minimize S i g($h) (4)
i=1

subjectto s <@ < g i=1,..., n (5)

There exists a feasible schedule with {z; } values (6)

Now, consider the variable transformation m; =

C;

Bmas? 11 = T
b+ 58007 %)

Th|stransformatlorcanbemterprete(hsfollows First, T;
mustbe assignedat IeastL units of CPU time (“manda-
tory” execution). Any aIIocatlon exceedingthis minimum
amountwill be consideredas“optional” execution,while the
total CPUallocation(m; + t;) cannotexceedthe upperbound
Siin. Finally, the more we allocateCPU time to 17; by in-
creasingt;, the more we increasethe enegy savings thanks
to the speed/pwer relation. It is not difficult to seethat,
by using the above transformationand by re-writing the op-
timization problemgivenby (4), (5) and(6), onereache®nce
again the formulation of the generalreward-basedschedul-
ing problemdefinedby Equations(1), (2) and (3). Further
the reward function F;(t;) above is clearly concae, since
(t; + SC”)g(t e —) is corvex. To seethis, we canusethe

resultfrom [15] statmgthat if a andb areboth corvex func-
tionsandif « is increasingthena(b(x)) is alsocorvex. Thus,
by settingh(t;) = t_+cici , andobservingthat the multipli-

i

C, C
—m;, 0 = g-— — g-—, and Fi(t;) =

Svmin

max

) doesnot affectthe corvexity, we justify
—g(h(t:)). o

cationby (¢; + S
the concaity of /-, (Lt

3.2 Specific Solution for Periodic Task Sets

In this section,we presentthe static optimal solution to
the variablevoltageschedulingproblemfor the periodictask
model,assuminghat eact taskpresentdts worst-casework-
load to the processoiat everyinstance We underlinethatone
canusetheequivalenceobtainedn Section3.1andtheresults
from [1] to justify the proposition(asformally donein [3]);
however, onecanalsoreachthe sameconclusionby usingthe
first principlesasoutlinedbelow.

Proposition3 Theoptimalspeedo minimizethetotal enegy
consumptiorwhile meetingall the deadlinesis constantand
equalto S = maz{Smin, Uit }. Moreover, whenusedalong
with this speedS, anyperiodichard real-timepolicywhich can
fully utilize the processor(e.g., Earliest DeadlineFirst, Least
Laxity First) canbe usedto obtaina feasibleschedule

Proof: First,obsenethatthecornvex natureof thepower-speed
function suggestghat we shouldtry to maintaina uniform
speedwhile fully utilizing the CPUto the extentit is possible.
If Usor > Spmin, thenusingthespeedS = U,,; leadsclearlyto
a schedulewnhich is fully utilized (i.e., noidle time), through
stretchingout eachtaskin equalproportions(in otherwords,
in this case,we areachieving a total effectivetask utilization
of Y0, ECT = Uisof = 1). However, if Uyor < Spnin, then
we shouldusethe minimum CPU speedavailable, to stretch
outtaskexecutionsasmuchaspossible.In any caseusingthe
speedS = max{S,in, Uso: } Will resultin atotaleffectivetask
utilization which is no greaterthan1. Hence,ary scheduling
policy which canachieze upto 100%CPU utilization (Earliest
DeadlineFirst, LeastLaxity First) canbe usedto completeall
thetaskinstancesdeforetheir deadlineswith thespeedS. O

4 Dynamic Reclaiming Algorithm

The dynamic reclaiming algorithm is basedon detecting
early completionsandadjusting(reducing)the speedof other
taskson-the-flyin orderto provide additional power saszings
while still meetingthedeadlinesTo thisaim, we performcom-
parisonsbetweenthe actualexecutionhistory andthe canon-
ical scheduleS*™, which is the static optimal scheduleon
which every instancepresentsts worst-casenvorkloadto the
processoandrunsat the constantspeedS . The CPU speed
is adjustedonly at task dispatchtimes: thus, we should be
ableto saywhetherthe taskis beingdispatchedearlier than
Seen andif so,determinethe amountof additionalCPUtime
the dispatchedtask can safely useto slow down its execu-
tion; we will refer to this additional CPU time as the earli-
nessof the dispatchedask. Beforeproviding the detailsof our
approach,we underlinethat a simple approachthat equates
earlinesswith previously unusedCPU time and and blindly
slows down the processoris not a safe approach. To see

this, considera 3-tasksystemwith the following parameters:

Ci = 4,P1 = 10,02 = 4,P2 = 10,03 = 6,P3 = 30. The
worst-casautilization of thetasksetis equalto 1.00,hencethe

optimalspeedor the staticversionis S = S,,4. = 1.00 (from

Proposition 3). If everytaskpresentsts worst-casavorkload
ateveryinstanceandwe useEDF, thenthe schedulén Figure
1 (S°*™) would be obtained.Now, supposéhat7; completes

T T T
0 4 10 14 20 24 30
To 1 To 1 To 1
0 4 8 14 18 24 28 30
0 8 10 18 20 28 30

Figure 1. The static optimal schedule, S°*™

earlyatt = 10, leaving anunusedcomputatiortime of 4 units
beforeits deadline.If these4 units of CPU time areusedby
Ty 5 (recallthat T; ; is the jt" instanceof task i), T2 will
missits deadlinejf bothT} » andT; > requiretheir worst-case
workload.

As we cansee,computingand managingearlinesss not a
trivial task.Dueto the periodicnatureof thetaskswe consider
it is clearlyimpracticalto a priori produceandkeepthe entire
static optimal scheduleS“®™ during the execution. In order
to simultaneouslyaddresghe problemsof feasibility and ef-
ficiengy, while tasksexecute,complete re-arrive dynamically
andtheactualschedulés producedwe chooseo keepandup-
dateadatastructurg(calleda-queue)thathelpsto computethe
earlinesof taskswhenthey aredispatchedAt any time ¢ dur-
ing actualexecution,the a-queuecontainsinformation about
tasksthatwould be active (i.e., runningor ready)attime ¢ in
the worst-casestatic optimal scheduleS“*™ (in otherwords,
a-gueuds thereadyqueueof S¢°" attimet). We assumehat
the following information canbe obtainedfor eachtaskfrom
thea-queueatary timet:

1, theidentity of thetask(i.e., tasknumber),

e 7, thearrivaltime of theinstanc.e., theperiodbound-
ary earlierthant),

¢ d; j, thedeadlineof theinstance(i.e., theperiodboundary
laterthant), and

e rem; ;(t), theremainingexecutiontime of 7 ; attime ¢
in S¢?™ underthe staticoptimalspeeds.

Clearly, givent, ther; ; andd; ; valuescanbe easilycom-
putedfor the periodic task model. Note that the a-queueat
time ¢ containsinformationaboutall instancesr; ; suchthat
ri; <t < dyj;, andrem; ;(t) > 0. The a-queuecontainsat
mostn elementssincethe numberof tasksin thereadyqueue

can never exceedthe total numberof tasksin any schedule.
Thereforewe will omit theinstancenumberwhile referringto
a-queueelementswheneer clarity is not compromised.

Our approachassumeshat tasksare scheduledaccording
to EDF* policy. EDF* is the sameasEDF (EarliestDeadline
First [12]), exceptthat, amongtaskswhosedeadlinesare the
samethetaskwith the earliestarrival time hasthe highestpri-
ority (FIFO policy); in casethatbothdeadlineandarrival times
areequal,thetaskwith the lowestindex hasthe highestprior-
ity. This EDF* priority orderingis essentiain our approach
becausét providesatotal orderon the priorities. Further we
assuméhatthea-queuds alsoorderedaccordingo EDF* pri-
orities. We denotethe EDF* priority-level of the taski by df
(low valuesdenotehigh priorities).

At this point, we arereadyto relatethe a-queuewith the
computatiorof earlinesgactor Let w; (t) denotethe remain-
ing worst-caseexecutiontime of task7; underthe speedS at
time t. Further setthenominalspeedS; = S for eachtaskT;.

Proposition4 For any task T,, which is about to execute
any unusedcomputationtime (slack) of any taskin the a-
queuehaving strictly higher priority than T, will contribute
to the earlinessof T, along with alreadyfinishedwork of T,
in the actual schedule That is, total earlinessof T}, is no

lessthane, (t) = Zi‘d; <dz remi(t) + rema(t) — wie () =
Ei\d;gd; rem;(t) — w3 (t).

To understandhe above result,notethatwhenT’, is beingdis-
patchedtaskswith higherpriority thatarestill in the a-queue
mustbe alreadyfinishedin the actualschedulgsinceT, cur
rently hasthe highestEDF* priority), but they would have not
yetfinishedin S,

Implementing the a-queue: The a-queuecan be easily
implementedisingthefollowing rules:

R1. Initially the a-queueis empty

R2. Uponarrival, eachtaskT; "pushes’its worst-casexecu-
tion time undernominalspeed?} = S to thea-queuein
thecorrectEDF* priority position(thishappensnly once
for eacharrival, nore-pushat’returnfrom preemptions’).

R3. Astime elapsesthe elementsn the a-queueareupdated
(consumedgccordingly:therem; ; field attheheadof -
queuses decreasewith arateequalto thatof the passage
of time. Wheneer the rem; ; field of the headreaches
zero, that elementis removed from a-queueandthe up-
datecontinueswith the next element.No updateis done

whenthe a-queueis empty

Observation 1 At timet, the a-queug updatedaccoding to
therulesR1,R2andR3,containsonly thetasksthat would be
readyat timet in thestaticoptimalscheduleSe®”. Further, the
rem, ; field containstheremainingallottedtime of eadh active
instancel; ; attimetin S¢”.

Obsenation1 stemsfrom the following: (a) a-queueis or-
deredaccordingto EDF* order, (b) every arriving taskpushes
its remainingworst-casexecutiontime (undernominalspeed)
into the a-queueonly once, (c) the queueis updatedonly at
the head,reflectingthe fact that only the task with the high-
est EDF* priority would be runningin S¢*, and (d) a task
thatwould havefinishedin S°*™ is removedfrom the a-queue.
This effectively yieldsa dynamicimage of the readyqueuein
Seam attimet.

Notethatthedynamicreductionof rem; ; in R3abosedoes
not needto be performedat every clock cycle; instead,for
efficiency, we performthe reductionwhenever a taskis pre-
emptedor completeshy takinginto accountthe time elapsed
sincethe lastupdate.The above approachrelieson two facts:
first, the speedadjustmentdecisionwill be taken only at ar-
rival/preemptiorand completiontimes, andit is necessaryo
have anaccuratex-queueonly atthesepoints(if speedsreto
be changedat other points, the updateof rem; ; mustreflect
that). Second betweenthesepoints, eachtaskis effectively
executednon-preemptiely.

We arenow readyto presenbur GenericDynamicReclaim-
ing Algorithm, GDRA, shown in Figure2. ProcedureSpeed-
ReducéT,, B, S), in Figure3, will be usedby GDRA to re-
ducethespeedsS of T}, by allocatinganextra B unitsof time
to T, underworst-caseemainingload, subjectto S,,;,, con-
straint. GDRA is “generic” in the sensethat the amountof
additionaltime allocationY” in step5.2is not specifiedjt may
assumary valuebetweerD ande,(t) without compromising
thecorrectness.

The following theoremestablisheghat the schedulegro-
ducedby GDRA arealwaysaheadof S°*".

Theorem1 At any time ¢ during the execution of GDRA,
w?i(t) < rem;(t), for anyreadytaskT;.

2
Theformal proofof thistheoremcanbefoundin [3]. Focus-
ing exclusively on taskcompletiontimes,thetheoremimplies
thatin theactualscheduleotaskinstancecompletedaterthan
its completiontime in S (which is feasible),proving the
correctnessf GDRA:

Corollary 1 GDRAyields a feasible schedule under EDF*
priority for a workload no greaterthan the worst-casework-
load.

Note that ary specificalgorithm should specify the exact
amountof earlinesgparametert”, to usefor speedreduction.
Onenaturalchoicein Rule5.2of Figure2 isto useY = e, (t),
thatis, to reducehespeedsoasto profit from thefull earliness.
We call this variation simply DynamicReclaimingAlgorithm
(DRA).

4.1 Incorporating One Task Extension

(OTE) Technique

As presentedn [21], onecanfurtherslov down execution
whenthereis only onetaskin the readyqueueandits worst

Rulesfor GDRA

1. ComputeS (asin Section3) andassign?l-; =SVi,j.
2. Initialize the a-queueto theempty-list.
3. At every new arrival, insertinto the a-queueinformation

regardingthe new taskT; with rem;(t) = wfz valuein the
correctEDF* order

4. At every event (arrival/completion),considerthe head of
the a-queueanddecreasés rem; value by the amountof
elapsed-timaincethelastevent. If rem; is smallerthanthe
time elapsedsincethe last event, remove the head,update
thetime elapsedsincethe last event, andrepeatthe update
with the next element.This is doneuntil all “elapsectime”
is used.

5. Wheneer T, is aboutto bedispatchedattime ¢:

5.0. SetS, = Sa.

5.1. Consultthe a-queueandcomputee, (t) (indicatorof
theearlinesamountof T;)

5.2. Reducethe speedof taskT;, by giving T, anextraY
time units:
S: = Speed-Reducé’,Y, S;), where0 < Y <
€x(t)

6. At everyeventof preemptioror completionof atask,sayT:;,
decreas¢he valueof theremainingexecutiontime: w, =
wf — A¢, whereA, is the time elapsedsincethe task T;
waslastdispatched.

Figure 2. Generic Dynamic Reclaiming Algorithm

ProcedureSpeed-Redudé’;, B, S):

wS
1.SetS; = 2= 8§

w§+B
3. returnS,

Figure 3. Speed Reduction Procedure

casecompletiontime (underthe currentspeed)doesnot ex-
tendbeyondthenext event(next arrival/closestieadlineof any
task). Sincethis techniquecan be usedin conjunctionwith
ary schedulingpolicy, we add a new rule 5.3 to further im-
prove (G)DRA. Let NT A bethe next arrival time of ary task
instancein the systemaftert¢, andrecallthat S, is the speed
from step5.2in (G)DRA andt is thetime T, is dispatched.

5.3. If T, istheonly readytaskandZ = NT A—t—w3=(t) >
0, S; = Speed-Reducé(, 7, S.).

In otherwords,reducehespeedf T, soasto usetheidle CPU
up to time NT A. We call this improvedtechniqueDR-OTE.

Clearly, thefollowing holds.

Proposition5 If all instancesmeet their deadlinesunder
DRA, they will also meettheir deadlinesunderthe algorithm
DR-OTE.

4.2 Experimental Results

In order to experimentally evaluate the performanceof
DRA, we implementeda periodic schedulingsimulator for
EDF* policy. We implementedthe following schemes:(a)
Static usesconstantspeedsS, and switchesto power-down
mode (i.e., S = Snin) Wheneer thereis no ready task;
(b) OTE: Static optimal speedschemein conjunctionwith
OneTaskExtension(but without dynamicreclaiming),and(c)
DRA, whichis implementedn two variations:with or without
the OTE techniqug(DR-OTE andDRA, respectiely).

In our experiments,we investigatedthe average perfor
manceof the scheme®ver alarge spectrunof worst-caseuti-
lization (U;.¢) and variability in actualworkload. In partic-
ular, we focusedon the averageenegy consumptionof 100
task sets,eachcontaining30 tasks. The periodsof the tasks
werechoserrandomlyin theinterval [1000,32000]. The min-
imum speedsS,,.;,, is setto 0.1. Thenominalspeeds is setto
Usot, asthe optimality of this choicewasshown in Section3.
Thevariability in theactualworkloadis achiezedby modifying
the LEEL ratio (thatis, the worst-caseo best-casexecution
time ratio). We ran experimentswherethe actual execution
time follows a normal probability distribution function®. The

meanandthe standarcieviation aresetto WCELEBCET ang

WCET _BCET respectiely, for agiven WEEL assuggested

in [21]. Thesechoicesensurethat, on the average,99.7% of
the executiontimesfall in theinterval [BCET, WCET]. For
eachtasksetwe simulatedthe executionupto LC' M 10times,
whereLCM is theLeastCommonMultiple of P, ..., P,, and
measuredhe averageenegy consumptiorper experimentus-
ing a cubic power/speedunction[10].
Oneremarkableresultis the following: Althoughthe OTE
schemeprovides substantialimprovementsover techniques
that continuouslyuse S,,.... during the executionwithout re-
claimingasshavnin [21], throughoutheentirespectrumPR-
OTE only provides a marginal (lessthan 1%) improvement
over pure DRA. This resultindicatesthat almostthe entire
power savingsareobtainedoy initially committingto .S which
fully utilizesthe CPU (staticscheme)xnd to the dynamicre-
claiming algorithmitself. To improve the readability of the
graphswe shav below only theresultsof DR-OTE, sincethe
resultsfor thelatterarealmostidenticalto pureDRA.
Effect of Utilization: Figure4 shavstheenegy consumption
of thetechniquewaryingwith theutilization of thetaskset(i.e.

3The resultswith a uniform probability distribution function are rather
similar[3]. We alsorepeatedhe simulationswith task setshaving different
numberof tasks. The full resultscanbe foundin [3], in the lack of space,
we only mentionthat the main trendsremainsimilar to that of 30-tasksys-
tem. This is expected sincethe maindeterminanof the workloadis thetotal
utilization andthe variability in theactualworkload.

120 T

100

80 - —
60 q

40 o et |

Normalized Energy Consumption

20 q

1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
Utilization(%)

Figure 4. Normalized energy consumption (30 tasks).

WCET __ 5
BCET —
Utor), when WEET is equalto 5. The resultsarenormalized

with respecto Static which doesnot reclaimunusedcompu-
tationtime. Onecanobsene thefollowing majorpatterns:

e Thenormalizedenegy consumptiorof all threeschemes
areratherinsensitve to thevariationsin U;,;. Thisis due
to the fact that, for a given scheme the use of optimal
nominalspeedS resultsin having very similar effective
utilization, for ary value of U;,;. In otherwords,when
the utilization decreaseghe speeddecreasemakingthe
CPUfully utilized.

e DRA hasa definitive advantageover Staticand OTE for
all utilizationvalues:theenegy consumptiorof asystem
using DRA is only around40% of a systemwhich uses
Staticor OTE.

e OTE performsbetterthan Static, but the improvementis
usuallylessthan10%. This impliesthatthe large power
savings reportedover continuouslyusing S, .. for some
tasksetsin [21] areduelargelyto theshuttingdown of the
processomwhenthe processois idle asthe resultof the
actualworkload. If andwhenonestartswith the optimal
staticspeedthe potential(additional)saszings dueto the
OTE techniqustself becomesatherlimited.

Effect of LSEL ratio: The simulationresultsconfirmedour
predictionthattheenegy consumptiorwould behighly depen-
denton the variability of actualworkload. The (normalized)
averageenegy consumptiorof the task sets,asa function of
WEEL ratio (with Uye¢ = 0.6) is shawn in Figure5. In terms
of shapeand percentagalifference,the curvesfor other uti-
lization valuesare fairly similar. From theseexperimentswve

arrivedatthefollowing conclusions:

WCET _ i i ;
e When z=7~+ = 1, thereis no CPUtime to reclaimdy-

namically andthusthe enegy consumptions the same

120

100 f——

80 ° 4
60 - . b

Normalized Energy Consumption

20 q

L L L L L L L L
1 2 3 4 5 6 7 8 9 10
WCET/BCET ratio

Figure 5. Effect of variability in actual workload (30 tasks);
load = 60%

for all three techniques,as expected. However, once
the actualworkload startsdecreasindthatis, increasing
WL, OTE andDRA areableto reclaimunuseccom-

putationtime andthey areableto sare additionalenegy.

e The DRA is capableof providing considerablyhigher
power savings than OTE; and the differenceincreases
rapidly with 'Y EEL ratio. For instance the savings of
DRA evenfor WCEL — 11 s betterthan the perfor
manceof OTE throughouthe entirespectrum.

BCET

e Onceweincreasehe WE<EL beyond4, power savings of
DRA continueto increasehut theimprovementis notas
impressve asthe casewherethatratiois < 4. Thisis
becausehe expectedworkload of the systemcorverges
rapidly to 50% of the worst-casevorkloadwith increas-
ing WELT ratio (remembetthatthe meanof our proba-

bility distributionis WCELEBCET),

5 Aggressve SpeedReduction

The DRA andDR-OTE algorithmsprovide sounddynamic
speedreclaimingmechanismshowever they guarantedeasi-
bility by alwaysbeing’ahead’of the staticworst-caseptimal
scheduleS“™ (i.e.,tasksnever actuallystartor finish afterthe
scheduledime in S¢@™). Sce" s feasibleat ary time, yetit is
optimalonly undertheassumptiorthatall futureinstancewill
presentheir worst-casevorkload. Wheneer, underconstant
speedthe actualexecutiontimesof a task’s instancesxhibit
large variation,startinga taskwith this assumptiorcanbetoo
consenative. Instead whenever the currentsystemstatesug-
gestswe mayassumespeculatiely that the curr entand fu-
tur e instanceswill most probably presenta computational
demandwhich is lower than the worst-case Hence we can
adoptan "aggressie” approachbasedon reducingthe speed

of therunningtaskundercertainconditionsto alevel whichis
evenlower thanthe onesuggestedby DR-OTE. But this spec-
ulative move might shift thetask's worst-caseeompletiontime
to apointlaterthantheonein $°*™ underanactualhigh work-
load. And if this pessimisticscenariaturnsoutto betrue,we
shouldbe readyto increasethe CPU speedbeyond S later
to guaranteefeasibility of futur e tasks This would hamper
significantpower savings sincethe corvexity of power/speed
curve suggestsa uniform speedto achieve a given average
speedvalue over ary interval of time. On the otherhand,in
casethat the actualworkload turns out to be lower than the
worst-casetheactualschedulewill still beaheadf S°*", even
with thelow speedtherebyachieszing even higherpower sar-
ings.

A powerful systemdesignprinciple is to make the com-
mon casemoreefficient. Thistranslategin settingswherethe
worst-casevorkloadoccursonly rarely) into having a power-
efficient scheduldor averageor closeto averagecaseswhich
canbeachievedby reducingfurtherthe CPUspeed After hav-
ing presentedhe rationaleof aggressie speedmanagement
techniqueswe shouldaddressand provide solutionsfor two
importantissues.

The first oneis feasibility: whenwe reducethe speedof
T, aggresasiely, we shouldbe readyto guaranteehe timing
constraintof T, andthatof any othertask,sincethe schedule
may no longerbe’ahead’of S¢%". Thesecondssueis thede-
termination of the aggressvenesdevel: eventhoughit may
be possibleto show the existenceof afeasibleschedulgunder
a very aggressie speedreductionfor T,.), if sucha move is
not justified by the expectedworkload of the system,it may
bereasonabl¢éo adopta moreconserative speededuction to
decreasehe probability of speedincreasesvhich causehigh
enegy consumptionA naturalsolutionis to usea pre-defined
speedreductionbound(Sb) below which we never attemptto
decreasdhe CPU speedduring an aggressie speedadjust-
ment.Observinghatthe "averageworkload”is anappropriate
estimatorfor the actualcomputationalemandwe chooseto
parameterizéhe aggressienesdevel with respecto the opti-
mal speedunderan average workload(S,ptavg). More specif-
ically, Soptavg is the optimal speedfor the workload where
eachinstancerequiresexactly its averagecomputationalde-
mand(determinedy aprobabilitydistributionfunction). Gen-
erally, we maysetSbhto k - Sopmg, wherek is aconstansuch
that Spin < Sb < Smaa (€., 5222 < k < Ssm—) Ob-
sene thatchangingk in this rangeprovidesa completespec-
trum of "aggressie techniques”.At oneendof the spectrum,
k= % (which is usuallymuchsmallerthan 1.0) corre-
spondsto the "extremeaggressieness’wherewe attemptto
obtainthe lowestspeedevel for the runningtask;thisis only
subjectto feasibility which might beachievedlateronly by ex-
ecutingthefollowing taskswith very high speeddi.e., by this
choice we aresupposindhatthecurrentworkloadwill bewell
belown theworst-casevorkload). At the otherendof the spec-
trum, settingk = SSM reflectsthe DR-OTE algorithmitself.

optavg

Anothermain pointin the spectrunmis the schemewhich lim-
its the aggressienessspeedooundby exactly Sotq.4, thatis,
k = 1; thisreflectstheview thatslowing down the CPUbelow
Soptavg Will hurtthe aggreatepower savingsin thelongrun.

5.1 Feasibility for Aggressive Schemes

As mentionedabove, whenwe attemptto aggressiely re-
ducethe CPUspeedywerisk exceedingworst-caseompletion
timesof S4” in the currentschedule both for the running,
readyandyet-to-arrive tasks. In generalto checkthe conse-
gquence®f suchanaggressie decisionis anon-trivial problem
(linkedwith response-timanalysiscomplicationof EDF), es-
pecially if it is to be addressed a dynamicfashion,at run-
time. In this study we adopta simple approachthat restricts
the aggressie powver managemenb occuronly whenwe can
limit their effectsupto the next event (arrival/deadlineof ary
task). As theresultsin Section5.4 below indicate,the aggres-
sive schemes$have the potentialof providing additionalpower
savings,evenwith thisconsenativefeasibility testwith limited
horizon.

Wheneer we can predictthat the completiontime of the
currentlyreadytask T, will not extendbeyondthe next event
(arrival/deadline)we canspeculatiely reducethe speedf T,
while guaranteeinghat it will still completebeforethe next
event(whichis, by definition,earlierthanor equalto thedead-
line of T;). However, caremuststill betakenin orderto guar
anteethe timely completionsof otherreadytaskswhich are
waiting on the readyqueueat a lower priority level thanT,,
sincethe execution/completiorof thesetaskswill be delayed
until 7, completes.

A possibleway to guarante¢hefeasibility in this caseis to
increasethe speedf anothersuitableandreadytaskT’, which
will runafterT,. Thisis effectivelyequivalento increasinghe
time allocationof T}, while decreasingthe time allocationof
T, by thesameamount.Clearly, from this pointon, thesystem
cannotblindly decreas¢he speedof 7, to its original 3; (i.e.,
we shouIdaIsochange/S; for thatinstance).

One can even generalizethis with the following: if
T1,Ts, ..., T, arereadytasksthat are guaranteedo run con-
secutvely andall to completebeforethe next taskarrival time
(NT A) even underworst-caseworkload, we can arbitrarily
swapCPUtimeallocationamongthem(in particularto reduce
the speedof T; while increasinghe speedof oneor moreof
T, ..., T,). In fact,if it exists, eventhe highestpriority ready
taskthatis not guaranteedo completebefore NT'A (namely
T-+1) mayprovideaportionof its timeallocationundercertain
conditions.However, we muststill guarante¢hat 7y, Ts, ..., T;
will completebefore NT'A and 1,1 will completeno later
thanbeforethetime allocationswapping,undertheworst-case
scenario. Further in all thesecomputationswe shouldtake
into accountthe slack-timeof alreadycompletedtasksin the
a-queue(with EDF* priority lower than T3) that may con-
tributeto theworst-caseCPUallocationof T, . .., T;., T,.41 in

thefuturethroughdynamicreclaiming.Finally, all thesespeed
adjustmentshouldadhereo S,,.;,, Sinae: @ndSHh bounds.

Toincorporateheaggressiespeedeductiontechniquewe
addanew rule5.4,to thepreviousalgorithm,therebyobtaining
thenew algorithmAggressive-DR:

5.4.1f Z=NTA—t—w3(t) > 0 andthereareotherready
tasksin addition to T,, call Aggr essi ve- Speed-
Adj ust nent .

ProcedureSpeed-Inaease(Figure7) increaseshe speedS
of T, soasto remove at most H units of time allocationun-
der worst-casaemainingworkload of T, with respectto the
speedsS, subjectto S,,q.. In procedureAggressve-Speed-
Adjustment, whenever T transfersslack-timefrom T}, we
perform the speedincreasefor T3, increasingg\-, the nomi-
nal speedof 7;. Wheneer T is aboutto be dispatchedijts

currentspeedwill be setto SAQ by rule 5.0; rules5.1 and5.2
shouldconsiderthis new (increasedspeedvhentrying to re-
ducespeeddueto a (possible)earlinesgetection.Finally, 7
shouldassumehe new nominalspeedg“; whenit returnsfrom
preemption,sincethis is the lowest speedknown to guaran-
tee a feasibleschedulen the casewhereevery task presents
its worst-casdoad to the processoafter aggressie speedad-
justments.However, we underlinethat the nominalspeedﬁ;
of future instancesof 7} are unchangedand equalto S. A
formal proof regardingthe correctnessf the Aggr essi ve-
Speed- Adj ust ment routineis providedin [3].

5.2 Evaluation of the Aggressive Scheme

We conductedexperimentdo assesthe performancef the
aggressie schemdabbreviatedby AGR), in the samesettings
asSection4.2. The speedooundSh for the speculatie speed
adjustments equalto S,piavg, thatis, the aggressienesdac-
tor k is setto 1. In Figure8, therelative enegy consumption
of AGR with respectto DRA is shawvn, for 30-tasksetsand
normaldistribution,asafunctionof theutilization. Theresults
show aconsistenadwvantageof AGR over DRA throughouthe
spectrum(around15%). The improvementdecreasess the
utilization approache400%, whereall tasksassumea nom-
inal (default) speedS = 1.0 andaggressie speedreduction
at the expenseof increasingthe speedof othersis not always
possible.

Theeffectof variability in actualworkloadis shovnin Fig-
ure 9. Again, AGR provided betterperformancethan DRA
with various L EEL ratios. Increasingthis ratio improvesthe
relative performanceof AGR, sincethe speculatre movesare
justifiedmorefrequently

5.3 More on Speed Bound Restrictions

Anotherpossibleapproachor usingtheaggressie scheme
is to adhereto the 'parameterizedspeedbound’ even when
reducing the speedin Step 5.2 thr ough dynamic reclaim-
ing. This approachassumeghat reducingthe speedbelow

Proceduredggressve-Speed-Adjustment
Notation: Thealgorithmisinvokedattime¢. Thereadytaskwith
the highestEDF* priority is denotedby 74 . The othertasksthat
areready or thatare completedbut have their unusedcomputa-
tion time in the a-queuewith EDF* priority lower thanthat of
Ty, aredenotedby T, ..., T, 2 < m < n, in decreasingr-
derof priorities. Throughouthe algorithm,at the costof a slight
abuseof notation,we will alsousethe apressionufi (t) torefer
to Rem;(t) valueof ary completedaskT; in thea-queueattime
t. Thecurrentspeedassignmentaredenotedby S, ..., Sm, and
thenext taskarrival aftert will occurattime NT A.

Algorithm:
e If S1 < max{Smin, k- Soptavg} return;(thatis, we should
notdecreas¢he speecary further)
e Determinethe maximumamountof additional CPU time,

Q, thatcanbe assignedo 71, subjectto S».:» andthe ag-
gressvenesdevel constraints:

S1 S1

Q - [max(smins k- Sopta'ug) B le (t)

e Adjust@ in ordernotto extendbeyond NT A:
if NTA—t—w(t) < QthenQ = NTA—t —wi(t).
e (Q, = 0 (alreadytransferredslackamount).
o If w52(t) > Qthen{r =1;Z =0}
elsefind thelargestr (2 < r < m)
suchthatZ = 37w} (t) < Q.
e Increasethe speedof Tz, ..., Trin(m,r+1) While reducing
thespeedf T;:

-j=2
— while (j < min(m,r + 1) and Q. < Q)

x if (j <r+1)thenExtratime =Q — Qq
elseExtra_time = Q — Z
if 17 is readythen:
- S = Speed-lncrea}@}, Extra_time, §j)

-B:(%—l)-w;}f
J

*

- SAJ = S; (thatis, committo thenew S; as
thedefault speedf thatinstance)
x if T; is completedbutis in the a-queuethen
B = min(Eztra_time, Rem;)
j=j+1
Qa = Qa =+ B

* ¥ *

S1 = Speed-Reduc¢é, B, S1)

Figure 6. Aggressive Speed Adjustment Procedure

k - Soptavg Will hurtthetotal performancen thelong run,and
preventsdoing so even when the earlinessfactor would jus-
tify doingso. To distinguishtwo variationsof the aggressie
schemewe will denotetheoriginal schemeandthe new varia-
tion by Aggressve-DR-1andAggressve-DR-2, respectiely
(or, AGR1andAGR2,for short).

The correctnes®f the new schemefollows from the cor

ProcedureéSpeed-Increaséy, H, S)

S
H
1.5, =2t

2.1f Sz > Smaz thenSe = Smae ;
3. returnS,

Figure 7. Speed Increase Procedure

50

IS
a

IS
S

w
&
T
L

Normalized Energy Consumption with respect to Static
w
8
T
I

25 I I I I I I I
20 30 40 50 60 70 80 90 100

Utilization(%)

Figure 8. Normalized energy consumption (VgggTT = 5)

rectnesof AGR1, sinceAGR2 never slows down the proces-
sormorethanAGR1.

5.4 Evaluation of AGR1 and AGR?2

In this section,we presentesultsof simulationsperformed
to comparealgorithmsAGR-1andAGR-2. Thesimulationset-
tingsareidenticalto thoseof Sectiond.2. Whenthe utilization
or the WEET ratio is changedthe performancef AGR1and

BCET
AGR2arehardlydistinguishabld3].

Normalized Energy Consumption with respect to Static

30 I I I I I I I I

WCET/BCET ratio

Figure 9. Effect of variability in actual workload (load = 60%)

However, unlike the utilization and *:$£Z ratio, changing

the aggressvenesdevel deeplyaffectsthe results,as shavn
in Figure 10. The curvesshown are for 60% utilization and
WCEL — 5; otherparametesettingshave very similar beha-
ior. Theperformancesf DRA andStaticareinsensitve to the
parametek. Themaximumpowersavingsis areobtainedwith
algorithm AGR2 typically whenk = 0.9. This representa
further5% improvementover & = 1, yielding anetadvantage
of 20% over DRA. AGR1 reachedts minimum enegy con-
sumptionusuallywith & = 1. Further the curve suggestshat
unboundedr extremeaggressienesgsmallvaluesof k) hin-
dersthe power savings: for instance both schemesonsume
60% moreenegy thanDRA for k& < 0.2.

Yet, aswe increasethe value of £ andmove towardsmore
'balanced’aggressienesdevels, the aggressie schemede-
comepreferabldo DRA: AGR1andAGR2outperform®DRA,
for k > 0.75 andk > 0.7, respectiely. After the power
savings reachtheir maximumat & = 0.9 (for AGR2) and
k = 1.0 (for AGR1), the performancestartsto degrade. Re-
markably for £ > 1.1, AGR2 consumegonsiderablyhigher
enegy thanAGR1.: this is dueto the factthatwhenthe algo-
rithm is run with large valuesof &, the algorithmis reluctant
to reclaimor transferCPU-time evenwhenthespeeds higher
than S,,:a0g. AGR1doesnot suffer from this effect, sinceit
automaticallyusesheearlinessnformationto performanini-
tial speedreductionand considersthe speedbound St only
whenaggresaiely reducingspeed.Hence evenfor large val-
uesof k, AGR1remainsbetterthan DRA, andis guaranteed
to convergeto it for k = 52— = %5, whichis 1.66

for thisexample.On the otherhand,AGVF\V’%%n/ergesto OTE
(not shawn in Figure 10) for the samevalue; this is because
the actualspeedstartswith S, andthe aggressie or dynamic
reclaimingis never possiblesinceSh = S. In this case,CPU
speeds reducednly throughOTE.

In summarykeepingk in therange[0.9, 1] andcommitting
to anaggressienesdevel which aimsto achiese very closeto
Soptavg Producesestresults yielding additional(i.e., beyond
DRA or DR-OTE) enegy savings which may be as high as
20%.

6 Conclusions

In this papemwe presentedechniquegor power-awarereal-
time computingthroughvariablevoltagescheduling.Our so-
lution comprisedhreeparts(a) a staticsolutionto computethe
optimalspeedasedntheworst-casavorkload,(b) anon-line
speedadjustmenmechanisnthatreclaimsunusedime based
ontheactualworkload,and(c) a speculatie speedadjustment
mechanismbasedon the expectedworkload. To our knowl-
edge, this is the first time that aggressie and provenly safe
techniquesare usedto anticipateand provision for the early
completiongn periodicreal-timescheduling.

Our simulationresultsshawv that the reclaimingalgorithm
saves a striking 50% of the enegy over the static algorithm,

Static
100 DRA -------

80 - b

70 o 1

Normalized Energy Consumption

50 - 1

40 T |

The aggressiveness parameter k

Figure 10. Effect of bounding factor k in Aggressive

e WCET _
Schemes (30 tasks); utilization = 0.6 and BOET — 5

whichtakesinto accountheloadin thesystem.This quitesig-
nificantresultshovsthatthelifetime of mobileor otherbattery
operatedievicescanbeextendednaverageto twice thelevels
of staticsolutions. Consideringalsothe datapresentedn our
previouswork [16], we concludethatbatteriesanbe extended
to lastupto oneorderof magnituddongeroverno powverman-
agemenschemes.

Further our preliminaryaggressie techniquesllow for an
additional 20% savings over the reclaiming algorithm. We
concludethat, beingtoo aggressie or not aggressie enough
causeghe algorithmsto performratherpoorly. We are cur-
rently studyinglessconsenative approachegthatis, not stop-
ping the aggressienesdy the “next event”) that we believe
will leadto furtherenegy savings.

References

[1] H. Aydin, R. Melhem, D. Mos£ and PM. Alvarez.Optimal Rewvard-
BasedSchedulingfor PeriodicReal-Time Tasks.|[EEE Transactionson
Computes 50(2): 111-130,February2001.

[2] H. Aydin, R. Melhem,D. Moss and PM. Alvarez.DeterminingOpti-
malProcessoBpeeds$or PeriodicReal-Time Taskswith DifferentPaver
Characteristicdn theProceeding®f the 13th EuroMicro Confeenceon
Real-Tme System¢ECRTS'01,) Delft, NetherlandsJune2001.

[3] H.Aydin. EnhancingPerformanceandFault Tolerancein Revard-Based
Sdteduling Ph.D.DissertationUniversity of Pittshurgh, August2001.

[4] J.K. Dey, J. KuroseandD. Towsley. On-Line SchedulingPoliciesfor
aclassof IRIS (IncreasingReward with IncreasingService)Real-Time
Tasks.|EEE Transactionson Computes 45(7):802-813,July 1996.

[5] R.ErnstandW. Ye.EmbeddedProgramTiming Analysisbasedon Path
Clusteringand ArchitectureClassification.ln ComputefrAided Design
(ICCAD)'97. pp.598-604.

[6] V. Gutnik and A. ChandrakasanAn Efficient Controller for Variable
Supply Voltage Low Paver ProcessingSymposiunon VLSI Circuits
pp.158-159,1996.

[7] P J.M. HavingaandG. J. M. Smith. DesignTechniquegor Low-pover
SystemsJournal of Systemé#wrchitectue. Vol. 46:1,2000

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]
(23]

I. Hong, D. Kirovski, G. Qu, M. Potlonjak andM. Srivastaa. Pover
optimizationof variablevoltagecore-basedystemsln Proceedingof
the 35th DesignAutomationConfeence DAC'98

I. Hong,M. PotlonjakandM. B. Srivastaa. On-line Schedulingf Hard
Real-Time Taskson VariableVoltageProcessoin ComputerAidedDe-
sign (ICCAD)'98. pp.653-656.

I. Hong, G. Qu, M. PotlonjakandM. Srivastaa. SynthesisTechniques
for Low-PaverHardReal-Tme System®n VariableVoltageProcessors.
In Proceeding®f 19th IEEE Real-Tme System$ymposiunfRTSS’'98)
Madrid, Decembef1998.

C. M. KrishnaandY. H. Lee.VoltageClock ScalingAdaptive Schedul-
ing Techniquedor Low Powerin Hard Real-Time Systemsin Proceed-
ingsof the6th IEEE Real-Tme Technolagy and ApplicationsSymposium
(RTAS’00) WashingtorD.C., May 2000.

C.L. Liu and J.WLayland. SchedulingAlgorithms for Multiprogram-
ming in Hard Real-timeEnvironment.Journal of ACM 20(1): pp.46-61,
1973.

J.W.-S.Liu, K.-J.Lin, W.-K. Shih,A. C.-S.Yu, C. Chung,J. YaoandW.
Zhao. Algorithms for schedulingimprecisecomputationslEEE Com-
puter 24(5): 58-68,May 1991.

J. R. Lorch andA. J. Smith. Improving Dynamic Voltage Scaling Al-
gorithmswith PACE. In Proceedingsf the ACM SIGMETRICS2001
Confeence CambridgeMA, June2001.

D. Luenbeger, Linear and Nonlinear Programming Addison-\W\ésley,
ReadingMassachusett4984.

D. Mos, H. Aydin, B. Childersand R. Melhem. CompilerAssisted
Dynamic Pover-Aware Schedulingfor Real-Time Applications.Work-
shopon Compiles and Operating Systemsor Low-Rower (COLP’00),
PhiladelphiaPA, October2000.

W. NamgoangM. Yu andT. Meg. A High Efficiengy Variable-\ltage
CMOSDynamicDC-DC Switchingregulator IEEE InternationalSolid-
StateCircuits Confeence pp.380-391

M. PedramPawer Minimizationin IC Design: Principlesand Applica-
tions. ACM Transactionsn DesignAutomationof Electronics Systems
1:1- pp.3-56,Januaryl 996.

J. PouwelseK. LangendoerandH. Sips.DynamicVoltageScalingon
a Low-Pawer Microprocessor7t? International Confeenceon Mobile
Computingand Networking(MOBICOM), Romeltaly, July 2001.

R. Rajkumar C. Lee, J. P. Lehoczly andD. P. Siewiorek. A Resource
Allocation Model for QoS Managementln Proceedingsof 18th IEEE
Real-Tme SystemSymposiunDecembetl997.

Y. Shinand K. Choi. Pover ConsciousFixed Priority Schedulingfor
HardReal-Time SystemslIn Proceeding®f the 36thDesignAutomation
Confeence DAC’99.

http://wwwtransmeta.com

F. Yao, A. Demersand S. Shenler. A SchedulingModel for Reduced
CPU Enengy. IEEE AnnualFoundationsof ComputerSciencepp. 374 -
382,1995.

