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A promising area of application for Network Function Virtu-
alization (NFV) is in network security, where chains of Virtual
Security Network Functions (VSNFs), i.e., security-specific virtual
functions such as firewalls or Intrusion Prevention Systems,
can be dynamically created and configured to inspect, filter
or monitor the network traffic. However, the traffic handled
by VSNFs could be sensitive to specific network requirements,
such as minimum bandwidth or maximum end-to-end latency.
Therefore, the decision on which VSNFs should apply for a given
application, where to place them and how to connect them, should
take such requirements into consideration. Otherwise, security
services could affect the quality of service experienced by cus-
tomers. In this paper we propose PESS (Progressive Embedding
of Security Services), a solution to efficiently deploy chains of vir-
tualised security functions based on the security requirements of
individual applications and operators’ policies, while optimizing
resource utilization. We provide the PESS mathematical model
and heuristic solution. Simulation results show that, compared to
state-of-the-art application-agnostic VSNF provisioning models,
PESS reduces computational resource utilization by up to 50%,
in different network scenarios. This result ultimately leads to a
higher number of provisioned security services and to up to a
threefold reduction in end-to-end latency of application traffic.

Index Terms—NFV, Network Service Chaining, Progressive
Embedding, Application-Aware Network Security.

I. INTRODUCTION

Network security implemented by Telecommunication Ser-

vice Providers (TSPs) has traditionally been based on the

deployment of specialized, closed, proprietary Hardware Ap-

pliances (HAs). Such HAs are inflexible in terms of function-

alities and placement in the network, which means that even

slight changes in the security requirements generally necessi-

tate manually intensive and time-consuming re-configuration

tasks, the replacement of existing HAs or the deployment of

additional HAs.

The Network Function Virtualization (NFV) [1] initiative

has been proposed as a possible solution to address the

operational challenges and high costs of managing proprietary

HAs. The main idea behind NFV is to transform network

functions (e.g. firewalls, intrusion detection systems etc.) based

on proprietary HAs, into software components (called Virtual

Network Functions (VNFs)) that can be deployed and executed

in virtual machines on commodity, high-performance servers.

By decoupling software from hardware, this approach allows

any (security) network function to be deployed in any server

connected to the network through an automated and logically

centralized management system.

The centralized management system, called NFV Manage-

ment and Orchestration (NFV MANO), controls the whole

life-cycle of each VNF. In addition, the NFV MANO can

dynamically provision complex network services in the form

of sequences (often called chains) of VNFs. Indeed, Network

Service Chaining (NSC) is a technique for selecting subsets

of the network traffic and forcing them to traverse various

VNFs in sequence. For example, a firewall followed by an

Intrusion Prevention System (IPS), then a Network Address

Translation (NAT) service and so on. NSC and NFV enable

flexible, dynamic service chain modifications to meet the real

time network demands.

A promising area of application for NSC and NFV is in

network security, where chains of Virtual Security Network

Functions (VSNFs), i.e., security-specific VNFs such as a

firewall or an IPS, can be dynamically created and configured

to inspect, filter or monitor the network traffic. The flexibility

of the NSC and NFV paradigms brings many benefits, among

others: (i) highly customizable security services based on

the needs of the end-users, (ii) fast reaction to new security

threats or variations of known attacks, and (iii) low Operating

Expenditure (OpEx) and Capital Expenditure (CapEx) for the

operator. On the other hand, compared to specialized HAs,

VSNFs may have a significant impact on the performance

of the network and on the Quality of Service (QoS) level

experienced by the users. The virtualization overhead, the

utilization level of the servers and the techniques adopted to

implement the VSNFs are the most significant contributors to

the QoS degradation.

We argue that, for a wide adoption of NSC and NFV

technologies in network security, the provisioning strategies

should take into account not only the security requirements,

but also specific QoS needs of applications (a list of common

classes of applications is provided in Table I with their

corresponding security and QoS requirements). Omitting the

latter may lead, for instance, to a model that blindly forces

all the user traffic to traverse the whole chain of VSNFs.

As a result, computationally demanding VSNFs such as IPSs

may cause a noticeable performance degradation to latency-

sensitive applications (e.g. online games [5]) or bandwidth

sensitive applications (e.g. video streaming). On the other

hand, beyond the overall resource consumption and QoS re-

quirements, the model must also take into account the specific

security best practices and policies. Omitting such aspects may

result in the inappropriate placement of a firewall in the middle

of the network, thus allowing unauthorized traffic to reach

hosts that should be protected.
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TABLE I
SECURITY AND QOS REQUIREMENTS OF APPLICATIONS.

Application class Description Related threats Relevant VSNF 1 QoS requirements

CCTV systems

Closed Circuit TV

for video surveillance

accessible remotely

Port scanning, DDoS

password cracking

Firewall, DPI,

IDS, IPS

Bandwidth: 10Mbps

(5 cameras, 720p, 15fps,

H.264, medium quality)

Latency: 200ms (PTZ2

two-way latency [2])

Email Electronic mail Malware, spam, phishing, data exfiltration DPI, Antispam, IDS, DLP –

Instant messaging Real-time text-based Internet chat Malware, DDoS, phishing (out-of-band) DPI, Antispam, IDS, IPS –

Media streaming
Audio/video content

accessed over the Internet
Inappropriate content Parental control

Bandwidth3: 5Mbps (HD)

25Mbps (UHD)

Remote storage File transfer over the network Data exfiltration VPN, Data Encryption Bandwidth

Network services

(DNS, VoD, file

sharing, WWW, SSH)

Server application

accessed by remote

client applications

DDoS, SQL injection,

remote code execution

Firewall, IDS,

WAF, Honeypot
–

Online gaming
Video games played

over the Internet

Online game cheating (out-of-band attacks)

DDoS (in-band attacks)

DPI, Antispam,

IDS, IPS

Latency: 100ms

(first-person games [3])

Peer-to-peer File sharing over peer-to-peer networks DDoS, malware DPI, IDS, IPS –

Video conferencing Real-time audio/video over the Internet DDoS Firewall, IPS Latency: 150ms [4]

Web browsing
Applications for browsing

the World Wide Web

Cross-site scripting, phishing,

malware, inappropriate content

DPI, WAF,

Parental control
Latency: 400ms [4]

1Acronyms of VSNFs: Deep Packet Inspection (DPI), Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Data Loss/Leakage Prevention (DLP), Virtual Private

Network (VPN), Web Application Firewall (WAF). 2PTZ: Pan, Tilt, Zoom. 3Netflix Internet connection speed recommendations.

In this paper, we present PESS (Progressive Embedding

of Security Services), a novel approach to provision security

services by composing chains of VSNFs according to the

specific QoS needs of user applications and the security

policies defined by the TSP. TSP’s security policies (given as

an input to PESS) include: the kind of VSNFs (e.g., firewall,

IPS, etc.) that should be deployed for a specific class of

applications, their order (e.g., firewall first, then IPS, etc.),

and more (e.g., a parental control should be installed close to

the user’s premises).

PESS defines an Integer Linear Programming (ILP) formu-

lation and a heuristic algorithm to tackle the provisioning prob-

lem in dynamic network scenarios, where the service requests

are not known in advance. In contrast, advance knowledge

of service requests is assumed by the majority of related

works. Although the PESS formulation and implementation

presented in this paper focus on security-specific services, the

proposed approach is also suitable for more complex scenarios,

where heterogeneous network services provided by means

of generic VNFs coexist (e.g., security, video broadcasting,

content caching, etc.).

To the best of our knowledge, this work is the first at-

tempt to tackle the challenges of progressively provisioning

application-aware security services onto operational infrastruc-

tures, in which the QoS performance of existing services may

be compromised by adding new services.

A preliminary ILP formulation of our application-aware

approach has been introduced in [6]. This work extends [6]

with the following contributions:

• A taxonomy of the most relevant VSNFs along with a list

of popular implementations available in the open-source

community and in today’s market.

• A mathematical formulation for the progressive provi-

sioning of security services (the PESS ILP model). With

respect to the ILP model presented in [6], this work

formulates the estimation of the processing delay based

on residual computing resources of the physical nodes,

and it formalizes the impact on the end-to-end latency of

operational services when allocating computing resources

for new requests.

• A heuristic algorithm, called PESS heuristic, to obtain

near-optimal solutions of the embedding problem in an

acceptable time frame (in the order of a few milliseconds

even in large network scenarios).

• An evaluation of the heuristic’s performance in terms

of quality of the solutions (deviation from optimality)

and scalability performed on real-world and randomly

generated topologies.

• Comparison of the proposed application-aware approach

against the baseline approach, in which security services

are provided without taking into account the specific

requirements of applications.

Our simulations prove that PESS solution can deploy more

security services over the same infrastructure compared to

an application-agnostic approach (the baseline), while still

respecting the security policies and best practices defined by

the TSP. With PESS, each traffic flow generated by each

application can be served by the strict subset of VSNFs that

are necessary to ensure its security, which means that no flow

is burdened with any unnecessary security function that could

affect its smooth execution, as would be the case with an

application-agnostic approach. Of course, the capability of the

VSNFs to properly react to any security attack depends on the

specific implementation of the VSNF itself and is beyond the

scope of this work.

The remainder of this paper is structured as follows: Section

II reviews and discusses the related work. Section III gives the

relevant background information. Section IV provides the mo-

tivation behind this work. Section V details the mathematical

formulation of the ILP model, while Section VI describes the

heuristic algorithm that we implemented to solve the problem.

In Section VII, the heuristic algorithm is evaluated on real-

world and random topologies. Finally, the conclusions are

provided in Section VIII.



3

II. RELATED WORK

With the recent “softwarisation” of network resources, a

plethora of research initiatives has emerged in the last few

years to address the problem of the optimal placement of

chained VNFs. Most of these tackle the problem by using

linear programming techniques and by proposing heuristic

algorithms to cope with large scale problems. In this section,

we classify and review the most relevant works for our studies.

A. QoS-driven VNF Placement

QoS-driven approaches primarily focus on the QoS re-

quirements of specific services without considering network

security aspects. In this regard, the proposed mathematical

models include bandwidth and latency constraints (similar to

Constraints (10) and (12) presented in Section V) or define

objective functions that require minimization of the total

bandwidth and latency of created chains.

The ILP model in [7] considers computing and bandwidth

constraints to minimize the costs related to (i) VNF deploy-

ment, (ii) energy consumption of the servers, and (iii) forward-

ing traffic. The end-to-end delay requirement is formulated as

a penalty in the objective function. However, the computation

of the end-to-end delay only considers link propagation delays

without including the processing delay introduced at each

VNF. In [8], the placement problem is formulated as a Mixed

Integer Quadratically Constrained Problem with respect to

bandwidth, number of used nodes and latency. The processing

delay at each VNF is also not considered in this work. The

study in [9] proposes an ILP formulation and a heuristic

algorithm for the VNF placement problem focusing on QoS

parameters such as end-to-end delay and NSC availability.

The ILP model formulation presented in the paper does not

discuss how the processing delay introduced by the VNFs is

computed. This limitation is reflected in the assumptions made

for the evaluation, where the processing delay is considered

independent from the VNF type/implementation and from the

computing capacity of the physical node where VNFs are

placed. In [10], Tajiki et al. present a resource allocation

architecture for softwarized networks. The proposed architec-

ture includes two resource allocation modules whose goal is

configuring the network while satisfying QoS constraints and

optimizing the energy consumption and the number of flow

entries in the network. Although the authors tackle the prob-

lem of progressively allocating resources for newly arrived

flows, neither the ILP formulation nor the heuristic algorithm

consider the effects of the resource allocation on servers whose

computing capacity is close to the limit. As discussed in

Sections V-B and VI, this may lead to a degradation of the

QoS of existing services in terms of higher end-to-end latency.

B. Placement of VNFs/VSNFs

In addition to the research work on QoS-driven VNFs

placement, there are a number of works that specifically

consider the placement of VSNFs.

The method proposed in [11] is based on light-weight,

protocol-specific intrusion detection VNFs. The system dy-

namically invokes a chain of these IDSs according to the traffic

characteristics. The placement of the chains is based on a user-

defined or common shortest-path algorithm such as Dijkstra,

without consideration of the application QoS requirements or

available network/computing resources.

In [12], the authors argue that reactive mechanisms used by

cloud providers to deploy VSNFs do not ensure an optimal re-

source allocation. To address this, the authors propose a novel

resource allocation scheme, which estimates the behaviour of

the traffic load by monitoring the history of the current VSNFs,

and pro-actively provisions new instances of those VSNFs

as a countermeasure to any incoming resource pressure. The

proposed algorithm does not tackle the problem of VSNF

chaining. Instead, it focuses on the optimal placement of new

instances of VSNFs, which are part of existing chains. It also

assumes infinite network and computing resources.

In [13], Dermici et al. tackle the VSNFs placement problem

by proposing an ILP formulation whose objective is the min-

imization of the energy consumption of servers. This solution

does not consider any security nor QoS constraints. The aim

of the NSC embedding model presented in [14] is to minimize

the end-to-end latency of cross-domain chains of VSNFs. The

main limitation of the proposed ILP formulation is that it

only considers link propagation delays, while ignoring the

processing delay introduced at each VSNF.

C. Security-driven VSNF Placement

Although the literature reviewed in Section II-B addresses

the placement of VSNFs, few solutions have been proposed

with a focus on the network security requirements of the VSNF

placement. In [15], the authors propose a model for the place-

ment of VSNFs that takes into account security deployment

constraints. Such constraints are necessary to avoid incorrect

deployment of security functions such as placing an IDS on

an encrypted channel. The authors propose an ILP formulation

of the problem and validate their model by measuring the

execution time in four different scenarios and by comparing

the model with other heuristics in terms of placement cost.

However, the proposed optimization algorithm is always com-

puted for all flows in the network. Therefore, it does not scale

well. The authors mitigate the problem by partitioning the

network into independent blocks. Nevertheless, the partition-

ing scheme is limited to fat-tree topologies. Furthermore, the

end-to-end latency is not considered among the constraints of

the proposed model, which limits its application space. The

authors of [16] propose an ILP formulation and a heuristic

algorithm for efficiently composing chains of virtual security

functions. The ILP formulation includes a single security-

related constraint to ensure that the security level of each

deployed VSNF instance is higher than the security level

required by the service request. However, this work does not

take into account basic security aspects, such as order and

operational mode (stateful/stateless) of the chained VSNFs.

Moreover, the proposed formulation does not consider the

mutual interference between security services caused by the

concurrent access to the (finite) computing resources available

in the infrastructure. The latter aspect is particularly relevant

in a TSP scenario (see also part II of [17]), where the security
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TABLE II
TAXONOMY OF SECURITY VNFS.

VNF Description Use in security Implementations

Antispam Email filtering Malware detection, Phishing prevention SpamAssassin, rspamd, ASSP, Juniper vSRX

Antivirus Email/Web scanning/Endpoint security Virus/Trojan/Malware detection ClamAV, ClamWin, Juniper vSRX

DLP Data Loss/Leakage Prevention Data exfiltration detection myDLP, OpenDLP

DPI Payload analysis
Spam Filtering, Intrusion detection, DDoS

detection, Malware detection, Security Analytics

OpenDPI, nDPI, L7-filter, Libprotoident,

PACE, NBAR, Cisco ASAv

Honeypot Traffic redirection and inspection
Spam filtering, Malware detection,

SQL database protection, Security Analytics

HoneyD, SpamD, Kippo,

Kojoney, Dionaea, Glastopf

IDS
Traffic inspection

(header and payload)

Intrusion detection, Malware detection,

DDoS detection, Security Analytics

Snort, Bro, Suricata, ACARM-ng, AIDE,

OSSEC, Samhain, Cuckoo, Cisco ASAv

IPS
Traffic filtering based on

header and payload

Intrusion prevention,

DDoS prevention

Snort, Suricata, ACARM-ng,

Fail2Ban, Juniper vSRX

NAT1 IP address mapping Intrusion prevention Netfilter, IPFilter, PF

Packet Filter Firewall Header-based packet filtering Intrusion prevention
Netfilter, nftables, NuFW, IPFilter, ipfw, PF,

Juniper vSRX, VMWare vShield, Fortigate FW

Parental Control Media content filtering
Blocking access to

inappropriate content

OpenDNS, SquidGuard,

DansGuardian, pfsense

VPN Gateway
Site-to-site VPN connection

over unsecured networks
Data Tunneling/Encryption

OpenVPN, strongSwan, Juniper vSRX,

Cisco ASAv, Fortigate VPN

WAF HTTP traffic monitoring, filtering, logging Prevention of SQL injection, cross-site scripting ModSecurity

1 NAT is not a security function but inherently provides packet filtering similar to a firewall.

services are provisioned in a dynamic manner based on the

incoming customers’ requests.

III. BACKGROUND

This work is underpinned by two emerging network

technologies; Network Function Virtualization (NFV) and

Software-Defined Networking (SDN) and their integration to

provision network security solutions.

A. Network Function Virtualization

Today’s network functions such as firewalling, DPI, IDSs,

etc. are provided by specialized proprietary hardware appli-

ances (also called middleboxes) strategically deployed in the

network. The NFV paradigm separates the network functions

from the underlying hardware by moving the functions from

specialized devices to off-the-shelf commodity equipment such

as industry standard servers or high-performance network

devices. Therefore, network services can be decomposed into

multiple VNFs running on physical or virtual machines which

could be located in data centers, network nodes or at the end-

user premises.

In contrast to middleboxes, the configuration of which

requires intensive and time-consuming manual intervention,

NFV allows an automated and flexible deployment of network

functions on any NFV-enabled device. The lifecycle manage-

ment of VNFs and hardware resources is achieved through a

centralized software component called the Orchestrator.

B. Software-Defined Networking

SDN is often referred to as a paradigm for network environ-

ments where the control plane is physically separated from the

data plane and a logically centralized control plane controls

several devices. This differs from traditional networks in which

nodes are autonomous systems unaware of the overall state

of the network. In SDN deployments the nodes are remotely

controlled via standard protocols (e.g. OpenFlow [18]) by

a logically centralized intelligent module called the SDN

controller, which bases routing decisions on a global (domain)

view of the network.

The controller is a software component which runs on com-

modity hardware appliances and provides an open Application

Programming Interface (API) to program the network for

configuration, monitoring and troubleshooting purposes. Such

programmability enables automated and dynamic network

configurability and fine-grained control of the traffic based on

the values of the packets’ header fields (e.g., source/destination

IP/MAC addresses, VLAN tags, TCP/UDP ports, etc.).

C. Service Function Chaining

Service Function Chaining (also known as Network Service

Chaining) is a technique for selecting and steering data traffic

flows through network services. The network services can be

traffic management applications such as load balancing, or

security applications such as those detailed in Section III-D.

Service function chaining combines the capabilities of SDN

and NFV to connect a distributed set of VNFs.

D. A Taxonomy of security VNFs

As introduced in Section III-A, a VNF is a software

implementation of a network function which is deployed on a

virtual resource such as a Virtual Machine. Table II provides

a list of the most common security functions. Traditionally,

the majority of these functions would have been implemented

on dedicated hardware (middleboxes) to process the network

traffic along the data path. Today, these functions are deployed

as VNFs. Table II includes a short description of each VNF and

some of the publicly available open-source implementations or

commercial products.

IV. MOTIVATION

We motivate our work by describing two use case scenarios,

namely web browsing and online gaming, where the TSP
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exploits the NSC and NFV technologies to provide security

services tailored to specific users’ application requirements.

Web browsing. Parental control is applied to Web traffic

to block unwanted media and social-media content, while an

IDS might be used to intercept malicious software (malware).

Stateful VSNFs provide security functionality by tracking the

state of network connections (e.g. Layer 4 firewall, NAT). In

this case, the same VSNF instance must be traversed by all

traffic flows of a network conversation in order to maintain

the correct state of the connection. More flexible provisioning

schemes can be adopted for stateless VSNFs, where multiple

instances of the same VSNF might be deployed on different

servers for load balancing. This example also illustrates the se-

curity best-practice that unwanted traffic should be blocked as

soon as it enters the network by placing firewalls and IDS/IPS

close to the border of the TSP domain. Another generally

accepted practice, is to place firewalls before IDS/IPS (from

the point of view of incoming traffic). Firewalls are generally

designed to drop unauthorized traffic very quickly, thus reduc-

ing the burden on IDS/IPS, which are more computationally

expensive.

Online gaming. An IDS might also be used to detect

possible threats due to the misuse of chat tools integrated

within the gaming software (e.g., phishing [19], social

engineering [20], etc.). As the communication between the

client and the server relies on timely delivery of packets,

IDS operations are not executed on the in-game traffic. In

this case the security is enforced by a faster VSNF such

as a Firewall, which checks the packet headers without any

deep-payload analysis. It should be noted that web traffic

and chat conversations are often encrypted by TLS/SSL

cryptographic protocols. Although encryption preserves the

confidentiality of the traffic, it also prevents IDS-based

VSNFs such as Parental Control and IDS from inspecting the

packets, thus allowing an attacker to obfuscate malicious data

in encrypted payloads. However, the TSP could overcome

this limitation either using a Transparent Proxy VSNF or by

exploiting recent advances in network security [21], [22].

These are just two examples of how the security service

can be tailored to the user’s application requirements by

appropriate selection and placement of VSNFs. A list of

common classes of applications supported in the TSP use-

case is provided in Table I with their corresponding security

and QoS requirements and relevant VSNFs. One of them, the

remotely accessible CCTV system, will be used in the rest of

this paper as a running example to illustrate various aspects

of our work.

According to the motivations provided above, we can sum-

marize the rationale behind the PESS approach as follows:

(i) a user’s application should never under-perform because

of VSNF operations and (ii) the VSNF placement must obey

the TSP’s security best-practices in terms of application secu-

rity requirements, position in the network, operational mode

(stateless or stateful VSNF), and order with respect to the

direction of the traffic. In the next section, we present the

PESS mathematical model for the placement of VSNF chains

based on these criteria.

V. PESS VSNF PLACEMENT MODEL

The PESS model (Fig. 1) is a mathematical model to

progressively embed service requests, formed by one or mul-

tiple VSNF chains, onto a physical network substrate by

considering the available resources and realistic constraints.

PESS

Current Resources

Security service 
request

TSP Security policies

Position of VSNFs

Physical path for 
each chain

Updated resourcesConstraints

Fig. 1. PESS placement model workflow.

PESS takes as input a model of the physical network includ-

ing the current status of computing and network resources of

servers and links, a security service request and the TSP’s

security policies (expressed in the form of constraints for

PESS). The output of PESS is the mapping of the VSNFs

onto the physical network (position of the VSNFs and one

or more paths between them) and an updated model of the

physical network taking into account the resources used to

provision the service. The updated model is used as input for

the next request.

Physical network model. We represent the physical net-

work as a weighted graph G = (N,E), i.e. a graph where

weights are assigned to nodes and edges.

Without loss of generality and to simplify the model, we

assume that every node i ∈ N is a NFVI-POP (Network

Function Virtualization Infrastructure Point of Presence) [23]

consisting of a set of servers and a local network composed

of routers and switches. Each node i is characterized by the

total computing resources of the servers γi ∈ N
+ expressed

in CPU cycles/sec.

A link (k, l) ∈ E is a wired connection between two nodes

k and l ∈ N . It is characterized by its capacity βk,l ∈ N
+

and its propagation delay λk,l ∈ N
+. Both are expressed as

positive integer numbers representing bandwidth (bits/sec) and

latency (sec).

Regions in a physical network are defined as subsets of

nodes sharing some high-level features. Examples of regions

are: (i) a set of nodes in the TSP network providing the same

cloud service (e.g. multimedia caching, data storage, etc.), or

(ii) the set of egress nodes that connect the TSP network to

the Internet (called border region in the rest of this paper).

Security service request. We model a security service

request as a set of independent weighted directed graphs:

Gs = {(U c, U c
pairs) : c ∈ Cs}

where Cs is the set of unidirectional chains composing the

service request. Each graph includes nodes and arcs. Nodes

U c = Ac ∪ V c comprise user and remote applications (Ac,

the endpoints of chain c) as well as a subset of all VSNFs

(V c). Each arc in U c
pairs delineates the order of traversing the

VSNFs ∈ V c between endpoints in Ac.

Each chain c ∈ Cs is characterized by its requirements in

terms of minimum bandwidth βc and maximum latency λc.



6

Each endpoint in Ac is characterized by an identifier, which

specifies where the endpoint must be placed in the physical

network. The user application is characterized by the identifier

of the physical node to which the user is attached (called ep1 in

the rest of the paper). A remote application is characterized by

the identifier of a region in the physical network (called EP2).

For instance, the border region if the endpoint represents a

remote gaming server located outside the physical network. In

this paper, ep1 and EP2 are referred to as physical endpoints

of the service request Gs.

A VSNF u ∈ V c is characterized by its requirements in

terms of CPU units γu expressed in CPU cycles/bit. u is also

characterized by the latency λc
i,u it introduces in the dataplane

to process a packet of chain c on node i. As formalized in

Eq. (13), this latency is a function of the residual computing

capacity of the node i where u is placed, the computing

requirements γu of the VSNF, the average packet size σc of

chain c and the traffic load of the chain (whose upper bound is

βc). Finally, a VSNF is characterized by its operational mode

(either stateless or stateful) and by the identifier of a region

in the physical network where it must be placed, if required

by the TSP security policies.

Illustrative example. An example of a security service

request for a CCTV system (see Table I) is represented in

Fig. 2. The request in the example is composed of three chains

(c1, c2, and c3), each one identified by the type of traffic and

its direction.

CCTV
FW
(γ2)

IPS
(γ1)

Remote
Access

βc1, λc1
βc1, λc1

βc2, λc2 βc2, λc2

βc2, λc2

βc3, λc3

βc3, λc3βc3, λc3

Video Stream

Camera Mgmt/Controls

Fig. 2. Example of security service request for the CCTV system.

Chain c1 is applied to the live video stream captured

by the cameras and accessible over the Internet. The chain

comprises a L3 firewall to ensure that the stream is only

transmitted to authorized endpoints. As specified in Table I,

the most relevant requirement in this case is the bandwidth

(βc1) which depends on the frame rate, frame size and video

codec of the CCTV system. In this case, a deep inspection

of the video stream packets (e.g., with an IPS) would not

provide any additional protection but would possibly reduce

the frame rate of the video streaming, thus compromising the

detection of anomalous events. On the other hand, the bi-

directional control/management traffic is inspected by the IPS

and the firewall included in chains c2 and c3. Such VSNFs

protect the CCTV system from attacks such as Mirai [24]

perpetrated through bots maliciously installed on Internet-

connected devices, while the latency requirements λc2 and

λc3 guarantee the responsiveness of the remote control of the

CCTV cameras (pan, tilt, zoom, etc.).

A. ILP formulation

Definitions. Let us first define two binary variables:

• xc
i,u = 1 iff node u ∈ U c is mapped to i ∈ N .

• yck,l,i,j,u,v = 1 iff physical link (k, l) ∈ E belongs to

the path between nodes i and j to which u, v ∈ U c are

mapped.

The residual capacity of a link, β′
k,l, is defined as the total

amount of bandwidth available on link (k, l) ∈ E:

β′
k,l = βk,l −

∑

c∈C, i,j∈N
(u,v)∈Uc

pairs

βc · yck,l,i,j,u,v (1)

thus, it is the nominal capacity of link (k, l) minus the

bandwidth required by the chains c ∈ C already mapped on

that link.

Similarly, the residual capacity of a node is defined as its

nominal CPU capacity minus the computing resources used

by the VSNFs v instantiated on the node:

γ′
i = γi −

∑
{c∈C,u∈V c} γ

c
u · xc

i,u (2)

Problem formulation. Given a physical network G, for

each security service request Gs, find a suitable mapping of

all its unidirectional chains on the physical network, which

minimizes the physical resources of G expended to map Gs,

also known as the embedding cost.

Hence, the solution of the problem is represented by a set of

xc
i,u and yck,l,i,j,u,v such that the cumulative usage of physical

resources for all the chains in Gs is minimized:

min
∑

c∈Cs, i,j∈N,
(k,l)∈E,(u,v)∈Uc

pairs

bk,l · β
c · yck,l,i,j,u,v + α

∑

c∈Cs,i∈N,u∈V c

ci · γ
c
u · xc

i,u (3)

Here, α is a factor that can be used to tune the relative

weight of the cost components (we have used α = 1 for the

experiments described in Section VII).

bk,l and ci are the costs for allocating bandwidth and CPU:

bk,l =
1

β′
k,l + δ

ci =
1

γ′
i + δ

They penalize nodes and links with less residual capacity

with the aim to increase the chances of accommodating

more security service requests on the given physical network.

δ −→ 0 is a small positive constant used to avoid dividing by

zero in computing the value of the function.

B. Constraints

Routing Constraint (4) ensures that each node u ∈ U c is

mapped to exactly one physical node i ∈ N . With Constraint

(5), a physical link (k, l) can belong to a path between two

nodes i and j for an arc (u, v) ∈ U c
pairs of chain c ∈ Cs

only if u and v are mapped to these nodes. Constraint (6)

ensures that the path created for arc (u, v) starts at exactly one

edge extending from node i to where VSNF (or start/endpoint)

u is mapped. Similarly, (7) ensures the correctness and the

uniqueness of the final edges in the path. Constraints (5-7)

can be easily linearized with standard techniques such as the

ones presented in [25]. Constraint (8) is the classical flow



7

conservation constraint. That is, an outbound flow equals

an inbound flow for each intermediate node l (intermediate

nodes cannot consume the flow). Together with Constraint

(8), Constraint (9) prevents multiple incoming/outgoing links

carrying traffic for a specific flow in the intermediate node l,
i.e., we only consider unsplittable flows.
∑

{i∈N} x
c
i,u = 1 ∀c ∈ Cs, ∀u ∈ U c (4)

yck,l,i,j,u,v ≤ xc
i,u · xc

j,v

∀c ∈ Cs, ∀i, j ∈ N, ∀(u, v) ∈ U c
pairs, ∀(k, l) ∈ E

(5)

∑
{(i,k)∈E,j∈N} y

c
i,k,i,j,u,v · x

c
i,u · xc

j,v = 1

∀c ∈ Cs, ∀(u, v) ∈ U c
pairs

(6)

∑
{(k,j)∈E,i∈N} y

c
k,j,i,j,u,v · x

c
i,u · xc

j,v = 1

∀c ∈ Cs, ∀(u, v) ∈ U c
pairs

(7)

∑

k∈N
(k,l)∈E

yck,l,i,j,u,v =
∑

m∈N
(l,m)∈E

ycl,m,i,j,u,v
(8)

∀c ∈ Cs, ∀i, j ∈ N, ∀l ∈ N, l 6= i, l 6= j, ∀(u, v) ∈ U c
pairs

∑

k∈N
(k,l)∈E

yck,l,i,j,u,v ≤ 1
(9)

∀c ∈ Cs, ∀i, j ∈ N, ∀l ∈ N, l 6= i, l 6= j, ∀(u, v) ∈ U c
pairs

Resource Constraints (10-11) ensure that the resources

consumed by a security service do not exceed the available

bandwidth and computing capacities.
∑

c∈Cs, i,j∈N
(u,v)∈Uc

pairs

yck,l,i,j,u,v · β
c ≤ β′

k,l ∀(k, l) ∈ E
(10)

∑
{c∈Cs,u∈V c} x

c
i,u · γc

u ≤ γ′
i ∀i ∈ N (11)

QoS Constraint (12) verifies that the requirements in terms

of maximum end-to-end latency are met. It takes into consid-

eration the propagation delay of physical links, the processing

delay of VSNFs and the queuing delay through network

devices. Note that the minimum bandwidth requirement is

verified against the bandwidth resource Constraint (10).

πc +
∑

i∈N,u∈V c

xc
i,u · λc

i,u +
∑

i,j∈N,(k,l)∈E
(u,v)∈Uc

pairs

yck,l,i,j,u,v · (λk,l + λc
k,l,i,j) ≤ λc

∀c ∈ Cs (12)

πc is an estimation of the propagation delay between the

TSP network and the remote endpoint of chain c, in case the

endpoint is outside the TSP network. We assume that this value

is independent from the TSP’s network egress node. Clearly

πc is 0 for those chains whose remote endpoint is part of the

TSP network (e.g., a cloud data center managed by the TSP).

The processing delay λc
i,u is the time spent by a packet

to traverse VSNF u on physical node i. It contributes to the

overall end-to-end delay of chain c only if VSNF u is placed

on node i (i.e., xc
i,u = 1). λc

i,u includes the time taken by the

VSNF to process the packet and the overhead of the virtual-

ization technology (VMware, KVM, QEMU virtual machines,

Docker containers, etc.). For simplicity, we do not model the

TABLE III
GLOSSARY OF SYMBOLS.

Sets

N Set of physical nodes

E Set of physical links

C Set of all unidirectional chains already embedded in the network

Cs Set of all unidirectional chains in the service request Gs

Uc Set of virtual nodes in the chain c

Uc
pairs Set of unidirectional arcs in the chain c

Ac Set of endpoints of the chain c. Ac ⊂ Uc

V c Set of VSNFs in the chain c. V c ⊂ Uc

Ru Region of N where VSNF u must be placed (region constraint)

M Region of N where no VSNFs can be placed (veto constraint)

ep1, EP2 Physical endpoints of a service request. ep1 ∈ N,EP2 ⊂ N

Parameters

γi Nominal computing resources of node i (CPU cycles/sec)

γ′

i Residual computing resources of node i (CPU cycles/sec)

γu
CPU cycles required by u to process one bit of a network packet

(CPU cycles/bit)

γc
u

Computing resources required by node u of chain c (CPU

cycles/sec). γc
u = γu · βc

βk,l Nominal capacity of link (k, l) (bits/sec)

β′

k,l Residual capacity of link (k, l) (bits/sec)

βc Minimum bandwidth required by chain c (bits/sec)

λk,l
Propagation delay: the time spent by a packet to traverse the link

(k, l) (secs)

λc
k,l,i,j

Queuing delay: time spent by a packet of chain c to traverse the

network devices (routers and switches) in the local networks of

adjacent nodes k and l (secs). λc
k,l,i,j > 0 iff k = i or l = j.

λc
i,u

Processing delay: the time spent by a packet to traverse VSNF u of

chain c placed on node i (secs)

λc Maximum latency tolerated by chain c (secs)

πc Estimated latency between the TSP network and the remote endpoint

of chain c (secs). πc = 0 if the endpoint belongs to the TSP network.

σc Average packet size of chain c (bits).

bk,l Cost for allocating a unit of bandwidth on link (k,l)

ci Cost for allocating a unit of CPU on node i

Decision variables

xc
i,u

Binary variable such that xc
i,u = 1 iff node u ∈ Uc is mapped

to i ∈ N

yc
k,l,i,j,u,v

Binary variable such that yc
k,l,i,j,u,v = 1 iff physical link

(k, l) ∈ E belongs to the path between nodes i and j to which

u, v ∈ Uc are mapped

delays due to the CPU scheduler operations implemented on

the physical node [26]. Based on the observations in [27], [28],

[29], λc
i,u is modeled as a convex function of the traffic load of

the chain, and its value is computed by considering the impact

of other VSNFs co-located on the same physical node.

λc
i,u =

γu · σc

(γ′
i − γu · βc) + δ

=
γu · σc

(γ′
i − γc

u) + δ
(13)

In Eq. (13), γu · σc is the average amount of CPU cycles

used by VSNF u to process a packet of chain c (virtualization

overhead included). The latency overhead caused by co-

located VSNFs depends on the amount of computing resources

of the node they use or, equivalently, on the residual computing

resources of the node γ′
i. γu · βc = γc

u is the amount of CPU

cycles/sec used by VSNF u on node i, which depends on the

traffic load of the chain. δ is a small positive constant used

to avoid dividing by zero in the case that u consumes all the

residual computing resources of node i.
The sum λk,l + λc

k,l,i,j in Eq. (12) is the total time spent

by a packet travelling between two adjacent nodes k and l.
It includes the propagation delay λk,l, proportional to the

distance between k and l, and the queuing delay λc
k,l,i,j ,

proportional to the number of network devices (switches and

routers) the packet traverses within the local networks of k
and l. The queuing delay is influenced by the buffer size of
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network devices’ ports and by the traffic load [30]. For the

sake of simplicity, we assume that the buffers are correctly

dimensioned, i.e. no dropped packets due to buffer overflow. In

addition, we estimate the queuing delay λc
k,l,i,j as a traffic-load

independent value; a function of the maximum queue capacity

of the ports and of the VSNFs placement (hence a function of

indices k, l, i and j). Specifically, λc
k,l,i,j > 0 if at least one

VSNF is mapped either on k (k = i), or on l (l = j), meaning

that a packet of chain c must traverse the local network of

either k, or l (or both) to reach the VSNFs running on the

nodes’ servers. Otherwise, the local networks of k and l are

by-passed by the traffic of c, resulting in λc
k,l,i,j = 0.

Constraint (14) ensures that the current security service Gs

does not compromise the end-to-end latency of chains ĉ ∈ C
in operational security services (also called operational chains

in the rest of the paper).

πĉ +
∑

i∈N,û∈V ĉ

x̄ĉ
i,û · λĉ

i,û +
∑

i,j∈N,(k,l)∈E

(û,v̂)∈U ĉ
pairs

ȳĉk,l,i,j,û,v̂ · (λk,l + λĉ
k,l,i,j) ≤ λĉ

∀ĉ ∈ C (14)

In Eq. (14), x̄ĉ and ȳĉ are the values of decision variables

x and y computed for the placement of chain ĉ. λĉ
i,û is the

updated value of the processing delay introduced to the traffic

of chain ĉ by VSNF û when running on node i.

λĉ
i,û =

γû · σĉ

(γ′
i −

∑
{c∈Cs,u∈V c} x

c
i,u · γc

u) + δ
(15)

In Eq. (15), the value of λĉ
i,û is updated by considering the

computing resources consumed on node i by VSNFs of the

security service request Gs. Approximation of Eq. (15) can

be achieved by using piecewise linearization techniques and

Special-Ordered Set (SOS) variables and constraints available

in most commercial solvers (e.g., [31]).

Security constraints ensure that the TSP’s security policies

are applied. Specifically, Constraint (16) forces a subset C ′
s of

the chains in the request to share the same VSNF instance in

case of stateful flow processing.

xc1
u,i = xc2

u,i ∀c1, c2 ∈ C ′
s ⊂ Cs, i ∈ N, u ∈ V c (16)

Constraint (17) forces the algorithm to place the VSNF u ∈
V c in a specific region of the network defined as a subset of

nodes Ru ⊂ N .

∑
{i∈Ru}

xc
i,u = 1 Ru ⊂ N,Ru 6= ∅, u ∈ V c (17)

We use Constraint (17) to enforce the security close to the

user by placing VSNFs on ep1 (Ru = {ep1}), or to protect

a portion of the TSP’s network, such as the border region or

a distributed data center (Ru = EP2) from potentially ma-

licious user traffic. Furthermore, Constraint (17) can be used

to place a VSNF on a physical node with special hardware

characteristics (e.g., hardware acceleration for encryption).

Similarly, the veto Constraint (18) can be used to prevent the

placement of any VSNFs on a pre-defined subset of nodes

M ⊂ N . A TSP may choose to do this to protect specific

nodes (called veto nodes) that host sensitive data or critical

functions from user traffic.
∑

{i∈M,u∈V c} x
c
i,u = 0 ∀c ∈ Cs,M ⊂ N,M 6= ∅ (18)

Finally, for each chain c ∈ Cs, the correct order of VSNFs

in V c is ensured by Constraints (4-9), plus Constraint (17)

applied to user and remote applications u ∈ Ac with Ru =
{ep1} and Ru = EP2 respectively. Note that, the order can

be specified per application (chain), as different applications

may require the same VSNFs but in different order.

These four security constraints enable fulfillment of the

security policies/practices defined by the TSP e.g. the order

in which the VSNFs are executed, the position of the VSNFs

in the network, and the operational mode of VSNFs (either

stateful or stateless).

VI. THE PESS HEURISTIC ALGORITHM

The embedding problem presented in Section V has been

solved using a commercial solver. However, given the com-

plexity of the ILP model, the solver is unable to produce

solutions in an acceptable time frame, as required for dynamic

scenarios such as the ones under study. For this reason, we

have also implemented a heuristic algorithm to find near

optimal solutions in much shorter time.

The logic behind the PESS heuristic is based on assuring

that Constraints (4-18) are applied in an efficient manner. In

particular, the security constraint (16) ensures that a stateful

VSNF specified in two or more chains in the same service

request Gs is placed on the same node. However, as different

chains might share more than one stateful VSNF (possibly in a

different order), the correct placement of a multi-chain security

service request may become a computationally expensive

operation. For this reason, given a path between ep1 and one

of the nodes ep2 ∈ EP2, the heuristic places all the VSNFs

specified in Gs on a maximum of three nodes of the path with

the following strategy: (i) place each region-specific VSNF

u ∈ V c (Ru 6= ∅) either on ep1 or on ep2 ∈ EP2 depending

on Ru (i.e., either Ru = {ep1} or Ru = EP2), (ii) place all

the other VSNFs in Gs on the node with the highest residual

capacity in the path to minimize the embedding cost (Eq. 3).

The solution is obtained by selecting the candidate path

between ep1 and EP2 where the embedding of all the chains

in Gs fulfills the constraints described in Section V at the

lowest cost, as computed with the objective function (Eq. 3).

Initial solution. The embedding process starts at line 4 in

Algorithm 1 with a greedy approach based on the Dijkstra’s

algorithm. At this stage, we compute the shortest path tree

between the two endpoints ep1 and EP2 using the residual

bandwidth as link weight computed as bk,l ·β
c in Eq. (3). The

Dijkstra algorithm stops when all the nodes ep2 ∈ EP2 are

marked as visited, i.e. before building the whole tree of paths.

For each path between ep1 and EP2, the algorithm places the

VSNFs in the chains according to the aforementioned strategy,

the order of the VSNFs as specified in the service request, the

latency Constraint (12), and the security Constraints (16-18)

(line 8). The output of this first step is a set of candidate

solutions S with different embedding costs. S is passed as

input to the next step.

Expanded solution set. The algorithm now evaluates

whether high-capacity nodes not included in the initial solution

set S can be used to build new solutions with lower embedding
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Algorithm 1 the PESS algorithm.

Input: Physical network substrate (G), security service request (Gs), set of
active chains in the network (C)

Output: The mapping of the security service onto the physical substrate
(solution). None if no feasible mappings are found.

1: procedure PESS(G, Gs, C)
2: β̄ ←

∑
{c∈Cs}

βc ⊲ total required bandwidth

3: γ̄ ←
∑

{c∈Cs,u∈V c} γ
c
u ⊲ total required CPU

4: P = {p[ep1,ep] | ep ∈ EP2} ← DIJKSTRA(ep1, EP2, β̄)
5: if P = ∅ then

6: return None

7: end if

8: S = {s[ep1,ep] | ep ∈ EP2} ← EMBED(P, β̄, γ̄)
9: NS ← {i ∈ s | s ∈ S} ⊲ physical nodes in the initial solutions

10: E ← {i ∈ N | i /∈ NS ∪M, γ′
i > γ′

j ∀j ∈ NS}
11: s̄[ep1,ep2] ← argmin

s∈S

cost(s) ⊲ best initial solution

12: P1 ← DIJKSTRA(ep1, E, β̄)
13: P2 ← DIJKSTRA(ep2, E, β̄)
14: S ← S ∪ EMBED(P1 ∪ P2, β̄, γ̄) ⊲ expanded solution set
15: solution←None

16: S ← SORTEDDECREASINGCOST(S)
17: for all cs ∈ S do

18: if LATENCYOPCHAINS(G, C, cs) is True then

19: solution← cs
20: break

21: end if

22: end for

23: if solution is None then

24: return None

25: end if

26: UPDATERESOURCES(solution,G)
27: STORESOLUTION(G, C, solution)
28: return solution
29: end procedure

cost. Hence, given the initial set of solutions S, the algorithm

identifies the physical nodes in the network with these two

properties (set E defined at line 10): (i) not included in

the initial set of solutions S nor veto nodes, and (ii) higher

computing capacity with respect to the nodes included in S.

The algorithm then computes the shortest path tree twice, once

from ep1 towards E and once from ep2 ∈ EP2 towards E
(lines 12-13), where {ep1, ep2} are the physical endpoints of

the solution in S with the lowest embedding cost (line 11).

The resulting subpaths are joined to form a new set of paths

between ep1 and ep2. Afterwards, the algorithm performs the

placement of the VSNFs on each of the new paths with the

strategy described earlier in this section. The feasible solutions

are added to the initial set S (line 14).

The set of candidate solutions is sorted in descending

value of embedding cost (line 16). The first one that satisfies

Constraint (14) is the accepted solution (lines 18-19). Finally,

the algorithm updates the values of γ′
i and β′

i by removing the

resources consumed with the accepted solution and stores the

mapping of its chains in the set C that records all the active

chains in the network (lines 26-27).

Latency of operational chains. Given a candidate solution

cs ∈ S, function LATENCYOPCHAINS is invoked to verify

whether embedding cs compromises the end-to-end latency

of operational chains (line 18 in Algorithm 1). Instead of

verifying the inequality in Eq. (14) for each operational chain,

LATENCYOPCHAINS implements a heuristic approach which

reduces the time complexity of this operation from O(n), with

n the number of operational chains, to O(1).

Each time a chain c ∈ C becomes operational, the algorithm

computes 〈γ〉c, a threshold value obtained from Eq. (12) and

(13) as follows:

〈γ〉c =

∑
i∈N,u∈V c

x̄c
i,u · γu · σc

λc − πc −
∑

i,j∈N,(k,l)∈E
(u,v)∈Uc

pairs

ȳck,l,i,j,u,v · (λk,l + λc
k,l,i,j)

− δ
(19)

In Eq. (19), x̄ and ȳ are the values of decision variables x
and y used to embed c. 〈γ〉c estimates the minimum average

residual computing capacity necessary to satisfy the inequality

in Eq. (12). Therefore, the algorithm records and monitors

those operational chains with the highest values of 〈γ〉c to

establish whether a candidate solution is feasible or not, as

inequality in Eq. (12) is violated earlier for such chains than

for the others.

The algorithm stores one operational chain per physical

node in a data structure, i.e. the chain with the highest value

of 〈γ〉c with at least one VSNF mapped on that node. Hence,

given the physical nodes mapped in the candidate solution

cs, the algorithm computes Eq. (14) only for the operational

chains in the data structure linked to such nodes by using the

values of variables x and y of solution cs. If the inequality is

not satisfied for one of those chains, cs is rejected.

As the maximum number of physical nodes used to pro-

vision a security service is three (ep1 and EP2 to fulfill

the region constraint and the node with the highest residual

capacity in the path), the worst-case time complexity of this

process is O(1), thus constant in the number of operational

chains and with respect to the size of the network. There-

fore, the overall time complexity of the PESS heuristic is

O(|E| + |N | log(|N |)), i.e., the worst-case time complexity

of the Dijkstra’s algorithm.

VII. EVALUATION

We first assess the PESS heuristic by comparing its solutions

against the optimal embeddings as computed by a commercial

solver (Gurobi [32]). We then prove the benefits of the

proposed application-aware approach against the baseline (the

application-agnostic approach adopted, for instance, in [15]),

in which security services are provided without taking into

account the specific requirements of applications. We finally

analyze the scalability of PESS by measuring the average

embedding time on different network sizes.

A. Test configuration

The PESS heuristic has been implemented as a single-

threaded Python program, while the ILP model formalized in

Section V has been implemented with the Gurobi Python API

version 7.5 [33]. All experiments are performed on a server-

class computer equipped with 2 Intel Xeon Silver 4110 CPUs

(16 cores each running at 2.1 GHz) and 64 GB of RAM.

1) Topology

The simulations are performed on synthetic topologies ran-

domly generated based on the Barabási-Albert model [34]. We

generate topologies of different sizes and densities to evaluate
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the performance of the PESS heuristic in a variety of generic

network scenarios.

We also validate PESS with two realistic network models.

One is the Stanford University backbone [35], a medium-scale

campus network consisting of 46 links, 14 operational zone

routers, 10 Ethernet switches, and 2 border routers connecting

the University to the Internet. We assume one NFVI-POP for

each network device and 10 Gbps links. The second model

is the Italian education and research network (consortium

GARR [36]). The GARR network covers the entire Italian

national territory ([37]), comprising 83 links and 46 nodes.

Along with the actual view of the physical topology, [37]

provides the specification of the egress nodes, i.e. the nodes

that connect the GARR network to the Internet and that

compose the border region in our evaluation (nodes FI1, MI2,

PD2, RM2 and TO1, as indicated in [37]). As we have no

information related to data center distribution in the GARR

network, we have assumed one NFVI-POP for each node. In

addition, we set the nominal capacity of the links βk,l using

the values specified in [38].

Given the relatively small size of the Stanford network,

we assume no propagation delay between its nodes, i.e.

λk,l = 0 ∀k, l. For the other networks, random and GARR, we

compute the propagation delay of each link with the following

formula:

λk,l =
dk,l · r index

C

where r index = 1.5 is an approximation of the refractive

index of optical fibers, C ≃ 3 · 108 m/s is the speed of light

in the vacuum and dk,l is the distance between two nodes

k and l. In the case of random networks, dk,l is a random

positive value ranging from 10 to 100 Km, while for the GARR

network dk,l is computed by approximating the coordinates of

the nodes based on the information available on the web site.

As introduced in Section V-B, we estimate the worst-case

queuing delay λc
k,l,i,j as a traffic-load independent value using

the queue capacity of switch ports reported in [30] (80µs for

10 Gbps ports with a 100 KB buffer). Specifically, we assume

a three-tier local network at each node of GARR and random

topologies, resulting in a maximum of 12 × 80µs queuing

delay introduced at each node. This reflects the maximum

queuing delay experienced by each packet crossing a node

to be processed by one or more VSNFs mapped on the node,

which involves traversing three network devices (hence, six

10 Gbps ports) to reach the servers where the VSNFs are

running, and traversing three network devices before leaving

the node (six further 10 Gbps ports).

For the campus scenario, implemented using the Stanford

University topology, we instead assume only one network

device per node; the device specified in the network topology.

Hence, the maximum queuing latency for a packet crossing a

Stanford node is 4× 80µs.

For each node of the three evaluation scenarios we assume

one server with computing capacity of 32x2.1 GHz (a 32-core

CPU running at 2.1 GHz).

2) Security service requests

As introduced in Section V, a security service request is

configured by the TSP to provision security for user applica-

TABLE IV
CPU REQUIREMENTS FOR SOME VSNF IMPLEMENTATIONS.

VSNF Virtualization
γu

(cycles/bit)1

Snort IDS/IPS VirtualBox 9.5 [39]

Suricata IDS/IPS VirtualBox 8.2 [39]

OpenVPN with AES-NI KVM/QEMU 31 [40]

strongSwan with AES-NI KVM/QEMU 16 [40]

Fortigate-VM NGFW FortiOS 9 [41]

Fortigate-VM SSL VPN FortiOS 13.6 [41]

Fortigate-VM IPSec VPN FortiOS 14.5 [41]

Fortigate-VM Threat protection FortiOS 11.3 [41]

Cisco ASAv Stateful IDS VMware ESX/ESXi 4.2 [42]

Cisco ASAv AES VPN VMware ESX/ESXi 6.9 [42]

Juniper vSRX FW VMware VMXNET3 2.3 [43]

Juniper vSRX IPS VMware VMXNET3 2.4 [43]

Juniper vSRX AppMonitor VMware VMXNET3 1.5 [43]

1 γu=(CPU clock)*(CPU usage)/Throughput. CPU usage is set to 1 (i.e. 100%)

when the value is not specified.

tions (see the CCTV example in Section V). For evaluation

purposes, we automatically generate requests composed of a

random number of chains, ranging between 1 and 5. Each

chain comprises a random subset of VSNFs from the list

presented in Table IV, with a maximum of 3 VSNFs per chain

(i.e., up to 15 VSNFs per user application). Based on the use

case scenarios illustrated in Sections IV and V (web browsing,

online gaming, CCTV system), we believe these are reasonable

values.

The CPU requirements for the VSNFs are presented in Table

IV. It should be noted that the values of γu (cycle/bit) reported

in Table IV are estimated based on the results of experiments

reported in scientific papers or product datasheets and obtained

under optimal conditions, with only one VSNF running at a

time. The impact on the network traffic caused by concurrent

VSNFs running on the same node are estimated with Eq. (13)

and (15). These values of γu have been used to perform the

evaluation tests described in the remainder of this section,

with the aim of enabling interested readers to replicate the

experiments in similar conditions. However, we also obtained

comparable results using random values.

B. Comparison between solver and heuristic

Methodology. In this experiment, we compare the PESS

ILP-based algorithm implemented with the solver and the

PESS heuristic on the Stanford and GARR network models,

and on Barabási-Albert random topologies with 20 nodes and

36 links.

The security service requests are generated using a Poisson

process with exponential distribution of inter-arrival and hold-

ing times. Once a service expires, the resources allocated to

it are released.

We start by simulating the processing of 105 service

requests using the PESS heuristic. Once a stable network

utilization (load) is reached, we save the subsequent service

requests along with the network state and the heuristic so-

lution. In a second stage, we run the solver to compute the

optimal solution for each of the requests saved in the previous

stage and we compare the results with the recorded heuristic

solutions. This process is repeated with values of network load

ranging between 1000 and 20000 Erlang.
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TABLE V
COMPARISON BETWEEN THE PESS HEURISTIC AND THE PESS

ILP-BASED ALGORITHM ON THREE NETWORK SCENARIOS.

Network model
Heuristic embedding

cost overhead1

Average Time (sec)

Heuristic Solver

Random 0.06% 0.002 150

Stanford 0.07% 0.003 700

GARR 0.5% 0.003 1500

1 Average overhead with respect to the solver embedding cost.

Metrics. (i) Heuristic embedding cost overhead over opti-

mal solutions and (ii) embedding time.

Discussion. As explained in Section VI, the PESS heuristic

places all the chains of a service request on a single path

to efficiently guarantee that the QoS Constraint (12) and the

region Constraint (17) are respected. Once the path is found,

the heuristic places the VSNFs of all the chains on a maximum

of three nodes in the chosen path: the one with the highest

residual computing capacity and the ones specified with the

region constraint (if any). Such implementation choices reduce

the solution space in case of requests with multiple chains

and VSNFs. On the other hand, Constraints (12) and (17) also

narrow down the solution space for the solver, often resulting

in single-path optimal solutions. As a result, we measure a

marginal embedding cost overhead of the heuristic solutions

with respect to the optimal solutions on all three evaluation

scenarios (see Table V).

It is worth analyzing the reason behind nearly one order

of magnitude difference between the GARR topology and

the other two network scenarios. When the initial solution is

computed, the heuristic algorithm selects the endpoint ep2 ∈
EP2 to further explore the solution space, thus excluding

the other endpoints in EP2 (line 11 in Algorithm 1). This

strategy improves the scalability of the heuristic in case of

large endpoint sets EP2, at the cost of slightly reducing the

quality of the solutions.

In this regard, on the GARR network the border region is

used as endpoint EP2 for 80% of the requests, to simulate a

real-world TSP network where most of the traffic is directed

towards the Internet. Hence, good solutions involving four of

the five nodes in the border are not considered during the

second stage of the heuristic, possibly leading to less accurate

solutions. Conversely, a border region of only two nodes is

defined in the Stanford topology (the two border routers),

while no special regions at all are configured for the random

networks (thus, always |EP2| = 1), resulting in more precise

embeddings.

As reported in Table V, the embedding time measured for

the heuristic is 3 ms, on average, with the Stanford and GARR

topologies, and below 3 ms, on average, with the random

topologies. In contrast, the solver takes between 150 and

1500 s, on average, to find the optimal solutions on the three

network scenarios. Please note that, the results related to the

GARR network are limited to service requests with less than

10 VSNFs. Due to the size of the GARR topology (46 nodes

and 83 links), above this threshold the solver runs out of

memory and it is terminated by the operating system.

C. PESS vs application-agnostic provisioning

Methodology. We start two experiments in parallel using

two identical copies of the same physical network graph. At

each iteration, we generate a service request with application-

specific QoS and security requirements. In Experiment 1, the

security service is provisioned on one copy of the network with

the PESS heuristic. In Experiment 2, the service is provisioned

on the second copy of the network by simulating the standard

approach (adopted, for instance, in [15] and used in this test

as baseline), where two application-agnostic chains of VSNFs

(one for each direction of the traffic) are applied to the user

traffic to fulfill all the security requirements regardless of the

specific needs of the applications. At the end of each iteration,

the two copies of the network are updated according to the

resources consumed by the respective provisioning approach.

As in the previous experiment, security service requests are

generated using a Poisson process with exponential distribu-

tion of inter-arrival and holding times. We run 105 iterations,

starting to collect statistics after the first 8·104 requests (once a

stable network load is reached). The two parallel experiments

are repeated with different network load values.

Metrics. Blocking probability, consumption of computing

resources, end-to-end latency of the chains and number of

active services in the network.

Discussion. Fig. 3 compares the performance of the PESS

application-aware service provisioning algorithm (PESS in the

figure) and the baseline approach (Base) on random networks.

The experimental results are plotted as functions of the net-

work load, which is expressed in terms of average number of

security service requests in the network (Erlang).

The efficient usage of the computing resources reported in

Fig. 3(a) is a major benefit of the application-aware provi-

sioning mechanism proposed in this work. In particular, PESS

avoids inefficiencies, such as a high bandwidth video stream

being processed by a high resource demanding IPS (see the

CCTV example in Section V), ultimately leading to a lower

blocking probability and to a higher number of active services

in the network, as shown in Fig. 3(b) and 3(c) respectively.

The benefits of PESS in terms of reduced end-to-end latency

are reported in Fig. 3(d). The plot illustrates the ratio between

the average end-to-end latency of the chains in Experiment 2

(Baseline), and the average end-to-end latency of the chains

in Experiment 1 (PESS). At low loads, when the nodes in

the networks of both experiments are only partially busy, the

value of this ratio is between 1.1 and 1.4. In other words, under

typical operational conditions, the average end-to-end latency

of chains provisioned with our approach is 10-40% lower

than the baseline. Moreover, when the nodes in Experiment

2 are heavily loaded, the processing delay introduced by busy

nodes becomes very high, as modeled with Eq. (12). This

phenomenon produces high ratios, represented by the spike

in the plot, which gradually decrease at high loads when

the nodes in the network of Experiment 1 also become fully

loaded.

Fig. 4 reports the results of the simulations performed with

the GARR network. In this case, we are particularly interested

in observing the behavior of our approach in the presence

of a critical region (from the security viewpoint) such as the
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Fig. 3. Comparison between the baseline (Base) and the PESS approaches on random networks (20 nodes and 36 links).
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Fig. 4. Comparison between the baseline (Base) and the PESS approaches on the GARR network.

1K 4K 8K 12K 16K 20K
0

20

40

60

80

100

Load (Erlang)

C
o

n
s
u

m
e

d
re

s
o

u
rc

e
s

(%
)

PESS Base

PESS border Base border

(a) Consumed CPU resources.

1K 4K 8K 12K 16K 20K

10
−2

10
−1

1

Load (Erlang)

B
lo

c
k
in

g
P

ro
b

a
b

ili
ty

PESS

Base

(b) Blocking probability.

Fig. 5. Comparison between the baseline (Base) and the PESS approaches on the Stanford backbone network.

border of the network. In order to analyse this, we empirically

configure the random generator of service requests to generate

80% of requests directed towards the Internet (i.e., crossing the

border of the network). In Fig. 4(b), it can be noted that both

PESS and the baseline have similar blocking probability at low

loads (below 6000). This is a consequence of the bandwidth

usage on links towards the border region, which is almost

always identical for Experiment 1 and Experiment 2. The two

curves start diverging at load 6000, i.e. when the border region

runs out of computing resources with the baseline approach

(as shown with dashed curves in Fig. 4(a)). The probability

curves in Fig. 4(b) begin to re-converge at load 12000, when

the border region with PESS also becomes full. Solid curves

in Fig. 4(a) indicate that, between loads 1000 and 6000, when

the blocking probability of the two experiments is comparable,

PESS requires around 50% less computing resources than the

baseline to provision the security services.

The results obtained with the Stanford network model are
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Fig. 6. Heuristic execution time as a function of the number of physical nodes. The plot on the left reports the results with m = 1, 3, 5 in the Barabási-Albert
model when generating random graphs, while the one on the right side shows the measurements with fixed m = 5 at different sizes of endpoint EP2.

presented in Fig. 5. In contrast to the GARR network, where

busy links in sparsely connected areas cause rejected requests

at low loads, in these experiments we see a non-zero blocking

probability only when the border region of the Stanford

network runs out of computing resources, i.e. at loads 4000

and 6000 for the baseline and PESS, respectively.

Similar to the random networks scenario, we can observe

a higher number of active services and a lower end-to-end

latency with PESS in both GARR and Stanford networks. The

plots are omitted due to space constraints.

D. Scalability evaluation

Methodology. We evaluate the scalability of the PESS

heuristic on Barabási-Albert random topologies of between

10 and 1000 nodes. For each of these topologies, we simulate

the processing of 1000 service requests and report the average

execution time.

Metrics. Average execution time.

Discussion. In the first experiment (reported in the leftmost

plot of Fig. 6) we used |EP2| = 1 for all the service requests

and we varied the attachment parameter m, which determines

the number of edges to attach from a new node to existing

nodes when generating the random network. This influences

the execution time of the shortest path algorithm. For instance,

m = 1 produces tree-like topologies with |E| = |N | − 1. The

general rule for computing the number of edges in Barabási-

Albert networks is |E| = m · |N | −m2. As illustrated in Fig.

6, even for very large networks with 1000 nodes and 4975

edges (m = 5 in the figure), on average, the PESS heuristic

can provision a security service in around 200 ms.

In the second experiment, we used a fixed value of m = 5
(the worst case in the first experiment) and we varied the size

of endpoint EP2, as the number of nodes in EP2 determines

how long PESS takes to compute the initial solution. In

the rightmost plot in Fig. 6, the black solid curve is the

reference measurement from the first experiment. As shown

by the dashed curves in the plot, the average execution time

increases linearly with the size of endpoint |EP2|, up to

around 250 ms in the worst case with |N | = 1000, |E| = 4975
and |EP2| = 500.

As introduced in Section I and formulated in Section V,

the VSNFs placement model and heuristic proposed in this

work target NFV-enabled systems where security services

are dynamically provisioned and updated based on users’

applications and their security and QoS requirements. Such

systems require efficient provisioning strategies to minimize

the exposure of such applications to cyber attacks. With respect

to these objectives, the experimental results from the PESS

scalability evaluation are encouraging and clearly indicate

the potential for practical implementation of the proposed

application-aware approach in real-world scenarios.

VIII. CONCLUSIONS

In this paper, we have tackled the problem of the progressive

provisioning of security services by means of VSNFs. The

proposed approach, called PESS, takes into account security

and QoS requirements of user applications, while ensuring that

computing and network resources are accurately utilised. We

have discussed the rationale behind our design decisions and

presented an ILP formulation and a heuristic algorithm that

solve the placement problem. Although we have focused our

work on security services, the PESS approach is applicable

to more complex scenarios, where heterogeneous network

services provided by means of generic VNFs coexist.

The evaluation results demonstrate the benefits of PESS for

both users and operators, with savings in resource utilization

and in end-to-end latency. We have also shown that the

heuristic implementation of the proposed application-aware

approach produces near-optimal solutions and scales well in

large and dense networks, indicating the potential of PESS in

real-world scenarios.
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[40] D. Lacković et al., “Performance analysis of virtualized VPN endpoints,”
in Proc. of 40th MIPRO, May 2017.

[41] Fortinet, “Fortigate Virtual Applicances,” https://www.fortinet.com/
content/dam/fortinet/assets/data-sheets/FortiGate VM.pdf, 2018, [Ac-
cessed: 31-May-2019].

[42] Cisco Systems, “Adaptive Security Virtual Appliance (ASAv),”
https://www.cisco.com/c/en/us/products/collateral/security/
adaptive-security-virtual-appliance-asav/datasheet-c78-733399.pdf,
2018, [Accessed: 31-May-2019].

[43] Juniper Networks, “vSRX Virtual Firewall,” https://www.juniper.net/
assets/us/en/local/pdf/datasheets/1000489-en.pdf, 2018, [Accessed: 31-
May-2019].

Roberto Doriguzzi-Corin is a researcher at FBK
CREATE-NET in Trento, Italy. He received his
M.Sc. in Mathematics from the University of Trento
and he is currently pursuing a Ph.D. in telecommu-
nication engineering. Before joining FBK CREATE-
NET, Roberto spent nearly nine years in industry
working primarily on embedded systems for ma-
chine vision. His research interests include software-
defined networking, network function virtualization,
anomaly detection, network security and robustness.

Dr. Sandra Scott-Hayward is a Lecturer (Assistant
Professor) in Network Security at Queens University
Belfast. In the Centre for Secure Information Tech-
nologies (CSIT) at QUB, Sandra leads research and
development of network security architectures and
security functions for software-defined networking
(SDN) and network functions virtualisation (NFV).
She has presented her research globally and received
Outstanding Technical Contributor and Outstanding
Leadership awards from the Open Networking Foun-
dation (ONF) in 2015 and 2016, respectively.

Dr. Domenico Siracusa is the head of the RiSING
research unit at FBK CREATE-NET. He received
the M.Sc. in Telecommunication Engineering (2008)
and the Ph.D. in Information Technology (2012)
from Politecnico di Milano. His research interests
include SDN/NFV, cloud and fog computing, secu-
rity and robustness. Domenico has co-authored more
than 80 publications in international peer reviewed
journals and in major conferences on networking
technologies.

Dr. Marco Savi is a postdoctoral researcher at
FBK CREATE-NET, Trento, Italy. He received his
PhD degree in Information Technology (Telecom-
munication engineering) in 2016 from Politecnico
di Milano. His research interests mainly focus on
the design and optimization of telecommunication
networks, especially optical and 5G networks, and
cloud computing. Dr. Savi has been involved in some
European research projects advancing access and
core network technologies.

Dr. Elio Salvadori is the Director of CREATE-NET
research center within Fondazione Bruno Kessler
(FBK) in Trento, Italy. Prior to this role, Dr. Sal-
vadori has developed a mixed industrial and aca-
demical background: he has been working at Nokia
Networks and Lucent Bell Labs until 2001, when
he joined the University of Trento to get his PhD
degree in 2005. His current research interests are
on 5G/6G networks and fog/edge computing ar-
chitectures applied to different domains like digital
factories, critical infrastructures and connected cars.


