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ABSTRACT

Context. Due to the limited number of antennas and the limited observation time, an array of antennas in Very Long Baseline Inter-
ferometry (VLBI) often samples the Fourier domain only very sparsely. Powerful deconvolution algorithms are needed to compute
a final image. Recently multiscale imaging approaches such as DoG-HiT were developed to solve the VLBI imaging problem and
showed a promising performance: they are fast, accurate, unbiased and automatic.
Aims. We extend the multiscalar imaging approach to polarimetric imaging, reconstructions of dynamically evolving sources and
finally to dynamic polarimetric reconstructions.
Methods. These extensions (mr-support imaging) utilize a multiscalar approach. The time-averaged Stokes I image is decomposed by
a wavelet transform into single subbands. We use the set of statistically significant wavelet coefficients, the multiresolution support,
computed by DoG-HiT as a prior in a constrained minimization manner: we fit the single-frame (polarimetric) observables by only
varying the coefficients in the multiresolution support.
Results. The Event Horizon Telescope (EHT) is a VLBI array imaging supermassive black holes. We demonstrate on synthetic data
that mr-support imaging offers ample regularization and is able to recover simple geometric dynamics at the horizon scale in a typical
EHT setup. The approach is relatively lightweight, fast and largely automatic and data driven. The ngEHT is a planned extension of
the EHT designed to recover movies at the event horizon scales of a supermassive black hole. We benchmark the performance of
mr-support imaging for the denser ngEHT configuration demonstrating the major improvements the additional ngEHT antennas will
bring to dynamic, polarimetric reconstructions.
Conclusions. Current and upcoming instruments offer the observational possibility to do polarimetric imaging of dynamically evolv-
ing structural patterns with highest spatial and temporal resolution. State-of-the-art dynamic reconstruction methods can capture
this motion with a range of temporal regularizers and priors. With this work, we add an additional, simpler regularizer to the list:
constraining the reconstruction to the multiresolution support.

Key words. Techniques: interferometric - Techniques: image processing - Techniques: high angular resolution - Methods: numerical
- Galaxies: jets - Galaxies: nuclei

1. Introduction

In Very Long Baseline Interferometry (VLBI) the signals
recorded at single antennas are correlated to achieve a spa-
tial resolution that would not be achievable with single-dish
instruments. The correlation product of every antenna pair at
a fixed time is the Fourier coefficient (visibility) of the true
sky brightness distribution with a Fourier frequency determined
by the projected spatial vector joining two antennas (baseline).
As the Earth rotates during the observing run, baselines ro-
tate on elliptical tracks in the Fourier domain, hence filling up
the Fourier plane (uv-plane) continuously. However, due to the
limited amount of antennas and the limited amount of observ-
ing time, the coverage of Fourier coefficients (uv-coverage) is
sparse. VLBI imaging is the problem to recover the true sky
brightness distribution from these sparsely covered Fourier co-
efficients.

It is a long-standing frontline goal in astronomy to recover
images of the shadow of a supermassive black hole. The Event
Horizon Telescope (EHT) is a globally spanning VLBI array
that observes at 230 GHz (with a recent upgrade to 345 GHz).
With the combination of global baselines and short baselines,
the EHT achieves the angular resolution that is needed to cap-

ture the first image of the black hole shadow in M87 (Event
Horizon Telescope Collaboration et al. 2019a) and in the Milky
Way (Event Horizon Telescope Collaboration et al. 2022a).
The next-generation Event Horizon Telescope (ngEHT) is a
planned extension of the EHT (Doeleman et al. 2019; Johnson
& the ngEHT Project 2023). It may produce movies of the ac-
cretion onto the central black hole SGR A* at the scales of the
event horizon (Roelofs et al. 2023; Emami et al. 2023). The dy-
namic time-scales for these observations are very short. Observa-
tions of Sgr A* in the sub-mm (Bower et al. 2015; Wielgus et al.
2022) and near-infrared regime (GRAVITY Collaboration et al.
2018a,b) confirm that Sgr A* is time-varying on timescales as
short as 30 minutes. The predicted ISCO period varies between
4 minutes and roughly 30 minutes depending on the spin of the
black hole. Palumbo et al. (2019) concluded that a well-sampled
baseline coverage on timescales of ∼ 30 minutes is needed to
recover the source dynamics.

CLEAN (Högbom 1974) and its many variants (Clark 1980;
Schwab 1984; Wakker & Schwarz 1988; Bhatnagar & Corn-
well 2004; Cornwell 2008; Rau & Cornwell 2011; Müller &
Lobanov 2023) served the community well for decades, but are
recently challenged by forward imaging approaches in the spirit
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of Regularized Maximum Likelihood (RML) methods (Narayan
& Nityananda 1986; Wiaux et al. 2009; Garsden et al. 2015;
Ikeda et al. 2016; Chael et al. 2016, 2018; Akiyama et al.
2017b,a; Event Horizon Telescope Collaboration et al. 2019b;
Müller & Lobanov 2022) and Bayesian approaches (Arras et al.
2019, 2021; Broderick et al. 2020b,a). Recently we developed
new multiresolution tools for performing VLBI imaging (Müller
& Lobanov 2022, 2023). For these multiscalar approaches we
designed special wavelet-based basis functions (difference of
Gaussian and difference of spherical Bessel functions) and fit-
ted the basis functions to the uv-coverage. In this way we define
smooth basis-functions that are well suited to describe (com-
press) the recovered image features by encoding information
about the uv-coverage itself. Some wavelets are most sensitive
to gaps in the uv-coverage while others are most sensitive to
covered Fourier coefficients. While the signal from latter ones
should be recovered, the signal from former ones are suppressed
(effectively avoiding overfitting).

As a byproduct for these multiscalar imaging algorithms,
we compute the so called multiresolution support (Müller &
Lobanov 2022): a set of wavelet parameters that are deemed sta-
tistically significant to represent the recovered image features.
The multiresolution support encodes various information about
the recovered image. Firstly, it implements a ‘support constraint’
(where is the emission located in the image?). Secondly, it en-
codes a ‘spatial constraint’ (which spatial scales are needed to
represent the image features at these locations?). Especially the
second prior information is determined by the spatial scales that
are present in the data, i.e. that are covered by baselines in the ob-
servation. We demonstrated in Müller & Lobanov (2022) that the
multiresolution support is a powerful prior information very well
suited to refine the imaging procedure. In Müller & Lobanov
(2022) we proposed to add amplitudes and phases to the data
terms and remove any regularizer term, but solve the resulting
optimization problem by only updating the coefficients in the
multi-resolution support. The fit to the observed visibilities im-
proved, but without the addition of spurious artifacts that are typ-
ical for overfitting.

Among Stokes I imaging, full polarimetric imaging are of in-
terest for the VLBI community both theoretically (Blandford &
Znajek 1977; Hardee et al. 2007; Kramer & MacDonald 2021)
and observationally (among many other e.g. Gómez et al. 2011;
Hovatta et al. 2012; Zamaninasab et al. 2014; Gómez et al. 2016;
Pötzl et al. 2021; Ricci et al. 2022), in particular at the event
horizon scales (Event Horizon Telescope Collaboration et al.
2021a,b). In polarimetric imaging the recorded data are sepa-
rated into several polarized subbands and recombined in the four
Stokes parameters. Essentially we have four Stokes parameters
(I, Q, U, V) and corresponding polarized visibilities. Hence, the
problem that we aim to solve for the other three Stokes param-
eters is the same as for Stokes I: recovering a signal from a
sparse measurement of the Fourier coefficients. However, there
are some slight differences: while the Stokes I image is neces-
sarily non-negative (and this is used during imaging as a prior),
this does not have to be true for Stokes Q, U, and V. Moreover,
I2 ≥ Q2 + U2 + V2 applies.

The multiresolution support is a well suited prior to be ap-
plied to the polarimetric imaging when the Stokes I image is al-
ready done. The ‘support constraint’ of the multiresolution sup-
port encodes the information that linear and circular polarized
emission theoretically can only appear at locations where total
intensity (Stokes I) is bigger than zero. This might not reflect the
observation situation in every case: sometimes the Stokes I sig-
nature cannot be retrieved with the spatial sensitivity of the inter-

ferometer while the more localized (e.g. due to Faraday rotation)
polarized structural pattern is visible. However, in most VLBI
studies this pathological situation does not appear and ‘support
constraint’ is a good approximation. Moreover, the ‘spatial con-
straint’ adheres the fact that the polarimetric visibilities have the
same uv-coverage as total intensity visibilities, i.e. the same spa-
tial scales (the ones covered by uv-coverage) are present in the
polarized images.

Another domain of current research is the study of dynamic
sources, such as Sgr A*, i.e. the static imaging of a dynamically
evolving source as in Event Horizon Telescope Collaboration
et al. (2022b) and the dynamic movie reconstruction (Roelofs
et al. 2023). In this work we focus on latter problem. Data sets
of dynamic sources pose additional challenges. Due to the short
variability time scale, the effective uv-coverage in every frame is
not sufficient for efficient snapshot imaging. Modern approaches
utilize a temporal correlation instead, in a Bayesian framework
(Bouman et al. 2018; Broderick et al. 2022; Roelofs et al. 2023)
or as temporal regularizer in the RML framework (Bouman et al.
2018; Johnson et al. 2017; Chael et al. 2022; Roelofs et al. 2023).
Moreover, the variability of the source could be misidentified
with the calibration of the gains (Event Horizon Telescope Col-
laboration et al. 2022b).

Again the multiresolution support (computed for the time-
averaged image) encodes prior information that is very desired
for dynamic imaging. The ‘support constraint’ encodes the in-
formation that every location of an emission spike appearing
during the observation is present also in the mean image. The
uv-coverage of the full observation run is the sum of the uv-
coverages of the single frames. Hence, the ‘spatial constraint’
also provides some powerful image prior for dynamic imaging:
the multiresolution support only allows spatial scales that are
present in the mean image (in the full observation run), i.e. the
fit in the gaps of the uv-coverage remains under control. On the
other hand, the ‘spatial constraint’ allows for the addition of the
spatial scales to single frames that might be not represented in
the uv-coverage of this single frame, but in earlier or later snap-
shots. However, we like to mention that there may be a bias to-
wards larger scales since the mean image suppresses small-scale
structures present in only part of the individual frames.

Based on the success of the approach presented in Müller &
Lobanov (2022) of only changing the coefficients in the multires-
olution support to introduce effective regularization, we propose
the same approach for static polarimetric imaging and dynamic
imaging. As outlined above, the multiresolution support is well
suited to be used as a regularizer in these problems as it exactly
encodes the prior information that is needed. As we solve two
quite different extensions to the standard VLBI imaging with the
same approach, it is natural to use the same approach also for the
combined problem: a dynamic, polarimetric reconstruction.

2. Theory

2.1. VLBI

As described by the van-Cittert-Zernike theorem the visibilities
V are related to the true sky-brightness distribution I(x, y) by
a two-dimensional Fourier transform under reasonable assump-
tions (Thompson et al. 2017):

VI(u, v) =

∫ ∫
e−2πi(xu+yv)I(x, y)dxdy =: F I(u, v). (1)

From a full coverage of the Fourier coefficients (visibilities) the
true sky brightness distribution could be computed by an inverse
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Fourier transform. However, in VLBI the uv-coverage is very
sparse with significant gaps. This makes the problem of recover-
ing the image an ill-posed inverse problem. The polarized quan-
tities are measured at every antenna with orthogonal polarimetric
filters (linear or circular). The cross-correlation of these signals
give rise to the polarimetric Stokes I parameters and their respec-
tive polarimetric visibilities:

VI = F I, (2)
VQ = FQ, (3)
VU = FU, (4)
VV = FV, (5)

(6)

where I is the total brightness, Q and U the linear polarizations
and V the fraction of circular polarization. By construction it is:

I2 ≥ Q2 + U2 + V2. (7)

2.2. Imaging

Imaging with the CLEAN algorithm and its variants (Högbom
1974; Schwab 1984; Wakker & Schwarz 1988) were the standard
in VLBI imaging for the last decades. In CLEAN the imaging
problem is equivalently reformulated as a deconvolution prob-
lem:

ID = BD ∗ I, (8)

where ID is called the dirty map (inverse Fourier transform of
all measured, and probably reweighted, Fourier coefficients) and
BD (the dirty map of a synthetic delta source) is called the dirty
beam. The astronomer using CLEAN determines some search
windows for components, CLEAN looks for the maximum peak
in the residual in this window (minor loop) and subtracts the
shifted and rescaled dirty beam from the residual (major loop).
This procedure is iterated until the residual is noise-like. In this
way, CLEAN models the image as a set of delta functions.
Finally, these components are restored with a restoring beam
(clean beam) that fits the central peak of the dirty beam. CLEAN
is an inverse modeling approach to the imaging problem.

Recently forward modeling approaches gained interest in
the community in the framework of RML (Chael et al. 2018;
Akiyama et al. 2017a; Müller & Lobanov 2022) and Bayesian
methods (Arras et al. 2019; Broderick et al. 2020b,a). These
methods seem to outperform classical CLEAN in terms of speed,
spatial resolution, sensitivity and precision, in particular when
the uv-coverage is sparse (e.g. Event Horizon Telescope Collab-
oration et al. 2019b; Arras et al. 2021; Müller & Lobanov 2022;
Roelofs et al. 2023). On the other hand, these forward model-
ing methods require the fine-tuning of some hyper-parameters
and regularization parameters, despite the recent effort to reduce
this dependence (Müller & Lobanov 2022). For the remainder of
this manuscript we focus on RML methods and ignore Bayesian
approaches for now.

In RML, a sum of data fidelity terms and penalty terms is
minimized:

Î ∈ argminI

∑
i

αiS i(I) +
∑

j

β jR j(I), (9)

where the data fidelity terms S i measures the fidelity of the re-
covered solution I to the observed data (i.e. polarized visibili-
ties) and the penalty terms/regularization terms R j measure the

fidelity of the guess image I. The regularization parameters αi
and β j are manually set weights that balance data fidelity and
regularization terms. Typical choices for the data terms are chi-
squareds to the observed (polarimetric) visibilities, and related
calibration independent quantities such as closure phases and
closure amplitudes. For the regularization terms a wide range
of regularizers has been applied in the past, e.g. sparsity promot-
ing regularization (l1, l2), smoothness constraints (total varia-
tion, total squared variation), hard constraints (total flux, non-
negativity), entropy maximization (MEM) or multiscale decom-
positions (hard thresholding on scales). The regularization terms
introduce regularization to the ill-posed imaging problem. By
balancing the data terms and the regularization terms, we select
a possible guess solution that is fitting data (small data terms)
and robust against noise and artifacts (small penalty terms). We
have demonstrated in previous works (Müller & Lobanov 2022)
that a support constraint has the same regularization effect. By
constraining the space of free parameters to the multiresolution
support we were able to refine the fit to the observed data in later
imaging rounds.

2.3. Wavelets

The basis behind multiscalar approaches are multiscalar dictio-
naries. We proposed in (Müller & Lobanov 2022) the use of
radial-symmetric difference of Gaussian (DoG) wavelets and ex-
tended them to directional dependent basis functions in (Müller
& Lobanov 2023). Moreover, we introduced in (Müller &
Lobanov 2023) steep, quasi-orthogonal basis functions to study
the Fourier domain by difference of Bessel functions (DoB).
Both dictionaries (DoG and DoB) are related to each other: the
DoG wavelets approximate the central peak of the DoB wavelets,
but do not contain the wider sidelobes of latter ones. In what
follows we quickly summarize these wavelet dictionaries. For
more detailed information we refer to (Müller & Lobanov 2022,
2023).

Wavelets have a wide range of applications in image com-
pression. The most widely used continuous wavelet is the
Mexican-hat wavelet which is a rescaled second order derivative
of a Gaussian (Lagrangian of Gaussians) (Starck et al. 2015).
The difference of Gaussian method offers some viable approxi-
mation to Mexican hat wavelets. A DoG-wavelet is described by
two width parameters σ1, σ2:

Φ
σ1,σ2
DoG (x, y) =

1
2πσ2

1

exp
−r(x, y)2

2σ2
1

 − 1
2πσ2

2

exp
−r(x, y)2

2σ2
2


= Gσ1 −Gσ2 . (10)

The Fourier transform of these DoG-wavelets define ring-like
filters in the Fourier domain:

FΦ
σ j,σ j+1

DoG (u, v) ∝ exp
(
−2π2σ2

jq(u, v)2
)
− exp

(
−2π2σ2

j+1q(u, v)2
)
.

(11)

The extension to DoB-wavelets is natural. We replace the DoG-
wavelets, just by spherical Bessel functions:

Φ
σ̃ j,σ̃ j+1

DoB (x, y) =

1
σ̃ jr(x, y)

J1(2πr(x, y)/σ̃ j) −
1

σ̃ j+1r(x, y)
J1(2πr(x, y)/σ̃ j+1). (12)

Moreover, the extension of both wavelets to directional depen-
dent basis functions is straightforward as well. One just has to
replace the radial coordinates by elliptical ones.
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The wavelet decomposition is composed out of the wavelet
basis functions from a sequence of increasing widths σ0 ≤ σ1 ≤

... ≤ σJ:

ΨDoG : I 7→ I = [Φσ0,σ1
DoG ∗ I,Φσ1,σ2

DoG ∗ I, ...,GσJ ∗ I], (13)

ΨDoB : I 7→ I = [Φσ0,σ1
DoB ∗ I,Φσ1,σ2

DoB ∗ I, ..., JσJ ∗ I]. (14)

For direction dependent dictionaries, we use elliptical Gaussians
and Bessel functions instead. For more details we refer to our
discussion in Müller & Lobanov (2023). The multiscale dictio-
nary is the adjoint of the multiscale decomposition (in what fol-
lows called Γ):

Γ : I = {I0, I1, I2, ..., IJ} 7→

J−1∑
i=0

Φ
σi,σi+1
DoG ∗ Ii + GσJ ∗ IJ , (15)

with an analogous action for DoB-wavelets and multi-directional
wavelets. The complete action of the multi-scalar and multi-
directional wavelet decomposition is presented in the Appendix.

2.4. DoG-HiT

Our novel algorithm for doing dynamic polarimetric reconstruc-
tions is an extension of the DoG-HiT algorithm (Müller &
Lobanov 2023). We summarize this algorithmic framework in
this section. DoG-HiT models the image by a radial symmet-
ric wavelet dictionary ΨDoG. The Fourier transform of the basis
functions of the dictionary (atoms) are sensitivity filters in the
Fourier domain. Hence, by fitting the widths of the Gaussians
to the uv-coverage, we define wavelets that are most sensitive to
measured Fourier coefficients and wavelets that are most sensi-
tive to gaps in the uv-coverage. The signal of former ones should
be kept, while the lack of later atoms causes sidelobes in the im-
age. In this way, the dictionary allows for a better separation be-
tween measured features (covered by baselines) and uncovered
artifacts. We interpolate the signal in the gaps by the smooth na-
ture of the basis functions, but suppress the signal in the gaps
to a level that overfitting is prohibited. All in all, we solve the
minimization problem (Müller & Lobanov 2022):

Î ∈ argminI

[
S cph(FΓI ,V) + S cla(FΓI ,V)

+β · ‖I ‖l0 + Rflux(I , f )
]
, (16)

where S cph and S lca denote the χ2-fit to the closure phases and
closure amplitudes respectively. Rflux denotes a characteristic
function on the total flux of the guess solution. We use the
pseudo-norm ‖·‖l0 (i.e. the number of non-zero coefficients) as a
sparsity promoting regularization term weighted with a regular-
ization parameter β. Eq. (16) is solved by a forward-backward
splitting algorithm alternated with rescaling the emission to a
predefined total flux (Müller & Lobanov 2022). The final recov-
ered solution is:

Î = ΓI . (17)

The regularization parameter β is the only free parameter that
needs to be chosen manually by the user. The number of free
parameters is therefore much smaller than the number of free
parameters for RML methods such as ehtim (Chael et al. 2016,
2018) or SMILI (Akiyama et al. 2017b,a) since the penalty term
is chosen data-driven. We demonstrated in Müller & Lobanov
(2022) that although the optimization landscape is much sim-
pler, the reconstructions obtained by DoG-HiT are competitive
to RML reconstructions. Moreover, we only fit closure phases

and closure amplitudes for DoG-HiT in Eq. (16), i.e. the recon-
struction is robust against instrumental gain corruptions. Con-
secutively we use the model computed by DoG-HiT for self-
calibration, i.e. we determine the gains.

2.5. Multiresolution support

A specific property of the multiscalar decompositions is the
multiresolution support. (Mertens & Lobanov 2015) paved the
way for the application of the multiresolution support in the
analysis of AGN jets. The multiresolution support is a set
of wavelet components that are statistically significant (Starck
et al. 2015). We decompose a noisy image by a wavelet dictio-
nary: [I0, I1, I2, ..., IJ] = ΨI. Moreover, we compute the scale-
dependent noise-level s j by decomposing a Gaussian white noise
field with the same wavelet dictionary. Given some threshold ks,
we can define a set of statistically significant wavelet coefficients
with the criterion that

∥∥∥I j(x, y)
∥∥∥ ≥ kss j where the noise-level is

approximated by the variance from an emission-free region of
the image scale I j (i.e. far away from the center). The multires-
olution support for a celestial ground truth image from the EHT
imaging challenges 1 is illustrated in Fig. 1.

The multiresolution support encodes two different types of
prior information about the model. Firstly, it encodes a ‘sup-
port constraint’, i.e. it defines the position of significant emission
spikes in the field of view.

Secondly, the multiresolution support contains information
about the spatial scales that are present in the observation. In
sparse VLBI arrays, this is dominated by the uv-coverage, i.e.
by which spatial scales are covered by observed baselines in the
Fourier domain. As various wavelet basis functions are most sen-
sitive to various baselines or gaps in the uv-coverage, the infor-
mation about which spatial scales are covered by observations is
directly imprinted in the multiresolution support. This is espe-
cially true for the direction dependent DoG- and DoB-wavelets
used for DoG-HiT that were fitted to the uv-coverage, i.e. that
were developed to allow an optimal separation between covered
features and gaps in the uv-coverage.

DoG-HiT solves the minimization of Eq. (16) with a
forward-backward splitting algorithm. The backward projection
step is the application of the proximal-point operator of the
l0 penalization function, which is a hard thresholding (Müller
& Lobanov 2022). Hence, all insignificant wavelet coefficients
are set to zero. DoG-HiT therefore computes an approxima-
tion of the multiresolution support as a byproduct. This support
was used for further refining rounds in the imaging (Müller &
Lobanov 2022).

The computation of the multiresolution support as a byprod-
uct of DoG-HiT highlights an essential improvement of DoG-
HiT compared to CLEAN regarding supervision. The support of
significant emission is found by DoG-HiT automatically, while
it has to be selected in CLEAN by the user-defined CLEAN
windows. DoG-HiT is therefore is less user-biased and provides
(compared to standard RML frameworks and CLEAN) an essen-
tial step towards unsupervised VLBI imaging.

3. Algorithms

We outline in this section the algorithms used for static polarime-
try, dynamic Stokes I imaging and dynamic polarimetry. In what
follows, we will call these algorithms ‘mr-support imaging’.

1 http://vlbiimaging.csail.mit.edu/
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Fig. 1: Left panels: true image and true image with additional Gaussian noise, middle panels: wavelet decomposition of the noised
image with the DoG-wavelet dictionary computed with filter sizes σ0 = 1, σ1 = 2, σ2 = 4, ..., σ5 = 32 pixels, right panels:
multiresolution support computed by thresholding the wavelet scales to the scale-dependent noise plotted as a mask with either
value 1 (coefficient in the support) or 0 (coefficient not in the multiresolution support)
.

3.1. Stokes I

Static Stokes I images are constructed with DoG-HiT with the
five round pipeline presented in (Müller & Lobanov 2022). How-
ever, in (Müller & Lobanov 2022) we used only radially symmet-
ric wavelets. As an extension, we use the multi-directional dic-
tionaries developed in (Müller & Lobanov 2023) in this work,
i.e. we replace the circular symmetric Gaussians by ellipti-
cal Gaussians. Moreover, we used a grid search in (Müller &
Lobanov 2022) to find a proper starting point for the forward-
backward splitting minimization iterations of DoG-HiT. Since
the backward step in the minimization is essentially a hard
thresholding, we tried different scale-dependent thresholds in an
equidistant grid to minimize Eq. (16) and used the setting of the
minimum as the starting point for the forward-backward itera-
tions. For this manuscript, we use the same grid search, but ap-
ply the orthogonal DoB-wavelets in the grid search, while still
using the DoG wavelets in the imaging rounds of the pipeline.
We will not focus on the Stokes I reconstruction in this work as
these extensions are rather straightforward and minor, and the
focus of the manuscript is on an extension of DoG-HiT to po-
larimetry. We recall one of the main advantages of DoG-HiT: the
algorithm works mainly unsupervised with a minimal set of free
parameters, hence adding a minimal human bias in the imaging
procedure.

3.2. Polarimetry

For polarimetric reconstructions we first reconstruct a Stokes I
image with DoG-HiT and solve for the gains by self-calibrating
to the final output (note that DoG-HiT relies on calibration in-
dependent closure quantities). As a second step, we solve for
the polarimetric Stokes parameters Q,U and V . We take the
multiresolution support computed by DoG-HiT for the Stokes I
imaging and constrain the space of free parameters to all wavelet
coefficients in the multiresolution support. We then solve for
Q,U,V by minimizing the fit toVQ,VU ,VV with a gradient de-
scent algorithm, but only allow coefficients in the multiresolution

support to vary. In summary we solve the following problems:

Q̂ ∈ argminQ={Q0,...,Qn},Q j(x,y)=0 whenever Î j(x,y)=0
[
S Q(FΓQ,VQ)

]
Û ∈ argminU={U0,...,Un},U j(x,y)=0 whenever Î j(x,y)=0 [S U(FΓU,VU)] ,

(18)

where {Î0, ..., În} =: Î are the recovered wavelet coefficients for
the Stokes I image as in Sec. 2.4. S U and S Q are the chi2-fit
qualities to the Stokes Q and U visibilities. The side condition
Q j(x, y) = 0 whenever Î j(x, y) = 0 denotes the constraint that we
only vary coefficients in the multiresolution support.

The multiresolution support is a well suited regularizer here:
the support constraint encodes the side-condition Eq. (7) effec-
tively, i.e. polarized emission is only allowed to appear at loca-
tions in the images in which we found relevant emission in total
intensity. While this inequality (7) holds true theoretically in any
case, in practice the pathological situation could occur that due
to the instrumental effect a non-detection of Stokes I does not
rule out polarimetric structures. With this caveat in mind, we as-
sume for the rest of the manuscript that inequality (7) holds true
in observations as well. Moreover, the polarimetric visibilities
have the same uv-coverage as the Stokes I visibility. The ‘spatial
constraint’ of the multiresolution support describes which spatial
scales are statistically significant to describe the emission in the
image, which in case of sparse VLBI arrays is dominated by the
uv-coverage (i.e. which spatial scales are compressed by which
baselines and whether these baselines are measured). Hence, we
already computed the multiresolution support as a byproduct in
DoG-HiT to study the uv-coverage of the observation and get
control over overfitting in the gaps of the uv-coverage by sup-
pressing the respective atoms of the dictionary. This effective
regularization can be copied over to the polarized visibilities as
the uv-coverage is the same.

Moreover, we like to stress out once again that the mul-
tiresolution support is a completely data driven property com-
puted as a sideproduct by DoG-HiT. Hence, the reconstruction
of polarimetric properties still relies on a minimal set of hyper-
parameters and remains largely unsupervised.

We fit complex polarimetric visiblities directly here. That re-
quires that a good polarization calibration is available already.
The method is however easy to adapt to more realistic situations
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since it is (opposed to CLEAN) a forward-modeling technique.
Firstly, instead of a constrained χ2-minimization to the com-
plex visibilities, one could just optimize the fit to the visibility-
domain polarization fraction as in (Johnson et al. 2015). Sec-
ondly, the minimization in Eq. (18) is done iteratively, where the
most important features are recovered first and gradually more
detailed features will be recovered at later iterations. Hence,
with a similar philosophy to how self-calibration interacts with
CLEAN, we could run the minimization for some iterations and
do the calibration on the current model, then continue the mini-
mization and calibration in an alternating manner.

3.3. Dynamic Stokes I

For dynamic Stokes I imaging, we first reconstruct a static image
with DoG-HiT. For this work we assume that the static image of
a dynamically evolving source might be a good approximation
to the mean image during the time of observation. This might
be in particular true if the source structure contains some persis-
tent structure during the complete observing run, as could be ex-
pected for Sgr A* in EHT observations with a persistent shadow
in rotating hotspot models (Tiede et al. 2020). However, based
on the dynamics of the target, it may be difficult to recover a de-
cent fit to the data with a static image. In this work we applied
a procedure inspired by the strategy in Event Horizon Telescope
Collaboration et al. (2022b), i.e. we added a systematic noise-
floor on every baseline to account for variability. However, we
did not repeat the sophisticated noise modeling applied in Event
Horizon Telescope Collaboration et al. (2022b).

We compute the multiresolution support by the static mean
image. Then, we cut the observation in single frames and recon-
struct images at every frame independently. All frames together
make up the dynamic movie reconstruction. However, due to
the shortness of single frames, snapshot imaging is not possi-
ble due to the sparsity of the uv-coverage. Again we propose to
use the multiresolution support instead. We minimize the χ2 for
every single frame observation independently for every frame in
a gradient descent algorithm (using the mean image as an initial
guess), but only allow coefficients in the multiresolution support
to vary.

The multiresolution support is a well suited regularizer here
as well: if the static image is a good approximation to the mean
image, the static image contains all the locations of emission
in the field of view. If at some time an emission spike occurs
at a specific location, this emission spike should be visible in
the mean as well. Hence, the ‘support constraint’ encodes in-
formation about the location of emission at single frames. This
assumption comes with the caveat that short-living, small-scale
features may be not strong enough in the mean image and ex-
cluded later from the dynamic reconstructions due to the mul-
tiresolution support. However, we also doubt that such a feature
would be visible with the much sparser uv-coverage of single
scans, and therefore would not be recovered anyways. More-
over, the uv-coverage of the complete observation is the sum
of the observations of the single frames. In single frame ob-
servations there are three different categories of Fourier coeffi-
cients/baselines: the ones measured by observations in this sin-
gle frame (very sparse), the ones that are not measured during
the time of the single frame, but will be measured at later (ear-
lier) times in the observation, and the baselines that are not mea-
sured at all due to the sparsity of the array. By doing constrained
optimization (constrained by the multiresolution support) to the
single frame observation we fit the first class of baselines, copy
the solution over from the initial guess (mean image) for the sec-

ond class of baselines, and suppress the last class of baselines by
the multiresolution support. Hence, the ‘spatial constraint’ im-
plemented by the multiresolution support is a well suited prior
to do dynamic imaging.

The reasonable assumption of temporal correlation between
scans, e.g. by a regularizer term favoring temporal smoothness,
is not used explicitly for mr-support imaging. However, such
assumptions could be included in the dynamic reconstruction
straight-forwardly: instead of fitting the visibilities with a con-
strained minimization approach, we minimize the sum of a qual-
ity metric for the fit to the visibilities and a temporal regulariza-
tion term, but only vary coefficients in the multiresolution sup-
port. However, for this work we restrict ourselves to reconstruc-
tions without penalization on the temporal evolution such that
now new regularization parameters are introduced and the recon-
struction remains automatic and completely data-driven. More-
over, due to this fact all scans can be computed in parallel allow-
ing for fast computations.

3.4. Dynamic polarimetry

We propose the same procedure for polarized imaging and dy-
namic Stokes I imaging: fitting the respective visibilities with
a gradient descent approach while only varying coefficients in
the multiresolution support computed by DoG-HiT. It is there-
fore natural to utilize this approach for dynamic polarimetry as
well. In fact, we propose the following strategy. First recon-
struct a static Stokes I image by DoG-HiT and compute the mul-
tiresolution support. Then cut the observation in single frames
and solve for dynamics and polarimetry together by fitting to
VI ,VQ,VU ,VV together in single frames independently, but
only vary coefficients in the multiresolution support.

4. Synthetic data tests

4.1. Synthetic observations

We tested the capabilities for mr-support imaging for polarimet-
ric image reconstructions. We test three different source mod-
els (static polarized Sgr A* model, a slowly rotating crescent
and a rapidly rotating crescent) with two different arrays (EHT
and a possible ngEHT configuration). A thorough comparison
of existing imaging approaches for dynamic polarimetry is in
preparation and will be deferred to a consecutive work. For more
details we also refer to the ngEHT analysis challenges Roelofs
et al. (2023), and in particular the upcoming third challenge 2

in which we compete with mr-support imaging. We review our
submission to the third challenge in Sec. 4.5.

We observe the synthetic ground truth images and movies
with the array of the EHT 2022 observations and added thermal
noise according to the measured SEFDs of the 2017 observation
campaign (Event Horizon Telescope Collaboration et al. 2019b).
We used ten minute cycles of five minutes of continued observa-
tion with an integration time of ten seconds and a five minute
off-source gap (mimicking calibration, pointing scans). This cy-
cle time is of special interest when discussing dynamic recon-
structions as the five-minute gaps essentially limit the temporal
resolution. The data sets were scan-averaged prior to the imaging
procedure.

As ngEHT configuration we took the EHT 2022 array con-
figuration (i.e. ALMA, APEX, GLT, IRAM-30 m, JCMT, KP,

2 https://challenge.ngeht.org/challenge3/
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LMT, NOEMA, SMA, SMT, SPT) and added ten additional an-
tennas from the list of (Raymond et al. 2021) as was done for the
ngEHT Analysis challenges (Roelofs et al. 2023): HAY (34 m),
OVRO (10.4 m), GAM (15 m), BAR, BAJA, NZ, SGO, CAT,
GARS, CNI (all 6 m). We added instrumental noise according
to the size of the telescopes, but did not add further calibration
errors. As a ground truth we took the slowly rotating crescent
model with a rotation period of one hour. As for the EHT 2022
coverage, the ground truth movie is observed with a cycle of five
minutes on source and a five minutes gap and an integration time
of ten seconds (10 minutes on source and 2 minutes gaps in the
fastly rotating crescent example).

As a static synthetic test image we took a synthetic Sgr A*
image out of the ehtim software package (Chael et al. 2018). The
true image model is presented in Fig. 2.

For the dynamic Stokes I imaging we used a crescent model
(Tiede et al. 2022):

I(r, θ) = I0(1 − s cos(θ − ξ))
δ(r − r0)

2πr0
. (19)

We use the parameters: I0 = 0.6 Jy, s = 0.46, and r0 = 22 µas. To
account for dynamics roughly similar to rotating hotspot models
(Tiede et al. 2020) we let the crescent rotate clockwise. One ro-
tation period takes 1 hour which is roughly comparable to the
flux variability time-scale of the SGR A* lightcurve (Wielgus
et al. 2022). The synthetic ground truth image is presented in
Fig. 3. To illustrate the orientation of the crescent, we also show
a green arrow from the image center to the location of the bright-
est pixel in the image in Fig. 3. For polarized movies we have to
add polarization. For the sake of simplicity we used a simpler
model for testing the capabilities of dynamic polarimetry here:
we added a constant linear polarized structure at 10% (no circu-
lar polarization) with a rotating EVPA. To separate the dynamic
polarimetric reconstruction from effects of the Stokes I imag-
ing, the rotation of the EVPAs is counter-clockwise (rotation of
Stokes I was clock-wise) and has a different rotation period of
two hours instead of one hour as for the Stokes I images.

As an additional model we also test a rapidly rotating cres-
cent model with an orbital period time of twenty minutes. We
show the ground truth movie in Fig. 4. The constant EVPA pat-
tern rotates counter-clockwise in one hour. The advance time be-
tween scans that is used for pointing and calibration limits the
temporal resolution. For an array as sensitive such as the ngEHT
a smaller gap time might be possible. We therefore synthetically
observed the rapidly rotating movie with a cycle of ten minutes
of scientific observation (ten seconds integration time) and two
minutes gaps.

4.2. Static polarization with EHT coverage

We fitted the scales to the uv-coverage first with the procedure
outlined in Müller & Lobanov (2022) and Müller & Lobanov
(2023): we searched for jumps in the sorted distribution of uv-
distances that exceed some threshold and we selected the ra-
dial scales accordingly. We defined nine radial scales and used
four different angles, resulting in 36 scales to represent the uv-
coverage. The Stokes I image was recovered with DoG-HiT
(Müller & Lobanov 2022) using the multi-directional dictionar-
ies introduced in (Müller & Lobanov 2023) as described in Sec.
3.1. As presented in Sec. 3.2 we then computed the multiresolu-
tion support. The multiresolution support is presented in Fig. 5.
Some scales that are most sensitive to gaps in the uv-coverage
are suppressed completely, while other scales encode various

parts of the emission structure, i.e. the ring like emission (scale
34 and scale 35), the extended emission structure (scale 30 and
32), the fine crescent structure (among others scale 4, 7, 9, 14 and
24), or the bright spot to the left of the crescent (e.g. scale 0, 2
and 10). The minimization to the polarized visibilities was done
with the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (Byrd et al. 1995), as implemented in Scipy
(Jones et al. 2001). To assert global convergence, we blurred the
Stokes Q and U image of the reconstruction with the nominal
resolution and redo the minimization with a gradient descent
procedure.

We show the final reconstruction result in Fig. 2. The re-
construction of the Stokes I image is relatively successful. The
crescent-like shadow image is overall well recovered. However,
there are some finer structures that are not recovered by DoG-
HiT: the closing of the ring by a thin line towards the right and
the fainter structure inside the ring. The linear polarized emis-
sion is overall very well recovered. The total fraction of linear
polarized light and the overall direction of the electromagnetic
vector position angles (EVPA) in North-South direction are well
recovered. The synthetic ground truth image contains some more
complex, local structures, e.g. a rotation of the EVPA in the bot-
tom left of the image towards an east-west direction. This shift
is partly visible in the recovered image as well, although the
amount of rotation is smaller.

All in all, this example demonstrates that even for a very
challenging and sparse array such as the EHT 2022 array the
polarimetric reconstruction with support imaging is quite suc-
cessful in both the overall structure, but also in the reconstruc-
tion of more localized polarimetric structures with a size of
≈ 5 µas. Thus, similar to the DoG-HiT reconstruction for the
Stokes I image, mr-support polarimetry seems to offer mild
super-resolution. Interestingly, super-resolution and a good fit to
the polarized visibilities is offered without introducing artifacts
in the image. This demonstrates the power of the regularization
approach.

4.3. Dynamic Stokes I

The synthetic slowly rotating crescent movie was observed as
described in Sec. 4.1 with a ten-minute cycle with EHT cover-
age. According to this temporal resolution, we cutted the obser-
vation into frames with a length of ten minutes for the dynamic
reconstruction. The reconstruction was then done with the mr-
support approach in the best time window t ∈ [10 UT, 14 UT]
(Farah et al. 2022) as outlined in Sec. 3.3: as a first step we fitted
a symmetric ring model to the data, created a mean image with
DoG-HiT with the fitted ring model as an initial guess, then we
solved sequentially for every frame by mr-support imaging with
the support calculated from the mean. As an initial guess for the
single frame imaging with mr-support imaging we used the re-
construction of the respectively preceding frame (or the mean in
case of the first frame).

We present the reconstruction results in Fig. 7. The single
frames all show a circular structure with a radius of ≈ 22 µas.
Moreover, nearly all frames have an asymmetry of a crescent.
However, the crescent asymmetry is less prominent than in the
true image. As for the true dynamic movie, we illustrate the
orientation of the crescent by an arrow from the center to the
brightest pixel in the reconstruction. Following the orientations
of the recovered crescents in Fig. 7 a clear rotation with an or-
bital period of one hour is visible. The orientation of the recov-
ered crescents match in most frames with the synthetic ground
truth except for some notable exceptions at 11 UT (no asymme-
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Fig. 2: Left panel: static polarization ground truth, middle panel: static reconstruction with mr-support imaging, right panel: uv-
coverage of synthetic observation (EHT 2022 array).

Fig. 3: Synthetic ground truth dynamic movie (slowly rotating crescent) in the time interval between 10 UT and 14 UT. The green
arrow ranges from the image center to the position of the brightest pixel in the frame, hence illustrating the orientation of the
crescent.

try recovered at all), and 13.16 UT-13.5 UT (wrong orientations).
In particular the latter one could be a consequence of taking the
reconstruction at the preceding frame as an initial guess for the
next frame. The false-recovery at 13.16 UT hence also affects all
following frames.

We present in Fig. 8 the reconstruction result for a slowly ro-
tating crescent with ngEHT coverage. The reconstruction of the

crescent is excellent at every frame with high contrast images.
The single-frame images do not show additional image artifacts.
Although the additional ngEHT antennas have rather large ther-
mal noise-levels, the much improved density of the array effec-
tively stabilizes against thermal noise. Strikingly the orientation
of the crescents matches the ground truth very well. We present
in Fig. 6 a comparison between the true position angles and the
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Fig. 4: True movie for fast rotating crescent.

recovered ones with an error by the temporal smearing due to the
scan-length.

The ngEHT array is much denser than the EHT configura-
tion of 2022. This enhances the possible temporal resolutions.
We therefore also studied the possibility to observe faster rotat-
ing structures at the event horizon with the fast rotating cres-
cent model. The dynamic reconstruction was done in this case in
frames of three minutes in length. The faster orbital period and
the shorter frame length complicate the reconstruction proce-
dure: there are fewer observation points per single frame which
raises the problem of sparsity. Moreover, due to the shorter dy-
namical timescale and the smaller number of observing points
per single frame, the scan-averaged visibility points worsen the
signal to noise ratio by a factor of

√
3 compared to the slower ro-

tating crescent. The reconstruction results for dynamic Stokes I
imaging with mr-support imaging are shown in Fig. 9. The cres-
cent is observed at every frame. Additionally the overall orienta-
tion matches quite well. However, the quality of the reconstruc-
tion decreases compared to the slowly rotating crescent, as can
be expected: the asymmetry of the crescents is less clear and
the orientation is slightly off by roughly fifteen degrees in some
frames.

All in all, we observe that with mr-support imaging we re-
cover the correct image structure, including overall shadow fea-
ture, crescent asymmetry, and orientation, for most frames in the
observation very well. Again we like to mention that these par-
ticular successful reconstructions do not suffer from introducing
image artifacts despite the sparsity of the uv-coverage, especially

in single frame observations. This, once again, demonstrates the
regularizing property of the mr-support approach.

4.4. Dynamic polarimetry

As outlined in Sec. 3.4 we did the dynamic reconstruction of the
Stokes I channel first. Hence, we copied over the reconstructions
from Sec. 4.3. We then added polarization frame by frame by
mr-support imaging. Similar to our procedure presented in Sec.
4.2 we first minimized the data terms (fit to polarized visibilities)
with a BFGS minimization procedure, blurred the reconstructed
polarized images with the nominal resolution, and minimized the
fit with a gradient descent procedure starting from the blurred
image as an initial guess.

The reconstruction results in the time-window t ∈

[10UT, 11UT ] are presented in Fig. 10 for a slowly rotating cres-
cent model with EHT coverage. The relatively simple polarized
structure is well recovered in each frame. While the recovered
images show some local variation from the overall orientation,
the larger scale EVPA orientation matches for all frames. The
fraction of polarized linearly polarized light is surprisingly well
recovered. Again, despite of some local variations in the recov-
ered EVPA, the challenging reconstruction does not show image
artifacts.

In Fig. 11 we present the reconstruction of the slowly rotat-
ing crescent observed with the ngEHT. The quality of the recon-
struction improved compared to the reconstructions presented in
Fig. 10. The global orientation of the EVPAs is well recovered
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Fig. 5: Multiresolution support for the reconstruction of the static polarization example with EHT coverage.

Fig. 6: True position angle (blue) and the recovered position an-
gle recovered with mr-support imaging for an EHT configura-
tion (red) and ngEHT configuration (green) for the slowly rotat-
ing crescent model. The errorbars reflect the change in position
angle in the true source model within a 10 minutes scan (cycle
length of synthetic observation).

for every frame. In the reconstructions with the EHT configu-
ration we also observed some local variations from the overall
polarimetric structure. These cannot be observed anymore in the
reconstructions with ngEHT coverage.

We present the dynamic polarimetry reconstruction with mr-
support imaging of the rapidly rotating crescent in Fig. 12. The
reconstruction of the polarimetric structure, i.e. the rotation of
the EVPAs, remains excellent. These results suggest that mr-
support imaging could handle dynamic, polarimetric structural
features at the event horizon with realistic dynamic time scales.

4.5. ngEHT analysis challenge

Additionally to the rather simple synthetic data tests presented
in the previous subsections, we show here the reconstructions
by mr-support imaging for the third ngEHT Analysis challenge
3. The ngEHT Analysis challenges are a series of semi-blind
data challenges to evaluate the performance of algorithms for the
planned ngEHT instrument (Roelofs et al. 2023). The ngEHT
is a planned instrument to recover (polarimetric) movies at the
event horizon scales (Doeleman et al. 2019).

The ground truth movies produced for the ngEHT Analy-
sis challenge resemble the current theoretical state-of-the-art in
simulations (Roelofs et al. 2023; Chatterjee et al. 2023). Here we
present the reconstructions of a RIAF model of Sgr A* (Broder-
ick et al. 2016) with a shearing hotspot (Tiede et al. 2020) with
hotspot parameters inspired by GRAVITY Collaboration et al.
(2018a). The data sets were observed with the EHT array and
ngEHT arrays that we used for the geometric data sets as well.
In contrast to the proof of concept with geometric models, the
ngEHT challenge data contain the full set of data corruptions

3 https://challenge.ngeht.org/
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that may be expected from real observations (Roelofs et al. 2023)
simulated with the SYMBA package (Roelofs et al. 2020) in-
cluding atmospheric turbulence, atmospheric opacity, pointing
offsets, a scattering screen and thermal noise specific to each an-
tenna. However, no polarization leakage was added to the data.
For more information we refer to Roelofs et al. (2023) and the
challenge website 4. The data sets were network calibrated as it is
standard in the EHT data processing (Event Horizon Telescope
Collaboration et al. 2022b). The ngEHT Analysis challenge is
in particular well suited as a verification data set since the chal-
lenge was done blindly, neither the source files nor the specific
data corruptions were made public to the analysis teams.

We show the ground-truth movie in Fig. 13. A static (but not
descattered) image was recovered by DoG-HiT with a system-
atic error budget of 2%. The static image is computed by DoG-
HiT in a completely unsupervised way from closure quantities
. We used this calibration independent model to calibrate the
data set on long time intervals (1 hour). Next we calculated the
multiresolution support and cutted the image into frames of six
minutes. The dynamic reconstruction was done with mr-support
imaging. We self-calibrated the data set in every single observ-
ing frame during the procedure. Then we added polarization in
every frame.

The recovered movie is presented in Fig. 14. Moreover, we
show magnified panels of selected frames in Fig. 15. The single
frames all show a ring-like structure with a central depression.
Compared to the ground truth frames, the reconstructed images
have a worse quality due to the rapid variability, systematics and
sparse coverage. Moreover, an interstellar scattering screen was
added to the data that was not removed during the imaging proce-
dure. The reconstruction of the shearing hotspot motion is more
challenging. We recover an approaching hotspot to the right of
the ring at UT 11.3 (upper panels in Fig. 15), an extended (po-
larized) tail to the North-West (top right) from UT 11.3 until
UT 11.6 (middle panels in Fig. 15), and a clearly visible arc of
larger intensity within the ring to the South-East (bottom left)
from UT 11.7-UT 11.9 (bottom panels in Fig. 15). These features
are consistent with the hotspot motion of the ground truth movie.
While we recover some motion related to the hotspot motion, a
continuously evolving movie was not recovered. This is a result
of the rather bad simulated weather conditions and the obser-
vation cadence for the third challenge: the source was (syntheti-
cally) observed for ten minutes followed by a gap of ten minutes.
While mr-support imaging sufficiently recovers some (scattered)
hotspot related features in the frames that have observed visibil-
ities, the algorithm does not contain an interpolation scheme to
the scans without observations (it just assumes the starting point,
i.e. the preceding frame). Hence, we do not recover an evolving
movie, but several frames (e.g. UT 11.5 and UT 11.6 or UT 11.7
until end) show the same image structure.

The synthetic ground truth polarization is less dynamic and
hence easier to recover. We recover the overall radially-conic
EVPA pattern in every frame with minor small scale perturba-
tions from the ground truth (that may be also related to the dif-
ferent Stokes I images). Moreover, the recovered polarization
fraction matches the true one. As a more detailed feature we suc-
cessfully recover a larger fractional polarization for the shearing
hotspots that follows the hotspot motion.

The presented data set mimics one of the most challenging
VLBI data analysis problems so far with various data corrup-
tions, high frequencies (i.e. phase instabilities), fast dynamics
and polarimetric structures, the need for super-resolution, and a

4 https://challenge.ngeht.org/

sparse VLBI uv-coverage. As expected, the reconstruction qual-
ity with mr-support imaging is degraded compared to the rather
simple geometric data tests that we discussed before. However,
the application highlights already the potential of mr-support
imaging to do unsupervised, super-resolving, dynamical and po-
larimetric imaging together. This presents a unique capability in
the landscape of existing imaging algorithms by now, and in par-
ticular a domain of research in which CLEAN remains limited
due to its lack of resolution, its high demand of human supervi-
sion and calibration, and lacking support for dynamical recon-
structions.

5. Conclusions and outlook

We presented in this manuscript a novel algorithmic approach to
do static polarimetry, dynamic imaging and finally dynamic po-
larimetry. The approach was based on our previous works on
multiscalar imaging (Müller & Lobanov 2022, 2023) and the
multiresolution support in particular. The multiresolution sup-
port encodes important information about the emission structure
on one hand (which spatial scales are present where in the im-
age?) and the uv-coverage on the other hand (which of these spa-
tial scales is measured by baselines?). Hence, the multiresolution
support is well suited to introduce regularization for challenging
extensions to the standard VLBI imaging problem in the spirit
of constrained minimization: we optimize the fit to the respec-
tive data terms (chi-squared to frame by frame visibilities or to
polarized visibilities), but vary wavelet coefficients in the mul-
tiresolution support only.

We demonstrated with applications to simple geometric syn-
thetic observations the power of this approach. The mr-support
constraint suppressed the introduction of image artifacts, hence
providing ample regularization. Moreover, the approach is flex-
ible enough to allow for the reconstruction of both dynamically
evolving structures and polarimetric structures. Moreover, the
blind application to more complex movies of the third ngEHT
Analysis challenges demonstrated that the algorithm may also
provide reasonable reconstructions with real data corruptions in
one of the most challenging VLBI imaging problems, although
the quality of the reconstruction is degraded.

Mr-support imaging shares the basic advantage of multi-
scalar approaches that are fitted to the uv-coverage. The static
reconstructions are done with DoG-Hit which is completely
data-driven and largely automatic without many hyperparame-
ters (Müller & Lobanov 2022). The same applies for the exten-
sion to dynamics and polarimetric quantities. There are no fur-
ther, specific regularization terms (with corresponding weights)
introduced, rather the reconstruction is regularized again by the
data driven multiresolution support which is determined by the
uv-coverage and baseline-noise. Hence, mr-support imaging is
blind and unbiased as well. However, we recognized an impor-
tant bottlenecks for the dynamic reconstructions with mr-support
imaging: the static average image needs to approximate the true
time-averaged image quite well.

An extension to RML approaches to dynamic imaging, i.e.
the addition of temporal regularizers, is straight-forward as well.
Note that due to the lack of regularization parameters control-
ling the temporal correlation, mr-support imaging basically cal-
culates images with rich structures from the extreme sparsity of
a single scan independently of preceding and proceeding scans.
That indicates that the multiresolution support information is
a rather strong prior information that, once a reasonable static
model is established, allows for the handling of extreme sparsity
in the data.
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The geometric test observations tested throughout this study
are rather simple. First, we neglected circular polarization for the
purpose of simplicity. We note that we only added thermal noise
to the observations and no phase and amplitude errors. This does
not affect the reconstruction of the static Stokes I image (nei-
ther for a static source nor for a dynamically evolving source)
since DoG-HiT uses the closure quantities as data terms only
(Müller & Lobanov 2022). However, phase and amplitude cal-
ibration errors could affect the subsequent mr-support imaging
rounds since for every frame the (polarized) visibilities are used
instead of the closure quantities. Hence, we assume that one was
able to solve for the (polarized) self-calibration with the time-
averaged mean image. This does not has to be necessarily true,
but might be a good approximation when the dynamic time-scale
of the source and the dynamic time-scale of the gain-variability
are different allowing a gain self-calibration with the mean im-
age (e.g. compare Wielgus et al. 2022; Event Horizon Telescope
Collaboration et al. 2022b).

Moreover, while a rotating crescent movie might be a good
approximation to a rotating hotspot model in first instance, the
model is only a rough approximation to the range of models
for the dynamics at the horizon scale. The same applies to the
rather simple polarization model used. We therefore tested the
algorithm in the blind third ngEHT Analysis challenge as well.
While due to the systematic errors added to the synthetic data,
the reconstructions are worse than in the previous data tests,
mr-support imaging, for the first time, is able to recover super-
resolved, polarized movies in an unsupervised way. This is a
unique capability among all currently existing VLBI imaging al-
gorithms. Furthermore, we expect further significant improve-
ments from including a temporal regularizer in the dynamic
imaging and from more sophisticated strategies for the static im-
age reconstruction, in particular from frameworks that already
demonstrated to be able to recover fast dynamics such as ehtim
or StarWarps.

Finally, the application of the same ground truth movie to a
possible ngEHT array configuration demonstrates the improve-
ments that the ngEHT project will bring to dynamic reconstruc-
tions. The quality of the fits to Stokes I and polarimetric prop-
erties improves. With a ngEHT configuration it is even possible
to recover structural patterns with dynamic timescales of about
∼ 10 − 20 min and therefore what can be expected from real ob-
servations.
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5 https://github.com/hmuellergoe/mrbeam
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Fig. 7: The recovered solution (recovered with mr-support imaging) for slowly rotating crescent observed with the EHT.
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Fig. 8: Same as Fig. 7 but with ngEHT coverage: slowly rotating crescent observed with the ngEHT.
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Fig. 9: Reconstruction of fast rotating crescent with ngEHT coverage: rapidly rotating crescent observed with the ngEHT.
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Fig. 10: True (upper panels) and recovered (lower panels) test images with full Stokes polarization for the slowly rotating crescent.
The mr-support imaging approach succeeds in recovering the true large scale orientation of the EVPA.
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Fig. 11: Same as Fig. 10 but with ngEHT coverage: slowly rotating crescent observed with the ngEHT.
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Fig. 12: Polarimetric reconstruction of fast rotating crescent with ngEHT coverage.

Fig. 13: Synthetic ground truth movie of Sgr A* used for the third ngEHT Analysis challenge. The model is a RIAF model with a
semianalytic shearing hotspot.
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Fig. 14: Reconstruction of the movie plotted in Fig. 13 with mr-support imaging for the third ngEHT Analysis challenge.
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Fig. 15: Selected frames of the reconstructions shown in Fig. 13 and 14 at times UT 11.3 (upper panels), UT 11.5 (middle panels)
and UT 11.7 (lower panels).
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Appendix A: Wavelet dictionaries

This section is adapted from (Müller & Lobanov 2023). The dic-
tionaries used in this paper are as follows::

ΨDoG : I 7→ [Gr
σ0
∗ I −Ge

σ0,σ1,α0
∗ I,Gr

σ0
∗ I −Ge

σ0,σ1,α1
∗ I, ...,Gr

σ0
∗ I −Ge

σ0,σ1,αN−1
∗ I,

N−1∑
i=0

Ge
σ0,σ1,αi

∗ I −Gr
σ1
∗ I,

Gr
σ1
∗ I −Ge

σ1,σ2,α0
∗ I, ... ,Gr

σ1
∗ I −Ge

σ1,σ2,αN−1
∗ I,

N−1∑
i=0

Ge
σ1,σ2,αi

∗ I −Gr
σ2
∗ I,

Gr
σ2
∗ I −Ge

σ2,σ3,α0
∗ I, ... ,Gr

σ2
∗ I −Ge

σ2,σ3,αN−1
∗ I,

N−1∑
i=0

Ge
σ2,σ3,αi

∗ I −Gr
σ3
∗ I,

...

Gr
σJ−1
∗ I −Ge

σJ−1,σJ ,α0
∗ I, ... ,Gr

σJ−1
∗ I −Ge

σJ−1,σJ ,αN−1
∗ I,

N−1∑
i=0

Ge
σJ−1,σJ ,αi

∗ I −Gr
σJ
∗ I,

Gr
σJ
∗ I],

where Gr
σ denotes a radial Gaussian function with a standard de-

viation σ and Ge
σ1,σ2,α

an elliptical Gaussian with major semiaxis
σ1, minor semiaxis σ2 and angle α. The DoB dictionary is com-
posed in the same way by replacing Gaussians with spherical
Bessel functions.

ΨDoB : I 7→ [J̃r
σ̃0
∗ I −Ge

σ̃0,σ̃1,α0
∗ I, J̃r

σ̃0
∗ I − J̃e

σ̃0,σ̃1,α1
∗ I, ..., J̃r

σ̃0
∗ I − J̃e

σ̃0,σ̃1,αN−1
∗ I,

N−1∑
i=0

J̃e
σ̃0,σ̃1,αi

∗ I − J̃r
σ̃1
∗ I,

J̃r
σ̃1
∗ I − J̃e

σ̃1,σ̃2,α0
∗ I, ... , J̃r

σ̃1
∗ I − J̃e

σ̃1,σ̃2,αN−1
∗ I,

N−1∑
i=0

J̃e
σ̃1,σ̃2,αi

∗ I − J̃r
σ̃2
∗ I,

J̃r
σ̃2
∗ I − J̃e

σ̃2,σ̃3,α0
∗ I, ... , J̃r

σ̃2
∗ I − J̃e

σ̃2,σ̃3,αN−1
∗ I,

N−1∑
i=0

J̃e
σ̃2,σ̃3,αi

∗ I − J̃r
σ̃3
∗ I,

...

J̃r
σ̃J−1
∗ I − J̃e

σ̃J−1,σ̃J ,α0
∗ I, ... , J̃r

σ̃J−1
∗ I − J̃e

σ̃J−1,σ̃J ,αN−1
∗ I,

N−1∑
i=0

J̃e
σ̃J−1,σ̃J ,αi

∗ I − J̃r
σ̃J
∗ I,

J̃r
σ̃J
∗ I],

with radial spherical Bessel function J̃r and elliptical Bessel
function J̃e.
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