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In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then
reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased
sampling of the Radon space. However, especially in case when only a limited number of projections
can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image.
In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximiz-
ing the information gain about the object, given the set of possible new angles. Experiments show that
this approach can select projection angles for which the accuracy of the reconstructed image is signifi-
cantly higher compared to the standard angle selections schemes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Tomography has applications ranging from 3D imaging of
nano-materials by electron microscopy to the reconstruction of
accretion disks from astronomical observations. In many of these
applications, it is highly desirable to reduce the number of projec-
tions taken, or it is even impossible to acquire many projections. In
image-guided radiotherapy, for example, a patient is being imaged
for several times posing a serious radiation safety concern [1]. In
astro-tomography, only a few satellites are capable of imaging
the corona of the sun, leading to long acquisition times. In electron
tomography, the electron beam gradually damages the object, also
imposing a restriction on the number of projections that can be ac-
quired [2].

When an image is being reconstructed from a small number of
projections, the angles from which these projections will be ac-
quired will significantly influence the reconstruction quality. In
[3], it was shown that the quality of the reconstructions can be
highly dependent on the projection angles in binary tomography.
In that paper, an algorithm was proposed for identifying optimal
projection angles based on a blueprint image known to be similar
to the scanned object, which can be readily applied in the field of
non-destructive testing. For the more general case of grey scale
tomography, a framework was proposed in [4], which allows to
optimize the set of projection angles based on certain prior knowl-
edge about the object. In [5], an algorithm was proposed to select
new projection angles based on the quantification of the projection
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information content using an entropy-like function of the already
acquired projections. For tomography of elliptical objects, a genetic
algorithm was proposed [6], which exploits the preferential direc-
tion characteristic of the objects and uses reconstructions from
available projections to select the next projection directions. In
[7], a new strategy was recently proposed for angle selection in
binary tomography, which is based on the concept of information
gain from adding a particular projection angle to the set of projec-
tion directions and does not require specifying prior knowledge
about the object.

In the present paper, the dynamic angle selection strategy for
binary object scanning is adapted for use in grey scale tomography.
It is a dynamic algorithm, which selects a new angle based on the
currently available projection data and incorporates two major
concepts: (1) sampling of the set of images that are consistent with
the already acquired projection data and (2) determining the
amount of information that can be gained by acquiring a projection
from a particular angle.

The structure of this paper is as follows. In Section 2 our
approach is explained. Section 3 describes experiment setups and
presents obtained results. The approach is discussed in Section 4.
Finally, conclusions are drawn in Section 5.

2. Method
2.1. Information gain

The idea of the proposed angle selection algorithm is to select a
new projection direction in such a way that the newly obtained
projection will contain as much information about the object as
possible. As a measure of information, a concept of information
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gain is used, which is based on the diameter of the set of solutions
that are consistent with already obtained projections [7].

Let ® = {6,,...,64}be the current set of d angles, for which
projection data p® = W®v of the unknown image v € [0,1]" have
already been measured, where n is the number of pixels in the
image and W® is the projection matrix corresponding to ©. Note
that if the assumption on the range of the grey values of the
unknown image is not satisfied in practice, a preprocessing step
is needed to make the assumption valid, which is discussed in
Section 4. Let S0 (p®) = {x €[0,1)" : Wex = p®{ be the set of all
solutions that are consistent with the projection data p®. Then,
the information gain for any image x and set of angles ® yielded
by taking a projection from angle 0 is defined by

G(x,®,0) = diam (sW@ (W®x>> — diam (sww (W@U{"}x>)7 (1)

where diam(V) = max {||x — y||;|x,y € V} for any V c [0,1]". This
defines the information gain as the difference of the diameters of
the sets of all images having the same projections as x. Having de-
fined the mean information gain of a set of images V c [0, 1]" as

[, G(x,0,0)* dx

G(V,9,0)= f dx > (2)
v

the next projection angle can be found as

04,1 = arg gng[%c(swe (°),0,0). 3)

In practice, the integrals in Eq. (2) have to be approximated. In
the present paper, three approximation steps are proposed. Firstly,
the diameter of the solution set in Eq. (1) is substituted with its
upper bound which was proposed in [8,9] for binary solutions
and which also holds for the solutions belonging to [0,1]". Sec-
ondly, integration in Eq. (2) is replaced by a summation over a
set of surrogate solutions, which represent the true set S0 (p®). Fi-
nally, the continuous domain of the candidate angle 0, is substi-
tuted with a finite set of candidate angles, updated every time a
new angle is chosen. These steps are explained in detail in the fol-
lowing sections.

2.2. Upper bound for the diameter of the solution set

The upper bound for the diameter used in Eq. (1) is based on the
concept of the central reconstruction x*, which is the shortest solu-
tion in Sye (p©), in the Euclidean sense. This reconstruction can be
computed using the Conjugate Gradient Least Squares (CGLS)
method, an iterative Kryl ce method ([10]). Define the
central radius by R = \/pTh — ||x*| ;3. Then, the following theorem
holds:

Theorem. Let X,y € S0 (p®). Then |x — y|, < 2R.
The proof of this theorem can be found in Appendix A.

2.3. Surrogate solutions

In order to evaluate the mean information gain defined by Eq.
(2), the fraction under the square root is replaced by the mean
information gain over the set of surrogate solutions, which are
used as samples representing the true solution set S, (p®). A sur-
rogate solution is calculated from a template image, a randomly
generated member of a given parameterized family of images. This
template image is then used as a starting point for the Simulta-
neous Iterative Reconstruction Technique (SIRT) [11] that com-
putes the surrogate solution consistent with already obtained
projection data p®. As the system W®x = p® is severely underde-
termined, the surrogate solution partly retains the features present
in the template image. Hence, allowing sufficient variation within
the set of template images results in variation of the surrogate

solutions obtained and allows to control the approximation of
the true solution set S, (p®).

2.4. Candidate angles

An adaptive approach is proposed to modify the set of angles
being considered at the subsequent angle selection steps. Let
Agi1 = {1, 0,...,0q}, 0< oy <op <...< oy <7 be the set of can-
didate angles for selecting the next angle 04, ;. Suppose that o; is
the best angle and 6,4, := o;. Then, let the candidate angle set used
for the selection of the angle 0;,, be defined as
Agir = {otg, ... oq, 8% B0 gy ooy} This procedure  al-
lows to better sample the candidate angle space near the angles
which are likely to reveal more details in the object and still leaves
the possibility for choosing completely new directions.

2.5. Dynamic angle selection algorithm

Combining all the approximation steps, an algorithm for esti-
mating the mean information gain for a candidate angle can be de-
fined (Algorithm 1). Based on this algorithm, the proposed angle
selection approach iterates over the set of candidate angles and
chooses the angle yielding the highest mean information gain.

Algorithm 1. Computing the mean information gain for a
candidate angle 0, based on K surrogate solutions

Input: ® = {01,...,04},p®, 0
x* = CGLS (WG, p@); || compute central reconstruction

D=2 % — ||x* H%; || compute the upper bound of the solution
set diameter
® = ® U {0}; /] includethe candidate angle into the set of
projection angles
fori:=1 to K do /[ loop over K surrogate solutions
X = generateSurrogate(®, p®);
p® = WPx; //calculate new projection data that includes the
projection for the candidate angle

X = CGLS(W“’,E)‘I’>; || compute the new shortest solution

D; = 24/!I% — %|13; |/ compute the new upper bound
end

2
Output: G = }?ZL (D - Di> || the mean information gain

3. Experiments

Simulation experiments were run to assess the ability of the
proposed algorithm to select favourable projection angles. The size
of the phantoms was limited to 128 x 128 pixels due to the com-
putational complexity of the approach. A quantitative evaluation

— — 1/ \
(a) (b)

Fig. 1. Examples of the phantoms with one (a) and four (b) orientations, used in the
experiments of Section 3.1.
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Fig. 2. MSE as a function of the number of projection angles for phantoms with one to four orientations ((a)-(d), respectively).
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Fig. 3. Selection of the fourth angle for the phantom shown in Fig. 1(a). Information gain (a) and reconstruction from three already obtained projections (b). The
reconstructions from four projections are shown in (c) and (d), where the fourth projection was selected as indicated in the information gain plot by the red (c) and green (d)
dot, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the proposed algorithm is based on the assumption that a good
angle selection scheme will lead to a more accurate reconstruction
from fewer angles compared to a reconstruction from angles cho-
sen by a standard selection scheme.

For all presented experiments, the template images used for the
generation of the surrogate solutions were created as a superposi-
tion of 50 2D Gaussian blobs with randomly chosen orientation
and standard deviation along both axes between 3 and 10 pixels.
For the selection of each angle, K = 10 surrogate solutions were
generated. Angles with a step of 10° were chosen for the initial

(b)

set of candidate angles, which was then modified as described in
Section 2.4.

Three angle selection schemes were chosen as antagonists for
the proposed algorithm:

e Standard. A widely used strategy, in which angles are selected
between 0° and 180°, with equiangular spacing. Changing the
number of angles actually changes the entire set of selected
angles, which explains the fluctuations of the numerical results
for this strategy.

/
— a—
n— a—

—

(d)

Fig. 4. Reconstructions of the phantom shown in Fig. 1(a) from five projection directions selected with the standard (a), gap-angle (b), entropy-based (c) and dynamic (d)

algorithms.
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Fig. 5. Distribution of the first 20 angles selected with the standard (a), gap-angle (b), entropy-based (c) and dynamic (d) algorithms for the phantom shown in Fig. 1(a).

Fig. 6. Phantoms used in the experiments of Section 3.2.
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e Gap-angle. In the gap-angle scheme, a new angle is selected as
the midpoint between the two consecutive angles with the larg-
est angular gap between them. If several pairs of angles have
equal gaps, one of them is chosen randomly.

e Entropy-based. In this approach, a new angle is selected based
on the “entropy” of the already measured projections. Assuming
that 31", p! = 1, the entropy E, for the projection p’ is defined as
Ey = -3 ,p’logp!, where m is the number of detector ele-
ments and p!logp! = 0 for p! = 0. The next projection is mea-
sured between two projections that present the maximum
difference in the entropy. For a detailed description and analysis
of this approach, the reader is referred to [5].

Nine angle sets were used as a starting point for all algorithms,
containing two perpendicular angles and having an angular shift of
10° with respect to the previous initial angle set, giving 9 starting
configurations. For each of the starting configurations, angles were
selected with the schemes under consideration and the selected
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angles were then used to compute reconstructions using 250 iter-
ations of SIRT. The mean values of the mean squared errors (MSEs)
of the reconstructions for all starting configurations were then cal-
culated and plotted together with the standard errors (shown as
shaded areas in the plots). Two sets of experiments were run,
revealing the ability of the algorithms to deal with phantoms hav-
ing clear direction preferences and to handle more realistic phan-
toms, which are described in Sections 3.1 and 3.2. For one
phantom from Section 3.2 simulations with varying noise levels
were also performed, which are described in Section 3.3. All pre-
sented experiments were implemented using the ASTRA toolbox
[12] where extensive use of GPU acceleration was used [13].

3.1. Randomly oriented bars

For the first series of experiments, a set of phantoms was cre-
ated. A phantom in this set consists of six rectangular bars, each

oriented along one of the angles from {8 i=1,...,6} with
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Fig. 7. MSE as a function of the number of projection angles for Fig. 6(a)-(f).
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respect to the vertical edge of the phantom. The number of differ-
ent bar-edge angles in the phantom defines the orientation of the
phantom. Thus, in the phantom with one orientation, the direction
of the bars is the same. In the phantom with six orientations, the
orientation of each bar is randomly chosen from the set
{18 i=1,...,6}. For the number of orientations from one to
four, six phantoms were created with randomly chosen bar-edge
angles, giving 24 phantoms in total. Examples of the phantoms
with one and four orientations are shown in Fig. 1(a) and (b),
respectively. Fig. 2(a)-(d) present average MSEs for the phantoms
with equal number of orientations. These plots suggest that the
proposed approach has a clear advantage over the other three
strategies for the phantoms with one or two orientations and
shows comparable or worse results for phantoms with a larger
number of orientations, showing strong dependency on the num-
ber of orientations in the phantom, whereas the performance of
its antagonists demonstrates little to no such dependency.

To illustrate each step of the algorithm, the selection of one an-
gle is considered in detail for the phantom shown in Fig. 1(a). Pro-
jections from three angles ® = {0°,80°,90°} are already available
and the corresponding reconstruction is shown in Fig. 3(b).
Fig. 3(a) presents the average information gain. Note that zeros
in this plot correspond to the already acquired projections.
Fig. 3(c) and (d) show the possible reconstructions for cases when
angles 50° and 110° are chosen as the fourth projection angle.
Examples of the reconstructions from five angles yielded by the
considered approaches are presented in Fig. 4. Fig. 5 depicts the
distribution of 20 angles selected with each algorithm. This exam-
ple illustrates the correspondence between the average informa-
tion gain and the reconstruction quality, confirms the ability of
the proposed approach to select projection angles according to
the directions presented in the object and to yield more accurate
reconstructions compared to the standard angle selection schemes.
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3.2. Wood phantoms: noiseless simulations

For the second series of the experiments, six phantoms (Fig. 6)
were created from micro-CT (Fig. 6(a)-(d)) and scanning electron
microscope (Fig. 6(e) and 6(f)) images of wood samples. Although
these phantoms have clear preferential directions, they are far
more complex compared to the bar phantoms described in Sec-
tion 3.1. The phantoms include fine structures with (cfr.
Fig. 6(a)-(d)) or without (cfr. Fig. 6(e) and 6(f)) preferential direc-
tions and have two different shapes which either have or do not
have preferential directions. Fig. 6(b) and (d) were obtained by
rotating Fig. 6(a) and (c), respectively. However, as the phantoms
were defined on a pixel grid, some interpolation occurred during
the rotation, resulting in minor differences in the results for the
proposed algorithm compared to the results for the non-rotated
phantoms. Fig. 7 shows the MSEs for Fig. 6(a)-(f), which demon-
strate the ability of the proposed approach to yield projection angle
sets resulting in more accurate reconstructions from fewer projec-
tions. The results for Fig. 6(b) and (d) suggest that the dynamic
algorithm accurately reconstructs the rotated objects as well as
the unaltered objects. In general, the dynamic angle selection algo-
rithm outperforms the other methods with respect to reconstruc-
tion quality. Note that the shape of the phantoms also plays a
significant role in the performance of the proposed algorithm,
allowing it to reduce the MSE faster as a function of the number
of projections for the phantoms that have a square shape compared
to circular phantoms.

3.3. Wood phantom: simulations with noise

To evaluate the proposed approach in more realistic situations,
the experiments shown in Section 3.2 were extended with noise
simulations as follows. Poisson noise was simulated in the projec-
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Fig. 8. MSE as a function of the number of projection angles for the simulations with different noise levels for the proposed algorithm (a) and for all considered algorithms

(b-d) for Fig. 6(d).
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tion data based on a number of counts N; for the phantom shown
in Fig. 6(d) from Section 3.2. The values N; = 10°, N, =10° and
N, = 10” were used to simulate the different noise levels [14].
The number of SIRT iterations was 250. The mean values of the
mean squared errors (MSEs) of the reconstructions as a function
of the number of projections were then calculated and plotted to-
gether with the standard errors (shown as shaded areas in the
plots) in Fig. 8. These results suggest that the proposed algorithm
is robust against noise and can provide projection angle sets lead-
ing to more accurate reconstructions in the presence of noise.
Improvement in the reconstruction quality for the proposed algo-
rithm decreases compared to the standard angle selection schemes
as the level of noise increases, yet allowing the dynamic approach
to outperform other angle selection strategies for the phantom
shown in Fig. 6(d) even in the case of the highest noise level
considered.

4. Discussion

The proposed dynamic angle selection algorithm selects projec-
tion angles based on the already measured projection data by max-
imizing the information gain. The algorithm does not use any prior
knowledge about an object. The only assumption made is that pixel
values fall into the range of [0, 1]. However, even if this assumption
is not satisfied, an upper bound for a pixel value can be calculated
based on a pixel size and attenuation of the densest material pos-
sible (providing that X-rays are not entirely absorbed by the ob-
ject). The projection data can then be divided by this bound,
resulting in the corresponding scaling of the reconstructed image
and the above mentioned assumption being satisfied.

Experiments show that the proposed approach can produce an-
gle sets that provide more accurate reconstructions compared to
the conventional angle selection strategies or reconstructions of
comparable quality from smaller number of projections. The big-
gest improvement in reconstruction quality is achieved for objects
with a few preferential directions in the interior and shape. Intui-
tively, imaging quality for this type of objects strongly depends on
a small set of selected angles, whereas a relatively large number of
projections assures high reconstruction quality for any reasonable
angle set. In contrast, objects with a high number of preferential
directions (or without any preferences) can hardly be recon-
structed with acceptable quality from a small number of projec-
tions, and the influence of the angle choice for a large number of
projection angles decreases (again, for reasonable choices).

Because of the high computational complexity of the method,
the current algorithm is not feasible for large image sizes. Possible
ways to reduce the computational requirements include the use of
the computation results on the subsequent steps and preselection
of the candidate angles. Other important questions include the
integrability of the information gain over the set of solutions (cfr.
Eq. (2)), and the influence of the class of template images and
the candidate angle sets on the performance of the proposed
approach. These questions will be addressed in future work.

5. Conclusion

In this paper, an acquisition algorithm for dynamic angle selec-
tion in grey scale computed tomography was proposed. In this ap-
proach, the angle from which a new projection needs to be
acquired to gain the most information about the object, is dynam-
ically computed. Prior knowledge about the object itself is not re-
quired. Simulation experiments showed that this approach can
forecast projection angles that lead to more accurate reconstruc-
tions from fewer projections compared to the widely used angle
selection approaches. The proposed method is well suited in X-

ray imaging scenarios where the acquisition of a single projection
is expensive (in terms of acquisition time, dose, or object-source
positioning). The highest gain is expected for objects with a small
number of preferential directions in the shape and interior. Cur-
rently, the computation time of the proposed algorithm is very
high for large experimental datasets. Future work will focus on
improving the efficiency of the algorithm.
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Appendix A. Proof of the upper bound for the diameter of the
solution set

Let ® = {04,...,04} be the set of d angles, for which projection
data p® = W®v of the unknown image v € [0,1]" have already
been measured, where n is the number of pixels in the image,
we = w}? € R™" is the projection matrix corresponding to O,
and m is the total number of measurements in the projection data
p® € R™. Let Sye (p®) = {x €10,1)" : WOx = p® !be the set of all
solutions that are consistent with the projection data p®.

Lemma 1. Let x € S0 (p®). Then ||x|)3 < ||PZ||1'

Proof of Lemma 1. For the strip projection model, Z;’llwg’ =d
(j=1,...,n), as the total pixel weight for each projection angle is
equal to the area of a pixel, which is 1, and there are d projection
angles. Since p? > 0 (i=1,...,m), we have |p®||, = >, p? and

m m

i=1 i=1 j=

and hence ||p®|, =d57 ;. ]
p
Asx € [0,1]", x]l5 < X[l = % =5 O

Let x* be the shortest solution in S,e (p®), in the Euclidean

sense. Define the central radius by R = \/@ — ||x*||3. The follow-

ing theorem allows to find an upper bound for the Euclidean dis-
tance between two solutions from Se (p®).

Theorem 1. Let x,y € S0 (p®). Then ||x — y||, < 2R.

Proof of Theorem 1. From the definition of x* we have
(x—x") e N(WG)) and x* L (x — x*). Using the Pythagoras’ theorem
and Lemma 1 yields

P,
d

%12 2 |2 %12 2
X = x5 = lIxll; = lIx°[l> < =[xl = R

Therefore,

X =Yl < X=Xl + ly =x[, <2R. O
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