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Abstract 

We describe a hierarchical appearance-basedmethodfor 
learning, recognizing, and predicting arbitrary spatiotem- 
poral sequences of images. The method, which implements 

a robust hierarchical form of the Kalman$lter derivedfrom 

the Minimum Description Length (MDL) principle, includes 

as a special case several well-known object encoding tech- 
niques including eigenspace methods for static recognition. 
Successive levels of the hierarchical filter implement dy- 
namic models operating over successively larger spatial and 
temporal scales. Each hierarchical level predicts the recog- 
nition state at a lower level and modljies its own recognition 
state using the residual error between the prediction and the 
actual lower-level state. Simultaneously, on a longer time 

scale, the$lter learns an internal model of input dynamics by 

adapting its generative and state transition matrices at each 

level to minimize prediction errors. The resulting predic- 

tion/learning scheme thereby implements an on-lineform of 
the well-known Expectation-Maximization (EM} algorithm 
from statistics. We present experimental results demonstrat- 
ing the method’s efJicacy in mediating robust spatiotemporal 
recognition in a variety of scenarios containing varying de- 
grees of occlusions and clutter: 

1. Introduction 

Vision is fundamentally a dynamic process. The images 

impinging on the retina are seldom comprised of a sequence 
of unrelated static signals but rather, reflect measurements 
of a coherent stream of events occurring in the distal en- 
vironment. The regularity in the structure of the visual 

input stream stems primarily from the constraints imposed 
on event outcomes by various physical laws of nature in 
conjunction with the observer’s own choices of actions on 
the immediate environment. Under such circumstances, the 

goal of a visual system becomes one of estimating (and pre- 
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dieting) the “hidden” states of an observed dynamic system 
(the visual environment). Accurate estimation of hidden 
state then becomes synonymous with accurate recognition 
of input stimuli. More importantly, the ability to estimate 

current states and predict future states of the environment 

allows the organism to learn efficient visuomotor control 

programs and form useful cognitive plans for the immediate 

and distant future. 

The notion of hidden state is already implicit in var- 
ious appearance-based methods for computer vision that 
have received much attention over the past few years 
[17, 11, 13, 9, 2, 101. For example, in eigenspace-based 
methods, an input image is characterized by the vector of 
coefficients obtained by projecting the image along the di- 
rections given by the dominant eigenvectors of the input 

covariance matrix. This vector is compared with those of 

the training objects in order to determine the closest match. 

Within a more general context, this vector of coefficients 

can be regarded as a linear estimate of the hidden state that 
generated the given input (by multiplication with the eigen- 
vector matrix - see Section 2). In order to handle occlusions 
and clutter, alternate “robust” methods of computing the co- 
efficients have been proposed [2, lo], which, in the light of 
the above discussion, are equivalent to re-estimating the true 
hidden state. Unfortunately, an eigenspace-based generative 
model, which uses orthogonal eigenvectors, may deviate sig- 

nificantly from the true generative model that characterizes 

the image generation process. It is therefore not surpris- 
ing that recent work on modeling the response properties 
of neurons in the visual cortex has focused on alternative 
generative models using goals ranging from maximizing the 
“sparseness” of the coefficients [12] to making the coeffi- 
cients statistically independent (for example, independent 
component analysis (ICA) [ 11). 

In this paper, we propose a hierarchical appearance-based 

method for learning, recognizing, and predicting spatiotem- 
poral sequences of input images. As a special case of the 
method, one obtains the standard eigenspace and related 
methods for recognition of static images. The method, 
which essentially implements a robust hierarchical form of 
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the Kalman filter, generalizes eigenspace-based methods by 

allowing hidden state transitions from one time step to the 
next, thereby allowing prediction and modeling of time- 

varying processes. In addition, the basis vectors are no 

longer constrained to be the mutually orthogonal eigenvec- 
tors of the input covariance matrix but rather, are learned 

in an unsupervised manner by minimizing an optimization 
function based on the Minimum Description Length (MDL) 
principle. The MDL formulation computes penalized max- 
imum a posteriori (MAP) estimates of the parameters (the 
basis vectors) and the hidden state. Penalizing the cost of the 

model helps prevent overfitting and encourages generaliza- 

tion to novel situations, unlike eigenspace-based methods 

which attempt to minimize the gross reconstruction error. 
Furthermore, the hierarchical architecture prescribed by the 
method allows dynamic modeling of multiscale phenomena, 

which are ubiquitous in nature, and perhaps more closely 
approximate the image formation process than single level 
generative models such as those embodied in the eigenspace 
approach. 

2. Stochastic Image Generation Models and 
Optimal Estimation 

We begin by first relating the proposed method to princi- 
pal component/eigenspace methods. Consider the problem 
of encoding a collection of n x 1 input vectors I’, 12, . . . (for 
example, images) using an n x Ic matrix U. One solution 
is to choose the columns of U to be the first k dominant 
eigenvectors (in terms of maximal eigenvalues) of the in- 
put covariance matrix E(IIT) computed from zero-mean 
samples of input data. This is essentially the eigenspace 

technique of Turk and Pentland [ 171 and Murase and Nayar 

[ 111. In this case, the columns of U are orthogonal to each 

other and the “hidden” state vector corresponding to a given 
input I is a Ic x 1 coefficient (or response) vector: 

r=UTI (1) 

Since k is generally much smaller than n, the response vec- 
tor r is an efficient compressed representatiof! of the input 
image. A reconstruction of the input image I can be gen- 
erated from r by using the following relation which simply 
inverts the transformation in Equation 1: 

Gur (2) 

It is well-known (see, for example, [ 141) that the eigenvector 
matrix U minimizes the pixel-wise expected reconstruction 
error function: 

J(U) = 2 (Ii - Uzr)2 = (I - Ur)T(I - Ur) (3) 
i=l 

Given the generative model in Equation 4, one can ob- 

tain estimates of the parameters U and r by minimizing 

the least squares error function in Equation 3. However, a 

potentially serious problem with standard least squares esti- 
mation is the possibility of overfitting the model parameters 
to the observed data. In the extreme case, the parameters 
may become virtually identical with the training data (“rote 
memorization”) and therefore will fail to generalize to new 
data. On the other hand, not fitting the parameters accurately 
to the observed data introduces bias into the representations. 

We must therefore walk the thin line between fitting but not 

overfitting our parameters to data in order to ensure proper 

generalization to novel situations. One promising way out 

of this “bias-variance dilemma” is to use the Minimum De- 
scription Length (MDL) Principle [15, 181. Simply put, the 
MDL principle advocates balancing the cost of encoding the 
data given the use of a model with the cost of specifying 
the model itself (cost is defined in terms of the length of the 
encoding in bits). 

(where Ii denotes the ith pixel of I and Vi denotes the Given a description language C, data D, and model pa- 
ith row of U) over all inputs subject to the constraint that rameters M, the MDL principle advocates minimizing the 

the columns of U are orthogonal, r being specified as in 
Equation 1. 

Unfortunately, optimal compression via an eigenvector 
expansion does not guarantee optimal recognition because: 

(a) the mechanisms underlying the generation of inputs I 
(assuming they can be modeled by Equation 2) do not need 
to use mutually orthogonal column vectors in U; (b) r need 
not be specified as a purely one-shot feedforward function 
of UT and I as in Equation 1; (c) eigenspace or princi- 
pal component methods are suitable only when the data is 
well-described by a Gaussian cloud. Recent work by Field 
[7] and others strongly suggest that natural images form a 

highly non-Gaussian distribution that cannot be described 

satisfactorily by orthogonal basis vectors. (d) Perhaps most 
importantly, eigenvector-based methods can only capture 
linear pairwise statistical dependencies in the input stream. 

However, natural scenes are rife with higher-order statisti- 
cal structure that cannot be accounted for by linear pairwise 
statistics [ 121. 

Our approach to appearance-basedrecognition is inspired 
by the following stochastic and linear generative model that 
is already implicit in Equation 2 above: 

1 = Ur + nbu (4) 

where I denotes an input image and nbZL is a “bottom-up” 
stochastic noise process that accounts for the differences 
between the reconstruction Ur and the image I. We assume 
nbZL is Gaussian and E(n&) = 0 with a covariance matrix 

specified by E[nb&ru] = &. 

2.1. The Minimum Description Length Principle 

541 



following cost function [ 181: 

J(M,DD) = IW%~)l = I.WIM)I + WWI (5) 

1.1 denotes length of the description. In our case, D consists 
of the current input image I and M consists of the parameters 

U and r. 

Given the true probability distribution (over discrete 

events) of the various terms in the above equations, the 

expected length of the optimal code for each term is given 
by Shannon’s optimal coding theorem [ 161: 

IL(x)l = - logP(X = CC) (‘5) 

where P(X = Z) denotes the probability of the discrete 
event x. Thus, in a Bayesian framework, IL(Dl.u)l is sim- 
ply the negative log-likelihood of the data given the model 
parameters and IL(M) 1 is the negative log of the prior model 

parameter distributions. Minimizing the description length 

function J is thus equivalent to computing the maximum 
a posteriori (MAP) estimates of the model parameters M 
given the data 2), additionally taking into account the cost 

of the model. 
We now formulate an MDL-based optimization function 

for estimating U and r. In order to do so, it is convenient 
to view the n x IC generative weight matrix U as an nk x 1 
vector u = [Ul U2. . U,lT where Ui denotes the ith row of 
U. Suppose that we have already computed a prediction r; of 

the current state r based on prior data. In particular, let F be 

the mean of the current state vector before measurement of 
the input data at the current time instant. The corresponding 
covariance matrix is given by E[(r - F)(r - i=)T] = 1M. 
Similarly, let U be the current estimate of the u calculated 
from prior data with covariance E[(u - U)(U - u)~] = S. 

Shannon’s coding theorem relates code lengths to discrete 
probability distributions. Since we will be using continuous 
(Gaussian) distributions, we need to calculate the probability 

mass of a particular small interval of values around a given 

value I(: [ 181. Using a trapezoidal approximation, we may 

estimate the mass under a continuous (in our case, Gaus- 
sian) density p in an interval of width w around a value x 
to be P(X = x) g p(x)w. For encoding the data given 
the model (corresponding to IL(DjM)I) using the Gaus- 
sian associated with this term, we assume w to be a con- 
stant infinitesimal width which yields (using Equation 6 and 
ignoring the constant terms due to the coefficients of the 
multivariate Gaussian): 

IC(DlM)I = (I - Ur)TE;d (I - Ur) (7) 

For encoding the model parameters, a constant infinitesi- 
mal width w may be inappropriate since some values of 
the parameters may need to be encoded more accurately 
than others. For example, one could allow w to be a non- 
linear function of the model parameters in order to seek 

higher-order statistical structure than just linear, pairwise 
correlations [ 121. The model cost then reduces to: 

IL(M)1 = (r - F)TM-‘(r -F) + (u - ii)TS-‘(~ -ii) 

+f(r) + g(u) 

The first two terms in the sum above arise from the prior 

Gaussian densities for r and u as given by G(F, M) and 

G(ii, S), while the latter two terms are non-linear functions 
of r and u associated with w. For example, one could 

use f(x) = g(x) = ax2 to allow regularization and avoid 
overfitting [ 141. Using a function such as f(x) = a log( 1 + 
x2) causes higher-order correlations to be sought [ 121. These 
functions are applied to all components x of a given vector 
x and the results are summed in the optimization function. 

2.2. MDL-Based Kalman Filters 

In this section, we use the MDL-based optimization func- 
tion from the previous section to derive iterative Kalman 

filters for estimating r and U for static images. We extend 
this to the case of time-varying imagery in Section 3. 

Given an input I, the optimal estimate of current state r 
(with respect to a given U) after making a new measurement 
is a stochastic code whose mean 3 and covariance P can be 
obtained by setting w = 0 and solving for r (= ?): 

F’(t) = r(t) + PUTZ,-,‘(I - L&(t)) - Pf’(r(t))(8) 

P(t) = (M(t)-’ + UT&,(t)-‘U + f”(T(t)))39) 

where f’ and f” denote the first and second partial deriva- 

tives off with respect to r. These are in general non-linear 
functions of r. Note that to obtain the above closed-form 
equations, we used a first-order Taylor series expansion off’ 
about T(t). Equations 8 and 9 together implement an MDL- 
based Kalmanjlter [4] for updating the state estimate given 
prior estimates F and M. For static images, we may use 
F(t) = ?(t - 1) and M(t) = P(t - 1) to obtain an iterative 

Kalman filter for estimating the optimal state corresponding 

to a given static input. 

The optimal estimate of the generative matrix U (in its 

vector form u) is obtained in a similar manner, given a 
particular state r. First, note that (I - Ur) = (I - Ru) 
where R is the n x nk matrix given by: 

rT 0 . . . 0 
0 rT . . . 0 1 

R= (10) 
. . . 

Setting - aJ(at’D) = 0 and solving for u (= ^u), we obtain 
the following Kalman filter-based “learning” rule for the 
mean and covariance of the optimal generative vector: 

G(t) = u(t) + &(I - R(t)ii(t)) - Pug’@(t)) (11) 

Pu(t) = (s(t)-’ + R(t)T&u(t)-lR(t) + g”@(t)))-’ 
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Figure 1. Static Recognition Results. (a) shows 5 of the 36 views 
of two different 30 objects from the Columbia database [l I] used for 
learning the generative matrix U. Each view was 10’ apart from the next. 
Only the 32 x 32 image region demarcated by the box was used for train- 
ing to preserve computational efficiency; other regions are assumed to be 
analyzed by neighboring modules (see Section 4). U was initialized to a 

1024 x 50 random matrix. (b) shows some examples of the responses gen- 
erated by the trained filter. Training images produce accurate predictions 

(reconstructions) with low residual errors (top two rows). An intermediate 
view that is 5’ from nearest training view generates a moderately accurate 

interpolated prediction (middle row). This was apparently sufficient for 
the 100% recognition rate that was obtained for 36 different testing views 
of each object, each view 5O being from the nearest training view. The 
second to last row depicts how the effect of occlusions spreads globally 
[lo], as seen in the mediocre prediction and relatively large residuals at 
most locations. This is handled via robust estimation (Section 2.3). Fi- 
nally, a completely novel object generates an “average” image, and large 
residuals as shown in the last row. These residuals can be used to drive 
learning as in Equation 11, if the object is deemed to be important. 

where ii(t) = G(t - l), K, = P,R(t)%,-,‘, S(t) = 
Pu(t - l), and g’ and g” denote the first and second partial 
derivatives of g with respect to u. 

An interesting question is the issue of convergence of the 
overall filtering/learning scheme involving r and U. For- 
tunately, one can appeal to the well-known Expectation- 
Maximization (EM) algorithm from statistics [61 and allow 
the overall scheme to converge by using U = U(t - 1) in 

Equation 8 andr(t) = Pin the matrix R(t) above, wherepis 

the converged state estimate for the given static input. Note 

that the Kalman filter estimation of the state r can be related 
to the E-step in the EM algorithm while the adaptation of U 
using this estimate of r can be regarded as part of the M- 
step. Figure 1 illustrates the performance of a filter trained 
using the above estimation and learning rules. The mag- 
nitude of the residual error between the input image I and 
the filter’s prediction UF indicates the relative accuracy of a 
recognition hypothesis (low residuals imply correct recog- 
nition, high residuals implies novelty). This allows the filter 

to counter the pervasive problem of false positives common 
in most purely feedforward systems which lack the abil- 

ity to “invert” their recognition estimates and verify their 
hypotheses. 

2.3. Robust Kalman Filters and Outlier Rejection 

In the previous section, we did not specify how the co- 
variance &v is to be calculated. One possibility is to make 
it a constant matrix or even a constant scalar. Making xbzl 
constant however reduces the Kalman filter estimates to be 
essentially ordinary least-squares estimates, and it is well- 
known that least-squares estimation is highly susceptible to 
outliers or gross errors i.e. data points that lie far away from 
the bulk of the observed data [8]. The problem of out- 

liers can be tackled using robust estimation procedures [ 81. 

One commonly used procedure is M-estimation (Maximum 
likelihood type estimation), which involves minimizing a 
function of the form: 

J’(U, r) q = 2 p (Ii - Uir) 
i=l 

(12) 

where p is normally taken to be a less rapidly increasing 
function than the square. This ensures that large residual 

errors (which correspond to outliers) do not influence the 
optimization of J, thereby “rejecting” the outliers. Note that 

when p equals the square operation, we obtain the standard 

least squares function. More interestingly, we obtain the 
following weighted least squares criterion also as a special 

case: 
J’(U, r) = (I - Ur)TA(I - Ur) (13) 

where A is an n x n diagonal matrix whose diagonal entries 
A+ specify how to weight each residual (Ii - Uir). An 

attractive choice for these weights is: 

Ai,i = min { 1, c/(& - U;r)‘} (14) 

where c is a threshold parameter. Note that A clips the 
ith summand of optimization function J (Equation 13) to 
a constant value c whenever the ith residual exceeds the 
threshold c; otherwise, it sets it to the squared residual. 

For the experiments in this paper, we substituted C;y = 
A in Equation 7 and rederived the update equations. The 
corresponding robust Kalmanfilter for the state estimate is 

given by: 

F(t) = F(t) + P(t)UTG(t)(I - E(t)) - P(t)f’(F(t)) 

P(t) = (M(t)-’ + UTG(t)U + f”@(t)))-’ 

where G(t) is an n x n diagonal “gating” matrix, whose 
diagonal entries at time instant t are given by: 

Gi,i = 
1 

0 if (I;(t) - UiF(t))2 > C(t) 

1 otherwise 

The gating matrix G effectively filters out any high resid- 
uals, thereby allowing the Kalman filter to ignore the corre- 
sponding outliers in the input I and enabling it to robustly 
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Figure 2. Recognition using Robust Kahnan Filters. (a) depicts the 

estimation of object identity in the presence of an occlusion (compare with 
Figure 1 (b), fourth row). Portions of the input treated as outliers (diagonal 
of the gating matrix G) are shown in white on the right. (b) demonstrates 
the case where the input contains a combination of the training objects 
(same objects as in Figure 1). The identity of second object is retrieved by 
using the outlier mask produced by the first estimated object and repeating 

the estimation process. 

estimate the state r. In the experiments, the outlier threshold 

c was set equal to the sum of the mean plus lo standard devi- 
ations of the current distribution of squared residual errors 
(Ii - Uir)2. The parameter Ic was initialized to an appro- 

priately large value (e.g. k = 5) and gradually decreased 
during each iteration to allow the filter to converge to a ro- 

bust optimal estimate. Figure 2 provides examples of robust 
estimation in the presence of occlusions and structured noise 
in the input stream. As seen in the figure, the outliers (white) 
produce a crude segmentation of the occluder(s), which can 

subsequently be used to ascertain their identity. This is de- 

picted in Figure 2 (b), where the image is a combination 

of the two training objects. The outlier mask, as given by 

the complement 1 - G of the gating matrix (after estimation 
of the first object), is subsequently used as the new gating 
matrix for extracting the identity of the second object (lower 

arrows in the figure). 

3. Dynamic Generative Models and Learning 
Image Sequences 

The generative model in Equation 4 describes how a given 

hidden state r is related to the observed image I via the 
generative matrix U plus additive noise. In order to model 
time-varying processes, we need to describe how the state 
r itself varies in time. One way this can be achieved is by 
assuming that r is a Gauss-Murkov random process [4]. 

Given the state r(t - l), the transition to the state r(t) at 

the next time instant is modeled as:’ 

r(t) = Vr(t - 1) + n(t - 1) (15) 

where V is the state transition (orprediction) matrix and n 

is Gaussian noise with mean E[n(t)] = n(t) and covariance 
E[(n(t) - ii(t))(n(s) - ii(~))~] = Z(t)B(t, s) where 6 is 
the Kronecker delta function equaling 1 if t = s and 0 
otherwise. 

‘We describe the linear case here for simplicity but the technique read- 
ily generalizes (via Taylor series approximations) to non-linear dynamic 
models [14], which yield extended Kalmunjilters. 

In the static recognition case, we used F(t) = ?(t - 1) 

and M(t) = P(t - 1). It follows from Equation 15 above 
that in the dynamic case: 

F(t) = vqt - 1)) +ii(t - 1) (16) 

M(t) = vqt - 1)VT +C(t - 1) (17) 

In this dynamic form, the Kalman filter predicts one step 

into the future using Equation 16, corrects its prediction F 
using Equation 8 to obtain ?, and uses this corrected estimate 
3 to make its next state prediction. Note that the filter 
can predict an arbitrary number of steps into the future, 
although without new data, the uncertainty in prediction (as 
given by M) increases with each time step as suggested by 
Equation 17. 

A final issue is the estimation of the state transition matrix 
V. Fortunately, one can derive an estimation procedure for 

V in manner analogous to that for U. Let v be the k2 x 1 
vector obtained by collapsing the rows of the V. Suppose 

we have computed prior estimates V and T of the mean and 
covariance of v (just as we did for u and r). Augment the 
MDL-based optimization function in Equation 5 with the 
additional terms (v - V)TT-‘(~ - V) and h(v), where h 
is a non-linear function similar to f and g. Also, define the 
k x k2 matrix g to be: 

P 0 . . . 0 

0 FT . . . 0 1 ii= . . . . (18) . . . . . . . 
0 -‘T . * . 0 r I 

Notice that the state transition step can then be stated as F(t+ 

1) = V(t)?(t)) + E(t) = &t)v(t) + ii(t). Differentiating 
J(M, D) with respect to v and setting the result to zero, 
we obtain the following update equations for the mean and 

covariance of v: 

G(t) = V(t) + P,2(t)TM-’ [r(t + 1) - F(t + l)] 

-&h’(V@)) (19) 

Pu(t) = (T(t)-1 + &t)%(t)--l&t) + h”@(t)))-’ 

where V(t) = G(t - l), T(t) = Pv(t - l), and h’ and 
h” denote the first and second partial derivatives of h with 
respect to v. 

For the experiments in the paper, we used r(t + 1) = 
?(t + 1) in Equation 19 above, although the EM algorithm 
prescribes the use of F(t + l]N), which is the optimal tem- 

porally smoothed state estimate [4] for time t + 1 (5 N), 
given input data for each of the time instants 1, . . , N. 

The smoothed estimates are however computationally much 
more expensive and our preliminary experimental results 
indicate that the on-line estimates ?(t + 1) may be used in 
their place in many cases. Figure 3 illustrates the recog- 
nition performance of a robust dynamic filter trained on an 
image sequence of hand gestures. 
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Figure 3. Robust Segmentation and Recognition of Image Se- 
quences. (a) Cyclic image sequence of gestures used for training the 
matrices U and V of a dynamic filter. Each image was of size 75 x 75. 
The matrices U and V were of size 5625 x 15 and 15 x 15 respectively. 
(b) Robust prediction and tracking of gestures in the presence of various 
forms of occlusion and clutter. The outlier threshold c was computed at 
each time instant as the sum of the mean plus 0.3 standard deviations of 
the current distribution of squared residual errors. Results shown are those 

obtained after five cycles of exposure to the occluded gesture images. 

4. Hierarchical Dynamic Models 

Most natural phenomena manifest themselves over amul- 
titude of spatial and temporal scales. For example, the rich 

class of stochastic processes possessing a 1 /f@ power spec- 
tra exhibit statistical and fractal self-similarities that can be 
satisfactorily captured only in a multiscale framework [5]. 

There has consequently been much recent interest in multi- 

scale signal processing methods, and techniques such as im- 

age pyramids, wavelets, and scale-space theory have found 
wide application in computer vision and image processing. 

In the spirit of these multiscale methods, we propose, 
in this section, a method for learning hierarchical dynamic 
models where: (a) each hierarchical level uses the output 
state of its immediate predecessor as input, with only the 
lowest level operating directly on the image, and (b) the 

hierarchical levels operate over progressively larger spatial 

and temporal contexts. thereby allowing the development of 

progressively more abstract spatiotemporal representations 

as one ascends the hierarchy. A further computational ad- 
vantage of such a hierarchical scheme is the possibility of 
faster learning and faster convergence to the desired esti- 
mates as is often witnessed in multigrid methods. 

Consider the first hierarchical-level. Recall that we used 
a generative model of the form (Equation 4): I = Ur + nbU. 
The higher level (in this case, the second level) uses an 

identical generative model except that instead of generating 
I, it generates a composite vector whose components are the 

top-down predictions of the current states r of a group of 
spatially adjacent lower level modules: 

r = UC.rh + nh 2.3 bu (20) 

where UsFj represent the rows i through j of the higher 

level generative matrix U h. In other words, rh represents 

the higher level state that generates a long vector given by 

Uhrh; this vector is split into smaller vectors U$rh which 

act as top-down constraints on the various states r at the 
lower level. 

To simplify notation, we use rtd = U&rh and ntd = 

nkU, and rewrite Equation 20 as: 

r(t) ‘= rtd(t) + &d(t) (21) 

We assume E(ntd(t)) = 0 and E[ntd(t)ntd(s)T] = 

&d(t)b(t, 3). w e modify the MDL-based optimization 
function to take the top-down information into account as 

follows: 

(L(DD(M)J = (I - Ur)%;d (I - Ur) + 

(r - l”td)Tx;dl (r - rtd) (22) 

Setting w = 0, we obtain the following new up- 

date equations for the mean and covariance of the state: 

F’(t) = F(t) + &%(1(t) - UF(t)) + 

&dhd(t) -F(t)) - P(t).?@(t)) (23) 
P(t) = (M(t)-’ + UTq..U + x;’ + f”@(t)))-’ 

where Kbzl = P(t)UTZC,-,’ and Ktd = P(t)C,-,‘. All other 
quantities are updated as in Section 3. Note that Equation 23 

implements an efficient trade-off between information from 
three different sources: the state prediction F(t), the bottom- 
up data I, and the top-down prediction rtd. This trade-off 

is mediated by the bottom-up and top-down Kalman gain 
matrices Kbu. and Ktd, which can be intuitively interpreted 
as signal-to-noise ratios. 

We can apply the method of Section 2.3 to the covari- 
antes CbU and &d, thereby making the hierarchical estima- 
tion procedure robust to outliers at the various levels. In 
addition, by appeal$g to a vergon of the EM algorithm, 
we may use U = U and V = V, which are learned from 

data as described in Sections 2.2 and 3 respectively. The 
filter implements both a spatial and a temporal hierarchy in 

the following manner: (a) Spatial Hierarchy: The input 
vector to the filter at the second level is a single long vector 
formed by augmenting the state vectors r of a set of adjacent 
modules at the lower level. Thus, successively higher levels 
in the filter analyze and predict over (exponentially) larger 
spatial extents. The highest level then has access to spatial 
information from the entire image, albeit in an abstract form, 
after having been processed by the lower levels. It can in 
turn influence processing at the lower levels via its genera- 

tive (feedback) connections U. (b) Temporal Hierarchy: 
By decreasing exponentially the decay function f’ in the 
Equation 23 for each successive level, one obtains a tem- 
poral hierarchy wherein higher levels decay at a slower rate 
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Training Image Sequence First Level Basis Functions Training Image Sequence First Level Basis Functions 

Time t=o t=1 b2 t=3 t=4 t=s t=6 Time t=O t=1 t=2 t=3 t=4 t=s t=6 

Input Input 
Sequence 1 Sequence 2 

Top-Down Top-Down 
Predictions Predictions 

Outliers Outliers 

Figure 4. Hierarchical Recognition Results. (a) and (b) show the two training sequences and their corresponding spatial basis vectors (columns of U) 
at level 1 of a three-level hierarchical filter. At level 0, the 64 x 64 input image was partitioned into four equal 32 x 32 sub-images that served as input to 
four level 1 Kalman filter modules. The level 1 matrices U and V in each module were of size 1024 x 5 and 5 x 5 respectively. For each sequence, the five 
columns of the four first level U matrices are shown on the right as five composite images. A single level 2 module was used to estimate the states of the 
four level 1 modules. The level 2 matrix U was of size 20 x 5 and the matrix V was 5 x 5. (Below) Rpbust tracking of the two sequences in the presence 
of occlusions. As shown in the figure, outliers were detected and discounted for within the first four or five frames of the image sequence. 

than the lower levels. Thus, the lowest level modules pos- 
sess the shortest “memories” while the higher levels predict 
based on longer historical traces, taking into account events 
that occurred progressively further back in time. Figure 4 
illustrates the performance of a three-level hierarchical ar- 

chitecture trained on image sequences depicting alternating 

facial expressions from four different persons. 

5. Summary and Conclusions 

This paper presents a new hierarchical appearance-based 
method for learning, recognizing, and predicting image se- 
quences. The proposed method is based firmly on the 

information-theoretic MDL principle [ 151 and utilizes ideas 

from robust statistics [8] for deriving hierarchical Kalman 
filter estimators that can tolerate significant occlusion and 

clutter. Kalman filters have previously been used exten- 
sively in computer vision [3] and image processing [5]. 
However, many of these approaches employ hard-wired dy- 
namic models inferred from a priori knowledge of the task at 
hand. This paper describes how hierarchical dynamic mod- 
els can be learned from input data, thereby avoiding the need 
for explicit hand-built physical models of dynamic systems. 
Preliminary experiments using the described method have 
been promising. More detailed experiments are currently 

underway to rigorously evaluate the proposed method and 
further delineate its strengths and weaknesses. 

References 

[l] A. Bell and T. Sejnowski. The ‘independent components’ of 
natural scenes are edge filters. Submitted to Vision Research, 
1996. 

[2] M. Black and A. Jepson. Eigentracking: Robust matching 
and tracking of articulated objects using a view-based repre- 
sentation. In ECCV’96, pages 329-342, 1996. 

[3] A. Blake and A. Yuille, editors. Active vision. Cambridge, 

[9] D. Huttenlocher, R. Lilien, and C. Olson. Object recognition 

using subspace methods. In ECCV’96, pages 536-545,1996. 
lo] A. Leonardis and H. Bischof. Dealing with occlusions in the 

eigenspace approach. In CVPR’96, pages 453-458, 1996. 
1 l] H. Murase and S. Nayar. Visual learning and recognition of 

3D objects from appearance. IJCV, 145-24, 1995. 
121 B. Olshausen and D. Field. Emergence of simple-cell re- 

ceptive field properties by learning a sparse code for natural 
images. Nature, 381:607-609, 1996. 

[ 131 R. Rao and D. Ballard. An active vision architecture based on 
iconic representations. Artzjicial Intelligence, 78:461-505, 

1995. 

1 141 R. Rao and D. Ballard. Dynamic model of visual recogni- 

tion predicts neural response properties in the visual cortex. 

Neural Computation, 9:805-847, 1997. 

MA: MIT Press, 1992. 
[4] A. Bryson and Y.-C. Ho. Applied Optimal Control. New 

York: John Wiley and Sons, 1975. 
[5] K. Chou, A. Willsky, and A. Benveniste. Multiscale recursive 

estimation, data fusion, and regularization. IEEE Trans. on 

Automatic Control, 39(3):464-478, March 1994. 
[6] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood 

from incomplete data via the EM algorithm. J. Royal Stutis- 

tical Society Series B, 39: 1-38, 1977. 
[7] D. J. Field. What is the goal of sensory coding? Neural 

Computation, 6:559-601, 1994. 
[S] P. Huber. Robust Statistics. New York: John Wiley and Sons, 

1981. 

[15] J. Rissanen. Stochastic Complexity in Statistical Inquiry. 

Singapore: World Scientific, 1989. 
[ 161 C. Shannon. A mathematical theory of communication. Bell 

System Technical Journal, 27:379-423,623-656, 1948. 
[17] M. Turk and A. Pentland. Eigenfaces for recognition. Journal 

of Cognitive Neuroscience, 3(1):71-86, 1991. 
[18] R. Zemel. A Minimum Description Length Framework for 

Unsupervised Learning. PhD thesis, Department of Com- 
puter Science, University of Toronto, 1994. 

546 


