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We formulate and solve two new stochastic linear programming formulations of appointment scheduling
problems that are motivated by the management of health services. We assume that service durations

and the number of customers to be served on a particular day are uncertain. In the first model, customers may
fail to show up for their appointments (“no-show”). This model is formulated as a two-stage stochastic linear
program. In the second model, customers are scheduled dynamically, one at a time, as they request appoint-
ments. This model is formulated as a multistage stochastic linear program with stages defined by customer
appointment requests. We analyze the structure of the models and adapt decomposition-based algorithms to
solve the problems efficiently. We present numerical results that illustrate the impact of uncertainty on dynamic
appointment scheduling, and we identify useful insights that can be applied in practice. We also present a case
study based on real data for an outpatient procedure center.
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1. Introduction
The problem of appointment scheduling to a stochas-
tic server is well known and widely studied in the lit-
erature (Welch and Bailey 1952, Mercer 1960, Ho and
Lau 1992). It is commonly assumed that service times
are random, and a deterministic schedule of appoint-
ment times is selected to optimize competing perfor-
mance criteria, including expected customer waiting
time, server idle time, and overtime. This problem
differs from typical single server queuing models in
two important ways. First, the scheduling horizon is
finite, typically limited by the number of customers
seen on a particular day. Second, customers arrive
deterministically according to a defined schedule of
appointment times. Thus, the focus is on the transient
behavior as opposed to steady state and stochastic
arrival assumptions that are common in the queuing
literature.

In this article we relax two common assumptions
in the appointment scheduling literature. First, we
assume customers may fail to show up (“no-show”) at
their assigned time. This is motivated by the common
occurrence of no-shows in outpatient health care envi-
ronments (Lee et al. 2005). In outpatient clinics, no-
shows have been reported to range from 12% to 42%

of all appointments, making efficient management of
outpatient clinics’ resources difficult (Deyo and Inui
1980, Moore et al. 2001). Second, we assume some cus-
tomers request appointments dynamically over time,
and the exact number to be scheduled for a particular
day is not known with certainty until the day of ser-
vice. This is arguably the case for most appointment-
based service systems.

Our study is motivated in part by problems faced
by health-care providers who schedule a nominal
number of routine appointments in advance of a
given day and then must accommodate some high-
priority add-on patients that may arrive on short
notice. In surgery delivery systems, for instance,
urgent add-on cases arise on short notice and create
the need to dynamically update schedules to accom-
modate these high-priority cases (Gerchak et al. 1996,
Dexter et al. 2004). Other applications of this problem
have been identified in the literature, including mate-
rial handling, scheduling cargo ports, and outpatient
services. It is frequently the case that appointments
are quoted dynamically to customers with imperfect
knowledge of total demand.

The main contributions of this paper are as follows:
the models we propose include considerations that
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are representative of many types of health-care envi-
ronments and that have not yet been well studied.
First, we propose a two-stage stochastic linear pro-
gramming (2-SLP) model for static appointment
scheduling in the presence of no-shows. Next, we
present a novel formulation of a multistage stochas-
tic linear program (M-SLP) that considers dynamic
scheduling of uncertain add-on customers that may
request appointments. We present insights into opti-
mal scheduling policies in the presence of uncertain
demand for services, including results based on a
real problem involving scheduling of an outpatient
practice.

From a methodological perspective, we discuss the
structural properties of the model we propose and
novel adaptations of decomposition methods for solv-
ing it. We show that relaxations of the M-SLP pro-
vide easy-to-compute valid inequalities that can be
used to accelerate decomposition methods. We also
show that the M-SLP model can be decomposed into
a set of two-variable linear programs (LPs) that can be
solved efficiently. We further show that the structure
of the M-SLP is well suited to a customized multicut
implementation of the nested decomposition method.
Finally, numerical experiments are used to compare
the performance of several alternative decomposition-
based methods. We also perform a series of numerical
experiments to illustrate important insights regarding
the influence of uncertainty in customer load on the
server.

The remainder of this article is organized as fol-
lows: Section 2 is a brief review of related litera-
ture. In §3, the model formulations for no-shows and
dynamic scheduling are presented. Section 4 discusses
the structure of our models and the methodology
used to solve them. In §5, we present the results of our
computational experiments. Finally, in §6, we summa-
rize our main conclusions.

2. Literature Review
Scheduling customers to a stochastic server has been
widely studied. Many of the studies have been in the
context of outpatient clinics and other appointment-
based health-care environments (therefore in the fol-
lowing review, we use “patients” and “customers”
interchangeably). Appointment scheduling is a chal-
lenging problem for many reasons, including the
uncertainty in arrival times and service durations,
preferences of the patients and the providers, and the
presence of multiple and competing criteria. Gupta
and Denton (2008) pointed out the complexity of the
appointment scheduling problem by clarifying recent
issues and challenges in primary and specialty care
as well as surgery settings. The authors referred to
several complicating factors related to uncertainty in

patient arrivals and/or requests for appointments.
Cayirli and Veral (2003) also provided a compre-
hensive literature survey in outpatient appointment
scheduling, classifying the research by methodol-
ogy. Erdogan and Denton (2011) provided a recent
review of the literature related to surgery schedul-
ing. All of these studies point out that uncertainty in
patient demand, such as no-shows, urgent patients,
and emergencies, is an important consideration.

Because of the difficulty of finding an analytical
solution for problems with more than two customers,
much of the existing literature on appointment
scheduling is based on either queueing theory or
discrete event simulation. Queueing studies gener-
ally require restrictive assumptions, including equal
appointment intervals, independent and identical ser-
vice times, and an infinite number of customers
(Mercer 1960, 1973; Jansson 1966).

Studies based on discrete event simulation mod-
els, on the other hand, relax these assumptions. For
example, Vissers and Wijngaard (1979) were among
the first to use a simulation model to study outpa-
tient clinics. They studied the experimental design of
a simulation model for an outpatient clinic that aims
to minimize the patient waiting time and doctor idle
time. They proposed a simulation model with five
variables: mean consultation time, coefficient of vari-
ation of the consultation time, mean system earliness,
standard deviation of patient punctuality, and the
number of appointments. Ho and Lau (1992) used a
simulation model to evaluate many different schedul-
ing rules for various scheduling environments charac-
terized by different combinations of patient no-show
probability, coefficients of variation of service times,
and numbers of patients per day.

Some researchers have studied the appointment
scheduling problem with the goal of optimizing some
weighted combination of expected customer wait-
ing and server idle time. Weiss (1990) provided a
closed-form solution to find the optimal estimated
appointment times for two patients. Wang (1993) used
phase-type distributions to obtain closed-form expres-
sions for expected customer waiting time and server
idle time for problems involving more than two cus-
tomers. Using these closed-form expressions he com-
puted schedules that minimize a weighted sum of
expected waiting and idling. In addition to the queu-
ing literature, Bosch and Dietz (2001) proposed an
efficient algorithm for optimizing the appointment
schedule that fathoms the solution space of the pos-
sible schedules using the piecewise convex structure
of the cost function. Denton and Gupta (2003) formu-
lated a 2-SLP model and exploited the problem struc-
ture to develop an algorithm that provides bounds on
the optimal solution. Robinson and Chen (2003) used
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Monte Carlo integration to find approximate optimal
appointment times for a stochastic server.

Many researchers have considered customer no-
shows in appointment scheduling. For example,
Brahimi and Worthington (1991) studied the prob-
lem in the context of outpatient appointment systems.
They applied a queuing model that considers no-
shows as well as uncertain punctuality of patients.
Hassin and Mendel (2008) studied the effects of no-
shows on the performance of a single-server with
exponential service times. Kaandorp and Koole (2007)
developed a local search procedure that they showed
converges to the optimal solution due to the multi-
modularity property of the outpatient appointment
scheduling problem with no-shows. In their model
they assumed homogeneous no-show probabilities.
Zeng et al. (2009) extended their work by considering
heterogenous no-show probabilities.

Wang (1993) investigated a dynamic scheduling
problem in which an unscheduled customer must be
added in to the schedule. However, this model is not
truly dynamic in that the initial schedule does not
anticipate the possibility of an additional customer
arrival. Klassen and Rohleder (1996) also studied the
dynamic nature of appointment scheduling systems
by considering urgent arrivals. They developed a sim-
ulation model that leaves open slots in the sched-
ule for possible urgent customers. They concluded
that leaving open slots at the beginning of the day
for urgent customers decreases customer waiting time
but also decreases the percentage of urgent customers
served. However, leaving open slots at the end of the
day improves both the percentage of the urgent cus-
tomers served and the server idle time.

This article differs from the aforementioned lit-
erature in the following ways: Although several
authors have considered heuristics (see, for example,
Wang 1993, Muthuraman and Lawley 2008, Robin-
son and Chen 2003) for appointment scheduling
problems with an uncertain number of customers,
to our knowledge we present the first formulation
of a stochastic programming model of the dynamic
appointment scheduling problem to compute opti-
mal appointment times. We present insights into opti-
mal scheduling policies in the presence of no-shows
and optimal dynamic scheduling policies illustrating
the differences relative to their static counterparts.
We also propose and evaluate several new methods
that take advantage of the structure of these prob-
lems. These methods may also be applicable to future
extensions.

3. Model Formulation
We begin by presenting an extension to the 2-SLP
model proposed by Denton and Gupta (2003) to
incorporate customer no-shows. Next, we present

our M-SLP formulation of the dynamic appointment
scheduling problem. The objective function in each of
the two models is to minimize a weighted sum of
costs of expected customer waiting time and overtime
with respect to a defined length of day (referred to
as session length below). Both models assume punc-
tual arrivals for those customers that do show up.
Furthermore, both models assume a fixed sequence
of arrivals and a first-come-first-served (FCFS) queue
discipline.

3.1. Appointment Scheduling in
the Presence of No-Shows

The problem addressed here is finding the optimal
arrival times for n customers to visit a stochas-
tic server. Service times are assumed to be ran-
dom variables, and the objective is to minimize a
weighted sum of expected customer waiting time and
expected overtime with respect to an established ses-
sion length, d. Customers, i = 11 0 0 0 1n, have no-show
probabilities, pi. We use the following additional nota-
tion, where uppercase indicates random variables and
boldface is used to denote vectors.

Model Parameters
n: number of customers to be scheduled.
�: index for service duration and no-show

scenarios.
A4�5: random vector of indicators for customer

arrival (1) or no-show (0), A4�5 ∈ <n.
Z4�5: vector of random service durations for n cus-

tomers, Z4�5 ∈ <n.
d: session length to complete all customers before

overtime is incurred, d ∈ <.
p: vector of probabilities of no-show, p ∈ <n.
cw: vector of waiting time cost coefficients for n

customers, cw ∈ <n.
c`: cost coefficient for overtime, c` ∈ <.

Decision Variables
x: vector of time allowances for the first n−1 cus-

tomers (interarrival times for n customers), x ∈

<n−1.
w4�5: vector of customer waiting times, w4�5 ∈ <n.
s4�5: vector of server idle times between consecutive

customers, s4�5 ∈ <n.
`4�5: overtime with respect to session length d,

`4�5 ∈ <.
The vector of time allowances x ∈ <n−1 denotes

first stage decisions made in advance of the observa-
tion of random service durations and no-shows (note
that x is n − 1 dimensional because xi denotes inter-
arrival times between the n customers). The sched-
uled appointment time for customer i is the sum
of job allowances from 1 to i − 1. Thus, customer 1
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Zn(�)Z1(�)

Waiting
w1(�)

Idling
s2(�)

Idling
sn–1(�)

Overtime
l (�)

Planned schedule

Observed durations
according to scenario �

Customer 1
scheduled

start

Customer 2
scheduled

start

Customer 3
scheduled

start

Customer n–1
scheduled

start

Customer n
scheduled

start

….

….
Z2(�) Zn–1(�)

x1 x2
xn–1

----------------------------------------- Session length (d) --------------------------------

Figure 1 Planned Schedule and Observed Schedule for a Single Scenario Problem

arrives at time 0, customer 2 at time x1, customer 3
at time x1 + x2, and so on. The random service time
durations vector, Z4�5, has support æ ∈ <n, and the
possible collective outcomes of service times (scenar-
ios) are indexed by � ∈ ì. The vectors w4�51 s4�5 ∈

<n, `4�5 ∈ <, denote the second-stage (recourse) deci-
sions made after the observation � of random ser-
vice durations. The parameters cw ∈ <n and c` ∈ <

denote the cost per unit time for waiting and over-
time, respectively. We assume that cw ≥ 0 and c` ≥ 0.
Figure 1 depicts the decision variables and the param-
eters on a sketch of planned schedule with allowances
(xi) and observed service durations (Zi4�5), waiting
(wi4�5), idling (si4�5), and overtime (`4�5) for a single
scenario �.

Commonly considered criteria for determining
optimal time allowances include customer waiting
time, server idle time, and overtime, which can be
written as follows:

wi4�5= 4wi−14�5+Zi−14�5− xi−15
+1 i = 21 0 0 0 1n1 (1)

si4�5= 4−wi−14�5−Zi−14�5+xi−15
+1 i=210001n1 (2)

`4�5=

(

wn4�5+Zn4�5+
n−1
∑

i=1

xi − d

)+

1 (3)

where 4 · 5+ indicates max4·105. The waiting time and
server idle time associated with the first customer is
zero (w14�5 = s14�5 = 0, ∀�); i.e., the first customer
receives service as soon as he or she arrives. The opti-
mal appointment schedule is defined by the following
unconstrained minimization problem:

min
x

{ n
∑

i=1

cwi E�6wi4�57+ c`E�6`4�57

}

0 (4)

Some authors have considered a weighted sum of
expected server idle time, overtime, and customer
waiting time as the objective function; for simplicity,
we consider only customer waiting time and overtime

as in (4). This is justified by the following proposition
adapted from Denton and Gupta (2003).

Proposition 1. When d = 0, expected idle time is
equal to expected overtime minus expected total service
time:

n
∑

i=1

E6si7= E6`7−
n
∑

i=1

�i

where �i is the expected value of the service time
distribution.

The proposition in Denton and Gupta (2003, p. 1007)
states that “expected idle time is equal to the differ-
ence between two sums: the sum of expected tardi-
ness and the session length, and the sum of average
job durations and expected earliness”; i.e.,

n
∑

i=1

E6si7= 4E6`7+ d5−

(

E6G7+
n
∑

i=1

�i

)

1

where E6G7 is defined as expected earliness (please
see Denton and Gupta 2003 for more detailed proof).
Without loss of generality, by setting d = 0, which cor-
responds to minimizing makespan, the earliness vari-
able disappears, and the expression in Propostion (1)
is obtained.

Formulation (4) can be modified to account for no-
shows as follows. Define random service durations as
Ẑi4�5=Ai4�5Zi4�5, where

Ai4�5=

{

0 with probability pi1

1 with probability 1 − pi0
(5)

Ẑi4�5 is a random variable representing the service
duration for customer i, given the customer shows
up for his appointment, which occurs with probabil-
ity 1 − pi. Thus, this random variable differs from the
original service duration variable Zi4�5. In general,
there is no closed-form expression for the solution
to (4). Denton and Gupta (2003) discuss the properties
of an equivalent 2-SLP formulation that can be used
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First customer is
scheduled for

time = 0 

Second customer
requests an

appointment

Third customer
requests an

appointment

With
probability q2

With
probability q3

With probability
1

With probability
1–q3

With probability
1–q2

Total of one customer
scheduled

Total of two customers
scheduled

Total of three customers
scheduled

Figure 2 Illustration of the Scheduling Problem with Probabilistic Arrival of Customers Given nU = 3

to achieve significant computational advantages. Sim-
ilarly, our model can also be formulated as a 2-SLP as
follows:

(NS-ASP)

min E�

[ n
∑

i=2

cwi Ai4�5wi4�5+ c``4�5

]

s.t. w24�5≥ Ẑ14�5− x1 ∀�

−w24�5+w34�5≥ Ẑ24�5− x2 ∀�

00 0
0 0 0

000

−wn−14�5+wn4�5≥ Ẑn−14�5− xn−1 ∀�

−wn4�5+ `4�5≥ Ẑn4�5+
n−1
∑

i=1

xi − d ∀�

x≥ 01 w4�51 `4�5≥ 01 ∀�0

We refer to the above model as the no-show ap-
pointment scheduling problem (NS-ASP). Note that
(NS-ASP) has complete recourse because the second
stage is feasible for any x ∈ <n−1.

3.2. Dynamic Appointment Scheduling
The second model we propose assumes customers
are scheduled dynamically as they call to request an
appointment. Appointment requests are probabilistic,
i.e., the total number to be scheduled is not known
with certainty, and there is a maximum of nU cus-
tomers that will be scheduled (nU as an upper bound
on the capacity of the system). Let qi be the proba-
bility of an appointment request by customer i given
that customer i− 1 is scheduled. We assume that cus-
tomers are scheduled based on FCFS in the sequence
of their appointment requests.

3.2.1. Simple Examples. To illustrate the nature
of our problem, we consider two simple examples.
We assume that there is at least one customer in the
system.

Example 1 (nU = 21 q2 = 1). This represents the case
where two customers will be scheduled with cer-
tainty. This problem corresponds to the newsvendor
problem when d = 0.

Example 2 (nU = 31 q2 > 01 q3 > 0). In this case one
customer will certainly be scheduled. With condi-
tional probabilities q2 and q3, customers 2 and 3
may request appointments. For this example there are
three customer arrival scenarios:

1. The first customer is scheduled. The second and
third customers do not request appointments.

2. The second customer requests an appointment
after the first customer is scheduled. The third cus-
tomer does not request an appointment.

3. The second customer requests an appointment
after the first customer is scheduled. The third cus-
tomer requests an appointment after the second cus-
tomer is scheduled.

The sequential nature of the uncertainty in the cus-
tomer requests in Example 2 is illustrated in Figure 2.
In contrast to Example 1, a closed-form expression for
the solution to this problem is not easily obtained.

In Example 2 uncertainty is resolved sequentially as
appointment requests arise, and appointments must
be scheduled with imperfect information about the
number of customers and their service times. There-
fore each request is treated as an additional stage in
the decision-making process. At each stage, j , the time
allowance decision, xj , is made for customer j with-
out perfect knowledge of the number of additional
future appointment requests. To formulate our model
we use similar notation to that of (NS-ASP) with an
additional index, j = 11 0 0 0 1nU , to denote the stage.
Thus, wj1 i4�5 is the waiting time of the ith customer
on the day of the service, given j customers request
appointments. We let �j index service duration sce-
narios for stage j . Similarly, we let `j4�j5 denote the
overtime given j customers are scheduled. Thus for
Example 2, customer arrival scenario 1 and service
duration scenario �1 can be written as

w1114�15= 01

`14�15= 4Z14�15− d5+0
(6)
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For customer arrival scenario 2 and service duration
scenario �2,

w2114�25= 01

w2124�25= 4Z14�25− x15
+1

`24�25= 4x1 +w2124�25+Z24�25− d5+0

(7)

For customer arrival scenario 3 and service duration
scenario �3,

w3114�35= 01

w3124�35= 4Z14�35− x15
+1

w3134�35= 4w3124�35+Z24�35− x25
+1

`34�35= 4w3134�35+Z34�35+ x1 + x2 − d5+0

(8)

Thus the three arrival schedules define the waiting
time and overtime associated with one, two, and
three scheduled customers, respectively. The indices
�1 ∈ì1, �2 ∈ì2, and �3 ∈ì3 refer to service time sce-
narios given one, two, and three customers are sched-
uled, respectively.

3.2.2. Dynamic Appointment Scheduling Model.
The appointment request scenarios for the dynamic
appointment scheduling process are represented by
the tree in Figure 3. In the figure, nodes represent
the number of customers in the system. Solid nodes
denote the number of scheduled customers and a
state in which the schedule is waiting for future
appointment requests. The dashed nodes define the
day of service given that a certain number of cus-
tomers requested appointments and the system ter-
minated without another appointment request. Our
model starts with two customers because the solu-
tion of the one customer problem is trivial. Starting
with two customers, customer 3 requests an appoint-
ment with probability q3, and with probability 1 −

q3, no additional customers are scheduled. Given a
third customer requests an appointment, a fourth cus-
tomer will request an appointment with probabil-
ity q4, and so on.

We formulate this model as the following uncon-
strained optimization problem:

min
x1

{

41 − q35Q14x15+ min
x2

{

q341 − q45Q24x25

+ · · · + min
xnU −1

{nU
∏

i=3

4qiQnU −14xnU −155

}

· · ·

}}

1 (9)

where Qj4xj5 = E�j
6Qj4xj1�j57 denotes the expected

cost given that j + 1 customers request appoint-
ments (note that Qj4xj5 corresponds to j+1 customers
because xj is the interarrival time between customers

j and j + 1). We refer to Qj4xj1�j5 as the terminal
subproblem for stage j under service duration scenario
�j (represented by dashed nodes in Figure 3). We refer
to this as terminal because it represents the case in
which no additional customers beyond j + 1 request
appointments. Although not explicitly denoted in the
formulation, it is implied that decision xj is made
prior to knowledge of whether customer j + 1 (or
additional customers) will request an appointment.
We use this implicit definition to simplify the notation
rather than explicitly write a series of linking con-
straints between stages. The terminal subproblem for
stage j can be written as

Qj4xj1�j5= min
w1 s1 `

{j+1
∑

i=2

cwi wj1 i4�j5+ c``j+14�j5

}

s.t.

wj124�j5 ≥ Z14�j5− x11

−wj124�j5+wj134�j5 ≥ Z24�j5− x21

0 0 0
0 0 0

000

−wj1 j4�j5+wj1 j+14�j5 ≥ Zj4�j5− xj1

−wj1 j+14�j5+ `j+14�j5 ≥ Zj+14�j5+
j
∑

i=1

xi − d1

(10)

wj1 i4�j5≥ 0 ∀ i1 `j4�j5≥ 00

Formulation (9) can be formulated recursively, with
Rj4xj5 denoting the expected cost-to-go given that

2

2

nU

nU–1

nU–1

1–q3

q3

1–qnU

qnU

nU

1

3

1–q4

3

q4

Figure 3 Tree of Scenarios for M-SLP Problem with nU Customers
Note. Solid nodes denote stages in which additional customer appointment
requests are pending, and dashed nodes define the day of service given a
certain number of customer arrivals.
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additional customers may arrive as follows:

Rj4xj5= min
xj+1

841 − qj+25Qj4xj5+ qj+2Rj+14xj+1590 (11)

The recursion terminates at the last stage, nU − 1,
with RnU −14xnU −15 = QnU −14xnU −15. Thus (9) can be
expressed as

(D-ASP) min
x1

R4x150

We refer to the above M-SLP as the dynamic
appointment scheduling problem (D-ASP). We dis-
cuss several ways to take advantage of the recursive
structure of (D-ASP) in §4.

It is worth noting some special cases of (D-ASP)
that correspond to specific applications. First, in some
applications it may be appropriate to assume a certain
minimum number of customers arrives with certainty,
which is equivalent to defining a lower bound on
the number of customers that will be scheduled. This
assumption is motivated by health-care applications
such as hospital-based colonoscopy practices, where
a certain minimum number of patients is scheduled
in advance (outpatients) and some uncertain number
of urgent add-on cases is scheduled on short notice
(inpatients). It is also representative of a common
primary care appointment scheduling process called
advanced access (Murray and Tantau 2000), in which
some patients are booked in advance and some urgent
patients call for appointments on the day they want
to be seen.

For simplicity, in (D-ASP) we have not considered
no-shows; however, (NS-ASP) and (D-ASP) could eas-
ily be integrated to include the possibility of no-
shows, which are common in both of the dynamic
scheduling applications described above. It is also
worth noting that NS-ASP is a special case of D-ASP
when qi = 1 and ∀ i and Zis are as defined in (5).

Thus, some of the methods we develop to take
advantage of the structure of (D-ASP) are also
directly applicable to (NS-ASP) and the standard
static appointment scheduling problem (Denton and
Gupta 2003).

3.3. Motivation for FCFS Assumption
In this section we provide motivation, based on a
stylized example, for the assumption that patients
are scheduled FCFS in order of their appointment
requests.

Proposition 2. For nU = 2 with i.i.d. service dura-
tions, if the second customer requests an appointment with
probability q, FCFS is optimal.

Proof. Let the optimal solutions for FCFS and
scheduling the second customer first (last come, first
serve, or LCFS) be xF

1 and xL
1 , respectively, and the

optimal objective function values, z14x
F
1 5 and z24x

L
1 5,

respectively. By convexity of the expectation of wait-
ing and overtime costs, it follows that

z14x
F
1 5 ≤ z14x

L
1 5

= 41−q5c`E64Z4�5−d5+7+q4cwE64Z4�5−xL
1 5

+7

+c`E64Z4�5−xL
1 5

+
+Z4�5+xL

1 −d5+75 (12)

≤ 41−q5c`E64Z4�5+xL
1 −d5+7

+q4cwE64Z4�5−xL
1 5

+7

+c`E644Z4�5−xL
1 5

+
+Z4�5+xL

1 −d5+75 (13)

= z24x
L
1 50 � (14)

Thus if the two customers are identical in their ser-
vice distributions and the waiting time cost coeffi-
cients, the appointment request sequence should be
FCFS order. We have not been able to prove this for
n > 2, but numerical experiments and intuition sug-
gest that FCFS ordering is also optimal for those cases.

4. Structural Properties and
Solution Methodology

Because of the potentially large size of the stochastic
programs we propose, taking advantage of the prob-
lem structure is important. Furthermore, our initial
study motivates additional problems where (NS-ASP)
and (D-ASP) are subproblems, such as problems with
multiple servers involving patient to server assign-
ment decisions. In this section we concentrate on
(D-ASP), the more computationally challenging of the
two models, but many of the properties can also be
exploited to solve (NS-ASP).

Nested decomposition is a common approach to
take advantage of the recursive structure of M-SLPs
(Birge 1985). It is based on outer linearization of
the recourse function, Rj4xj5, at each stage j . At
each stage a solution, xj , is generated by solving
a relaxed master problem, which is a linear pro-
gram representing the expected waiting and over-
time cost for scheduled customers and the expected
cost-to-go for future stages. At each (terminal) stage,
subproblems based on a number of service time sce-
narios, indexed by �j , are solved given the solution
to the master problem, xj . The dual solutions to the
subproblems are used to generate supporting hyper-
planes (called optimality cuts) for the stage j recourse
function. These cuts are added sequentially at each
stage until the relaxed master problem converges
to the optimal solution. The following subsections
describe a number of opportunities to improve effi-
ciency of the nested decomposition method (ND) for
formulation (D-ASP).
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4.1. Subproblem Structure
The dual solution to terminal subproblems, Qj4xj1�j5,
can be computed efficiently using the following back-
ward recursion:

�j1 i4xj1�j5 =











0 wj1 i+14�j5=01

cwi+1 +�j1 i+14xj1�j5

wj1 i+14�j5>01

(15)

for i=110001j−1, and

�j1j4xj1�j5 =

{

0 `j4�j5=01
c` `j4�j5>00

(16)

This closed-form expression for the dual allows effi-
cient generation of optimality cuts at each stage of the
ND algorithm (Denton and Gupta 2003). The master
problem of each stage (except the last stage) includes
another subproblem that represents the expected cost-
to-go, Rj4xj5, for the remaining future stages. Each
master problem is based on the following equivalent
(outer linearization) formulation:

min8�j � �j ≥Rj4xj591 (17)

in which the decision variables are xj and �j . Thus,
the master problem for stage j is a two-variable LP
with optimality cuts at stage j of the form:

�j +Ejxj ≥ ej −
j−1
∑

k=1

Ekxk1

where Ej are the cut coefficients and ej is the right-
hand-side value of the optimality cut generated at
each iteration of the decomposition algorithm. These
values are calculated using the dual solution to the
subproblems at each iteration. The reader is referred
to Birge and Louveaux (1997, §7.1, pp. 234–237) for
more information on generating the optimality cuts.
Substituting the known values for x11x21 0 0 0 1 xj−1,
determined in stages 1121 0 0 0 1 j , the cut then takes the
following general form for each stage, j , at each iter-
ation, �, of the ND method:

�j ≥ ��xj +��0 (18)

The master problem at iteration � has the following
general form:

min8�j � �j ≥ �kxj +�k1 k = 11 0 0 0 1 �90 (19)

A linear time method was developed by Dyer
(1984) to solve two-variable LPs with this spe-
cial structure. We adapt the algorithm to incorpo-
rate nonnegativity constraints on the decision vari-
ables (the algorithm is summarized in the Online
Supplement available at http://joc.pubs.informs.org/
ecompanion.html).

4.2. Valid Inequalities
The standard ND method is attractive for (D-ASP)
given the special structure of the subproblems dis-
cussed in §4.1. However, slow convergence of outer
linearization methods such as this one has been
observed by several authors (see, for example, Mag-
nanti and Wong 1981). This results because little
information is available in the form of optimality
cuts at early stages of the algorithm, and significant
degeneracy in subproblems results from the outer
linearization process (Birge 1985). We examine oppor-
tunities to overcome this problem using lower bound-
ing inequalities based on the mean value problem.

Batun et al. (2011) first used the mean value prob-
lem to generate valid inequalities for accelerating
convergence of the L-shaped method for two-stage
stochastic programs. We propose some variants of
these valid inequalities that are suited to our M-SLP
formulation. The valid inequalities are derived from
the mean value problem using Jensen’s inequality,
Q4xj5≥Q4xj1�j5 (Jensen 1906). Thus, � ≥Q4xj1�j5 is a
valid inequality that can be added to the master prob-
lems at stage j . We begin by providing the following
property of the mean value solution to (D-ASP) that
is central to the development of our valid inequalities.

Proposition 3. The optimal solution to the mean value
problem for (D-ASP) is x̄i =�i.

Proof. Replacing all random variables, Zi1 i = 11
21 0 0 0 1nU , in (11) with their mean, �i, it is straight-
forward to show that xi = �i results in wi1 j = 0
∀ i. Because wi1 j ≥ 0, then clearly xi = �i minimizes
wi1 j . Furthermore, xi = �i results in overtime `j+1 =
∑j+1

i=1 �i − d. Substituting wj12 = 4�1 − x15 in (10) gives
the lower bound wj13 ≥ �1 − x1 + �2 − x2. Following
the same substitutions for all wj1 i and finally for `j+1,
we obtain the lower bound `j+1 ≥

∑j+1
i=1 �i − d. Thus

xi = �i simultaneous achieves lower bounds on wj1 i

and `j+1 and is therefore the optimal solution to the
mean value problem. �

We denote the objective function for the mean value
problem for stage j at the optimum as R̄j4Ì5. From
Proposition 3, x̄i = �i ∀ i minimizes the stage j mean
value problem. Therefore, in the absence of uncer-
tainty in service durations, it is optimal to allocate �i

to customer i, independent of whether there is uncer-
tainty in the number of arrivals.

Lemma 1. The following is a lower bound on Qj4xj1�j5
where �j denotes the duration scenario for stage j:

j
∑

i=2

cwi 4Zi4�j5− xi5
+

+ c`
(

Zj+14�j5+
j
∑

i=1

xi − d

)+

0 (20)
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Proof. From (1),

wj1 i4�j5 = 4wj1 i−14�j5+Zi−14�j5− xi−15
+1

i = 21 0 0 0 1 j + 1 (21)

≥ 4Zi−14�j5− xi−15
+1 i = 21 0 0 0 1 j + 10 (22)

From (3),

`j4�j5 =

(

wj1 j4�j5+Zj4�j5+
j
∑

i=1

xi − d

)+

(23)

≥

(

Zj4�j5+
j
∑

i=1

xi − d

)+

1 (24)

which completes the proof. �
We now use Proposition 3 and Lemma 1 to develop

valid inequalities for (D-ASP).

Proposition 4. The following is a valid inequality
(Valid-1) for outer linearization of (11):

(Valid-1) �j ≥ 41 − qj+254c
` − cwj+15xj

+ k14�11 0 0 0 1�j−151

where k14�110001�j−15= 41−qj+25c
`4�i+1 +

∑j−1
i=1�i−d5+

qj+2R̄j+14Ì5 is a constant.

Proof. The following is a lower bound on Rj4xj5:

Rj4xj5 ≥ 41−qj+25

( j
∑

i=1

cwi+14�i−xi5
+

+c`
(

�j+1 +

j
∑

i=1

xi−d

)+)

+qj+2R̄j+14Ì51 (25)

which follows directly from Lemma 1, Jensen’s
inequality, and substitution of R̄j+14Ì5 into (11).
Replacing all decision variables xi with �i in (25),
excluding the current-stage decision variable xj will
result in the following lower bound:

Rj4xj5 ≥ 41 − qj+25

(

cwj+14�j − xj5
+

+ c`
(

�j+1 +

j−1
∑

i=1

�i + xj − d

)+)

+ qj+2R̄j+14Ì50 (26)

Relaxing the nonnegativity functions in the first two
terms of the right-hand side in (26), we obtain the
following:

�j ≥ 41 − qj+254c
`
− cwj+15xj + 41 − qj+25

· c`
(

�i+1 +

j−1
∑

i=1

�i − d

)

+ qj+2R̄j+14Ì51 (27)

�j ≥ 41 − qj+254c
`
− cwj+15xj + k14�11 0 0 0 1�j−150 �

Note that k14�11 0 0 0 1�j−15 in Proposition 4 is a con-
stant, and thus ((Valid-1)) is a linear constraint in two
variables, xj and �. We note the importance of this in
preserving the two-variable master problem structure
discussed in §4.1.

Proposition 5. The following is a set of valid inequal-
ities for outer linearization of (D-ASP):

(Valid-2) �j ≥ 41 − qj+254c
w
j+1ŵ+ c` ˆ̀5

+ k24�11 0 0 0 1�j−15
ŵ ≥�j − xj1

ˆ̀ ≥�j+1 +
∑j

i=1 xi − d1

ŵ ≥ 01 ˆ̀ ≥ 01

where k24�11 0 0 0 1�j−15= qj+2R̄j+14Ì5.

Proof. The proof follows from Proposition 3 and
Lemma 1 and the use of two new variables, ŵ and ˆ̀,
to linearize the first and second terms in (25), which
correspond to the waiting time of the last customer
and the overtime at stage j , respectively. �

Note that k24�11 0 0 0 1�j−15 in Proposition 5 is a con-
stant, and (Valid-2) is a linear set of constraints in
three decision variables, ŵ, ˆ̀, and xj . The following
is the final valid inequality based on the mean value
problem.

Proposition 6. The following is a set of valid inequal-
ities for outer linearization of (D-ASP):

(Valid-3) �j ≥ 41 − qj+25

(j+1
∑

i=2

cwŵi + c` ˆ̀
j

)

+ qj+241 − qj+35

(j+2
∑

i=2

cwŵi + c` ˆ̀
j+1

)

+ · · · +

( nU
∏

k=j+2

qk

)( nU
∑

i=2

cwŵi + c` ˆ̀
nU −1

)

1

ŵi+1 ≥ ŵi +�i − xi ∀ i ≤ j1

ŵi+1 ≥ ŵi +�i − x̂i ∀ i > j1

ˆ̀
j ≥�j+1 +

j
∑

i=1

xi − d1

ˆ̀
k ≥�k+1 +

j
∑

i=1

xi+
nU −1
∑

i=j+1

x̂i−d ∀k= j+110001nU
−11

xi ≥0 ∀i=110001j1 x̂i ≥0 ∀i= j+110001nU
−11

ŵi ≥0 ∀i=210001j+11 ˆ̀
k ≥0 ∀k= j+110001nU

−10

Proof. (Valid-3) follows directly from Proposition 1
of Batun et al. (2011), based on adding several new
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auxiliary variables, x̂i, ŵi, and ˆ̀
k, that define the mean

value problem. The first constraint follows because
the objective of the mean value problem is a lower
bound on the optimal solution from Jensen’s inequal-
ity. We let ŵi denote the waiting time for customer i
in the mean value problem, ˆ̀

k the overtime in the
mean value problem, and x̂i the time allowance for
customer i in the mean value problem. �

Because (Valid-1), (Valid-2), and (Valid-3) are based
on progressively weaker relaxations of the mean
value problem, they are increasingly stronger valid
inequalities. However, the number of constraints in
each set is increasing, causing greater computational
effort in solving the master problem at each stage of
ND. Furthermore, (Valid-1) includes only two vari-
ables and therefore retains the computational advan-
tage of a two-variable master problem at each stage.

4.3. Multicut Outer Linearization
We use a two-cut adaptation of the multicut L-shaped
method proposed by Birge and Louveaux (1988).
Based on the structure of (D-ASP), we generate one
cut for each of the two terms in the objective func-
tion, i.e., the terminal subproblem and the expected
cost-to-go. Thus the outer linearization problem is of
the form

min 41 − qj+25�
1
j + 4qj+25�

2
j (28)

s.t. �1
j ≥Qj4xj51 (29)

�2
j ≥ min

xj+1
8Rj+14xj+1591 (30)

where the right-hand side of the cuts is replaced with
supporting hyperplanes. In other words, we sepa-
rately outer linearize the right-hand side of the two
terms in (11) using two variables, �1

j and �2
j , at each

stage j . Thus, we add two optimality cuts to the mas-
ter problems simultaneously at each iteration.

4.4. Nested Decomposition
The ND algorithm proceeds by iteratively improving
the approximation of each stage’s convex objective
function by adding supporting hyperplanes. Master
problems at each stage approximate the expected
value of all future stages. (NS-ASP) and (D-ASP) both
have complete recourse; therefore, decisions made
in a given stage have feasible completion in future
stages. Thus, we do not need to consider feasibility
cuts in our implementation. In summary we pro-
pose the following opportunities to improve effi-
ciency of the ND algorithm: (a) addition of valid
inequalities, (b) a fast method for solving two-variable
LPs, and (c) multicut outer linearization. The various

implementations of our algorithm are summarized as
follows:

Nested Decomposition Algorithm
1. � = 1, j = 1, k = 1
2. Start with an arbitrary solution xj
3. While (current boundj − �j > tolerance) do
4. Direction ← Forward
5. � ← � + 1
6. for j = 1 to nU − 1
7. if valid inequality = True
8. Add valid inequality (Valid-1), (Valid-2),

or (Valid-3) to the master problem
9. end if

10. Solve master problem j
11. Solve subproblem j for each k
12. end for
13. Direction ← Backward
14. � ← � + 1
15. for j = nU − 1 to 1
16. if Standard ND = True
17. Add single optimality cut (18)

to master problem
18. else (Multicut ND = True)
19. Add optimality cuts (29), (30) to

the master problem
20. end if
21. Solve master problem
22. end for
23. end while

In our implementation, master problems were
solved with either CPLEX 11.0 or with our implemen-
tation of the two-variable LP algorithm of Dyer (1984).
Note that the two-variable algorithm cannot be used
for the multicut ND procedure because it has three
decision variables (�1

j , �2
j , xj ). It can only be used in

combination with (Valid-1) because it is the only set
of valid inequalities that maintains the two-variable
structure of the master problems.

The ND algorithm is implemented using the fast-
forward-fast-back strategy proposed by Wittrock (1983),
which explores all scenarios at stage j before mov-
ing forward to stage j + 1 or backward to stage j − 1.
That is, starting from the first stage, all problems at
future stages are solved sequentially as the informa-
tion gathered from solved problems is passed to the
future stages. Upon reaching the last stage, the direc-
tion is reversed, and optimality cuts are added to
the master problems at each stage. The cycle repeats
until no new cuts can be generated. Motivation for
the efficiency of this particular strategy is provided by
Gassmann (1990).

5. Results
In this section we provide the results of numeri-
cal experiments to illustrate the structure of optimal
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schedules and to evaluate the proposed methods. All
experiments were performed with 101000 randomly
generated service duration scenarios, which we have
found sufficient to achieve tight confidence inter-
vals on the optimal solution. The methods proposed
in §4 were implemented in C++ with the CPLEX
11.0 callable library (except where noted) to solve the
linear subproblems and master problems. The prob-
lem instances are solved to optimality within the tol-
erance of 10−6. All experiments were performed on
an Intel Core2 Quad CPU Q6600, with 2.39 GHz and
3.25 GB of RAM.

We present the results of a series of numerical
experiments illustrating the solution time for the var-
ious methods proposed, as well as relevant insights
related to the value of the stochastic solution (VSS),
and sensitivity of the optimal solution to model
parameters. We begin by providing specific examples
that illustrate the structure of the optimal solution and
its sensitivity to changes in cost parameters, cw and
c`, for (NS-ASP) and (D-ASP). We present numerical
experiments to evaluate the performance of our algo-
rithms. Next, we compute the VSS for a series of ran-
domly generated model instances. Finally, we present
the results of a case study based on a real problem
faced at Mayo Clinic in Rochester, Minnesota. We use
the case study to illustrate insights about the optimal
solution to both (NS-ASP) and (D-ASP).

5.1. Structure of the Optimal Schedule
In our numerical experiments we used uniform and
lognormal distributions for service durations. These
were motivated in part by applications to primary
care (Zeng et al. 2009) and specialty care (Berg et al.
2010). We begin by presenting examples that illustrate
the structure of the optimal schedule with respect to
changes in relative cost of waiting, cw, and overtime,
c`, defined by cost ratio �= c`/cw.

Figure 4 illustrates the optimal allowances for a 10-
customer problem instance of (NS-ASP) for varying
no-show probabilities. The first plot on the top left
corner of Figure 4 indicates the allowances between
10 customers when � = 001 and pi = 0. According to
this optimal schedule, for instance, the allowances for
the first three customers are as follows: x1 = 38036,
x2 = 38027, and x3 = 38040. That is, the first customer
is scheduled at time 0, the second customer is sched-
uled to arrive at 38036, the third customer is sched-
uled to arrive at 38036 + 38027 = 77063, and so on.
When no-shows are not allowed (pi = 0 ∀ i), the opti-
mal schedule preserves the dome shape, i.e., shorter
allowances for patients early and late in the session
and larger allowances for the patients in the middle.
This pattern has been observed for static scheduling
problems (Denton and Gupta 2003). When no-shows
are present, with probability p = 002 and p = 003, the

optimal allowances are reduced to hedge against high
idling that is caused by customers who do not show
up. When �= 10, we observe double-booking for the
first two customers; i.e., the first two customers are
scheduled to arrive at the same time. As � increases,
we observe additional double-bookings for the cus-
tomers early in the schedule. Double-booking is very
common in practice when scheduling patients in the
presence of no-shows. Indeed, we find that it is opti-
mal for certain choices of cost coefficients. As the cost
ratio � increases, consistent with intuition we observe
more double-bookings for the customers early in the
schedule; i.e., for �= 101000 and �= 11000, customers
1, 2, 3, and 4; for � = 100, customers 1, 2, and 3; and
for �= 10, customers 1 and 2 are double-booked.

We used (D-ASP) to evaluate the optimal sched-
ule for an endoscopy suite at the Mayo Clinic in
Rochester, MN. Endoscopy procedure durations are
reported to have a shifted lognormal distribution 3 +

Lognormal(23055, 11089) by Berg et al. (2010). Based
on the analysis of a historical data set for a six-month
period during 2006, five routine patients are sched-
uled for colonoscopy for a given session prior to the
day of the procedure. Physicians may request addi-
tional appointments for up to three more patients.
Based on observational data, the conditional probabil-
ities for the appointment requests for these patients
are approximately 008, 005, and 003.

Figure 5 depicts the optimal allowances for each
customer for different choices of the cost ratio,
�= c`/cw. The optimal allowances for routine patients
form a dome shape as observed in static scheduling
problems. As � decreases from 10 to 1, the allowances
between patient arrivals increase, and for � = 001,
allowances are nearly identical. In other words, as the
cost of overtime increases, patient interarrival times
decrease; as the cost of waiting time increases, patient
interarrival times increase.

Figure 6 illustrates the results of an experiment
to observe the effects of the changes in the num-
ber of add-on patients on the optimal schedule. The
numbers in parentheses in the legend denote rou-
tine patients and add-on patients, respectively. For
this experiment we used uniformly distributed ser-
vice times. The appointment request probabilities, qi,
for add-on customers are selected to have decreasing
values. Our results show that the optimal schedule
is sensitive to the number of routine versus add-on
patients. As the expected number of patients in the
system decreases from 12 routine and 0 add-on 412105
to 3 routine and 9 add-on 43195, the optimal time
allowances for patients early in the day increase and
those for patients later in the day decrease (for most
patients). Note that the time allowances in the pres-
ence of add-on patients are not monotonic and in
some cases do not exhibit the dome shape observed
for the static appointment scheduling problems.
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Figure 4 Effects of Cost Ratio � = c`/cw and No-Show Probability p on an Optimal Schedule for the 10-Customer Problem Compared to the Case in
Which All Customers Arrive 4p = 05, 4Zi ∼U42014051 d = 2005

5.2. Numerical Experiments
5.2.1. Computational Performance of Proposed

Methods. We test the algorithms we propose on
(D-ASP) because it is the more computationally chal-
lenging of the two models. We solve (D-ASP) with
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Figure 5 Structure of the Optimal Solution of Five Routine and Three
Add-on Patients with Different Cost Ratio �= c`/cw ,
Zi ∼ 3+Lognormal4230551110895, d = 150

variants of the ND algorithm combined with our
multicut approach, two-variable algorithm of Dyer
(1984), and the valid inequalities described in §4.2. We
report the solution times and the number of iterations
for three instances (nU = 10120130). The appointment

22

24

26

28

30

32

34

1 5 8 10 11

Patients

A
llo

w
an

ce
s

(12, 0) customers

(9, 3) customers

(6, 6) customers

(3, 9) customers

432 76 9

Figure 6 Effects of the Number of Add-on Customers on the Optimal
Schedule, Zi ∼ U6201407, d = 250, �= 10
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Table 1 Computational Performance of Standard ND, Multicut Version of ND, and the Two-Variable Algorithm
Implemented Within ND 4�= 105

Number of iterations CPU time (in seconds)

nU = 10 nU = 20 nU = 30 nU = 10 nU = 20 nU = 30
(d = 200) (d = 400) (d = 600) (d = 200) (d = 400) (d = 600)

ND 244 432 438 3042 23026 49068
U4201405 �= 10 Multicut ND 186 244 202 2063 13052 23021

Two-variable ND 254 406 362 3056 24006 43059
ND 192 330 392 2075 16077 42046

U4201405 �= 1 Multicut ND 106 184 174 1055 9081 19085
Two-variable ND 186 290 284 2054 16032 31082

ND 190 302 422 2055 14054 43048
U4201405 �= 001 Multicut ND 96 176 162 1033 8079 17045

Two-variable ND 186 290 384 2037 15049 42095
ND 238 436 594 3048 23039 69002

LogN430341003255 �= 10 Multicut ND 182 320 330 2058 18005 40053
Two-variable ND 254 466 534 3056 27037 69089

ND 180 432 486 2059 22029 54011
LogN430341003255 �= 1 Multicut ND 120 230 254 1073 12043 29068

Two-variable ND 202 370 454 2073 21011 55098
ND 200 392 520 2067 18099 54065

LogN430341003255 �= 001 Multicut ND 112 216 236 1053 10099 25093
Two-variable ND 188 362 466 2042 19054 54092

Table 2 Computational Performance of Standard ND and Standard ND with (Valid-1), (Valid-2), and
(Valid-3) 4Zi ∼U42014055

Number of iterations CPU time (seconds)

nU = 10 nU = 20 nU = 30 nU = 10 nU = 20 nU = 30
(d = 200) (d = 400) (d = 600) (d = 200) (d = 400) (d = 600)

�= 10
ND 244 432 438 3042 23026 49068
ND with (Valid-1) 224 456 412 3018 23069 43029
ND with (Valid-2) 264 460 556 3082 24064 62070
ND with (Valid-3) 232 370 442 3065 20083 51079

�= 1
ND 210 334 392 3042 17009 42070
ND with (Valid-1) 228 344 398 3015 17062 44072
ND with (Valid-2) 210 410 398 3000 21015 67051
ND with (Valid-3) 188 306 364 2098 16089 42050

�= 001
ND 190 302 422 3056 14056 43083
ND with (Valid-1) 180 304 440 2031 14068 48067
ND with (Valid-2) 170 344 638 2040 16073 68037
ND with (Valid-3) 174 284 412 2062 14086 45070

request probabilities, qi are assumed to be decreasing
as the number of customers gets larger, which is a
natural attribute of a scheduling system with add-on
customers. The daily session length d is chosen to be
less than the product of the mean service duration
and nU so that the expected overtime is nonzero (to
represent the potentially congested nature of appoint-
ment scheduling systems).

From Table 1, we conclude that the multicut ver-
sion of the ND algorithm performs best in average
computation time and in total number of iterations
of the ND algorithm for all problem instances. The

two-variable algorithm also shows promising perfor-
mance. Based on our experiments it provides similar
results to CPLEX 11.0, indicating that perhaps CPLEX
includes an implementation of Dyer’s algorithm or a
similar algorithm to take advantage of the structure
of two-variable LPs. In general, for large problems
it takes more computational effort to solve models
based on lognormal service times than uniform ser-
vice times.

Table 2 shows the effects of the valid inequali-
ties (Valid-1), (Valid-2), and (Valid-3) added to the
master problems in the ND algorithm for varying
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Table 3 Computational Performances of ND and ND with (Valid-1), (Valid-2), and (Valid-3)
4d = 0, Zi ∼ U42014055

Number of iterations CPU time (seconds)

nU = 10 nU = 20 nU = 30 nU = 10 nU = 20 nU = 30
(d = 200) (d = 400) (d = 600) (d = 200) (d = 400) (d = 600)

�= 10
ND 192 370 472 2065 18076 51098
ND with (Valid-1) 172 328 408 204 16048 44023
ND with (Valid-2) 178 332 414 2061 17004 45065
ND with (Valid-3) 172 350 428 2064 18065 49037

�= 1
ND 212 434 492 3012 23094 60032
ND with (Valid-1) 212 408 462 3009 22031 55062
ND with (Valid-2) 186 412 470 2089 22079 57017
ND with (Valid-3) 182 378 476 3006 21078 60023

�= 001
ND 202 390 496 2075 19025 53029
ND with (Valid-1) 190 376 436 2059 18045 46028
ND with (Valid-2) 208 348 462 2086 17025 49037
ND with (Valid-3) 184 368 490 2072 19015 55046

cost ratios, �. Adding valid inequalities (Valid-1)
and (Valid-2) did not result in significant changes
in total computation time. On the contrary, includ-
ing more cuts in the master problems decreased the
efficiency of the solution procedure for many of the
test instances. Adding valid inequality set (Valid-3)
generally provided modest improvement in computa-
tional performance of ND.

Table 3 presents the results for similar numerical
experiments with d = 0. By Proposition 1, this is con-
sistent with the objective of minimizing a weighted
sum of expected customer waiting time and expected
server idle time. As can be seen from Table 3, the valid
inequalities (Valid-1) and (Valid-2) provide greater
benefit than observed in d > 0 experiments. (Valid-1)
performs better than does (Valid-2) except for two
cases (nU = 101� = 1; and nU = 201� = 001). There
may be two reasons for this. First, (Valid-1) and
(Valid-2) relax the dependence of overtime on the
time allowances in early stages when d > 0. Second,
(Valid-1) preserves the two-variable structure while at
the same time involving fewer additional inequalities
than does (Valid-2).

5.2.2. Convergence of the Lower Bound. In this
section we provide results of an experiment illus-
trating the convergence of ND (standard ND and
ND with (Valid-3)). Figure 7 depicts how quickly the
bound improves with respect to the number of itera-
tions, �. Although adding (Valid-3) did not improve
the solution performance significantly, it improved
the bound on the optimal solution considerably at
early iterations. With the addition of valid inequali-
ties (Valid-3), ND method reaches approximately 70%
of the optimum lower bound within approximately
50 iterations as opposed to 70 iterations with standard

ND. We note that this is encouraging for solving prob-
lems in which (D-ASP) is a subproblem and efficient
computation of lower bounds is important.

5.2.3. Value of the Stochastic Solution. The value
of the stochastic solution represents the relative bene-
fit of solving the stochastic problem as opposed to the
deterministic problem with mean value of the random
parameter. We compute the value of the stochastic
solution (VSS) for (D-ASP) for several test instances.
Tables 4 and 5 show the VSS values for a 30-customer
problem with varying numbers of routine and add-on
customers and with varying cost ratios, �. Note that
the VSS is typically increasing as � decreases, mean-
ing that solving the stochastic problem is increasingly
important because the customer waiting cost increases
with respect to overtime cost. This is consistent with
the findings of Denton and Gupta (2003) for the static
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Table 4 Value of the Stochastic Solution for Several Test Instances
with Zi ∼U4201405 and qi = 005 for Add-on Requests

VSS (%)

d = 0 d = 200
Number of patients
(routine, add-on) �= 10 �= 1 �= 001 �= 10 �= 1 �= 001

(0130) 2033 104 39087 9063 65059 95015
(10130) 0061 10065 66095 1040 19063 79041
(20130) 0038 18045 75046 0050 23063 80033

scheduling problem. Tables 4 and 5 show that the
changes in VSS are not monotonic with respect to the
number of add-on requests.

A common approach of scheduling in health-care
environments is to use the mean value of the random
service durations and schedule the patients within
equally spaced intervals. The VSS results also show
that solving the stochastic program as opposed to
commonly used mean value solution is very benefi-
cial, especially when all of the appointment requests
are dynamic and uncertainty in customer load is high
(i.e., the case of (0, 30) customers).

5.3. Outpatient Procedure Center
In this section, we evaluate optimal schedules gen-
erated by (D-ASP) in a more realistic outpatient
procedure center setting. For this purpose, we use
a discrete event simulation model of an outpatient
endoscopy suite that was previously developed by
Berg et al. (2010). The endoscopy suite is typi-
cal of a single provider practice. It includes two
intake rooms for patient preparation, two paral-
lel endoscopy rooms in which procedures are per-
formed, and four recovery rooms for postproce-
dure recovery. The service time distributions for
intake, procedure, and recovery were assumed to be
Lognormal(1406317024), 3+ Lognormal(23055111089),
and Lognormal(59018118018), similar to Berg et al.
(2010). As in Berg et al. (2010), we assume that
patients arrive punctually (the authors note that
patients are typically punctual or they arrive early).

The optimal schedules found using (D-ASP) in
Table 5 are compared to a schedule based on equally
spaced mean service time intervals. The latter is

Table 5 Value of the Stochastic Solution for Several Test Instances
with Zi ∼ Lognormal430341003255 and qi = 005 for Add-on
Requests

VSS (%)

d = 0 d = 200
Number of patients
(routine, add-on) �= 10 �= 1 �= 001 �= 10 �= 1 �= 001

(0130) 3099 0099 36060 6042 55002 89066
(10130) 1049 7001 61041 3042 12076 72017
(20130) 0065 16007 72078 0091 20026 76085

Table 6 Expected Waiting Time and Overtime According to Different
Schedules

Mean value Stochastic programming
schedule schedule

�= 10 �= 1 �= 001 �= 10 �= 1 �= 001

Expected total cost 975019 111072 253071 878003 104058 162065
Expected waiting time 15078 16028 10054 5006
Expected overtime 95094 86017 94005 111097

typical of schedules used in practice for endoscopy
scheduling. The results based on 101000 replications
are included in Table 6. According to the results,
scheduling patients with intervals equal to the mean
of the endoscopy procedure distribution is near opti-
mal for the service environments in which service
overtime and customer waiting time are considered
equally costly (� = 1). As � decreases, patient wait-
ing time becomes the dominant performance criteria,
and schedules provided by (D-ASP) produce better
waiting time results on the average than does the
mean value schedule. Similarly, as � increases, server
overtime becomes the dominant criteria, and (D-ASP)
schedules produces better overtime results on aver-
age than does the mean value schedule. According to
the total cost values, (D-ASP) produces better sched-
ules with lower total cost than does the mean value
schedule in all three environments (�= 10111001). The
benefits are most pronounced for low values of �, i.e.,
when the cost of patient waiting is high relative to the
cost of overtime.

6. Conclusions and Future Research
In this article we proposed models for scheduling
a stochastic server in the presence of uncertainty
in demand for appointment requests. Our models
aim to find the optimal appointment times given
that (a) some patients may fail to show up for
their appointment (no-show) and (b) some additional
patients may request appointments after an initial
schedule has been created. The objective in both of
our models is to minimize the total expected cost of
patient waiting and overtime.

For (NS-ASP) in which no-shows may occur,
our results in some cases indicate a dome shape
such as that observed in Denton and Gupta (2003)
in the absence of no-shows. The presence of no-
shows generally causes the optimal interarrival
times (allowances) between customer appointments
to decrease. Furthermore, as the probability of no-
show increases, it may be optimal to double book
customers. Double-booking is common in practice,
and our results show that it is optimal in some cases
where overtime or idling costs are high or no-show
probabilities are high.
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For (D-ASP), the more computationally challeng-
ing of the two models, we proposed several methods
based on ND that take advantage of the underlying
structure of the problem, including additional valid
inequalities, a fast method for solving two-variable
LPs, and an adaptation of multicut outer lineariza-
tion. We conducted a series of numerical experiments
with varying cost ratios, service time distribution
types, and appointment request probabilities. Compu-
tational improvements were observed, and they are
particularly encouraging for future applications that
involve solving problems in which (D-ASP) is a sub-
problem and efficient computation of lower bounds
is important (e.g., a branch-and-bound implementa-
tion for problems that consider assignment of cus-
tomers among multiple servers or multiple days). Our
results indicate that the multicut implementation of
ND for (D-ASP) also gives significant computational
advantage.

For (D-ASP), our numerical experiments show that
the dome shape observed in the static scheduling
case is preserved for routine customer appointments.
However, as the relative number of routine customers
decreases and of add-on customers increase, the inter-
arrival times increase for the routine patients sched-
uled to arrive early in the day and decrease for the
add-on patients scheduled to arrive later in the day.
Finally, we observe very high VSS for some problem
instances, indicating that the solution of the stochas-
tic program is important in the dynamic scheduling
context.

The models that are presented in this paper are
motivated by scheduling problems that are common
to many service systems. The models we present are
realistic representations of many scheduling environ-
ments. Nevertheless, our models have some limita-
tions. First, we assumed that the decision maker is
risk neutral, i.e., that his or her goal is to minimize
expected cost. However, the true behavior may vary
from person to person and from institution to insti-
tution. Second, the FCFS assumption, though widely
used in many service systems, may not be appropri-
ate in certain environments, especially in the presence
of patients with varying priorities. Third, our models
do not take into account the possibility of reschedul-
ing, i.e., changing the schedule partway through the
day. This is not an unrealistic assumption in outpa-
tient scheduling environments because most service
systems avoid rescheduling due to additional costs
and negative effects on customer satisfaction. How-
ever, the potential benefits of rescheduling remain to
be determined.
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