
Received January 7, 2022, accepted January 23, 2022, date of publication January 27, 2022, date of current version February 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146374

Dynamic Arithmetic Optimization Algorithm for
Truss Optimization Under Natural
Frequency Constraints
NIMA KHODADADI 1, (Member, IEEE), VACLAV SNASEL 2, (Senior Member, IEEE),
AND SEYEDALI MIRJALILI 3,4, (Senior Member, IEEE)
1Department of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran
2Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech
Republic
3Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Adelaide, SA 5000, Australia
4Yonsei Frontier Laboratory, Yonsei University, Seoul 03722, South Korea

Corresponding author: Seyedali Mirjalili (ali.mirjalili@gmail.com)

ABSTRACT Metaheuristic algorithms have successfully been used to solve any type of optimization prob-
lem in the field of structural engineering. The newly proposedArithmetic OptimizationAlgorithm (AOA) has
recently been presented for mathematical problems. The AOA is ametaheuristic that uses themain arithmetic
operators’ distribution behavior, such as multiplication, division, subtraction, and addition in mathematics.
In this paper, a dynamic version of the arithmetic optimization algorithm (DAOA) is presented. During an
optimization process, a new candidate solution change to regulate exploration and exploitation in a dynamic
version in each iteration. The most remarkable attribute of DAOA is that it does not need to make any effort
to preliminary fine-tuning parameters relative to the most present metaheuristic. Also, the new accelerator
functions are added for a better search phase. To evaluate the performance of both the AOA and its dynamic
version, minimizing the weight of several truss structures under frequency bound is tested. These algorithms
’ efficiency is obtained by five classical engineering problems and optimizing different truss structures under
various loading conditions and limitations.

INDEX TERMS Dynamic arithmetic optimization algorithm; DAOA, frequency constraints, optimal design,
truss structures, optimization, benchmark.

I. INTRODUCTION
Various metaheuristic optimization techniques for almost
any engineering problem have been created in the past few
decades. These algorithms discover the search area in a
pseudo-random method complying with some motivating
principles and without demanding gradient. Metaheuristic
algorithms have lately been popular in a variety of fields
because they are more efficient, need less computing capac-
ity, and take less time to implement than deterministic algo-
rithms. To get the best outcomes, simple principles are
needed, and transplants are carried out in a multitude of
areas. Local optimality can be avoided by using random
elements in meta-heuristic algorithms, which allow the algo-
rithm to search for the best solution inside the search area,
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thus preventing it from becoming optimal locally. Specific
gradient descent algorithms are more useful in using gradient
information than stochastic algorithms in direct and straight-
forward problems. Indeed, the convergence rate of meta-
heuristic algorithms will be far below the gradient descent
algorithms and may be considered a disadvantage [1].

Meta-heuristic algorithms, which are used to find better
answers for optimization problems, are typically based on
human, natural, physical, and art phenomena. Under actual
circumstances, the solution space of many issues is end-
less or usually unlimited. By traversing the solution space
in the current situation, it might be impossible to discover
optimal solutions. Metaheuristic algorithms detect the almost
optimum solution of the problem by randomly detecting the
significant solution area in one method to identify or create
much better solutions for the problem of optimization under
minimal circumstances or computational capacity [2].
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Genetic Algorithm (GA) [3], Particle Swarm Optimization
(PSO) [4], Ant Colony Optimization (ACO) [5], Imperial-
ist Competitive Algorithm (ICA) [6], Grey Wolf Optimizer
(GWO) [7], Whale Optimization Algorithm (WOA) [8], Krill
Herd Algorithm (KH) [9], Bat Algorithm (BA) [10], Human
Mental Search (HMS) [11] and Teaching-Learning Based
Optimization (TLBO) [12] are some of the well-formulated
metaheuristic optimization algorithms based on the social
behavior of animals or human features alongside the appli-
cation of these algorithms in different fields [13]–[17].

Gravitational Search Algorithm (GSA) [18], Charged Sys-
tem Search (CSS) [19], Big-Bang Big Crunch (BB-BC) [20],
Stochastic Paint Optimizer (SPO) [21], Simulated Annealing
(SA) [22], Harmony Search (HS) [23] and Colliding Bodies
Optimization (CBO) [24] are inspired by art, physical and
natural phenomena.

The optimization of trusses has been a difficult subject
in structural engineering in the last few decades. There
were a number of meta-heuristic techniques tested for opti-
mizing the structures’ size and layout: Genetic algorithm
(GA) [25], Particle Swarm Optimization (PSO) [26], School-
Based Optimization (SBO) [27], Symbiotic Bodies Opti-
mization (SBO) [28], Dynamic Water Strider Algorithm
(DWSA) [29], Hybrid Invasive Weed Optimization-Shuffled
Frog-leaping Algorithm (IWO-SFLA) [30], Cuckoo Search
Algorithm (CS) [31].

Natural frequency is a critical criterion provided based on
knowledge of structural dynamics. The natural frequencies
of a structure have a significant impact on its performance.
The optimal design of trusses based on dynamic behavior
is a demanding research area. In other words, natural fre-
quencies give vital information on the dynamic behavior
of structures. In addition, optimization of trusses based on
frequency constraints has seen many factors to consider in the
past ten years. An important practical concern is to increase
the truss’s dynamic behavior by considering its natural fre-
quencies. This criterion must be controlled to prevent the res-
onance phenomenon and improve the structural performance.
Lightweight structures are very important in engineering.
When it comes to optimizing trusses, mass minimization
conflicts with frequency constraints and also increases the
complexity of the problem. As a result, an effective opti-
mization technique is required for the design of trusses based
on primary frequency constraints, and academics are tak-
ing proactive steps to improve their understanding of this
element.

Bellagamba and Yang [32] investigated the truss opti-
mization with frequency constraints for the first time,
and then many researchers examined this research area.
A bi-factor algorithm was developed for these structures
by Lin et al. [33]. Wei et al. [34] presented a parallel
genetic algorithm. Kaveh and Zolghadr suggested charged
system search and enhanced CSS [35], democratic particle
swarm optimization (DPSO) [36], and tug of war optimiza-
tion (TWO) [37]. Pholdee and Bureerat [38] tested vari-
ous metaheuristic algorithms. Tejani et al. [28] improved

symbiotic organisms search (ISOS) for truss structures with
frequency bound. Multi-class teaching learning-based algo-
rithm [39] was applied for truss structures subjected to fre-
quency constraints.

All these researches confirmed stochastic optimization
algorithms’ efficiency in managing many problems when
solving structure design troubles. In the optimization field,
there is no technique to solve all optimization problems,
according to the no free lunch (NFL) theorem [40]. As a
result, a new algorithm that has been modified will be able
to handle a particular set of problems better than the existing
algorithms. At the same time, they still carry out equal, taking
into consideration all optimization problems. This motivated
our attempts to boost the efficiency of the recently suggested
arithmetic optimization algorithm (AOA) [41] and adjust it
much better for structure design problems.

Laith Abualigah et al. [41] recently developed an arith-
metic optimization algorithm for constraint and uncon-
strained optimization problems based on the mathematical
model. Arithmetic is the mathematics branch that deals with
numerical study with various operations. Adding, subtrac-
tion, multiplication, and division are the basic mathematical
operations.

TheDynamicArithmetic OptimizationAlgorithm (DAOA),
a recently developed population-based meta-heuristic,
is applied to structural design problems in this study. The
motivation for this research is to use the AOA and DAOA for
the optimal weight design of truss structures with frequency
limitations for the first time in the literature. Two dynamic
features have been successfully introduced in the basic ver-
sion of AOA in order to increase its performance. Since no
prior fine-tuning of parameters in connection to the most
recent meta-heuristic is required, DAOA offers an advantage
over other optimization algorithms.

This new algorithm provides a proper equilibrium between
exploration and exploitation strategies that generate excellent
accuracy along with swift convergence. All the results of
optimizing distinct architectures are thoroughly analyzed and
evaluated in detail. The structural weight with frequency
constraints is used as an objective function to solve these
challenges, and distinct and continuous areas are considered
design variables.

The paper is arranged as follows: Section II presents
the formulation of truss structures optimization.
Section III and IV provide an extensive explanation of the
arithmetic optimization algorithm (AOA) and its dynamic
version (DAOA), respectively. Section V identifies the prob-
lem and discusses numerical findings. Finally, section VI
provides the final observations.

II. FORMULATION OF TRUSS STRUCTURES
OPTIMIZATION
Several natural frequency constraints are included in
this section’s formulation of truss structure optimization.
Figure 1 depicts the flow chart for solving the truss optimiza-
tion problem. Optimization of the truss structures suggests
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FIGURE 1. The flowchart of the truss optimization problem.

achieving the best possible cross-sectional (Ai) values, which
reduce the weight (W ) of construction. This minimum design
has to satisfy the following requirements [36] additionally:

Find [x1,x2, . . . , xng] (1)

Minimize W ({x}) =
nm∑
i=1

γi.Ai.Li (x) (2)

Subjected to


xmin ≤ xi ≤ xmax

ωj ≤ ω
∗
j

ωk ≥ ω
∗
k

(3)

where {x} presents the design variables, the number of design
variables is defined by ng defines the variety of design vari-
ables, the structure weight is introduced by W ({x}) and the
variety of structural members is specified by nm. In addition,
the material density, member’s length, the member’s cross-
sectional area for all components is shown as γi, Li and xi,
respectively. The jth and kth natural frequency of the truss
are defined by ωj (ω∗j is upper bound) and ωk (ω∗k is lower
bound). The popular appropriate function for dealing with the
restrictions as a result of the fundamental principle and also
simplicity of application is revealed as follows:

fpenalty (x) = (1+ ε1.ν)ε2 ,
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ν =

n∑
i=1

max(0, νi) (4)

where ν is the total amount of the constraints violated and
constants ε1 and ε2 are selected considering the exploration
and the exploitation rate of the search space. In this case, ε1
is set to 1, ε2 is chosen to minimize penalties and to reduce
cross-sections. ε2 is initially set to 1.5 and then increased to
3 as the search progresses [42].

III. ARITHMETIC OPTIMIZATION ALGORITHM (AOA)
This algorithmwas proposed in 2020 byAbualigah [41] using
several mathematical equations and operators. Just like other
metaheuristics, the AOA algorithm starts with a population
of random solutions. In each iteration, the objective value
of each solution gets calculated. There are two controlling
parameters in this algorithm called MOA and MOP that
should be updated prior to updating the position of solutions
as follows:

MOA (t) = Min+ t ×
(
Max −Min

T

)
(5)

MOA(t) is the value of the function at tth iteration, t is
the current iteration, T shows the maximum iteration, and
Max/Min is the maximum and minimum values to bound
MOA.

MOP (t) = 1−
(
t
T

) 1
α

(6)

where math optimizer probability (MOP) is a coefficient,
MOP(t) is the value of the function at tth iteration, T is the
maximum number of iterations, t is the current iteration and
α shows a controlling parameter.
After updatingMOA andMOP, a random number is gener-

ated called r1 to switch between exploration and exploitation.
For exploration, the following equation is used:

xi,j (t + 1)

=


best

(
xj
)

MOP+ ε
.
(
UBj − LBj

)
.µ+ LBj if r2 < 0.5

best
(
xj
)
×MOP×

(
UBj − LBj

)
× µ+ LBj
if r2 ≥ 0.5

(7)

where t is the current iteration, µ is a controlling parameter,
ε is a small number to avoid division by 0, and r2 is a random
number in [0,1].

For exploitation, the following equation is used:

xi,j (t + 1)

=

{
best

(
xj
)
−MOP×

(
UBj−LBj

)
×µ+LBj if r3<0.5

best
(
xj
)
+MOP×

(
UBj−LBj

)
×µ+LBj if r3≥0.5

(8)

where xi (t + 1) indicates the ith solution in the next iteration,
xi,j(t) indicates the jth position of the ith solution at the current
iteration, and best(xj) is the jth position in the best-obtained

solution so far, t is the current iteration, µ is a controlling
parameter, ε is a small number to avoid division by 0, and
r3 is a random number in [0,1]. In addition, the upper bound
value and lower bound value of the jth position are described
by UBj and LBj, respectively.

IV. DYNAMIC ARITHMETIC OPTIMIZATION
ALGORITHM (DAOA)
Two dynamic characteristics with a new accelerator func-
tion are implemented in the basic arithmetic optimiza-
tion algorithm version to improve this performance. The
dynamic version, which controls the exploration and exploita-
tion behavior, changes the candidate solutions and search
phase during the optimization process. The most remarkable
attribute of DAOA is that it does not need to make any
effort to preliminary fine-tuning parameters relative to the
most present metaheuristic. Algorithm. 1 shows the DAOA
pseudo-code. These new dynamic features are discussed in
the following section.

Algorithm 1 Pseudo-Code of DAOA
procedure Dynamic Arithmetic Optimization Algorithm
Initial the Algorithm Parameters α,µ
Create random values for initial positions
while (t < maximum number of iterations) Do
Evaluate fitness values for given solutions
Find the best solution
Update the DAF value using Eq. (9)
Update the DCS value using Eq. (12)
for i = 1: number of solutions Do
for j = 1: number of positions Do

Create random values between 0 and 1 for r1, r2, r3
if r1 > DAF then exploration phase
if r2 > 0.5 then update the solutions’ positions

Using first rule in Eq. (10)
else

Using second rule in Eq. (10)
end if

if r1 < DAF then exploitation phase
if r3 > 0.5 then update the solutions’ positions

Using first rule in Eq. (11)
else

Using second rule in Eq. (11)
end if

end if
end for

end for
t = t + 1

end while
Return best solution

end procedure

A. DYNAMIC ACCELERATED FUNCTION FOR DAOA
Dynamic accelerated function (DAF) in the arithmetic opti-
mization algorithm dynamic plays a pivotal role in the search
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phase. In the AOA, one needs to adjust the Min and Max
initial values of the accelerated function. It is better to have an
algorithm without adjustable internal parameters since DAF
is replaced with a new downward function. In the optimiza-
tion algorithm, this modification factor is presented as follow:

DAF =
(
Itermax
Iter

)α
(9)

where Iter describes the current number of iterations, Itermax
is the maximum number of iterations, and α has the constant
value. This function is decreased during every iteration in the
algorithm.

B. DYNAMIC CANDIDATE SOLUTION FOR DAOA
In this section, the following dynamic features for candidate
solutions in DAOA are introduced. The two main phases
of metaheuristic algorithms are exploration and exploitation,
which has a good balance between them is essential for the
algorithm. In the proposed dynamic version to emphasize
the exploration and exploitation, each solution renews its
positions dynamically from the best-obtained solution during
the optimization process. Dynamic candidate solution (DCS)
function is added to Eq (10) and Eq (11) instead of Eq (7) and
Eq (8) in the basic version, respectively:

xi,j (CIter + 1)

=


best

(
xj
)
÷ (DCS + ε)× ((UBj − LBj)× µ+ LBj)),

r2 < 0.5
best

(
xj
)
× DCS × ((UBj − LBj)× µ+ LBj)),

Otherwise
(10)

xi,j (CIter + 1)

=


best

(
xj
)
− DCS × ((UBj − LBj)× µ+ LBj)),

r3 < 0.5
best

(
xj
)
+ DCS × ((UBj − LBj)× µ+ LBj)),

Otherwise

(11)

where dynamic candidate solution (DCS) function is intro-
duced due to the effect of the decreasing percentage in
candidate solution and during every iteration, its value was
decreased as follow:

DCS(0) = 1−

√
Iter

IterMax
(12)

DCS (t + 1) = DCS (t)× 0.99 (13)

Numerous search agents and iterations showed that using
candidate solutions in DAOA considerably increased the
speed of AOA convergence. As a result of these enhance-
ments, solution quality is also improved. An algorithm’s
ability to operate with no parameters is generally seen as
an advantage for metaheuristic algorithms. The distinction
between DAOA and AOA is that DAOA employs dynamic
functions, while the remaining approach is identical to the
AOA algorithm described in the previous section. The DAOA

algorithm benefits from adaptive parameters, so the num-
ber of parameters that should be tuned is at the minimum
(population size and maximum iteration). This is opposed
to the rival algorithms, which require parameter tunings for
different problems. As one of the drawbacks of this algorithm,
we can mention the adaptive mechanism based on the itera-
tion counter and not fitness improvement.

V. NUMERICAL EXAMPLES
A. NUMERICAL EXAMPLES
The optimization technique is performed using the DAOA
and AOA algorithms and assessed with four optimization
instances of classical engineering problems and truss struc-
tures to satisfy this aim. The maximum number of function
evaluations was also employed as the final condition in order
to establish a fair comparison. Each problem is solved sep-
arately 20 times, and DAOA is used in the same number of
analyses and representatives to compete fairly. In addition,
the stated references provided the other control parameters
for the comparative algorithms. The DAOA and its standard
version are used in the same range of evaluations and repre-
sentatives to compete fairly.

1) TENSION/COMPRESSION SPRING
One of the most common optimization problems is presented
in Fig. 2 by Belegundu [43] and Arora [44]. The goal is
to make the tension/compression spring as light as possible.
There are other constraints (shear stress, frequency, and min-
imum deflection.) that must be met in order for this reduction
to be successful.

Consider EX = [x1, x2, x3] = [d,D,N ]

Minimize fcost ( EX) = (2+ x3)× x2x21

Subject to g1
(
EX
)
= 1−

x3x32
71785x41

≤ 0

g2
(
EX
)
=

4x22 + x2x1
12566(x2x31 − x

4
1 )
+

1

5108x21
− 1 ≤ 0

g3
(
EX
)
= 1−

140.45x1
x22x3

≤ 0

g4
(
EX
)
=
x1 + x2
1.5

− 1 ≤ 0

g6( EX) = δ( EX)− δmax
g7( EX) = P− Pc( EX) ≤ 0

Variable Range 0.05 ≤ x1 ≤ 2, 0.25 ≤ x1 ≤ 1.3,

2 ≤ x1 ≤ 15 (14)

FIGURE 2. Tension/compression spring.
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TABLE 1. Statistical results of different algorithms for tension/compression spring.

FIGURE 3. Welded beam.

The best result gained by DAOA is 4% lighter than that of
AOA, and its solution obtained the 1st rank in terms of the best
solution. In addition, the result and best variable values for
different algorithms such asWCA [45], BA [46], DELC [47],
GWO [7], HS [48], PSO [49], GA [50], Belegundu [43] and
Arora [44] are shown in Table 1.

2) WELDED BEAM
Coello [50] suggested this benchmark design issue, and sev-
eral researchers discussed it. The vertical force of the beam is
shown in Fig. 3. The goal is to achieve a design that will have
the minimum objective function. Seven stress, deflection,
welding, and geometry constraints are present in the problem.

The formulation of this problem is given below:

Consider EX = [x1, x2, x3, x4] = [h, l, t, b]

Minimize fcost( EX) = 1.10471x21x2 + 0.04811x3x4
(14.0+ x2)

Subjectto g1( EX) = τ ( EX)− τmax
g2( EX) = σ ( EX)− σmax
g3( EX) = x1 − x4 ≤ 0

g4( EX) = 0.10471x21 + 0.04811x3x4(14.0+ x2)

− 5.0 ≤ 0

g6( EX) = δ( EX)− δmax
g7( EX) = P− Pc( EX) ≤ 0
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TABLE 2. Comparison of the best design for welded beam.

Where τ ( EX) =
√
(τ ′)2 + 2τ ′τ ′′

x2
2R
+ (τ ′′)2,

τ ′ =
P

√
2 x1x2

, τ ′′ =
MR
J

M = P(L +
x2
2
), R =

√
x22
4
+

(
x1 + x3

2

)2

J = 2

{
√
2 x1x2

[
x22
12
+

(
x1 + x3

2

)2
]}

Pc( EX) =
4.013E

√
x23x

6
4

36

L2

(
1−

x3
2L

√
E
4G

)

σ ( EX) =
6PL

x4x23
, δ( EX) =

4PL3

Ex33x4
P = 6000lb, L = 14in, E = 30× 106psi,

G = 12× 106psi

Variable Range 0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

(15)

Table 2 contains the result of DAOA and AOA in compar-
ison with other algorithms. As seen here, DAOA finds the
better variables for this problem than CSS [19], GWO [7],
CDE [49], GA [50], PSO [49], AOA, HS [48], APPROX [51],
and Random [51]. The results of the DAOA for this problem
are compared to several other optimization algorithms pub-
lished in the literature. The DAOA algorithm provides very
competitive results, and its best solution obtained is ranked
second to none, the same asWSA [52] andMFO [53]. In com-
parison to well-known optimization approaches, DAOA is a
competitive algorithm, according to this study.

3) THREE BAR-TRUSS
The following example is designing a three-bar truss to
reduce weight. As shown in Fig. 4, there are three bar

FIGURE 4. Three bar truss.

FIGURE 5. Compound gear.

components of the truss structure with symmetric configura-
tion. The objective function is fundamental, but the problem
is extremely limited. There is a wide range of constraints
to structural design problems, such as stress, deflection,
and buckling constraints. This problem is mathematically
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TABLE 3. The best designs obtained for three-bar truss.

FIGURE 6. Cantilever beam.

formulated as follows:

Consider EX = [x1, x2] = [A1,A2]

Minimize fcost ( EX) = (2
√
2 X1 + X2)× l

Subject to g1
(
EX
)
=

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0

g2
(
EX
)
=

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0

g3
(
EX
)
=

x2
√
2 x21 + 2x1x2

P− σ ≤ 0

g4
(
EX
)
=

1
√
2 x2 + x1

P− σ ≤ 0

Where l = 100cm, P = 2KN/cm3, σ = 2KN/cm3

Variable Range 0 ≤ x1, x2 ≤ 1 (16)

TABLE 4. Comparison of the best designs for compound gear.

Ten well-known algorithms are chosen for comparison
with DAOA. The comparison results of best values are pro-
vided in Table 3. DAOA finds a design, which is the lowest
among all other methods. Table 3 shows the best optimum
designs. TheDAOA algorithm produces excellent results, and
its optimal solution is unrivaled.

4) COMPOUND GEAR
In mechanical engineering, this example is a discrete design
issue. It is intended to reduce the gear ratio as defined by the
ratio of the output shaft’s angular speed to the angular velocity
of the input shaft. As shown in Fig. 5, The number of gears
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TABLE 5. The best designs for cantilever beam problem.

TABLE 6. Design Parameters for various optimization problems.

FIGURE 7. The 37- bar planar bridge.

teeth is known to be a discrete variable. The following is the
mathematical formula:

Consider EX = [x1, x2, x3, x4] = [nA, nB, nC , nD]

Minimize fcost
(
EX
)
=

(
1

6.931
−
x3x2
x1x4

)2

Discerte Variable Range 12 ≤ x1, x2, x3, x4 ≤ 60

(17)

The best number of teeth were found by the DAOA,
CS [54], WSA [52], MBA [55], GA [50], ALO [56],
SCA [57], SSA [58] and GWO [7]. Table 4 displays DAOA’s

optimal findings, which is clear that DAOA can outperform
other approaches, amongst others, by obtaining the lowest
total cost. Overall, the results of this research demonstrate
the efficiency and effectiveness of DAOA in solving this
problem.

5) CANTILEVER BEAM
Chickermane and Gea [62] have taken up the cantilever beam
issue. The beam is rigidly supported, and at the free end of
the cantilever, the vertical force acts, as shown in Fig. 6.
The challenge is reducing the weight of the beam. The beam
consists of five hollow square blocks with constant thickness,
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TABLE 7. Comparison of optimized 37- bar planar bridge obtained through AOA and DAOA with other algorithms.

TABLE 8. Comparison of Natural frequencies (Hz) for the best design of 37- bar planer bridge.

whose height decision. The classic principle of the beam
develops the problem as follows:

Consider EX = [x1, x2, x3, x4, x5] = [h1, h2, h3, h4, h5]

Minimize fcost
(
EX
)
= 0.06224 (x1 + x2 + x3 + x4 + x5)

Subject to g
(
EX
)
=

61

x31
+

27

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0

Variable Range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

(18)

Table 5 displays DAOA’s optimal findings and their com-
parison to those of other approaches. It should be men-
tioned DAOA and WSA obtained the 1th rank in terms of
best values. According to Table 5, the solution superior

to any other approach has been obtained by DAOA and
WSA [52].

B. STRUCTURAL EXAMPLES
In order to demonstrate the effectiveness of DAOA, various
common structural optimum design problems are investi-
gated in this section.Material properties, cross-sectional area,
and natural frequency constraints applied for a 37-bar planer
bridge, a 72-bar space truss, a 120-bar dome truss, and a
200-bar planer truss are summarized in Table 6. In order to
provide a point of comparison, the results of a few other
optimization algorithms are also presented.

In MATLAB 2021b, the algorithm was made. SAP2000
v14.1 solves the trusses with a direct stiffness method, and
also the API is used to make changes during the optimization
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FIGURE 8. Best and average convergence curve obtained by AOA and DAOA for the 37-bar planer bridge.

FIGURE 9. Twenty independent runs were obtained by (A) DAOA and (B) AOA for the 37-bar planer bridge.

process. The computer’s current work is done with the help of
these features: 2.3 GHzCPU, 16GB 2400MHzDDR4RAM,
and a Macintosh platform (macOS Big Sur).

1) 37-BAR PLANER TRUSS
The first instance is the weight reduction of the planar 37-bar
truss structure depicted in Fig 7. Wang et al. [34] initially
explored this example, and a large number of scholars later
investigated it. For this problem, the design properties are
shown in Table 6. The problem consists of fourteen sizes
and five design variables. Each lower chord free node has
a concentrated mass of 10Kg. The cross-sectional areas of
the lower chord bars are 0.4 cm2 while the remaining bars

are supposed to have a cross-section area of 1 cm2. All
nodes of the upper chord can be moved along the y-way
while maintaining the structure’s symmetry. This structure
had been optimized previously with different metaheuristic
algorithms. In this section, 37- bar planer bridge under natural
frequency constraints is investigated by AOA and DAOA by
considering population size 50 and function number evalu-
ations as 10000. The best and average convergence curves
obtained by AOA and DAOA for the 72-bar planer bridge are
depicted in Fig 8. As seen in Fig. 8, the best design of AOA
and DAOA is 359.5617Kg and 378.2591Kg, which have
been located at 2300 and 9000 analyses respectively. The
results presented above clearly show the high convergence
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FIGURE 10. The 72-bar space truss structure.

capability of the dynamic version of AOA. The design
found by DAOA is 4.94% lighter than that found by AOA.

Tables 7 and 8 show optimization results and the first three
natural frequencies obtained by DAOA, AOA in compari-
son with other referenced algorithms using particle swarm
optimization (PSO) [36], harmony Search (HS) [37], firefly
algorithm (FA) [37], teaching- learning-based optimization
(TLBO) [63], vibrating particles system (VPS) [64], school-
based optimization (SBO) [63], symbiotic organisms search
(SOS) [28] and colliding-bodies optimization (CBO) [65].

Obviously, DAOA gained the lightest structure overall and
strictly satisfied all constraints, while some algorithms vio-
lated these constraints. The standard deviation and average of
results for DAOA are better than AOA. It should be noted that
DAOA ismore reliable thanAOA and has better performance.
Fig 9. shows the 20 independent runs for both AOA and
DAOA. It is clear that the final results of DAOA are close
to the value of average weight.

2) 72-BAR SPACE TRUSS
The second instance for weight minimization of the struc-
ture is a spatial truss of 72 bar, as shown in Fig 10. This
example was divided into 16 groups because of structural
symmetry; therefore, this problem has 16 sizing variables.
Four non-structural masses of 10 Kg have been added at
nodes 1-4. This example demonstrates material properties
and constraints in Table 6. Both AOA and DAOA are eval-
uated for 72- space truss with natural frequencies.

Optimization outcomes for DAOAare comparedwith other
methods by considering population size 50 and function num-
ber evaluations as 10000. Table 9 highlights size variables,
best weight, average weight, standard deviation (STD) of
weight, and a number of function evaluations gained for

FIGURE 11. Best and average convergence curve obtained by AOA and DAOA for the 72-bar spatial truss.
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FIGURE 12. Twenty independent runs were obtained by (a) DAOA and (b) AOA for the 72-bar spatial truss.

TABLE 9. Comparison of optimized the 72-bar spatial truss obtained through AOA and DAOA with other algorithms.

TABLE 10. Comparison of Natural frequencies (Hz) for the best design of a 72-bar spatial truss.
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TABLE 11. Comparison of optimized the 120-bar dome truss obtained through AOA and DAOA with other algorithms.

FIGURE 13. The 120-bar dome truss structure.

20 runs. The best results of the AOA and DAOA approach
are 325.726 Kg and 324.4786 Kg, while it is 327.691 Kg,
328.81 Kg, 328.83 Kg, 328.814Kg, 327.568 Kg, 327.55 Kg,
325.558Kg and 324.755Kg for the such as FA [37], PSO [36],
TWO [67], CSS [35], TLBO [39], SBO [63], SOS [28] and

CBO [65] algorithms, respectively (see Table 9). According
to Table 10, the natural frequency constraints of the presented
method are strictly satisfied all bound.

Fig 11. demonstrates that DAOA needs 3800 number anal-
yses to obtain a feasible solution and ranked first among
all other algorithms in this paper in terms of a number of
function evaluations. Moreover, DAOA gives the best aver-
age weight among the mentioned algorithms. The twenty
independent runs for 72- spatial bar truss for AOA and
DAOA are shown in Fig 12. As depicted in Table 4,
the average weight of the DAOA and AOA approaches
are 324.9286 Kgand 329.343 Kg, while it is 329.89 Kg,
332.24 Kg, 331.6 Kg, 337.70 Kg, 328.684 Kg, 327.68 Kg,
331.122Kg and 330.415Kg for the such as FA [37], PSO [36],
TWO [67], CSS [35], TLBO [39], SBO [63], SOS [28]and
CBO [65] algorithms, respectively. The standard devia-
tion of DAOA is 0.3731, which ranked second among its
competitors. These results show that DAOA is more reliable
and superior than the other results reported in the literature.
Moreover, it is found from the results that DAOA is more
efficient than AOA.

3) 120-BAR DOME TRUSS
The 3rd benchmark is presented in Fig 13. Initially, the
120-bar 3-D dome truss was optimized for size optimiza-
tion by Kaveh and Zolghadr [68]. Table 6 shows the design
considerations. There are non-structural masses added as
3000 Kg at node 1, 500 Kg at nodes 2 to 13 and 100 Kg
at the rest of the free nodes. The elements are classi-
fied into seven groups by assuming symmetry about the
z-axis. The minimum and maximum cross-sectional area
are 1 and 129.3cm2, respectively. This example is solvedwith
various algorithms such as PSO [36], CSS [35], DPSO [36],
and VPS [64] by considering population size 50 and function
number evaluations as 10000. Table 11 reveals size variables,
best weight, average weight, standard deviation (STD) of
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FIGURE 14. Best and average convergence curve obtained by AOA and DAOA for the 120-bar dome structure.

FIGURE 15. Twenty independent runs were obtained by (a) DAOA and (b) AOA for the 120-bar dome structure.

TABLE 12. Comparison of Natural frequencies (Hz) for the best design of a 120-bar dome truss.

weight, and a number of function evaluations. As shown
in Table 11, VPS [64] and DAOA ranked first and sec-
ond, respectively, regarding the best optimization weight.
Furthermore, DAOA finished the search process within

2400 function evaluations, the lightest number of func-
tion evaluations (see Fig 14.). AOA results show that this
method found infeasible optimized designs with the highest
weight of structures and could not escape from the local
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FIGURE 16. The 200-bar planar truss structure.

trap. Moreover, after 2400 analyses, DAOA has reached
satisfactory solutions. The best and average convergence
curves of best runs for AOA and DAOA are depicted
in Fig 14.

The DAOA has the best weight of 8890.044 Kg, demon-
strating that the new approach is more effective than the
standard version of AOA. This is an optimal design improve-
ment using the current algorithm. As regards Table 12,
this approach still satisfies frequency constraints. Fig 15.

demonstrates 20 individual runs of the final weights for AOA
and DAOA.

4) 200-BAR PLANAR TRUSS
This study solved the fourth test problem concerning reducing
weight of a planar structure of 200 bar shown in Fig 16.
The design considerations for this problem are shown in
Table 6. This example comprises 29 size variables for the
cross-sectional areas of the element groups listed in Table 13.
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FIGURE 17. Best and average convergence curve obtained by AOA and DAOA for the 200-bar planar truss structure.

TABLE 13. Element grouping for 200- planar bar truss.

The frequency restrictions are taken as follows: ω1 ≥ 5 Hz,
ω2 ≥ 10 Hz, ω3 ≥ 15 Hz. The upper nodes (1 to 5) of the
truss are supplemented with 100 Kg non-structural masses.
Table 16 demonstrates the lightest weight of structure

obtained by DAOA is better than those other algorithms
by considering population size 50 and function number
evaluations as 20000. The DAOA has the best weight of
2102.458 Kg, demonstrating that the new approach is more
effective than the other algorithms. This best of DAOA is
47.27%, 6.96%, 2.5%, 2.5%, 3.57%, 2.71% and 11.86%
lighter than those of PSO [36], CSS [35], SBO [63],
TLBO [39], SOS [28],CBO [65] and AOA. Fig 17. shows
the best and mean convergence curves for the standard and
dynamic version of AOA.

Table 14 shows that the DAOA algorithm’s average is
lower than that of other algorithms, demonstrating the
DAOA algorithm’s superior performance. Compared with
some other researchers, minimum weight and associated
cross-sections of AOA and DAOA are acquired, and the
findings are shown in Table 14. The natural frequencies of
the best design obtained by other algorithms structures are
shown in Table 15, which are satisfied by AOA and DAOA.
In this study, the final weight of the 20 independent runs for
AOA and DAOA is seen in Fig 18. This example’s outcomes
reveal DAOA surpasses the compared algorithms in regards
to performance and accuracy.

The robustness of DAOA compared with AOA and other
metaheuristic algorithms is proved by statistical results
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TABLE 14. Comparison of optimized the 200-bar planar truss obtained through AOA and DAOA with other algorithms.

TABLE 15. Comparison of natural frequencies (Hz) for the best design of a 200-bar planar truss.

obtained from 60 independent runs. Due to the introduction
of two novel functions, the algorithm is able to break out
of local optima and achieve great performance. The most

remarkable attribute of DAOA is that there is no need for
tuning parameters. The performance of DAOA is tested for
four different truss structures. Performance and accuracy of
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FIGURE 18. Twenty independent runs were obtained by (a) DAOA and (b) AOA for the 200-bar planar truss structure.

the dynamic version of AOA surpass the standard version of
AOA and compared algorithms.

VI. CONCLUSION
In this paper, the Dynamic Arithmetic Optimization Algo-
rithm (DAOA) approach was proposed and tested for opti-
mum weight design of four benchmark truss structures under
frequency constraints. The DAOA benefits from two dynamic
mechanism to alleviate the drawbacks of AOA. Truss opti-
mization with natural frequency bound is a complicated prob-
lem in optimization, which has extraordinarily nonlinear and
non-convex search areas with varying local optima. These
examples are used to evaluate the proposed method’s Effi-
ciency (DAOA) against the standard version of AOA and
some well-established metaheuristic algorithms. Four classi-
cal truss weight minimization problems (i.e., planar 37-bar,
spatial 72-bar truss, 120-bar dome truss, 200-bar trusses),
including up to 29 optimization variables, were used to
prove the efficiency of the proposed algorithm. This new
algorithm provides a proper balance between exploration
and exploitation strategies that produce excellent accuracy
and rapid convergence. The structural results of the design
examples examined point to the algorithm’s benefits in opti-
mizing final solutions. The statistical results obtained by
is considered as a competent rival for new metaheuristics.
Also, the efficiency, accuracy, and performance of DAOA are
much better than its standard version and other latest algo-
rithm. The comparisons of convergence speeds also reveal
that the algorithm provided is rapidly convergent. Results
show that DAOA is an excellent approach for the sizing
optimization of planar and spatial trusses and dome struc-
tures in the face of natural frequency design constraints.
Another area of research that should be pursued in the
future is the combination and tuning of DAOA with other
algorithms.
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