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Abstract

The minimum spanning tree, based on the concept of ultrametricity, is constructed from the
correlation matrix of stock returns. The dynamics of this asset tree can be characterised by its
normalised length and the mean occupation layer, as measured from an appropriately chosen
centre called the ‘central node’. We show how the tree length shrinks during a stock market
crisis, Black Monday in this case, and how a strong recon4guration takes place, resulting in
topological shrinking of the tree.
c© 2002 Elsevier Science B.V. All rights reserved.
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The study of the clustering of companies using the correlation matrix of asset returns
with a simple transformation of the correlations into distances, producing a connected
graph, was suggested by Mantegna [1], and later studied by Bonanno et al. [2]. In
the graph the nodes correspond to the companies, and the distances between them are
obtained from the correlation coeAcients. Clusters of companies are identi4ed by means
of minimum spanning tree (MST). Many studies have been carried out on clustering
in the 4nancial market such as Ref. [3–7], and on 4nancial market crashes [8,9].
Recently, we have studied a set of asset trees obtained by sectioning the return time
series appropriately, and determining the MSTs from correlations between stock returns
[10], according to Mantegna’s methodology. This multitude of trees was interpreted as
a sequence of evolutionary steps of a single ‘dynamic asset tree’. In addition, we
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have introduced diGerent measures to characterise the system, such as normalised tree
length and mean occupation layer, and they were found to reHect upon the state of
the market. The MST, as a strongly pruned representative of asset correlations, was
found to be robust and descriptive of stock market events. In this paper, we give a
brief demonstration of how the prominent 1987 stock market crash, which culminated
in Black Monday (October 19, 1987), may be viewed from the perspective of dynamic
asset trees.
First we give a brief description of the methodology. Assume that there are N assets

with price Pt(�) for asset i at time �. The logarithmic return of stock i is given by
ri(�) = ln Pi(�) − ln Pi(� − 1), which for a certain sequence of trading days forms a
return vector ri. In order to characterise the synchronous time evolution of stocks, we
use the concept of equal time correlation coeAcient between stocks i and j, de4ned as

	ij =
〈rirj〉 − 〈ri〉〈rj〉√[〈r2i 〉 − 〈ri〉2

] [〈r2j 〉 − 〈rj〉2
] ; (1)

where 〈· · ·〉 indicates a time average over the trading days included in the return
vectors. The N × N correlation matrix is transformed to an N × N distance matrix
with elements dij =

√
2(1− 	ij), such that 2¿dij¿ 0, respectively. The dijs ful4l

the requirements of distances, even ultrametricity [1]. The distance matrix is then used
to determine the MST of the distances, denoted by T, which is a simply connected
graph that links the N nodes with the N − 1 edges such that the sum of all edge
weights

∑
(i; j)∈T dij, is minimum. It should be noted that in constructing the MST, we

are eGectively reducing the information space from N (N − 1)=2 separate correlation
coeAcients to N − 1 separate tree edges.
The data set we have used in this study consists of daily closure prices for 116

stocks of the S&P 500 index [11], obtained from Yahoo [12]. The time period of
this data extends from the beginning of 1982 to the end of 2000, including a total
of 4787 price quotes per stock. We divided this data into M windows t=1; 2; : : : ; M of
width T corresponding to the number of daily returns included in the window, where
consecutive windows were displaced by �T . In our study, T was typically set between
2 and 6 years (500–1500 trading days) and �T to 1 month (about 21 trading days).
In order to study the temporal state of the market, we de4ned the normalised tree

length as L(t)= [1=(N −1)]∑dij∈Tt dij, where t denotes the time window in which the
tree is constructed, and N − 1 is the number of edges in the MST. Fig. 1 shows the
normalised tree length L as a function of time t and window width T . The two sides of
the ridge converge as a result of extrapolating the window width T → 0 [10], pointing
to Black Monday. In fact, we 4nd that the normalised tree length L(t) decreases during
a market crash, indicating that the nodes on the tree are strongly pulled together, i.e.,
the tree shrinks in length.
In addition to the length, we are also interested in the topology of the tree. The

robustness of asset tree topology can be investigated by the single-step survival ratio
de4ned as �t = [1=(N − 1)]|Et ∩Et−1|. In this, Et refers to the set of edges of the tree
at time t; ∩ is the intersection operator and | · · · | gives the number of elements in the
set. In other words, the survival ratio is the fraction of edges found common in the
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Fig. 1. Convergence of normalised tree length L(t) as a function of window width. Upon extrapolation the
two sides of the ridge are found to converge to Black Monday.

two consecutive trees, which are one time step �T apart. Under normal circumstances,
the trees in two consecutive time windows t and t+1 should look very similar, at least
for small values of �T . In Fig. 2, we have depicted �t for two window width values,
where we 4nd two prominent dips indicating that two strong tree recon4gurations take
place. These two dips are positioned symmetrically around Black Monday and are, in
fact, found to converge into it upon extrapolating T → 0. Thus, we have shown that
a remarkable change in tree topology takes place at the time of the market crash. In
order to characterise this change, a new measure is needed.
To establish a reference in the graph, we introduced the concept of a central node.

The central node is central, i.e., important, in the sense that any change in its price
strongly aGects the course of events in the market as a whole. Two alternative def-
initions emerged for the central node as either (i) the node with the highest vertex
degree (number of incident edges), or (ii) the node with the highest correlation coef-
4cient weighted vertex degree. In addition, one can have either (a) static (4xed at all
times) or (b) dynamic (continuously updated) central node, without considerable eGect
on the results. In our studies, general electric (GE) was chosen as the static central
node, since for about 70% of the time windows it turned out to be the most connected



250 J.-P. Onnela et al. / Physica A 324 (2003) 247–252

Fig. 2. Single-step survival ratio �t as a function of time for T = 2 yr (left) and T = 4 yr (right). The
prominent dips in both plots indicate that a strong tree recon4guration takes place.

node. In practice, both de4nitions (i) and (ii) yield very similar results, independent
of whether static or dynamic central node is employed. In general, roughly 80% of the
time, the central node coincides with the centre of mass of the tree, the exact 4gure
depending on the values of the parameters [13].
In addition, we have characterised the tree topology or, more speci4cally, the lo-

cation of the nodes in the tree. This is done by de4ning the mean occupation layer
as l(t) = (1=N )

∑N
i=1 lev(v

t
i), where lev(vi) denotes the level of vertex vi in rela-

tion to the central node, whose level is taken to be zero. In general, the mean oc-
cupation layer is found to Huctuate as a function of time (for a plot see Ref. [10]).
However, one can easily identify two sharp dips located symmetrically around Black
Monday. Upon extrapolating the window width T → 0, the dips are found to converge
and, thus, the tree shrinks in topology during the crash. As one cannot evaluate the
graph in the limit, a practical demonstration of the eGect for T = 1000 is provided in
Fig. 3, where plots of normal and crash market topology are presented. The 4rst one
was chosen from a normal, business as usual period, resulting in l(tnormal) ≈ 3:1. The
latter corresponds to one of the two peaks of the mean occupation layer around the
crash, yielding l(tcrash) ≈ 2:1, thus a value clearly below normal [10].
In summary, we have studied dynamic asset trees with reference to the 1987 stock

market crash and, in particular, Black Monday. We have shown that the normalised tree
length decreases during the crash. Using the concept of single-step survival ratio, we
have found the tree topology to undergo a strong recon4guration during the crash. We
have used the mean occupation layer to characterise the nature of this recon4guration,
and found its value to fall at the time of the market crisis. Thus, the shrinking of asset
trees on Black Monday is a twofold phenomenon—the asset tree shrinks in terms of
tree length, as well as topology.
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Fig. 3. Example of a normal (top) and crash (bottom) topology.
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