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Abstract. The minimum spanning tree, based on the concept of ultrametricity, is constructed from the
correlation matrix of stock returns and provides a meaningful economic taxonomy of the stock market. In
order to study the dynamics of this asset tree we characterise it by its normalised length and by the mean
occupation layer, as measured from an appropriately chosen centre called the ‘central node’. We show how
the tree evolves over time, and how it shrinks strongly, in particular, during a stock market crisis. We then
demonstrate that the assets of the optimal Markowitz portfolio lie practically at all times on the outskirts
of the tree. We also show that the normalised tree length and the investment diversification potential are
very strongly correlated.

PACS. 89.65.-s Social systems – 89.75.-k Complex systems – 89.90.+n Other topics in areas of applied
and interdisciplinary physics

Portfolio optimisation is one of the basic tools of hedging
in a risky and extremely complex financial environment.
Many attempts have been made to solve this central prob-
lem, starting from the classical approach of Markowitz
[1] to more sophisticated treatments, including spin glass
type studies [2]. In all of these attempts, correlations be-
tween asset prices play a crucial role. A closely related
problem is that of economic taxonomy. In a recent pa-
per [3], Mantegna suggested studying the clustering of
companies using the correlation matrix of asset returns,
such that a simple transformation of the correlations into
distances produces a connected graph. In the graph, the
nodes are the companies and the distances between them
are obtained from the correlation coefficients. The clusters
of companies are identified by means of minimum span-
ning tree. It turned out that the hierarchical structure
of the financial market could be identified in accordance
with the results obtained by an independent clustering
method, based on Potts super-paramagnetic transitions
[4]. In another paper by Bonanno et al. [5], the time evo-
lution of stock indices was studied and significant changes
in the world economy were identified using appropriate
time horizons and the minimum spanning tree cluster-
ing method. The hierarchical structure explored by the
minimum spanning tree also seemed to give information
about the influential power of the companies. The net-
work of influence was recently investigated by means of
a time-dependent correlation method [6]. Some other at-
tempts have been made to understand the structure of

correlation matrices in a highly random setting using the
theory of random matrices [7]. In reference [8], the maxi-
mum likelihood approach to clustering of financial corre-
lation data was applied and compared to other methods.
Though there are differences in the observed cluster struc-
ture, both approaches provide a good basis for economic
taxonomy. In this paper, we concentrate on the minimum
spanning tree as a characteristic graph for the description
of the correlations and call it an ‘asset tree’. Although
this asset tree can reveal a great deal about the taxon-
omy of the market at a given time, it only represents a
static average of an evolving complex system. This evolu-
tion is a reflection of the changing power structure in the
market and manifests the passing of different products
and product generations, new technologies, management
teams, alliances and partnerships, amongst many other
things. This is why exploring the asset tree dynamics can
provide new insights into the market. Here, by studying
the time evolution of the asset tree we show that although
the structure of the tree changes with time, the companies
of the optimal Markowitz portfolio are always on its outer
leaves. We also study the robustness of the tree topology
and the consequences of the market events on its struc-
ture. The minimum spanning tree, as a strongly pruned
representative of asset correlations, is found to be robust
and descriptive of stock market events.

We start our analysis by assuming that there are N as-
sets with price Pi(t) for asset i at time t. Then the logarith-
mic return of stock i is ri(t) = lnPi(t)− lnPi(t−1) which,
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for a certain consecutive sequence of trading days, forms
the return vector ri. In order to characterise the syn-
chronous time evolution of stocks, we use the equal time
correlation coefficients between stocks i and j defined as

ρij =
〈rirj〉 − 〈ri〉〈rj〉√

[〈r2
i 〉 − 〈ri〉2][〈r2

j 〉 − 〈rj〉2]
, (1)

where 〈...〉 indicates a time average over the trading days
included in the return vectors. These correlation coeffi-
cients forming an N × N matrix with −1 ≤ ρij ≤ 1, are
then transformed into an N × N distance matrix with
elements dij =

√
2(1 − ρij), such that 2 ≥ dij ≥ 0. The

dijs fulfil the requirements of distance, even those of ultra-
metricity [3]. The distance matrix is used to determine the
minimum spanning tree (MST) of the distances, denoted
by T, which is a simply connected graph that connects
all the N nodes of the graph with N − 1 edges such that
the sum of all edge weights,

∑
(i,j)∈T dij , is minimum. It

should be noted that in constructing the minimum span-
ning tree, we are effectively reducing the information space
from N(N −1)/2 separate correlation coefficients to N −1
tree edges.

The dataset we have used in this study consists of daily
closure prices for 116 stocks of the S&P 500 index [9],
obtained from the Yahoo website [10]. The time period
of this data extends from the beginning of 1982 to the
end of 2000 including a total of 4787 price quotes per
stock, after the removal of a few days due to incomplete
data. We divide this data into M windows of width T
corresponding to the number of daily returns included in
the window. Different windows, marked with time variable
t = 1, 2, ..., M , overlap with each other, the extent of
which is dictated by the window step length parameter
δT , describing the displacement between two consecutive
windows, measured also by the number of trading days.
The choice of window width is a trade-off between too
noisy and too smoothed data for small and large window
widths, respectively. In our studies, T was typically set
at between 500 and 1500 trading days, i.e. 2 and 6 years,
and δT at one month, including about 21 trading days.
This is in accordance with the suggestions of the Basel
committee [11]. A typical asset tree, based on the above
described data, is shown in Figure 1, where it is evident
that companies become clustered by business sectors.

In order to study the temporal state of the market, we
define the normalised tree length as

L(t) =
1

N − 1

∑
dij∈Tt

dij , (2)

where t denotes the time at which the tree is constructed,
and N − 1 is the number of edges present in the MST.
Figures 2a and b show how the normalised tree length
L and the mean correlation coefficient, defined as ρ̄ =

1
N(N−1)/2

∑
ρij , where we consider only the non-diagonal

and independent ρij , evolve with time. The two curves
look like mirror images, which is corroborated by Pear-
son’s linear correlation coefficient of −0.96, indicating that

 

Fig. 1. A typical asset taxonomy graph (minimum spanning
tree) connecting the examined 116 stocks of the S&P 500 index.
The graph was produced using four-year window width and it
is centred on January 1, 1998. Distance between the nodes is
indicated by the colour of the edges, as given by the colour bar
on the right. Business sectors are assigned according to Forbes,
http://www.forbes.com. In this graph, General Electric (GE)
was used as a central node and eight layers can be identified.
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Fig. 2. Plots of (a) the mean correlation coefficient ρ̄, (b) the
normalised tree length L and (c) the risk of the minimum risk
portfolio, as functions of time. The risk is determined with
weight limits of zero lower bound (no short-selling) and unit
upper bound (any asset may constitute the entire portfolio).
For all plots the window width is T = 500, i.e. two trading
years.

the minimum spanning tree is a strongly reduced repre-
sentative of the whole correlation matrix, and bears the
essential information about asset correlations. One would,
indeed, expect the two measures to be anti-correlated in
view of how the distances dij are constructed from corre-
lation coefficients ρij . However, the extent of this anti-
correlation is different for different input variables and
is lower if, say, daily transaction volumes are studied in-
stead of daily closure prices [12]. As further evidence that
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the MST retains the salient features of the stock mar-
ket, it is noted that the 1987 market crash can be quite
accurately seen in Figure 2. The two sides of the ridge,
in fact, converge as a result of extrapolating the window
width T → 0 [13]. In Figure 2a, the mean correlation of
stocks is very high during the crash, which is due to mar-
ket forces acting strongly on the stocks and pushing the
market to behave in a unified way. The increased value
of the mean correlation is in accordance with the obser-
vation by Drozdz et al., who found that the maximum
eigenvalue, which carries most of the correlations, is very
large during market crashes [14]. Also Figure 2b supports
this fact: L(t) decreases indicating that the nodes on the
graph are drawn closer together during the crash.

In order to characterise the spread of nodes on a graph,
we introduce the quantity of mean occupation layer as

l(t) =
1
N

N∑
i=1

lev(vt
i), (3)

where lev(vi) denotes the level of vertex vi in relation to
the central node, the level of which is taken to be zero.
Although there is arbitrariness in the choice of the cen-
tral node, we propose that it is central, or important, in
the sense that any change in its price strongly affects the
course of events in the market as a whole. Thus, the cen-
tral node would be the company which is most strongly
connected to its nearest neighbours in the tree. With this
choice the sum of the correlation coefficients calculated for
the incident edges would be maximum, and/or have the
highest vertex degree (the number of edges which are in-
cident with the vertex). It is also noted that one can have
either a static (fixed at all times) or a dynamic (contin-
uously updated) central node, without considerable effect
on the results. In our studies, General Electric (GE) was
chosen as the static central node, since for about 70% of
the time windows it turned out to be the most connected
node. We would like to emphasize that this central site
concept, based on the local property of highest connect-
edness, should not be confused with the global property
of centre of mass of the tree. The centre of mass is de-
fined as the node vi that produces the lowest value of
the mean occupation layer l(t, vi), where vi is used as the
central node. We observed that roughly 80 percent of the
time the central node coincides with the centre of mass,
indicating that an essential feature is captured by identi-
fying the central node [12]. In Figure 3, we have plotted
the mean occupation layer l(t) as a function of time for
a static central vertex (GE). We find that l(t) reaches a
very low value on two occasions, which can be traced to
the 1987 stock market crash.

Next, we apply the above discussed concepts and
measures to portfolio analysis. Let us consider a mini-
mum risk Markowitz portfolio P (t) with the asset weights
w1, w2,. . . , wN . In the Markowitz portfolio optimisation
scheme, financial assets are characterised by their aver-
age return and risk, both determined from historical price
data, where risk is measured by the standard deviation of
returns. The aim is to optimise the asset weights so that
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Fig. 3. Plots of mean occupation layer l and weighted portfolio
layer lP as functions of time. This plot is based on the window
width T = 1000, i.e. four trading years.

the overall portfolio risk is minimised for a given port-
folio return [15]. In the minimum spanning tree frame-
work, the task is to determine how the assets are located
with respect to the central node. Intuitively, we expect the
weights to be distributed on the outskirts of the graph. In
order to describe what happens, we define a single mea-
sure, the weighted portfolio layer as

lP (t) =
∑
i∈P

wi lev(vt
i), (4)

with the constraint wi ≥ 0 for all i, since we assume that
there is no short-selling.

Figure 3 shows the behaviour of the weighted minimum
risk portfolio layer lP (t) together with the mean occupa-
tion layer l(t). We find that the portfolio layer is higher
than the mean layer almost all the time. The difference in
layers depends to a certain extent on the window width:
for T = 500 it is about 0.76 and for T = 1000 about 0.97.
As the stocks of the minimum risk portfolio are found on
the outskirts of the graph, we expect larger trees (higher
L) to have greater diversification potential, i.e. the scope
of the stock market to eliminate specific risk of the min-
imum risk portfolio. In order to look at this, we calcu-
lated the mean-variance frontiers for the ensemble of 116
stocks using T = 500 as the window width. In Figure 2c,
we plot the level of portfolio risk as a function of time,
and find a striking similarity between the risk curve and
the curves of the mean correlation coefficient ρ̄ and nor-
malised tree length L of Figures 2a and b. Pearson’s lin-
ear and Spearman’s rank-order correlation coefficients be-
tween risk and mean correlation coefficient ρ̄ are 0.82 and
0.73, while those between risk and normalised tree length
L are −0.90 and −0.88, respectively. Therefore, the latter
result explains the diversification potential of the market
better.

We believe these results have potential for practical
application. Due to the clustering properties of the MST,
as well as the overlap of tree clusters with business sec-
tors as defined by a third party institution (see Fig. 1),
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it seems plausible that companies of the same cluster face
similar risks, imposed by the external economic environ-
ment. These dynamic risks influence the stock prices of
the companies, in coarse terms, leading to their clustering
in the MST. In addition, because the stocks included in
the minimum risk portfolio are consistently located on the
outskirts of the tree, the distance of the nodes from the
root of the tree (i.e., layer) must be meaningful. Thus, it
can be conjectured that the location of a company within
the cluster reflects its position with regard to internal, or
cluster specific, risk. Characterisation of stocks by their
branch, as well as their location within the branch, en-
ables us to identify the degree of interchangeability of dif-
ferent stocks in the portfolio. Therefore, dynamic asset
trees provide an intuition-friendly approach to and facili-
tate incorporation of subjective judgement in the portfolio
optimisation problem.

Finally, in order to investigate the robustness of the
minimum spanning tree topology, we define the survival
ratio of tree edges, i.e., the fraction of edges found com-
mon in two consecutive graphs at time t and t − 1, as

σt =
1

N − 1
|Et ∩ Et−1|.

In this Et refers to the set of edges of the graph at time
t, ∩ is the intersection operator and |...| gives the num-
ber of elements in the set. Under normal circumstances,
the graphs at two consecutive time windows t and t + 1
(for small values of δT ) should look very similar. Whereas
some of the differences can reflect real changes in the as-
set taxonomy, others may simply be due to noise. We find
that as δT → 0, σt → 1 [13], indicating that the graphs
are stable in the limit and, hence, our portfolio analysis
is justified.

In summary, we have studied the dynamics of asset
trees and applied it to portfolio analysis. We have shown
that the tree evolves over time and have found that the
normalised tree length decreases and remains low during a
crash, thus implying a particularly strong shrinking of the
asset tree during a stock market crisis. We have also found
that the mean occupation layer fluctuates as a function
of time, and experiences a downfall at the time of market
crisis due to topological changes in the asset tree. As for
portfolio analysis, it was found that the stocks included
in the minimum risk portfolio tend to lie on the outskirts
of the asset tree: on average the weighted portfolio layer
is about 1 level higher, or further away from the central
node, than mean occupation layer for a window width of
four years. The correlation between risk and mean corre-
lation coefficient was found to be quite strong, though not

as strong as the correlation between risk and normalised
tree length. Thus, it can be concluded that the diversifica-
tion potential of the market is very closely related to the
behaviour of the normalised tree length.

J.-P.O. is grateful to European Science Foundation for the
grant to visit Hungary, the Budapest University of Tech-
nology and Economics for the warm hospitality and L.
Kullmann for stimulating discussions. This research was par-
tially supported by the Academy of Finland, Research Cen-
tre for Computational Science and Engineering, project no.
44897 (Finnish Centre of Excellence Programme 2000-2005)
and OTKA (T029985).

References

1. G. Kim, H.M. Markowitz, J. Portfolio Management 16, 45
(1989)

2. S. Gallucio, J. -P. Bouchaud, M. Potters, Physica A 259,
449 (1998); A. Gabor, I. Kondor, Physica A 274, 222
(1999); L. Bongini et al., Eur. Phys. J. B 27, 263 (2002)

3. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)
4. L. Kullmann, J. Kertész, R.N. Mantegna, Physica A 287,

412 (2000)
5. G. Bonanno, N. Vandewalle, R.N. Mantegna, Phys. Rev.

E 62, R7615 (2000)
6. L. Kullmann, J. Kertész, K. Kaski, Phys. Rev. E 66,

026125 (2002)
7. L. Laloux et al., Phys. Rev. Lett. 83, 1467 (1999); V.

Plerou et al., preprint available at cond-mat/9902283

(1999)
8. L. Giada, M. Marsili, preprint available at cond-mat/

0204202 (2002)
9. Standard and Poor’s 500 index at

http://www.standardandpoors.com/, referenced in
June, 2002

10. Yahoo at http://finance.yahoo.com referenced in July,
2001

11. Basel Committee on Banking Supervision at
http://www.bis.org/bcbs/, referenced in September,
2001

12. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, in
preparation (2002)

13. J.-P. Onnela, Taxonomy of Financial Assets, M. Sc. thesis,
Helsinki University of Technology, Helsinki, Finland (2002)

14. S. Drozdz et al., preprint available at cond-mat/9911168

(1999)
15. Several software packages based on standard procedures

are available. We used Matlab with Financial Toolbox

R
apide N

ote Ra
pi
d 
N
ot
e


