
Dynamic Audit Services for Integrity Verification
of Outsourced Storages in Clouds

Yan Zhu1,2, Huaixi Wang3, Zexing Hu1, Gail-Joon Ahn4, Hongxin Hu4, Stephen S. Yau4

1Institute of Computer Science and Technology, Peking University, Beijing 100871, China
2Key Laboratory of Network and Software Security Assurance (Peking University), Ministry of Education

3School of Mathematical Sciences, Peking University, Beijing 100871, China
4School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, AZ 85287, USA
{yan.zhu,wanghx,huzx}@pku.edu.cn, {gahn,hxhu,yau}@asu.edu

ABSTRACT

In this paper, we propose a dynamic audit service for veri-
fying the integrity of an untrusted and outsourced storage.
Our audit service is constructed based on the techniques,
fragment structure, random sampling and index-hash table,
supporting provable updates to outsourced data, and timely
abnormal detection. In addition, we propose a probabilis-
tic query and periodic verification for improving the perfor-
mance of audit services. Our experimental results not only
validate the effectiveness of our approaches, but also show
our audit system verifies the integrity with lower computa-
tion overhead, requiring less extra storage for audit meta-
data.

Categories and Subject Descriptors

H.3.2 [Information Storage and Retrieval]: Information
Storage; E.3 [Data]: Data Encryption

General Terms

Design, Performance, Security

Keywords

Dynamic Audit, Storage Security, Integrity Verification

1. INTRODUCTION
Cloud computing provides a scalable environment for grow-

ing amounts of data and processes that work on various ap-
plications and services by means of on-demand self-services.
Especially, the outsourced storage in clouds has become a
new profit growth point by providing a comparably low-
cost, scalable, location-independent platform for managing
clients’ data. The cloud storage service (CSS) relieves the
burden for storage management and maintenance. How-
ever, if such an important service is vulnerable to attacks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

or failures, it would bring irretrievable losses to the clients
since their data or archives are stored in an uncertain stor-
age pool outside the enterprises. These security risks come
from the following reasons: the cloud infrastructures are
much more powerful and reliable than personal computing
devices. However, they are still susceptible to internal and
external threats; for the benefits of their possession, there
exist various motivations for cloud service providers (CSP)
to behave unfaithfully towards the cloud users; furthermore,
the dispute occasionally suffers from the lack of trust on
CSP. Consequently, their behaviors may not be known by
the cloud users, even if this dispute may result from the
users’ own improper operations. Therefore, it is necessary
for cloud service providers to offer an efficient audit service
to check the integrity and availability of the stored data [10].

Security audit is an important solution enabling trace-
back and analysis of any activities including data accesses,
security breaches, application activities, and so on. Data
security tracking is crucial for all organizations that should
comply with a wide range of federal regulations including
the Sarbanes-Oxley Act, Basel II, HIPAA and so on1. Fur-
thermore, compared to the common audit, the audit service
for cloud storages should provide clients with a more efficient
proof for verifying the integrity of stored data.

In this paper, we introduce a dynamic audit service for
integrity verification of untrusted and outsourced storages.
Our audit system can support dynamic data operations and
timely abnormal detection with the help of several effective
techniques, such as fragment structure, random sampling,
and index-hash table. Furthermore, we propose an efficient
approach based on probabilistic query and periodic verifi-
cation for improving the performance of audit services. A
proof-of-concept prototype is also implemented to evaluate
the feasibility and viability of our proposed approaches. Our
experimental results not only validate the effectiveness of
our approaches, but also show our system does not create
any significant computation cost while requiring less extra
storage for integrity verification.

The rest of the paper is organized as follows. Section 2 de-
scribes the research background and related work. Section 3
addresses our audit system architecture and main techniques
and Section 4 describes the construction of corresponding al-
gorithms. In Section 5, we present the performance of our
schemes and the experimental results. Finally, we conclude
this paper in Section 6.

1http://www.hhs.gov/ocr/privacy/.

1550

2. BACKGROUND AND RELATED WORK
The traditional cryptographic technologies for data in-

tegrity and availability, based on hash functions and sig-
nature schemes [4, 11, 13], cannot work on the outsourced
data without a local copy of data. In addition, it is not a
practical solution for data validation by downloading them
due to the expensive communications, especially for large-
size files. Moreover, the ability to audit the correctness of
the data in a cloud environment can be formidable and ex-
pensive for the cloud users. Therefore, it is crucial to realize
public auditability for CSS, so that data owners may resort
to a third party auditor (TPA), who has expertise and capa-
bilities that a common user does not have, for periodically
auditing the outsourced data. This audit service is signifi-
cantly important for digital forensics and data assurance in
clouds.

To implement public auditability, the notions of proof of
retrievability (POR) [5] and provable data possession (PDP) [1]
have been proposed by some researchers. Their approach
was based on a probabilistic proof technique for a storage
provider to prove that clients’ data remain intact. For ease
of use, some POR/PDP schemes work on a publicly verifi-
able way, so that anyone can use the verification protocol to
prove the availability of the stored data. Hence, this pro-
vides us an effective approach to accommodate the require-
ments from public auditability. POR/PDP schemes evolved
around an untrusted storage offer a publicly accessible re-
mote interface to check the tremendous amount of data.

There exist some solutions for audit services on outsourced
data. For example, Xie et al. [9] proposed an efficient method
on content comparability for outsourced database, but it
was not suitable for irregular data. Wang et al. [8] also pro-
vided a similar architecture for public audit services. To
support their architecture, a public audit scheme was pro-
posed with privacy-preserving property. However, the lack
of rigorous performance analysis for a constructed audit sys-
tem greatly affects the practical application of this scheme.
For instance, in this scheme an outsourced file is directly
split into n blocks, and then each block generates a verifica-
tion tag. In order to maintain security, the length of block
must be equal to the size of cryptosystem, that is, 160 bits
which are 20 bytes. This means that 1M bytes file is split
into 50,000 blocks and generates 50,000 tags [7], and the
storage of tags is at least 1M bytes. It is clearly inefficient
to build an audit system based on this scheme. To address
such a problem, we introduce a fragment technique to im-
prove performance and reduce the extra storage (see Section
3.1).

Another major concern is the security issue of dynamic
data operations for public audit services. In clouds, one
of the core design principles is to provide dynamic scala-
bility for various applications. This means that remotely
stored data might be not only accessed by the clients but
also dynamically updated by them, for instance, through
block operations such as modification, deletion and inser-
tion. However, these operations may raise security issues in
most of existing schemes, e.g., the forgery of the verification
metadata (called as tags) generated by data owners and the
leakage of the user’s secret key. Hence, it is crucial to de-
velop a more efficient and secure mechanism for dynamic
audit services, in which a potential adversary’s advantage
through dynamic data operations should be prohibited.

Note that this paper only addresses the problems of in-

tegrity checking and auditing. Other security services, such
as user authentication and data encryption, are orthogonal
to and compatible with audit services.

3. ARCHITECTURE AND TECHNIQUES
We introduce an audit system architecture for the out-

sourced data in clouds as shown in Figure 1. In this archi-
tecture, we consider that a data storage service involves four
entities: data owner (DO), who has a large amount of data
to be stored in the cloud; cloud service provider (CSP), who
provides data storage service and has enough storage space
and computation resources; third party auditor (TPA), who
has capabilities to manage or monitor the outsourced data
under the delegation of data owner; and authorized appli-
cations (AA), who have the right to access and manipulate
the stored data. Finally, application users can enjoy various
cloud application services via these authorized applications.

Figure 1: The audit system architecture.

We assume the TPA is reliable and independent through
the following audit functions: TPA should be able to make
regular checks on the integrity and availability of the dele-
gated data at appropriate intervals; TPA should be able to
organize, manage, and maintain the outsourced data instead
of data owners, and support the dynamic data operations
for authorized applications; and TPA should be able to take
the evidences for disputes about the inconsistency of data
in terms of authentic records for all data operations.

To realize these functions, our audit service is comprised
of three processes:

Tag Generation: the client (data owner) uses the secret
key sk to pre-process a file, which consists of a collection
of n blocks, generates a set of public verification param-
eters (PVP) and index-hash table (IHT) that are stored
in TPA, transmits the file and some verification tags to
CSP, and may delete its local copy (see Figure 2(a));

Periodic Sampling Audit: by using an interactive proof
protocol of retrievability, TPA (or other applications) is-
sues a“Random Sampling”challenge to audit the integrity
and availability of the outsourced data in terms of the
verification information (involves PVP and IHT) stored
in TPA (see Figure 2(b)); and

Audit for Dynamic Operations: An authorized applica-
tions, who hold a data owner’s secret key sk, can manipu-
late the outsourced data and update the associated index-
hash table (IHT) stored in TPA. The privacy of sk and

1551

the checking algorithm ensure that the storage server can-
not cheat the authorized applications and forge the valid
audit records (see Figure 2(c)).

Figure 2: Three processes of audit system.

In general, the authorized applications should be cloud ap-
plication services inside clouds for various application pur-
poses, but they must be specifically authorized by data own-
ers for manipulating the outsourced data. Since the ac-
ceptable operations require that the authorized applications
must present authentication information for TPA, any unau-
thorized modifications for data will be detected in audit
processes or verification processes. Based on this kind of
strong authorization-verification mechanism, we assume nei-
ther CSP is trusted to guarantee the security of stored data,
nor a data owner has the capability to collect the evidence
of CSP’s faults after errors have been found.

The ultimate goal of this audit infrastructure is to en-
hance the credibility of cloud storage services, but not to
increase data owner’s burden and overheads. For this pur-
pose, TPA should be constructed in clouds and maintained
by a cloud storage provider (CSP). In order to ensure the
trust and security, TPA must be secure enough to resist ma-
licious attacks, and it also should be strictly controlled to
prevent unauthorized accesses even for internal members in
clouds. A more practical way is that TPA in clouds should
be mandated by a trusted third party (TTP). This mecha-
nism not only improves the performance of audit services,
but also provides the data owner with a maximum access
transparency. This means that data owners are entitled to
utilize the audit service without additional costs.

3.1 Fragment Structure and Secure Tags
To maximize the storage efficiency and audit performance,

our audit system introduces a general fragment structure
for the outsourced storage. An instance for this framework

which is used in our approach is shown in Figure 3: an out-
sourced file F is split into n blocks {m1,m2, · · · ,mn}, and
each block mi is split into s sectors {mi,1,mi,2, · · · ,mi,s}.
The fragment framework consists of n block-tag pair (mi, σi),
where σi is a signature tag of a block mi generated by some
secrets τ = (τ1, τ2, · · · , τs). Finally, these block-tag pairs are
stored in CSP and the encryption of the secrets τ (called as
PVP) are in TTP. Although this fragment structure is sim-
ple and straightforward, but the file is split into n×s sectors
and each block (s sectors) corresponds to a tag, so that the
storage of signature tags can be reduced with the increase
of s. Hence, this structure can reduce an extra storage for
tags and improve the audit performance.

There exist some schemes to the convergence of s blocks
to generate a secure signature tag, e.g., MAC-based, ECC
or RSA schemes [1, 7]. These schemes, built from collision-
resistance signatures (see Appendix A) and the random or-
acle model, support scalability, performance and security.

1s

2s

3s

ns

1v

2v

3v

nv

1t 2t st

1m 2m sm 's

Figure 3: Fragment structure and sampling audit.

3.2 Periodic Sampling Audit
In contrast with“whole”checking, random“sampling”check-

ing greatly reduces the workload of audit services, while still
achieving an effective detection of misbehavior. Thus, the
probabilistic audit on sampling checking is preferable to real-
ize the abnormal detection in a timely manner, as well as to
rationally allocate resources. The fragment structure shown
in Figure 3 provides probabilistic audit as well: given a ran-
dom chosen challenge (or query) Q = {(i, vi)}i∈I , where I
is a subset of the block indices and vi is a random coeffi-
cient, an efficient algorithm is used to produce a constant-
size response (µ1, µ2, · · · , µs, σ

′), where µi comes from all
{mk,i, vk}k∈I and σ′ is from all {σk, vk}k∈I . Generally, this
algorithm relies on homomorphic properties to aggregate
data and tags into a constant size response, which minimizes
network communication costs.

Since the single sampling checking may overlook a very
small number of data abnormality, we propose a periodic
sampling approach to audit the outsourced data, which is
named as Periodic Sampling Audit. In this way, the audit
activities are efficiently scheduled in an audit period, and a
TPA needs merely access small portions of files to perform
audit in each activity. Therefore, this method can detect the
exceptions periodically, and reduce the sampling numbers in
each audit.

3.3 Index-Hash Table
In order to support dynamic data operations, we introduce

1552

Third Party

Auditor(TPA)

Data Owner(DO)/

Authorized Applications(AA)

Cloud Service

Provider(CSP)

Third Party

Auditor(TPA)

Cloud Service

Provider(CSP)

()TagGeny ¬ ()TagGens ¬

Query y

y Initial Proof

Commitment()

Challenge()

Response()

Initial Proof

Commitment()

Challenge()

Response()

Verification()

Verification()

Initial Proof

Commitment()

Challenge()

Response()
Verification()

(a) Tag generation and user�s verification (b) Periodic sampling audit

Third Party

Auditor(TPA)

Data Owner(DO)/

Authorized Applications(AA)

Cloud Service

Provider(CSP)

Query y

y

Update(),

Delete(), Insert()

Updated y ¢

Updated s ¢

Check()

(c) Dynamic data operations and audit

Figure 4: The workflow of audit system.

a simple index-hash table (IHT) to record the changes of file
blocks, as well as generate the hash value of each block in the
verification process. The structure of our index-hash table
is similar to that of file block allocation table in file systems.
Generally, the index-hash table χ consists of serial number,
block number, version number, random integer, and so on
(see Table 1 in Appendix A). Note that we must assure all
records in the index-hash table differ from one another to
prevent the forgery of data blocks and tags. In addition to
record data changes, each record χi in the table is used to
generate a unique hash value, which in turn is used for the
construction of a signature tag σi by the secret key sk. The
relationship between χi and σi must be cryptographically
secure, and we can make use of it to design our verification
protocol.

Although the index-hash table may increases the complex-
ity of an audit system, it provides the higher assurance to
monitor the behavior of an untrusted CSP, as well as valu-
able evidence for computer forensics, due to the reason that
anyone cannot forge the valid χi (in TPA) and σi (in CSP)
without the secret key sk. In practical applications, the
designer should consider that the index-hash table is kept
into the virtualization infrastructure of cloud-based storage
services.

4. ALGORITHMS FOR AUDIT SYSTEM
In this section we describe the construction of algorithms

in our audit architecture. Firstly, we present the definitions
for the tag generation process as follows:

KeyGen (1κ): takes a security parameter κ as input, and
returns a public/secret keypair (pk, sk); and

T agGen (sk, F): takes as inputs the secret key sk and a
file F , and returns the triple (τ, ψ, σ), where τ denotes
the secret used to generate the verification tags, ψ is a set
of public verification parameters u and index-hash table
χ, i.e., ψ = (u, χ), and σ denotes a set of tags.

Data owner or authorized applications only need to save the
secret key sk, that is, sk would not be necessary for the
verification/audit process. The secret of the processed file
τ can be discarded after tags are generated due to public
verification parameters u.

In Figure 4 demonstrates the workflow of our audit sys-
tem. Suppose a data owner wants to store a file in a storage

server, and maintains a corresponding authenticated index
structure at a TPA. In Figure 4 (a), we describe this process
as follows: firstly, using KeyGen(), the owner generates a
public/secret keypair (pk, sk) by himself or the system man-
ager, and then sends his public key pk to TPA. Note that
TPA cannot obtain the client’s secret key sk; secondly, the
owner chooses the random secret τ and then invokes the
algorithm TagGen() to produce public verification informa-
tion ψ = (u, χ) and signature tags σ, where τ is unique for
each file. Finally, the owner sends ψ and (F, σ) to TPA and
CSP, respectively, where χ is an index-hash table.

4.1 Supporting Periodic Sampling Audit
At any time, TPA can check the integrity of a file F as

follows: TPA first queries database to obtain the verification
information ψ; and then it initializes an interactive protocol
Proof(CSP, Client) and performs a 3-move proof protocol
in a random sampling way: Commitment, Challenge, and
Response; finally, TPA verifies the interactive data to get
the results. In fact, since our scheme is a publicly verifiable
protocol, anyone can run this protocol, but s/he is unable
to get any advantage to break the cryptosystem, even if
TPA and CSP cooperate for an attack. Let P (x) denotes
the subject P holds the secret x and 〈P, V 〉(x) denotes both
parties P and V share a common data x in a protocol. This
process can be defined as follows:

Proof (CSP, TPA): is an interactive proof protocol be-
tween CSP and TPA, that is 〈CSP (F, σ), TPA〉(pk,ψ),
where a public key pk and a set of public parameters ψ
are the common inputs between TPA and CSP, and CSP
takes the inputs, a file F and a set of tags σ. At the end
of the protocol, TPA returns {0|1}, where 1 means the file
is correctly stored on the server.

An audit service executes the verification process period-
ically by using the above-mentioned protocol. Figure 4(b)
shows such a two-party protocol between TPA and CSP, i.e.,
Proof(CSP, TPA), without the involvement of a client (DO
or AA). In Figure 4 (b) shows two verification processes. To
improve the efficiency of verification process, TPA should
perform audit tasks based on a probabilistic sampling.

4.2 Supporting Dynamic Data Operations
In order to meet the requirements from dynamic scenar-

ios, we introduce following definitions for our dynamic algo-
rithms:

1553

Update(sk, ψ,m′

i): is an algorithm run by AA to update the
block of a file m′

i at the index i by using sk, and it returns
a new verification metadata (ψ′, σ′);

Delete(sk, ψ,mi): is an algorithm run by AA to delete the
block mi of a file mi at the index i by using sk, and it
returns a new verification metadata (ψ′); and

Insert(sk, ψ,mi): is an algorithm run by AA to insert the
block of a file mi at the index i by using sk, and it returns
a new verification metadata (ψ′, σ′).

To ensure the security, dynamic data operations are only
available to data owners or authorized applications, who
hold the secret key sk. Here, all operations are based on
data blocks. Moreover, in order to implement audit services,
applications need to update the index-hash table. It is nec-
essary for TPA and CSP to check the validity of updated
data. In Figure 4(c), we describe the process of dynamic
data operations and audit. First, the authorized application
obtains the public verification information ψ from TPA. Sec-
ond, the application invokes the Update, Delete, and Insert
algorithms, and then sends the new ψ′ and σ′ to TPA and
CSP, respectively. Finally, the CSP makes use of an efficient
algorithm Check to verify the validity of updated data. Note
that the Check algorithm is important to ensure the effec-
tiveness of the audit.

5. PERFORMANCE AND EVALUATION
It is obvious that audit activities would increase the com-

putation and communication overheads of audit services.
However, less frequent activities may not detect abnormality
in a timely manner. Hence, the scheduling of audit activi-
ties is significant for improving the quality of audit services.
In order to detect abnormality in a low-overhead and timely
manner, we attempt to optimize the audit performance from
two aspects: performance evaluation of probabilistic queries
and schedule of periodic verification. Our basic idea is to
maintain an overhead balance, which helps us improve the
performance of audit systems.

5.1 Probabilistic Queries Evaluation
The audit service achieves the detection of CSP servers’

misbehavior in a random sampling mode to reduce the work-
load on the server. The detection probability P of disrupted
blocks is an important parameter to guarantee that these
blocks can be detected in a timely manner. Assume the
TPA modifies e blocks out of the n-block file. The proba-
bility of disrupted blocks is ρb = e

n
. Let t be the number of

queried blocks for a challenge in the protocol proof. We have
detection probability P = 1− (n−e

n
)t = 1− (1−ρb)

t. Hence,

the number of queried blocks is t = log(1−P)
log(1−ρb)

≈ P ·n
e

for a

sufficiently large n.2 This means that the number of queried
blocks t is directly proportional to the total number of file
blocks n for the constant P and e. In Figure 5, we show
the results of the number of queried blocks under different
detection probabilities (from 0.5 to 0.99), different number
of file blocks (from 10 to 10,000), and constant number of
disrupted blocks (100).

We observe the ratio of queried blocks in the total file
blocks w = t

n
under different detection probabilities. Based

on our analysis, it is easy to determine that this ratio holds

2In terms of (1− e
n
)t = 1− e·t

n
, we have P = 1−(1− e·t

n
) = e·t

n
.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

Th
e

nu
m

be
r o

f q
ue

rie
d

bl
oc

ks

The number of file blocks (100 disrupted blocks)

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Figure 5: The number of queried blocks under dif-
ferent detection probabilities and different numbers
of file blocks.

since w = t
n

= log(1−P)
n·log(1−ρb)

≈ P
e
. However, the estimation

of w is not an accurate measurement. To clearly represent
this ratio, Figure 6 plots w for different values of n, e and
P . It is obvious that the ratio of queried blocks tends to be
a constant value for a sufficiently large n. For instance, in
Figure 6 (Left) if there exist 100 disrupted blocks, the TPA
asks for w = 4.5% and 2.3% of n (n > 1, 000) in order to
achieve P of at least 99% and 90%, respectively. However,
this ratio w is also inversely proportional to the number
of disrupted blocks e. For example, in Figure 6 (Right) if
there exist 10 disrupted blocks, the TPA needs to ask for
w = 45% and 23% of n (n > 1, 000) in order to achieve the
same P , respectively. It demonstrates our audit scheme is
very effective for higher probability of disrupted blocks.

5.2 Schedule of Periodic Verification
The sampling-based audit has the potential to significantly

reduce the workload on the servers and increase the audit
efficiency. Firstly, we assume that each audited file has an
audit period T , which depends on how important it is for
the owner. For example, a common audit period may be
assigned as one week or one month, and the audit period for
important files may be set as one day. Of course, these audit
activities should be carried out at night or on weekend.

Assume we make use of the audit frequency f to denote
the number of occurrences of an audit event per unit time.
This means that the number of TPA’s queries is T · f in an
audit period T . According to the above analysis, we have
the detection probability P = 1− (1− ρb)

n·w in each audit
event. Let PT denotes the detection probability in an audit
period T . Hence, we have the equation PT = 1− (1−P)T ·f .
In terms of 1 − P = (1 − ρb)

n·w, the detection probability
PT can be denoted as PT = 1 − (1 − ρb)

n·w·T ·f . In this
equation, TPA can obtain the probability ρb depending on
the transcendental knowledge for the cloud storage provider.
Moreover, the audit period T can be predefined by a data
owner in advance. Hence, the above equation can be used
to analyze the parameter value w and f . It is obvious to

obtain the equation f = log(1−PT)
w·n·T ·log (1−ρb)

.

This means that the audit frequency f is inversely pro-
portional to the ratio of queried blocks w. That is, with
the increase of verification frequency, the number of queried
blocks decreases at each verification process. In Figure 7, we
show the relationship between f and w under 10 disrupted
blocks for 10,000 file blocks. We can observe a marked drop
of w along with the increasing of frequency.

1554

0 2000 4000 6000 8000 10000
0.00

0.01

0.02

0.03

0.04

0.05

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Th
e

ra
tio

 o
f q

ue
rie

d
bl

oc
ks

 in
 to

ta
l f

ile
 b

lo
ck

s

The number of file blocks (100 disrupted blocks)
0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

0.5

Th
e

ra
tio

 o
f q

ue
rie

d
bl

oc
ks

 in
 to

ta
l f

ile
 b

lo
ck

s

The number of file blocks (10 disrupted blocks)

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Figure 6: The ratio of queried blocks in total file blocks under different detection probabilities and different
number of disrupted blocks.

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

Th
e

ra
tio

 o
f q

ue
rie

d
bl

oc
ks

 in
 to

ta
l f

ile
 b

lo
ck

s

The audit frequency(times/unit-time) (10 disrupted blocks)

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Figure 7: The ratio of queried blocks in total file
blocks under different audit frequency for 10 dis-
rupted blocks and 10,000 file blocks.

In fact, the relationship between f and w is compara-

tively stable for PT , ρb, and n due to f · w = log(1−PT)
n·T ·log (1−ρb)

.

TPA should choose the appropriate frequency to balance the
overhead, according to the above equation. For example, if
e = 10 blocks in 10,000 blocks (ρb = 0.1%), then TPA asks
for 658 blocks and 460 blocks for f = 7 and 10 in order to
achieve PT of at least 99%. Hence, an appropriate audit fre-
quency would greatly reduce the sampling numbers, as well
as computation and communication overheads of an audit
service.

5.3 Implementation and Experimental Results
To validate our approaches, we have implemented a pro-

totype of public audit service. Our prototype utilizes three
existing services/applications: Amazon Simple Storage Ser-
vice (S3) is an untrusted data storage server; local applica-
tion server provides our audit service; and the prototype is
built on top of an existing open source project called Pairing-
Based Cryptography (PBC) library. We present some de-
tails about these three components as follows:

Storage service: Amazon Simple Storage Service (S3) is a
scalable, pay-per-use online storage service. Clients can
store a virtually unlimited amount of data, paying for
only the storage space and bandwidth that they are us-
ing, without the initial start-up fee. The basic data unit
in S3 is an object, and the basic container for objects in S3
is called a bucket. In our example, objects contain both
data and meta-data (tags). A single object has a size limit
of 5 GB, but there is no limit on the number of objects
per bucket. Moreover, a small script on Amazon Elastic

Compute Cloud (EC2) is used to provide the support for
verification protocol and dynamic data operations.

Audit service: We used a local IBM server with two Intel
Core 2 processors at 2.16 GHz running Windows Server
2003. Our scheme was deployed in this server, and then it
implemented the integrity checking in S3 storage accord-
ing to the assigned schedule via 250 MB/sec of network
bandwidth. A socket port was also opened to support the
applications’ accesses and queries for the audit service.

Prototype software: Using GMP and PBC libraries, we
have implemented a cryptographic library upon which
temporal attribute systems can be constructed. These
C libraries contain approximately 5,200 lines of codes and
have been tested on both Windows and Linux platforms.
The elliptic curve utilized in our experiments is a MNT
curve, with a base field size of 159 bits and the embedding
degree 6. The security level is chosen to be 80 bit, which
means |p| = 160.

Firstly, we quantify the performance of our audit scheme
under different parameters, such as file size sz, sampling
ratio w, sector number per block s, and so on. Our analy-
sis shows that the value of s should grow with the increase
of sz in order to reduce computation and communication
costs. Thus, experiments were carried out as follows: the
stored files were chosen from 10KB to 10MB, the sector
numbers were changed from 20 to 250 in terms of the file
sizes, and the sampling ratios were also changed from 10%
to 50%. The experimental results were shown in Figure 8.
These results indicate that computation and communication
costs (including I/O costs) grow with increase of file size and
sampling ratio.

Next, we compare the performance of each activity in our
verification protocol. It is easy to derive theoretically that
the overheads of “commitment”and“challenge” resemble one
another, and the overheads of “response” and “verification”
also resemble one another. To validate such theoretical re-
sults, we changed the sampling ratio w from 10% to 50%
for a 10MB file and 250 sectors per block. In Figure 8, we
show the experiment results, in which the computation and
communication costs of “commitment” and “challenge” are
slightly changed for sampling ratio, but those for “response”
and “verification” grow with the increase of sampling ratio.

Then, in the Amazon S3 service, we set that the size of
block is 4K bytes and the value of s is 200. Our experi-
ments also show that, in TagGen phase, the time overhead

1555

10 100 1000 10000
0

30

60

90

120

150

180

(s=250)(s=100)(s=50)(s=20)

 ratio=50%
 ratio=40%
 ratio=30%
 ratio=20%
 ratio=10%

C
om

pu
ta

tio
n

an
d

co
m

m
un

ic
at

io
n

co
st

s.
 (s

)

The size of files. (K-Bytes)

0.1 0.2 0.3 0.4 0.5
0.01

0.1

1

10

100

C
om

pu
ta

tio
n

an
d

co
m

m
un

ic
at

io
n

co
st

s.
 (s

)

The ratio of queried blocks for total file blocks.(%)
(10M-Bytes, 250 sectors/blocks)

 Commitment
 Challenge
 Response
 Verification
 Total Time

Figure 8: The experiment results under different file size, sampling ratio, and sector number.

is directly proportional to the number of blocks. Ideally,
this process is only executed when the file is uploaded into a
S3 service. The verification protocol can be run in approxi-
mately constant time. Similarly, three dynamic data opera-
tions can be performed in approximately constant time for
any block.

Finally, reducing the communication overheads and av-
erage workloads are critical for an efficient audit schedule.
With probabilistic algorithm, our scheme is able to realize
the uniform distribution of verified sampling blocks accord-
ing to the security requirements of clients, as well as the
dependability of storage services and running environments.
In our experiments, we make use of a simple schedule to
periodically manage all audit tasks. The results show that
audit services based on our scheme can support a great deal
of audit tasks, and the performance of scheduled audits are
more preferable than the straightforward individual audit.

6. CONCLUSIONS
In this paper, we presented a construction of dynamic au-

dit services for untrusted and outsourced storages. We also
presented an efficient method for periodic sampling audit to
enhance the performance of third party auditors and storage
service providers. Our experiments showed that our solution
has a small, constant amount of overhead, which minimizes
computation and communication costs.

7. ACKNOWLEDGMENTS
The work of Y. Zhu, H. Wang, and Z. Hu was partially

supported by the grants from National Natural Science Foun-
dation of China (No.61003216). This work of Gail-J. Ahn
and Hongxin Hu was partially supported by the grants from
US National Science Foundation (NSF-IIS-0900970 and NSF-
CNS-0831360).

8. REFERENCES
[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. N. J. Peterson, and D. X. Song. Provable
data possession at untrusted stores. In Proceedings of the
2007 ACM Conference on Computer and Communications
Security, CCS 2007, pages 598–609, 2007.

[2] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In In proceedings of CRYPTO’04, volume 3152
of LNCS, pages 41–55. Springer-Verlag, 2004.

[3] D. Boneh and M. Franklin. Identity-based encryption from
the weil pairing. In Advances in Cryptology (CRYPTO’01),
volume 2139 of LNCS, pages 213–229, 2001.

[4] H.-C. Hsiao, Y.-H. Lin, A. Studer, C. Studer, K.-H. Wang,
H. Kikuchi, A. Perrig, H.-M. Sun, and B.-Y. Yang. A study

of user-friendly hash comparison schemes. In ACSAC,
pages 105–114, 2009.

[5] A. Juels and B. S. K. Jr. Pors: proofs of retrievability for
large files. In Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, pages
584–597, 2007.

[6] C.-P. Schnorr. Efficient signature generation by smart
cards. J. Cryptology, 4(3):161–174, 1991.

[7] H. Shacham and B. Waters. Compact proofs of
retrievability. In Advances in Cryptology - ASIACRYPT
2008, 14th International Conference on the Theory and
Application of Cryptology and Information Security, pages
90–107, 2008.

[8] C. Wang, Q. Wang, K. Ren, and W. Lou.
Privacy-preserving public auditing for data storage security
in cloud computing. In INFOCOM, 2010 Proceedings
IEEE, pages 1 –9, 14-19 2010.

[9] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing
of outsourced data. In C. Koch, J. Gehrke, M. N.
Garofalakis, D. Srivastava, K. Aberer, A. Deshpande,
D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas,
and E. J. Neuhold, editors, VLDB, pages 782–793. ACM,
2007.

[10] A. A. Yavuz and P. Ning. Baf: An efficient publicly
verifiable secure audit logging scheme for distributed
systems. In ACSAC, pages 219–228, 2009.

[11] A. R. Yumerefendi and J. S. Chase. Strong accountability
for network storage. In FAST, pages 77–92. USENIX, 2007.

[12] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau.
Cooperative provable data possession. Technical Report
PKU-CSE-10-04, http://eprint.iacr.org/2010/234.pdf,
Peking University and Arizona State University, April 2010.

[13] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau.
Efficient provable data possession for hybrid clouds. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 756–758, 2010.

APPENDIX

A. CONSTRUCTION FOR OUR SCHEME
Let H = {Hk} be a collision-resistance hash family of

functions Hk : {0, 1}∗ → {0, 1}n indexed by k ∈ K. This
hash function can be obtained from hash function of BLS
signatures [2]. Further, we set up our systems using bilinear
map group system S = 〈p,G,GT , e〉 proposed in [3].

A.1 Proposed Construction
We present our IPOR construction in Figure 9. In our

scheme, each client holds a secret key sk, which can be used
to generate the tags of many files. Each processed file will
produce a public verification parameter ψ = (u, χ), where

u = (ξ(1), u1, · · · , us), χ = {χi}i∈[1,n] is the index-hash ta-

1556

ble. We define χi = (Bi||Vi||Ri), where Bi is the sequence
number of block, Vi is the version number of updates for
this block, and Ri is a random integer to avoid collision.
The value ξ(1) can be considered as the signature of the se-
cret τ1, · · · , τs. Note that, it must assure that ψ’s is different
for all processed files. Moreover, it is clear that our scheme
admits short responses in verification protocol.

In our construction, the verification protocol has 3-move
structure: commitment, challenge and response. This pro-
tocol is similar to Schnorr’s Σ protocol [6], which is a zero-
knowledge proof system (Due to the space limitation, the
security analysis is omitted but can be found in [12]). By
using this property, we ensure the verification process does
not reveal anything.

KeyGen(1κ): Given a bilinear map group system S =
(p,G,GT , e) and a collision-resistant hash function Hk(·),
chooses a random α, β ∈R Zp and computes H1 = hα and

H2 = hβ ∈ G. Thus, the secret key is sk = (α, β) and the
public key is pk = (g, h,H1, H2).

TagGen(sk,F): Splits the file F into n × s sectors F =

{mi,j} ∈ Z
n×s
p . Chooses s random τ1, · · · , τs ∈ Zp as the

secret of this file and computes ui = gτi ∈ G for i ∈ [1, s]

and ξ(1) = Hξ(“Fn”), where ξ =
∑s

i=1 τi and Fn is the
file name. Builds an index-hash table χ = {χi}

n
i=1 and

fills out the item χi = (Bi = i, Vi = 1, Ri ∈R {0, 1}
∗) in

χ for i ∈ [1, n], then calculates its tag as σi ← (ξ
(2)
i)α ·

g
∑s

j=1 τj ·mi,j ·β ∈ G. where ξ
(2)
i = H

ξ(1) (χi) and i ∈ [1, n].

Finally, sets u = (ξ(1), u1, · · · , us) and outputs ψ = (u, χ)
to TPA, and σ = (σ1, · · · , σn) to CSP.

Proof(CSP,TPA): This is a 3-move protocol between Prover
(CSP) and Verifier (TPA), as follows:

• Commitment(CSP → TPA): CSP chooses a random
γ ∈ Zp and s random λj ∈R Zp for j ∈ [1, s], and sends its
commitment C = (H′

1, π) to TPA, where H′

1 = H
γ
1 and

π ← e(
∏s

j=1 u
λj

j ,H2);

• Challenge(CSP ← TPA): TPA chooses a random chal-
lenge set I of t indexes along with t random coefficients
vi ∈ Zp. Let Q be the set {(i, vi)}i∈I of challenge index
coefficient pairs. TPA sends Q to CSP;

• Response(CSP → TPA): CSP calculates the response
θ, µ as σ′ ←

∏
(i,vi)∈Q σ

γ·vi
i , µj ← λj +γ ·

∑
(i,vi)∈Q vi ·

mi,j , where µ = {µj}j∈[1,s]. P sends θ = (σ′, µ) to TPA;

Check: The verifier TPA checks whether the response

is correct by π · e(σ′, h)
?
= e(

∏
(i,vi)∈Q(ξ

(2)
i)vi , H′

1) ·

e(
∏s

j=1 u
µj

j , H2).

Figure 9: The proposed IPOR scheme.

A.2 Implementation of Dynamic Operations
To support dynamic data operations, it is necessary for

TPA to employ an index-hash table χ to record the realtime
status of the stored files. Some existing index schemes in a
dynamic scenario are insecure due to replay attack on the
same Hash values. To solve this problem, a simple index-
hash table χ = {χi} used in the above-mentioned construc-
tion (see Figure 9) is described in Table 1, which includes
four columns: No. denotes the real number i of data block
mi, Bi is the original number of block, Vi stores the version
number of updates for this block, and Ri is a random integer
to avoid collision.

In order to ensure the security, we require that each χi =

Table 1: The index-hash table with random values.
No. Bi Vi Ri

0 0 0 0

1 1 2 r
′

1

2 2 1 r2

3 4 1 r3

4 5 1 r5

5 5 2 r
′

5

.

.

.

.

.

.

.

.

.

.

.

.

n n 1 rn

n+1 n+1 1 rn+1

← Used to head

← Update

← Delete

← Insert

← Append

“Bi||Vi||Ri” is unique in this table. Although the same val-
ues of “Bi||Vi” may be produced by repeating the insert
and delete operations, the random Ri can avoid this colli-
sion. An alterative method is to generate an updated ran-
dom value by R′

i ← HRi
(
∑s

j=1m
′

i,j), where the initial value

is Ri ← Hξ(1) (
∑s

j=1mi,j) and mi = {mi,j} denotes the i-
th data block. We show a simple example to describe the
change of index-hash table for the different operations in Ta-
ble 1, where an empty record (i = 0) is used to support the
operations on the first record. The “Insert” operation on the
last record is replaced with “Append” operation. It is easy
to prove the each χi is unique in χ in the above algorithms,
that is. In an index table χ = {χi} and χi = “Bi||Vi||Ri”,
there exists no two same records for dynamic data opera-
tions, if Ri 6= R′

j for any indexes i, j ∈ N.

Update(sk, ψ,m′

i): modifies the version number by Vi ←
maxBi=Bj

{Vj}+ 1 and chooses a new Ri in χi ∈ χ to get a

new ψ′; computes the new hash ξ
(2)
i = H

ξ(1) (“Bi||Vi||Ri”);

by using sk, computes σ′i = (ξ
(2)
i)α · (

∏s
j=1 u

m′

i,j

j)β , where

u = {uj} ∈ ψ, finally outputs (ψ′, σ′i, m
′

i).

Delete(sk, ψ,mi): computes the original σi by mi and com-

putes the new hash ξ
(2)
i = H

ξ(1) (“Bi||0||Ri”) and σ′i =

(ξ
(2)
i)α by sk; deletes i-th record to get a new ψ′; finally

outputs (ψ′, σi, σ
′

i).

Insert(sk, ψ,m′

i): inserts a new record in i-th position of the
index-hash table χ ∈ ψ, and the other records move back-
ward in order; modifies Bi ← Bi−1, Vi ← maxBi=Bj

{Vj}+

1, and a random Ri in χi ∈ χ to get a new ψ′; com-

putes the new hash ξ
(2)
i = H

ξ(1) (“Bi||Vi||Ri”) and σ′i =

(ξ
(2)
i)α · (

∏s
j=1 u

m′

i,j

j)β , where u = {uj} ∈ ψ, finally out-

puts (ψ′, σ′i, m
′

i).

Check: The application sends the above result to cloud store
provider P via secret channel. For Update or Insert opera-
tions, P must check the following equation for (ψ′, σ′i, m

′

i) in

terms of e(σ′i, h)
?
= e(ξ

(2)
i , H1) · e(

∏s
j=1 u

m′

i,j

j ,H2). For Delete

operation, P must check whether σi is equal to the stored σi

and e(σ′i, h)
?
= e(H

ξ(1) (“Bi||0||Ri”), H1). Further, TPA must

replace ψ by the new ψ′ and check the completeness of χ ∈ ψ.

Figure 10: The algorithms for dynamic operations.

According to the construction of index-hash tables, we
propose a simple method to provide dynamic data modifica-
tion in Figure 10. All tags and the index-hash table should
be renewed and reorganized periodically to improve the per-
formance. Of course, we can replace the sequent lists by the
dynamically linked lists to improve the efficiency of updating
index-hash table. Further, we omit the discuss of the head
and tail index items in χ, and they are easy to implement.

1557

