Dynamic Balancing of Packet Filtering Workloads
on Distributed Firewalls

Guanhua Yah Songging Cheh Stephan Eidenbehz

t Information Sciences (CCS-3) ¥ Department of Computer Science
Los Alamos National Laboratory George Mason University
{ghyan, eidenber@lanl.gov sqchen@cs.gmu.edu

Abstract—Firewalls are widely deployed nowadays to enforce exploits parallelism, that is, use multiple firewalls on Hzane
security policies of enterprise networks. While having played |ink to perform packet inspection simultaneously [14],.[If]
cruc_ial roles in securing t_he_se _networks, firewalls the_mselves are this paper, we propose a solution that integrates meritotf b
subject to performance limitations. An overloaded firewall can - . .
cause severe damage to the protected enterprise network, lzrse methods to _optlmally t?a'ance packet inspection Wprkloads 0
any legitimate communication through it is either degraded distributed firewalls. It is noted that a large enterpristvoek
or even completely severed. In this paper, we address how tois usually comprised of multiple domains (or branches)heac
dynamically balance packet filtering workloads on distributed of which often has its own firewalls and policy rules. The key
f'rew:'qugéf'gnggéqcl?ggz %r;tlzrnpcrilse ggt\gi?s;ﬁ'ute d firewalls as idea of our approach is to balance packet filtering workloads
a minimax opt?/mization problem, ar?d show that it is strongly among the distributed fir_ewalls within the same ente_rpr_m_e n
NP-complete even if we eliminate all precedence relationships WOrk such that the maximum workload among all individual
among policy rules by rule rewriting. Accordingly, we propose a firewalls is minimized. Our solution extends the wisdom from
light-weight rule distribution scheme that quickly balances work- poth research directions as mentioned: it not only exptbiés
lt(r):f(fji?: all\;InoOrggvglrl gren";ﬁ']'i%aﬁ)“rlggaem;nésoﬁggﬁﬂ"e E)?icincrﬂrlgi':g parallelism inherent in the multiple firewalls within thensa
on distributed fi’revzalls redalcgs theg probability t?]ift att);ckers enterprlse_ ngt_/vork, l?“t also dynamically reorders the_srgle
successfully infer the rule distribution. Experimental results show 0N each individual firewall based on traffic characteristics
that using a commaodity PC, our approach can reduce the peak Our approach, however, distinguishes itself from existirngk
firewall workload in distributed firewall systems by 40% within by dynamically relocating firewall rules on the distributed
less thar_1 fi_ve minutes, cpmpare_d a_gf'iinst a_lternative solutions tha fjrewalls as a response to the changing traffic charactesisti
only optimize rule ordering on individual firewalls. oo . . .

Our key contributions in this paper are summarized as
follows. We formulate the optimization of dynamic firewall
rule distribution as a minimax problem subject to precedenc

Firewalls are the most pervasive defense appliances thahstraints among firewall rules. We show that this prob-
enforce security policies in today’s enterprise networks. lem is strongly NP-complete, even if we eliminate all the
firewall either controls the traffic that flows between an enteprecedence constraints by rewriting firewall rules. Aceord
prise network and the outside Internet, or regulates th#ctraingly, we propose a light-weight rule distribution algbrit
among different domains in the same enterprise netwotkat quickly balances the packet filtering workload among
While having played crucial roles in securing these networkall firewalls. Our approach does not demand any additional
firewalls themselves are subject to performance limitatiorresource/infrastructure support, is adaptive to the cinang
A firewall may be deployed on a high-speed link where itgaffic characteristics, and also reduces the probabiligt t
computational resource is the bottleneck. Next, as a resspoattackers successfully infer the rule distribution. Expen-
to a growing number of cyber-attacks in the Internet, emigep tal results show that using a commidity PC, our algorithm
networks tend to enforce tighter control over their trafis.a can reduce the peak firewall workload in distributed firewall
result, the increasing complexity of security policiesunally systems by 40% within less than five minutes, compared
increases the computational burden on firewalls. Moreovegjainst alternative solutions thanly optimize rule ordering
from an attacker’s perspective, overloading firewalls caumse on individual firewalls.
desirably severe damage to the victim enterprise network,
since any legitimate communication through these oveddad
firewalls is either degraded or even completely severeds Thi A distributed firewall system in an enterprise network en-
is not impossible given the recent advances in firewall golidorces security policies on the traffic that enters or depart
reconstruction by active probing [15]. from the enterprise network or that traverses betweenrater

It is thus important to protect firewalls from being oversubnets. We model a distributed firewall system as a set of
loaded. Two research directions have been pursued indepinewalls falling into two categoriesfrontier firewalls and
dently to address this problem. The first approach is optilgiz compartmental firewallsThe former separate the enterprise
rule ordering on individual firewalls [11], [1]. The secondeo network from the outside Internet, and the latter residesben

I. INTRODUCTION

Il. BACKGROUND AND MOTIVATION

two subnetworks inside the enterprise network. In Fig. ,1(1paper, we propose aystematicsolution to the following
we show these two types of firewalls in an example enterprigaestions: (1)In order to achieve the security goal of the
network. We further abstract the enterprise network toglo enterprise network, what constraints does a rule distitout
into an undirected graphi?(V, E). In this graph, we define scheme have to satisfySection Ill) (2) To balance firewall
three types of nodes. Thieternet node represents the outsideworkloads, what data should we collect from the system and
Internet, asubnet nodaepresents an internal subnet, and how should we do that?Section 1V) (3) How should we
firewall noderepresents a firewall. An edge is added betweaharacterize firewall workloads and what is the optimizatio
two nodes if the corresponding components in the originabjective function for balancing firewall workload¢3ection
topology are directly connected. We use sétsand F' to V) (4) How difficult is the problem%Section VI) (5) What
denote the entire set of subnet nodes and firewall nodes in gigorithm should we use to balance firewall workloads qujickl
graph respectively. Following the same example, the enserp and effectively?(Sections VII and VIII). We evaluate the
network topology is abstracted into a graph with 10 nodes, efectiveness and efficiency of our solution in Section IX.
illustrated in Fig. 1(2). In this paper, we assume that there
exists a unique routing path between any two nodes in graph _) _
G(V,E). The assumption is reasonable because multi-pathCorrelations among some policy rules prevent us from dis-
traffic engineering is rarely deployed in enterprise neksor tributing the rules in a straightforward fashion. In the rexe,

Let set.J be {i} US and we call nodes in set domain nodes If We putri on fo andr; on f,, every packet destined to host
ho from network 18.0.0.0/8 is dropped by firewdl because

fo fy of rule r,. This suggests that a feasible rule distribution
scheme is subject to certain constraints. To charactenizset

rule distribution constraints, we need to know how rules are
O Intemet node | organized on firewalls. List-based firewalls are a family of

Ill. RULE DISTRIBUTION CONSTRAINTS

& endhost (O subnetnode firewalls widely used in large enterprise networks [2]. Ist-li

[} roner freval [Firewall node based firewalls, after the first rule matching the packetusd

[comparmena e | the action specified by the rule is performed on the packet
(1) Network topology (2) Abstracted graph under inspection. Here, we consider only list-based firkswal

RULES WITH PRECEDENCE RELATIONSHIPS
Let & denote the entire set of policy rules in an enterprise
The security policy of an enterprise network regulates whagtwork. Defingprecedence relationshig on two policy rules
types of traffic should be allowed among domain nodes in sg follows:r; < r; if rule r; has a higher priority than rule;.
J. In distributed firewalls, security policies are represent et I' denote the entire set of precedence relationships among
as firewall rules. A firewall rule is defined as a sextupleules in ®. We say that paif®,T") is feasibleif it satisfies
(pid, src_ip, src_port, dst_ip, dst_port, action), where pid two conditions: (1) inT, there are no cyclic precedence
is protocol ID,src_ip anddst_ip are source and destination IPrelationships among rules i, and (2) for any two rules i®
addressessrc_port anddst_port are source and destinationwhose matching spaces overlap with each other, there exists
port numbers, andction indicates how a packet matching thea precedence relationship between thenTinHere, we do
rule should be processed. Typical firewall rule actionsudel not assume that a feasible pai@,I') is exhaustive, that is,
“accept”, “deny”, and “drop”, which may be coupled withsome traffic may not match any rule @ As to such traffic,
“log” actions. Both “deny” and “drop” actions drop the patke an enterprise network must specify a default action. In our
but the “deny” action sends a denying feedback to its sourgeamework, we do not specify the default action, and such a
Wildcard * is used to match a range of fields. In addition, weecision is left to the network administrator for simplifgi
define thematching spacef a firewall rule as the entire setthe presentation of rule sét.
of packets that matches it. Such flexibility comes at a cost in a distributed firewall
In the example, suppose that the IP address of the end heygttem. If the default action is “deny” and if a packet does no
is 202.133.0.22 and there are two rules; andr», andr; match any rule on the last firewall along its path, this firéwal
precedes. r1 is (TCP, 18.x.%.x, %, 202.133.0.22, 80, accept does not know whether the packet matches a policy ruke in
andrg is (%, 18. x . ., %,202.133.0.22, *, deny). We assume at an upstream firewall. To overcome such an ambiguity, we
that traffic from the outside Internet reaches hast by utilize some unused fields in IP headers and introduce a new
traversing along the patfy — s; — fi — s2 — f3 — s3 — allowed-to-pasgATP) field. When a packet reaches the first
fa — s4 — hy. Placing the two rules oany of the firewalls firewall in the system, it&TPfield is cleared. We assume that
on this path can ensure that héstaccepts only HTTP traffic a firewall can tell whether it is the first firewall on the path
with port number 80 from the 18.0.0.0/8 network. of an incoming packet based on the port from which it comes
Such flexibility in policy rule placement is helpful in balan from. When a packet is accepted by the first rule along its
ing firewall workloads, since we can strategically placedalt path, itsATP field is changed to 1. When a firewall does not
rules so that the maximum workload among all firewalls ind any rule to match a packet, it checks whether it is the
minimized. This is the key idea of our approach. In thifast firewall on its path. If so and if it also finds that tA&P

Fig. 1. An enterprise network topology and its abstracteaplyr

field of the packet is 0, it processes the packet according toTo deal with such a situation, we uge(r), wherer €
the default action; otherwise, it forwards the packet. ®, to denote the set of domain node pafisb) that satisfy

CONSTRAINTS OF RULE DISTRIBUTION the following condition: any traffic from domain node to

Modelin nstraints of rule distribution requires new tdomain nodeh must match another rule preceding rulelf
odeling constraints of ruie distrbution requires hewao (a,b) € D(r), we say that rule- is dominatedbetween node

tions. Leta(r) be theentire set of source domain nodes frompa’ir (a,b). In the example, we hav®(ry) — {(ss, 53)}. We
which any traffic matching rule can originate, ang(r) be the say thét arule distribution,matriM is completeif ;avery rule
entire set of domain nodes to which any traffic matching rule

_ 7 in @ is placed on all possible paths from nodesuifr) to
r can be destined. Both(r) and 5(r) are computed from the : .
source and destination IP address field of ruleFollowing nodes inf3(r) except those covered by node pairsir).

. . The completeness constraint can be formalized as follows:
the example in Section llg(r1) = {i} and 5(r1) = {s4}. P

Note that it is possible that(r) or 3(r) for a specific ruler Vr € ®: (V(a,b) € T(r) = D(r) :
contains more than one domain nodejinin addition, we use (3f € F: fe Pla,b) N M[r][f] > 0)) (3)
P(a,b), wherea, b € J, to denote the entire set of firewalls on
the path from domain node to domain node. In the same
example,P(i,s4) = {fo, f1, f3, fa}.

Rule distribution matrix. A firewall rule distribution
scheme can be modeled asue distribution matrix M. In

Soundness constraint. We say that a rule distribution
matrix M is sound if precedence relationships are never

violated underM. In other words, a sound rule distribution
matrix means that if, < r, then for every packet matching

o . rul rul m heck fore rulg. On Vi

the rule distribution matrixM [r][f], wherer € ® and f € F, sl:)ﬁjtrilc);n ?sir:gt WL;S;It\:veaCs ezteib;ekfe%rg?uleor eogbevgl:s

is the order of rule- on the rule list at firewallf if rule r is . ys put b Y
laced on firewallf, or O otherwise. That is to say, if thereﬂrewall rule list where ruler, is placed. It is, however, not

P ’ ’ Y. a necessary condition to satisfy the soundness property. To

arek rules, which we denote b#, 7, ..., andi, on firewall . o .
A : |||Iustrate that, we first introduce a minor change to how & rul
fs, and without loss of generality, we assume the order of rule

" is i, then we haveM[r][f,] = i IS processed (later in Section V, we will show that this cleang
" ObZ,' V. th bm]i _lz' laced f. s t is unnecessary by adding some special rules): when a packet
viously, the number of rules placed on a firewafl 1S h\(Iavith its ATP set matches a rule, the packet is immediately

maximum order that a rule can have on it and no two rUIeSrTﬁhvarded, regardless of the action of the rule. Now, sugpos

gwstrfslﬂgnflgiﬁznghgﬂg gzgsef;r:ﬁeS;TOGW?r:get:/;/:cezgri:ﬁ; St rulery, is placed on firewallf. The precedence relationship
)) - is never violated if the following condition holds: for each
in the form of first-order logic: path on which traffic matching rule, can possibly traverse,
Vr e ®,VfeF: if firewall f is on this path, there always exists an upstream
firewall, relative to firewallf, that installs ruler,.
0= MIrilf] < 2rea LM > 03,) To formalize the soundness constraint, we {€, b, f)
VieFVreo,vted: denote the order of firewalf among those on the path from
(r#tAM[r][f] > 0AM[[f] > 0) domain nodez to domain node; if firewall f is not on the
— M[r][f] # Mt)[f], (2) path from domain node to domain node, ¢(a, b, f) is +oo.

The soundness constraint can be formalized as follows:
wherel{p} is the indicator function: If propositiop holds, it

returns 1; otherwise, it returns 0. Hengg, ., L{M[t][f] > "/ €L Vred,vied:
0} gives the number of rules that are placed on firevfall (r <t AMlr][f] > 0A M[t][f] > 0)

Completeness constraint. We define thetraffic demand — M[r]|[f] < M[t][f], (4)
spaceof rule r, denoted byY'(r), as a set that includes BVeIYy, & i € B.Yf e F - < AM S 0) —
possible(a, b) pair wherea € a(r), b € 3(r), anda # b. Intu- " NG f Hr < Ir2llf] > 0)
itively, under an effective rule distribution scheme, gvere r (V{a,b) € T(r1) : p(a,b, f) < +o0 —

in ® should be placed on every domain node pairim). That (3f' € F:o(a,b, f') < ¢(a,b, f) AN M[ri][f'] > 0)).
is, all possible paths from nodesartr) to nodes in3(r). This, (5)
however, may not be necessary in some cases. For instance,

suppose that Subnet 4 in Fig. 1 has prefix 202.133.0.0/24 and IV. HIT COUNTING

Subnet 3 has prefix 202.133.1.0/24. There are two policysrule Besides the distribution constraints, optimizing policyer

rs is (TCP,202.133.0.%, x,202.133.1.x, 8080, accep}, r4 is distribution also needs the frequencies at which rules #re h
(TCP, , x,202.133.1.%, 8080, deny), andrs precedesy. We Our approach ensures that hit counts collected are consiste
have:a(rs) = {s4}, B(rs) = {s3}, a(rs) = {4, 1, s2, s3, 84}, across different rule distribution schemes. We assign queni
and (r4) = {s3}. We also assume that no domain node® to each domain node id. Let uid(a) be the unique ID
excepts, have a routing path to nodg that traverses firewall of domain node:z. We also utilize some unused fields in IP
f4. It is obviously unnecessary to put rutg on firewall f, headers for hit counting. The three new fields in an IP header
because all traffic matching rule, at firewall f3 must be are (src_nid,dst_nid, flag). The first two fields store the
checked against rule; first. unique IDs of the source and destination domain nodes, and

the flag field stores a value chosen frofl{arked, Hit}. both rules. This part of traffic is forwarded immediately whe

The two flag values are some special bits so that they aieecking it against rule, due to its positive ATP field. For the

distinguishable from the values when tfikig field is unused. traffic that matches only rule,, it should be checked against

When a packet from the outside Internet arrives at a frontisubsequent rules.

firewall, the firewall checks whether the packet spoofs the To circumvent this problem, we introduce a special rule,

source IP address by using a fake IP address belongingwioich is called thammediate allow-to-pass (IATP) rul&he

the enterprise network; if not, the packet can be used for TP rule is placed on every firewadind it is always the first

counting purpose. When a packet from the internal networkle on a firewall rule list. This rule checks t#a'P field of

arrives at a firewall, the firewall checks whether the packevery traversing packet, and if tAd Pfield is set, the packet is

comes from a domain node that is directly connected to forwarded immediately. As a packet with a posit&e&P field

if so, the packet can also be used for hit counting purpodes already been accepted by a rule placed on an upstream

If a firewall finds a packet that can be used for hit countinfirewall, the introduction of such special rules does noggtff

purpose, it, with a predefined probabilityc (0, 1], calculates the completeness and soundness property.

the unique IDs of the source and destination domain noded et /4 be the IATP rule. The following constraint says that

based on the source and destination IP addresses in the,patke first rule on each firewall rule list must be the IATP rule:

:c_nscrlbes these two unique IDs into thec_nid anddst_nid Vfe F: MiAf] = 1. 8)

ields, and then sets th&ag field as Marked. We say that , ,)

we mark a packet if we set its'lag field as Marked. Each As the speC|aI_ruIe is gdded on every firewall, we need to

firewall f also maintains a countek, (f), which keeps the Modify Constraint (1) slightly as follows:

number of packets that are marked locally. Vred VfeF: (M[r][f]=0)V

For each rule- placed on a firewallf, firewall f maintains < < .

a counter, denoted bwf,“f’w, for every possible domain node (2< Mirllff <1+ Z HMIEL] > 0)) @)

pair (a,b) € Y(r) satisfying f € P(a,b). When a marked

packet matches rukeon firewall f, firewall f increases;;ﬁa’b> FIREWALL WORKLOAD_ CHARACTERIZATION .

by one, wherex andb are thesrc_nid anddst_nid fields of The workload on a f'Fewa” depends on the processing

the packet, and then updates tfig field in the packet as pverh(_ead of e_ach rule on it, the order o_f the ru!es on it, aed th

Hit. But if the flag field is alreadyHt, the corresponding incoming traffic pattern. Le‘.ti(r) be themspectlop overhead
of ruler andc, (r) be theaction overheaaf rule r if a packet

counter isnot updated, even if it matches a local rule. der | i iches rute Wi that f |
A firewall also keeps a set of neighboring domain nodes phaer |n?£ec_ 1on Malcnes ruie YVe assume that for any rule
dU{r'4}, its inspection cost is the same for all the packets

which it is directly connected. When a firewall fails to matc N hecked st it
any rule on it against a marked packet, it checks whether t are checked agamst it. - -
The workload on a firewall includes several components.

dst_nid field of the packet matches any of its neighborin
oo P y g %irst, we consider the workload imposed when the firewall

ted

domain nodes; if it does, the firewall increases by one allpcal, q | le ind that iches th ket und

maintained counten}“’w, wherea andb are itssrc_nid and o> @ reguiar-ruie in at matches the packet under
o (a,b) H I ber of packets th inspection. Due to the IATP rule, a packet can be checked

dst_nid fields.u ;" stores the total number of packets thalyainst the rule that it matches only once. Letf) denote the

fail to match any rule on the path from domain nodeo o rjoad of firewall f due to processing packets that matches

domain nodeh. As u;“’b) is only updated at the last firewall 3 e on firewallf. Then:

on the path from domain node to domain nodeh, domain
nodeb must be directly connected to firewdll hn(f) = Z
Recall thatp denotes the marking probability. We measure: vre®:Mr][f]>0
I > Wi (or,g + (') + ea(r)), (10)
wftt = 3w red el eX(r) () YEeHmQn)
. fer where
wlt? = 2N aedbedazb (7) Opp = 3 (1) (11)
P jer Vi €@ ML flAOAMEr|[F]<Mr]]
V. OPTIMIZATION OBJECTIVE FUNCTION and PropositiorQ) (a, b, r, f) is defined as follows:
IMMEDIATE ALLOW-TO-PASS RULE Q1(a,b,r, f) =
Given a complete and sound rule distribution matrix and the f € P(a,b) A
hit count for each rule, it is still difficult to characterizbe —(3f € F: M[r][f'] > 0Ap(a,b, f') < ¢(a,b, £))(12)

workload on a firewall. For example, we have two rutgsand

ry, Whose matching spaces partially overlap. Suppose that rul Second, we consider the workload of firewdll due to
r4 1S placed on an upstream firewall relative to the one that rutbecking against the IATP rule, denoted by(f). We in-

r, IS placed on. To characterize the workload on the firewdhoduce theprimary action functionof a rule (: & —

wherery, is placed, we need to know how much traffic matchegiccept, drop}; ((r) returns acceptif rule r accepts the

packets matching it odrop if rule r drops the packets VI. TRACTABILITY ANALYSIS

matching it. Then, we have: Optimizing the order of rules with precedence relationship
ha(f) = Z on a single firewall is NP-hard [11]. As the optimal rule
Vre®d:((r)=accept ordering problem on a single firewall is a special case of our
Z w;ﬂa,b} (e (rTAY e (r14Y), (13) problem, our problem must also be NP-hard. However, if no

precedence relationship exists between rules, the optimhal
ordering problem on a single firewall is solvable in polynami
time. The solution is similar to that of the single-machine
Q2(a,b,r, f) = job scheduling problem without precedence constraint3. [16
f € P(a,b) A One may wonder whether our problem in the distributed
Af € F: M[r][f'] > 0A @(a,b, f') < o(a,b, f)).(14) Setting is still solvable in polynomial time if no precedenc
) . i . constraints happen to exist among rules or if we eliminate
Third, we consider the workload of firewalf when it o hrecedence relationships by arduously rewriting polic
cann.otflnd a rule that matches the paqket under inspectiofies In this section, we show that even if no precedence
In this case, there are two sub-cases: it has tc_J process thoSSstraints exist, the minimax problem (20) is stittongly
packets that do not match any rule on the firewalls alongs_complete. The theory of NP-completeness requires us to
their paths, and it also has to process those packets halast our problem to a decision problem. Hence, we define the
match a regular rule irb but that rule is placednly on o yimal non-precedence rule distribution problem follows:
downstream firewalls. We usg(f) and/i(f) to characterize " pefinition 1: Optimal non-precedence rule distribution
the workloads due to these two sub-cases, respectively. |@hiem et & denote an empty set. Given are an undirected

cdef denote the cost of the default action on a packet th&tath(V E), a firewall setF, a feasible pai(®, @), a(r)
does not match any rule i, andc/* the cost of forwarding (r) andl’)(r)’ for eachr € ®. P(a, b) for eacha c VV — F

a packet when a firewall cannot find a rule that matches thaq cachy ¢ vV — F o(a,b, f) for eacha € V — F, each

packet but the packet is not destined to a domain node adjac§@ V — F and eachf € F, C(f) for eachf € F vectorsii’
to it. Note thatc]“* should be no less than(r'#). We then .= ¢i(r) andeq (r) for each rule: ¢ (I,U{TIA}’Cdef ofwd

V(a,b)eX(r):Q2(a,b,r,f)
where PropositiorQs(a, b, r, f) is defined as follows:

have:) des cm» Ko (f) for each firewallf € F, and a given numbeY’.
hs(f) = Z w' (&5 +¢i), (15) we ask: does there exist a rule distribution matbik subject
Va€J,Ybe J:a£bAfEP(a,b) to Constraints (9), (2), (3), and (8) such that for every fakw
hu(f) = Z fin F, n(f) is no greater thaiy'?
Vred: M[r][f]=0 Our proof of strong NP-completeness of the optimal non-
Z wiab) | (€ + cfwdy - (16) precedenc_e_ rule dlstrlbutlon_proplem involves the redunctf
" @ the 3-Partition problem, which is strongly NP-complete. [8]
X V@b €T(r):Qa(abr.f) We establish the following theorem (proof given in [17]):
where

£ = c,-(r“‘) n Z (). 17) Theorgm 1:The optimal non-precedence rule distribution
e M Lf]>0 proplem is str_ongly NP-pompIete. _ _

When marking an IP packet for hit counting purpose, a Given the difficulty in finding an optimal solution to the rule

firewall also spends some CPU cycles on calculating its souf@istribution problem, we resort to heuristic-based algans.

and destination domain node IDs. We Uséf) to denote the T0 reduce the solution space, we establish two guidelines.

workload of firewall f due to calculating domain node 1Ds.First, if no traffic matching rule can possibly traverse firewall

Let ¢,, denote the processing overhead on computing sourter any traffic matching rule, if traversing firewall f, must

and destination domain node IDs for a single packet. We ha@s0 match a higher priority rule’, thenr should not be
placed on firewallf. The second guideline avoids redundant

hs(f) = K (f) - ¢, (18) rule deployment as much as possible: if on every possible pat
where K,,,(f) denotes the total number of packets for whicbf rule r that traverses firewallf, there exists an upstream
firewall f computes source and destination domain node |ICirewall deploying ruler, it is unnecessary to place ruteon
The overall workload on firewallf, denoted byH(f), is firewall f. These two guidelines are formalized as follows:
the sum of all the workloada, (f) through?i;(f): Vre®,VfeF:
H(f) =M (f) + ha(f) + hs(f) + ha(f) + hs(f). (19) ~(3{a,b) € Y(r) —D(r) : f € P(a,b)) — MIr][f] = 0.
The processing power of firewalls may differ significantly.

Let the normalized workload function(f) be %}{? where (22)
C(f) is the processing capacity of firewagll We then mini- ¥redVfeF:
mize the maximum normalized workload over all the firewalls ’)
and formulate it as a minimax optimization problem: (V(a,b) € X(r): f € P(a,b) —
mj\}nr}leagn(f), (20) (3f € P(a,b) : p(a,b, f) < ¢(a,b, f) A Mr][f'] > 0))

subject to: (9), (2), (3), (4), (5), and (8) (21) — M[r][f] = 0. (23)

VIl. SINGLE-FIREWALL RULE ORDERING We then haveAy, 11 = @(r) - ¢;(Trt1) — 0 (Fry1) - ci(r). We
From a high level perspective, a rule distribution sche n use one pass on rulgsthroughs; to compute the value

has two phases: rule placement phase and rule ordering.ph g?"p whenfrulerlésAplaced aft' pdos;;uom' N 1 and kt]heg, use
The first phase decides how to place rules on firewall € Iterative formu k k41 to find the position wher inp.
and the second one decides how to order the rules plaéﬁ the lowest vz_;ll_ue with another pass. Thereafter, wetinser
on each firewall. Once the first phase finishes, the secafitf " &t th_at position. _ _

phase changes only workload functidn(f) in Eq. (19) Case Bis more complicated than the first one. For each

e ; le ' on list £L(f), we keep both sets of rules ofi(f)
More specifically, the rule ordering scheme only affects tH
following component in Eq. (19): tﬁat precede rule’ and are preceded by rul€, and they

are denoted byS(r’) and S(r), respectively. Then, we use
H(f) = Z Z wi®? . g, ;. (24) BFS (Breadth First Search) or DFS (Depth First Search) to
Vred: M[r|[f]>0 V(a,b)ET(r):Q1 (ab,rf) traverse 'Fhe rules according to their pre(_:edence reld{ﬁpsns
. and obtain a sequence of rulés that satisfy the following
Obviously, H(f) includes neither action overheads associate@nditions: (a.1)/r' € R: ' € R*, (@.2)Vr’ € S(r) : 7' € R,
with the regular rules nor the processing costs associagd3) ' € R — (vr” € S(') : " € R), and (a.4) the
with the IATP rule. The problem of finding a rule orderingelative ordering of rules i remains the same as they are
scheme to minimizeH(f) can be reduced to the classion Jist £(f). Similarly, we derive a sequence of rui&sthat
cal 1[prec|Ew;C; single-machine job scheduling problemsatisfy the following conditions: (b.3)r € R : 1’ € R*, (b.2)
This problem is known to be strongly NP-hard, and a 24/ ¢ S(+):+' € R, (b.3)1' € R — (V¢ € S(+') : "' € R),
approximation algorithm for it is provided in [10]. As thisand (b.4) the relative ordering of rules iR remains the
algorithm is based on an LP (Linear Programming) relaxatigame as they are on ligk(f). Finally, we obtain a sequence
technique, we call it thé.P-based algorithm of rules R that satisfy: (C.L)Vr' € R : 1/ € R*, (c.2)
Suppose we already have an ordering solut®nthat v’ ¢ R* — R—R:r' € R’ and (c.3) the relative ordering of
minimizesH (f) given a set of rules placed on firewdllIf we ryles in R’ remains the same as they are on gt).
apply the LP-based algorithm whenever we want to add a new_et the numbers of rules iR, R, and R’ be n, m, andn'.
rule onto firewalf, the computation cost will be very.high, aswe also useZ|k] andZ[k] to denote the number of rules i#
demonstrated in later experiments. We thus use a lightiweigind R that appear before ruld’[k] on list £(f), respectively.
alternative, which is called thast rule insertion algorithm e further define vectors/’, W, W', C, C, C" as follows:

Fast rule insertion algorithm. We use a linked list to k Hit-counts Costs
maintain rules placed on a firewall. L&Y f) denote such a Lon WK =F oR[t) Ck=>"_c(R[])
list kept for firewall f and the rules oif(f) bey, 71, ..., and L.,m WIkl=3Y,oR[t]) Clk] =3, ci(R[])

~

WK =3 o(R[t]) C'K =3¢ ci(R'[H])

3

7. Note that7, is the IATP rule. For ease of presentation, _L -
we add a virtual ruler,,; at the tail. Suppose that we want

to insert ruler onto list £(f). The precondition is that rule With a constant number of passes on the raieghrough7;,

r is not on listL(f). We traverse the linked list, looking for we can obtain the values of all these vectors.

r, the last rule that precedes over ruleand7, the first rule Our algorithm dealing with Cas# guarantees that after
that is preceded by rule. If such ruler cannot be found, rule insertion, (1) rules ink appear before rule and rules

we let it be 7y; similarly, if such rule7 cannot be found, in R appear after rule, (2) all rules appearing before rute

we let it be7,, ;. Obviously,7 now cannot be the same asconform to the same order on the original list and the same
rule . We thus distinguish two cases: ruteappears before to the rules that appear after rute and (3) all the rules in
rule 7 (Case A and ruler appears after rule (Case B. In R’ appear in the same order as before the insertion. Similar
either case, we let the rules betweeand7 are7;, 741, ..., 10 CaseA, we only need to minimize the total inspection cost
and7;. Let setR* contain all these rules. Lef(r’) denote associated with rule and rulesr; throughr; that is induced
ZV(a,b>€T(T’/):Q1(a,b,r’,f) wff?’b>. We also number the positionby the traffic matchingnly these rules. We us(%(fj; to denote
before ruler; asi — 1, the one immediately after it as ..., this cost when there aferules inR’ that are placed before rule
the one immediately before rulg; as j — 1, and the one r. The baseline ordering scheme is putting all ruleRirafter
immediately after it asj. The fast rule insertion algorithm rule r. Under this scheme, we use another pass on the fules

inserts ruler only at one of these positions. through7; to computeC(o). Let A¢#+1) pe i) ¢,
In Case A rule r can be inserted in any place amonyVe computeA*:*+1) py:

positions: — 1, 4, ..., andj. We note that where to insert

rule » does not affect the inspection costs of the rules before AR = ci(R [k +1])x L

rule 7; and those of rules after rufg. Hence, we only need to (WIIR[] = W[Z[k + 1]] + @ (r) + W[Z[k + 1]])

minimize the total inspection cost associated with ruland — w(R'[k+1]) x

rules7; throughy; that is induced by the traffic matchiramly (CIIR] — C[Z[k + 1]] + i(r) + C[Z[k + 1]]), (25)

these rules. We usg,,,,(k) to denote this cost when ruteis
inserted at positiork. Let Ay ;11 be Cinp(k + 1) — Cinp(k). where |X| is the number of rules inX. With Cfﬁ% and

AGE+D), we can computé!), ¢, ..., andc"V. Letc(") r that used to be on list(f); we useZ(r, f) to denote this

wnp? Yinp! " mp T .
be the smallest one among them ;{rﬁj; Then, in the final S€t and initialize it to be empty.
solution, there aré&* rules in R’ beforer. PHASE II: RULE MIGRATION

Given the description of the fast rule insertion algorithm, | this phase, we migrate rules between firewalls such
we can establish its performance with the following lemmaiy ¢ the maximum normalized workload among all firewalls

Lemma 1:Given that there are: rules that are already ponotonically decreases. Thele migration algorithmalways
ordered, the number of precedence relationships among thes 1o migrate rules away from the firewall with the highest

is m, and_ the time to check thg existenc? of a prece_den,qgrmanzed workload. Suppose that this firewallfisand its
relationship between two rules fis ¢ -, the time complexity ,,rmalized workload ig°ld_ One input parameter to this

. . . . max”
of the fast rule insertion algorithm 9 (n - t< +m). algorithm is itsresolutione (e > 0). The resolution parameter

The time complexity of depends on the implementationineans each successful attempt on reducing the workload on

if we use a matrix to store the pairwise precedence relaipns fire\a| £, should make its new normalized workload at most
between rulest is constant (this can be true even if thgod _ . \\e definecolor(f) as thecolor of firewall f, which
matrix is sparse [6]); if we instead use a two-level trie t§aq three possible valueshite, red, andblack Initially, we set
store the precedence relationships,is O(log(|®])). the color of firewallf* asred and that of any other firewall as
VIIl. RULE DISTRIBUTION ALGORITHM white. We put firevyallf* on thered firewall list which kgeps
.)) o _all the firewalls with the red color. Moreover, we define the
In this section, we introduce a rule distribution algorithmiate of 4 firewall £ as a collection of information regarding
which works in a centralized fashion once hit counts per rujg including £(f), Z(r, f) for eachr € L(f) andf(r £) for
have been collected from all firewalls. Using our algorithnhach ruler that used to be o (f):; we uses(f) to denote
a dedicated machine computes a new rule distribution matfie current state of firewalf. We also let sefl contain all
and then uses it to reconfigure the rules on each firewall. T firewalls whose states have been changed when the current
process repeats as new rule hitting counts are collected agg firewall is processed. By slightly abusing notatianwe

sent to the dedicated machine. usell(f) to denote the state information kept for firewdll

PHASE I: INITIAL SETUP
We place each rule- as follows: for every node pair Algorithm 1 Aggressively migrate rules to reduce the highest
{a,b) € T(r) — D(r), we place ruler on the first firewall normalized workload among all firewalls
along the path from domain nodeto domain nodeh. The 1: loop
intuition behind it is as follows: if we put a rule whose prima 2 f* < argmax.c (f), andngi, < n(f*) _
action isdrop on firewalls close to its source domain nodes3 ~ color(f’) <= red, and putf™ onto the red firewall list

- while the red firewall list is not emptgo
traffic matching this rule can be dropped early, imposing nQ extract a firewallf from the red fif(;[\s/‘;/all list

workload on downstream firewalls; if we put a rule whoseg. add f ontoIT and keeps(f) in TI(f)
primary action isaccepton firewalls close to its source domain 7: if MigrateRulesf, vertical) returns falsehen
nodes, packets matching this rule can have tAgiP fields set 8 if MigrateRulesf, horizontal) returns falsethen
early and downstream firewalls can thus immediately forward: for each € II, rollback s(f) to I1(f)
. s : the algorithmterminates
such traffic due to the IATP rule. The initial rule placemen,: end if
scheme as described must satisfy the following proposition; . end if
13: end while
VreovfeF: Mr|[f]>0 14: clearII(f) for eachf € II, and then cleafl

— (Ia,b) € Y(r) = D(r) : p(a,b, f) =1) (26) 15 end loop

It is easy to see that the rule distribution matix from
the initial rule placement scheme must satisfy ConstrgBits N
(2), (4), (8), (3) and (5), and Guidelines (22) and (23).

The main body of the algorithm is shown in Algorithm 1.
ote that it calls twice functiom{igrationRules(f, mode)
. . R in Algorithm 2. The two modes arecrtical and horizontal.
Before entering Phase I, our algorithm |n|t|aI|zesafe\luadaBOth modes start from the tail of the firewall list, and it-

structures. F_or each ru_l;e placed on f“_e"va”f , We k_eep the_ eratively test whether the rule can be migrated onto the all
set of domain node pairs between which the rule is effective, diate downstream firewalls. The difference betweemthe
Let Z(r, f) be this set and initialize it as follows: rmmedia : Lo

is that in the vertical mode, a rule is migrated to downstream

Z(r, f) = {{a,b) | {a,b) € Y(r) = D(r) A p(a,b, f) =1}. firewallsonly if it does not make any of them overloaded, that

is, all downstream firewalls after rule migration must have
GivenZ(r, f), we can derive the total hit count of ruleon a normalized workload at least below the current highest
firewall f as} , yyez(r s wi™? . This is used to compute thenormalized workload)?'¢ . By contrast, in the vertical mode,
total workload on firewaflf or order the rules on firewaff by we migrate a rule away from firewafl’ even if it makes the
the fast rule insertion algorithm. Moreover, for each firkwla normalized workload on some downstream firewalls higher

in ®, we also keep a set of domain node pairs for every rulean n°'¢ — ¢. In this mode, we change the colors of such

max

Algorithm 2 MigrateRulesf, mode)

Require: f € F andmode € {vertical, horizontal}

1:
2:
3:
4:

OO

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:

50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

{/* INITIALIZATION */ }

To< 0, Ty < 0, r < last rule onL(f)

PROCESSRULE:

it (3a,b) € Z(r, f) : pla,b, f) = [F]) or (3 € £(f) : 7 <
') then

if r is the first rule onC(f), return false
r < the next rule onZ(f) in reverse order
goto PROCESSRULE;

end if

: for all (a,b) € Z(r, f) do
10:

f' <= next firewall on the path froma to b
To<=To U {f’}
end for

for eachf’ € Ty, initialize W{r][f'] to be O

for all (a,b) € Z(r, f) do
f' < the next firewall on the path from to b
W)L = W]+ wi™

end for

{/* TRY MOVING RULE DOWNSTREAM */ }

for eachf’ in Ty do
Ty < T U{f'}, keeps(f’) (state of f') in =(f")
if f/ ¢TI, add f' ontoII and keeps(f’) in TI(f’)
for each(a,b) in Z(r, '), W[r][f'] < W[r][f'] + wi®?
add ruler onto £(f') with fast rule insertion algo.
recomputen(f’)
it n(f') > nmas — € then
if mode is vertical then
for each firewallf, € T1, rollback s(f.) to 7(fz)
if r is the first rule onC(f), return false
r < the next rule onC(f) in reverse order
goto PROCESSRULE;
else if mode is horizontal then
if color(f’) is white then
color(f') < red, put f’ on the red firewall list
else if color(f’) is black then
for eachf, € T1, rollback s(fz) to w(fz)
if r is the first rule onC(f), return false
r <= the next rule onC(f) in reverse order
goto PROCESSRULE;
end if
end if
end if
end for

{/* RULE REVOCATION PROCESS */ }
for eachf’ in Ty do_
for each(a,b) € Z(r, f) do R
add (a, b) onto Z(r, '), and remove it fronZ(r, f’)
find firewall f” in P(a,b) with r € £(f") and {(a,b) €
I(r, f"), remove (a,b) from Z(r, f""), and if Z(r, ")
becomes empty, removefrom L(f"")
for eachf”” € P(a,b) betweenf’ and f” do
remove(a, b) from Z(r, f""")
end for
end for
end for

{I* RULE REMOVAL */ }

remover from L(f) R

for each(a,b) € Z(r, f) , move it fromZ(r, f) to Z(r, f)
if 7 is the first rule onZ(f), return false

r < the next rule onC(f) in reverse order

goto PROCESSRULE

firewalls tored and put them onto the red firewall list. As
the algorithm iteratively migrates rules from firewalls it
red color until it becomes empty, the horizontal mode tries
to reduce the workload of a firewall by involving firewalls
that are multiple hops away. To ensure the convergence of the
algorithm, we do not allow a firewall with a black color to
turn red again. Hence, if a rule added to a black downstream
firewall makes its normalized workload higher thafic,, — e,

we do not migrate this rule. This is the reason why we try the
vertical mode before trying the horizontal mode: the former
does not increase the number of red firewalls in the system.

Function MigrationRules(f, mode) uses the fast rule in-
sertion algorithm to add a rule onto a downstream firewall. It
is worthy mentioning some special cases when a rule is being
migrated onto a firewalf’. First, if the rule is already on that
firewall, we remove it from the firewall list and reapply thetfa
rule insertion algorithm to adjust its position. Secondthié
rule used to be on that firewall but now has been migrated
onto further downstream firewalls, we need to activate the
rule revocation processThis is because if we place rule
r on firewall f’, these downstream firewalls also deploying
rule » will not see any traffic that matches ruleand also
traverses firewallf’. The rule revocation process updates the
corresponding states along the path from firewdlto these
downstream firewalls.

The algorithm requires recomputing the workload of a
firewall in several places. To reduce the computation cost, w
let each rule on a firewall carry a list of domain node pairs. We
compute the workload of each firewall after the initial setup
and in the course of the algorithm, we incrementally update i
based on the information carried along with the domain node
pairs. The algorithm terminates after polynomial time ama t
proof is given in [17].

IX. EXPERIMENTS

EXPERIMENTAL SETUP

Topology. In our experiments, we use two different topolo-
gies: full d-ary trees and random graphs. In the experiments
with tree topologies, we lef be 4 and vary the height of the
tree h between 3 and 4. In a tree topology, we assume that all
leaf nodes are domain nodes; hence, there are either 16 or 64
domain nodes in total. The random graphs are generated using
the Doar-Leslie model [5]; this model has the nice featued th
the total number of edges in the graph can be controlled by the
mean degree of an node. In a random graph, we assume every
node is a domain node. For both tree topologies and random
graphs, we add an extra nodethat represents the outside
Internet. In tree topologies, we connect nodéo the root
node; in random graphs, we randomly pick a node connecting
to node:. In each of these topologies generated, we put a
firewall on every edge.

Rules. In all experiments, the primary action of a rule is
randomly chosen betweeacceptand drop. The inspection
cost of a rule is uniformly distributed between 0.0001 and
0.0009. If the primary action of a rule igccept its action
cost is 0.0006; otherwise, its action cost is 0.0004. Thal tot

ID Topology #Firewalls #Domains #Rules T'D 14 12

first-firewall scheme —— first-firewall scheme —— |

X 1.1 i
X1 Tree 21 17 2100 T'Dy Eorar e heme & B UL e sheme a2
X, Tee @ e 4% TD) »
3 ree 1 g os g os
X4 RG 82.3 65 4115 TD; E o g
X5 Tree 85 65 4250 TDo 2 2 o5 T
2 2 o4
TABLE | g oo X 2 ool ¥
SIMULATION SCENARIOS (RG STANDS FOR RANDOM GRAPH ANDTD Ry 05 075 Ay 05 075
STANDS FOR THE SETTING OF RULE‘STRAFHC DEMAND SPACEg. Fraction of external rules Fraction of external rules

(1) ScenarioX; (2) ScenarioX,

first-firewall scheme —— first-firewall scheme —+—
18 last-firewall scheme -~ 18 last-firewall scheme -
_rule migration scheme --M-- rule migration scheme --#--

number of rules isk times the number of firewalls in the
topology. We choosg between 50 and 100 in our experiments.
Let u be the number of rules that regulate traffic from or to
the outside Internet. We call such rulesternal rules The
probability that an external rule regulates inbound traiffic ¥ | o E
0.5 in all experiments. We vary between 0.25, 0.5, and 0.75 025 05 o7 BT 05 o7
and assume that for each ruleD(r) is empty. reemeterena e e
Traffic demand space We consider two cases here.Qase (3) ScenarioX; (4) ScenarioX,
TDq, we assume that each rule’s traffic demand space only . astfrowal scheme %~
has one domain node pair. Hence, if a rule is an externa [memensene =225
rule, we choose the internal domain node randomly; othexwis
we choose two different internal domain nodes randomly.
Case T'Dy applies only to the tree topology. If a rule is an

Highest normalized workload
Highest normalized workload

0

Highest normalized wWoOTRI

external rule, we choose a node in the tree (not nptiat not 0z — o Py
necessarily leaf nodes) randomly; otherwise, we choose two Fracton of extornal rules
different nodes in the same way. If an internal node in the tre (5) ScenarioX;
is chosen, then all the leaf domain nodes in the subtreedoote Fig. 2. Highest normalized workloads (conf. interval 95%)
at it are covered by the rule. o I
Hit counts. We generatek - |F'| rules sequentially. If a :Z 2 : ﬁ

new rule’s traffic demand space overlaps with that of a rule
that has already been generated, the probability that ttex la
precedes the new rule is 0.5. Note that overlapping trafficg
demand spaces of two rules do not mean that their matching S

spaces also overlap. We apply the Zipf's law to generate the OB et e T 0B iomolmatnes
hit count of each rule, based on the observation in [4]. In all (1) Phase | (2) Phase |I
experiments, we assume that the total hit counts for all the
rules is 10000, and the exponent in the Zipfian distribut®n i

1. Between each pair of domain nodes, the hit count for they fire\vall on the path between every domain node pair in
traffic that does not match any rule on the path is uniformiys ¢atic demand space. Fig. 2 depicts the highest noresliz
draV_/n between 0 angiAloo. _ A fwd workload under ScenarioX; through X5 as we varyy, the
_ I\C/llc!?ciellaneous.ci(r) = 0.000Licq(r) = ?;U%OOS'CGM fraction of external rules. Regardless of what rule distitn
~C = 0.001.c,,, = 0.0005.c = 0',1%' We setc; aqdca . scheme is applied, the highest normalized workload ineseas
higher than the average rule action cost because if a fwemw“h 4. This is because as we increasethe workload of
cannot find a rule on it to match a packet, it needs to chegk, fontier firewall becomes heavier. Whenis 0.75, the
whether it is the last firewall on the packets path. highest normalized workloads in Scenaridfs, X,, and X;

The scenarios considered in our experiments are SUMME; - ghoyt 160%, suggesting that 60% of the incoming traffic

rized in Table I. The capacity of each firewall 800 in p4q 45 he dropped. From the attacker's view, this is desirabl
ScenariosX; and X5, and 4000 in the remaining ones. F%ecause legitimate traffic is dropped as well.

each scenario we simulate 10 sample runs.

ttion time of Phase |
(seconds)
o
3
Execution time of Phase |
(seconds)

Fig. 3. Execution times of Phases | and Il

Our algorithm lessens such damage by rule migration. In all
EXPERIMENTAL RESULTS five scenarios, the rule migration scheme reduces the highes
Effect. First, we show how effectively our algorithm helpshormalized workload by about 40% on average, compared
reduce the highest normalized workload among all fir@gainst the other two straightforward schemes. It is noted
walls. We compare our algorithm against two straightfodvathat rule migration may not eliminate firewall overloading
schemesfirst-firewall schemendlast-firewall schemeln the completely in some cases. For example, in ScenaXigand
first scheme, for each rule generated, we deploy it on the figst, wheny is 0.75, the scheme reduces the highest normalized
firewall on the path between every domain node pair in itgorkload from 160% to 120%. Although some legitimate
traffic demand space, and in the second one, we put it on thaffic inevitably has to be dropped, the damage caused by the

attack significantly decreases. However, in ScenakipsX,, tributed firewall rules. Yuan et al. have developed FIREMAN,
X4, wheny is 0.75, our rule migration scheme can completelwhich detects not only violations of user-specified segurit
absorb the attack effects. policies but also inconsistencies and inefficiencies among
Performance. We evaluate our approach on a machine witfirewall rules [18]. In [13], loannisdis et al. discussed gom
a 1.4GHz CPU and 3G memory. It installs Redhat Enterprig@aplementation issues of distributed firewalls. Insteadr o
Linux kernel version 2.4.18. The implementation of the LPwork focuses on how to dynamically optimize placement and

based rule ordering algorithm in Phase | uses GLPK versiondering of policy rules on distributed firewalls accorditeg
4.16, an open source linear programming module [9]. Fig.changing traffic characteristics. To the best of our knoged
depicts the execution times of both phases in our algorithtiis topic has not been investigated before.

under different scenarios. In all the cases, our algoritam t
minates within five minutes. Moreover, although the machine
we used has a large memory, the runtime memory usage
less than 2% in all the sample runs.
Moreover, we note that the execution time of Phase | is one
order of magnitude longer than that of Phase Il, regardless
of the simulation scenario. In all the scenarios, Phasekda
less than 20 seconds to finish rule migration. This suggeats t
to further improve the efficiency of our algorithm, we shoul
focus on shortening the time needed to produce an ordered
list for each firewall in Phase I. The rule ordering time by the
LP-based algorithm grows super-linearly with the number g
rules on a firewall. This is confirmed by the observation that
the execution time of Phase | increases monotonically waih t
fraction of external rules, even though the total numbeutd#s [y
in the system does not change. A higher fraction of external
rules leads to a longer rule list at the frontier firewall ire th [2
initial setup and thus a longer time to order these rules by
the LP-based algorithm. There are two approaches to further
reduce the execution time of Phase I. First, the executio[g]
workload in Phase 1 is parallelizable. We can split firewalls
into groups and let a processor to order the firewall rule list
in each group. Second, as observed in [4], the frequency &
which a rule is found to match an incoming packet is skeweg;
in normal conditions. So we can use the LP-based algorithm
to order only rules with high hit counts and those preceding]
them, and for the remaining rules, any ordering solutiort thgg

does not violate precedence relationships is acceptable. o
9

X. RELATED WORK [10]

Most existing work on improving performance of firewalls
focuses on rule organization on individual firewalls. Hamed?!
and Al-Shaer suggest that firewall rule ordering should takg,
traffic characteristics into consideration [11] and theteda
propose using alphabetic trees to accelerate packet rfiter;
on individual firewalls [12]. OPTWALL accelerates packells]
filtering by partitioning the original list of firewall rulemto
a hierarchical set of mutually disjoint rule subsets [1].rOu4
work aims to optimize rule distribution among distributeg;s;
firewalls; we assume list-based firewalls in our work due to
their popularity. The idea of rule migration for load balamgt [16]
discussed in Section VIII is still applicable if other types
data structures are used on individual firewalls, altholgh t[17]
workload functions presented in Section V need be revisited

Current research on distributed firewalls mainly considefgg)
rule consistency and implementation issues. In [3], Al€ha
et al. propose an algorithm to discover anomalies among dis-

XI. CONCLUSION

-Firewalls are the most pervasively deployed security ap-
pf%nces nowadays. Due to its own resource limitation, a
firewall can become a point of failures under severely high
computational workload. In this paper, we address how to
optimize placement and ordering of distributed firewallegul
to mitigate the worst-case damage that can occur to indwidu

firewalls. We model the problem as a minimax optimization

r%rloblem and propose a heuristic-based algorithm to migrate
rules among distributed firewalls. Experimental resultevwsh
gur solution can balance workloads on distributed firewalls
effectively and efficiently.

REFERENCES

S. Acharya, M. Abliz, B. Mills, and T. Znati. Optwall: A krarchical
traffic-ware firewall. InProceedings of NDSS'0%-ebuary 2007.

] S. Acharya, J. Wang, Z. Ge, T. F. Znati, and A. Greenbergffit aware

firewall optimization strategies. IRroceedings of ICC’06June 2006.
E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Confliassifi-
cation and analysis of distributed firewall policidEEE JSAC 23(10),
October 2005.

E. Cohen and C. Lund. Packet classification in large 19Pssign
and evaluation of decision tree classifiers.Aroceedings of SIGMET-
RICS’05 2005.

M. Doar and |. Leslie. How bad is naive multicast routing?n |
Proceedings of IEEE INFOCOM'93.

M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a spaisie t
with 0(1) worst case access timéournal of the ACM31(3), 1984.

E. W. Fulp. Parallel firewall designs for high-speed natks. In
Proceedings of High Speed Networking Workshop, INFOCOM066.
M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide
to the Theory of NP-Completenes4' H Freeman & Co, 1979.

Glpk (gnu linear programming kit). http://www.gnu.orgfsvare/glpk/.
L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Schauiylto
minimize average completion time: Off-line and on-line appmeadion
algorithms. Mathematics of Operations Resear@®, 1997.

H. Hamed and E. Al-Shaer. Dynamic rule-ordering optimaatfor
high-speed firewall filtering. IfProc. of ASIACCS’06March 2006.

H. Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive statiat optimiza-
tion techniques for firewall packet filtering. IRroceedings of IEEE
INFOCOM'06, 2006.

S. loannidis, A. Keromytis, S. Bellovin, and J. Smith. Implenting
a distributed firewall. InProceedings of ACM CCSAthens, Greece,
November 2000.

C. Kopparapu.Load Balancing Servers, Firewalls, and Cachekhn
Wiley & Sons, Inc., 2002.

T. Samak, A. El-Atawy, E. Al-Shaer, and H. Li. Firewall lmy
reconstruction by active probing an attacker’s viewT e 2nd Workshop
on Secure Network Protocol2006.

W. E. Smith. Various optimizers for single-stage prodtt Naval
Research Logistics Quarterl3(1), March 1956.

G. Yan, S. Chen, and S. Eidenbenz. Dynamic balancing okeia
filtering workloads on distributed firewalls. Technical RepLA-UR-
07-3281, Los Alamos National Laboratory, 2007.

L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohap&t@man:
A toolkit for firewall modeling and analysis. IRroceedings of IEEE
Symposium on Security and Privadytay 2006.

