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Abstract. Distributed weighted fair scheduling schemes for Quality of Service (QoS) support in wireless local area networks have not
yet become standard. Therefore, we propose an Admission Control and Dynamic Bandwidth Management scheme that provides fairness
and a soft rate guarantee in the absence of distributed MAC-layer weighted fair scheduling. This scheme is especially suitable for smart-
rooms where peer-to-peer multimedia transmissions need to adapt their transmission rates co-operatively. We present a mapping scheme to
translate the bandwidth requirements of an application into its channel time requirements. The center piece of our scheme is a Bandwidth
Manager, which allots each flow a share of the channel, depending on the flow’s requirements relative to the requirements of other flows
in the network. Admitted flows control their transmission rates so they only occupy the channel for the fraction of time allotted to them.
Thus co-operation between flows is achieved and the channel time is fair shared. As the available channel capacity changes and the traffic
characteristics of various flows change, the Bandwidth Manager dynamically re-allocates the channel access time to the individual flows.
Our simulation experiments show that, at a very low cost and with high probability, every admitted flow in the network will receive at least
its minimum requested share of the network bandwidth. We also present extensive testbed experiments with our scheme using a real-time
audio streaming application running between Linux laptops equipped with standard IEEE 802.11 network cards.
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1. Introduction and motivation

In recent times, much effort has gone into solving the prob-
lem of transmitting multimedia data over wireless networks.
Three mutually orthogonal factors make this problem chal-
lenging: (a) stringent QoS requirements of multimedia ap-
plications, (b) bursty nature of some multimedia traffic, and
(c) unreliable and dynamic nature of the wireless network.
Network-specific QoS requirements of multimedia applica-
tions include minimum throughput, maximum delay and
maximum jitter.

In a wireless network, the minimum throughput require-
ment is more difficult to achieve than in a wireline net-
work, because (a) this requires distributed co-operation be-
tween nodes sharing a wireless channel, and (b) the flows in
the wireless network are exposed to various physical chan-
nel errors. In smart-rooms and “hot-spot” networks, wireless
access-enabled nodes in a small area share limited channel
bandwidth. Since the area is small, the wireless hosts per-
vade through the entire network and are all within each other’s
transmission range. There are a large number of hosts and
hence connections. So, channeling all data through a sin-
gle intermediate node, such as a base-station, is inefficient.
Communication is pervasive, i.e., there are many source–
destination pairs distributed throughout the network. The
sources must not all rely on a single entity, the base-station, to
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relay their data to their respective destinations. They should
be able to directly communicate with their destinations. If a
base-station is used as an intermediary, direct one-hop trans-
missions are needlessly made two-hop. (The base-station
must only serve as an access point to the wired Internet, not as
a relay for peer-to-peer transmissions between mobile nodes
within the wireless network.) Furthermore, in military and
disaster rescue environments, a group of people carrying mo-
bile handheld devices should be able to communicate with
each other, with no time for planning and building a support
infrastructure such as a base-station. The single-hop ad hoc
wireless network, without a base-station, thus accurately rep-
resents the network used in smart-rooms, hot-spot networks,
emergency environments, and in-home networking.

IEEE 802.11 has recently become the de facto Medium
Access Control (MAC) standard in connecting mobile hosts
in an ad hoc network environment. It relies on the Distrib-
uted Co-ordination Function (DCF) to resolve channel access
contention in a distributed way. However, the IEEE 802.11
DCF does not currently have any provision to guarantee QoS,
such as minimum throughput, to flows accessing the channel.
Without any co-ordination, if the sum of transmission rates
of all the hosts (or flows) is greater than the channel capac-
ity, heavy channel contention will occur and thus QoS cannot
be guaranteed for any flow. Much research has been done
in the area of distributed weighted fair scheduling (DWFS)
[3,13,18,19,24] for IEEE 802.11 networks operating in the
DCF mode. In DWFS, each flow is assumed to have a weight
which defines its importance relative to other flows. A sched-
uler combined with the MAC-layer IEEE 802.11 protocol
then schedules the flows’ packets on the channel such that
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the throughput they receive is proportional to their weights.
However, DWFS is not yet a standard part of the IEEE 802.11
MAC protocol.

In the absence of distributed MAC-layer weighted fair
scheduling in the current IEEE 802.11 standard, we propose
a scheme at the higher layers of the OSI protocol stack to co-
ordinate individual flows’ channel access in the single-hop
ad hoc network scenario, in order to promote co-operation
between flows and provide minimum throughput guarantee
for each of them. To this end, we first determine the flows’
weights based on their relative channel access requirements.
The flow weights, in turn, determine the transmission rate
of each flow. The flows’ transmission rates are controlled at
the application or middleware layers, without any MAC-layer
scheduling support. Therefore, our scheme can be used over
the standard IEEE 802.11 protocol and is easily deployable
using today’s off-the-shelf 802.11 products. In case DWFS
becomes available at the MAC-layer in the future, our scheme
is still required in order to provide the MAC-layer scheduler
with the flow weights, but enforcing the flow weights will be
left to the MAC-layer scheduler.

The exact share of network bandwidth allotted to a flow de-
pends on its requirements relative to the requirements of other
flows. Each flow maps its minimum and maximum bandwidth
requirements to its minimum and maximum channel time pro-
portion (CTP) requirements, respectively. We propose the use
of a centralized Bandwidth Manager (BM), which obtains
from each flow its CTP requirements, at the start of its ses-
sion. It uses this information to gauge what proportion of unit
channel time (CTP) each flow should be allotted. The CTP
allotted by the BM to each flow (i.e., its “flow weight”) lies
somewhere between the flow’s minimum and maximum re-
quirements. The term channel time proportion is defined as
the fraction of unit time for which a flow can have the channel
to itself for its transmissions. Since our network model allows
only one node to transmit on the channel at a time, there is a
direct correspondence between the channel time a flow uses
and the share of the network bandwidth it receives. The BM
may also refuse to admit a flow, i.e., allot 0% channel time.
This can happen if the flow’s minimum CTP requirement is
so large that the network cannot support it, without violating
some other flow’s minimum CTP requirement.

The problem with the admission control solution described
above, however, is that it is a one-time procedure performed
before the flow starts. It does not take into account the
changes in the wireless network over the duration of the flow’s
operation. Not only can the perceived channel capacity vary
over time due to varying contention [6] as flows arrive and
depart, but the channel capacity as perceived by different net-
work nodes at the same time can also be different. The latter
phenomenon is due to location-dependent fading errors and
location-dependent interference from external objects.

When a new flow arrives and demands a share of the chan-
nel, the respective CTPs allotted to already existing flows may
have to be reduced in order to accommodate it. This revo-
cation of channel time should not, however, result in these
existing flows ceasing to meet their minimum CTP require-

ment. Similarly, when a flow ends, its CTP must be suitably
redistributed among the still existing flows so they can hope
to achieve a better QoS.

The BM must therefore not just perform one-time admis-
sion control and teardown, but also perform dynamic band-
width management. The BM must re-negotiate with each flow
its CTP as its channel characteristics change, and as the num-
ber of active flows in the network varies. The detection of
change in channel characteristics, and adaptation of the flow
to this change, happen continuously through the course of the
session. Bandwidth re-negotiation must also occur before a
flow changes its packet transmission rate, as in the case of
bursty VBR traffic.

The rest of the paper is structured as follows. The next
section describes the overall network topology, the architec-
ture of the bandwidth management system and the bandwidth
management protocol. Section 3 presents our experimental
results. Section 4 discusses some related work in the field.
Finally, section 5 concludes the paper.

2. Bandwidth management system – design and
implementation

In the previous section, we motivated the need for admission
control coupled with dynamic bandwidth management in a
single-hop ad hoc wireless network. In this section, we de-
scribe the characteristics of the network we are concerned
with, the architecture of the bandwidth management system
and the communication protocol.

2.1. Network model

We design and implement our bandwidth management scheme
for a wireless network consisting of heterogeneous computers
and devices connected together over the IEEE 802.11 MAC
layer. The network in our prototype testbed implementation
consists of handheld PCs and laptop computers with their
802.11 interfaces configured in peer-to-peer ad hoc mode. We
assume that each node in the network is within the transmis-
sion range of every other node. Hence, only one node can
transmit at a time over the channel. Since every node is within
the transmission radius of every other node, routing is single-
hop.

Unlike in [5], where a base-station determines the sched-
ule of transmission for the entire network and all communi-
cation is via the base-station, in our network, transmission is
distributed and peer-to-peer. The IEEE 802.11 MAC proto-
col’s DCF, which is the one relevant to our network model,
does not have a provision for a fixed transmission schedule.
A node can send when it senses that the channel is not busy.
A binary exponential backoff mechanism resolves collisions
that might occur as a result of nodes transmitting at random
times. Moreover, any node in the network can transmit to
any other node directly without using the base-station as an
intermediary hop. Figure 1 illustrates our network model as
compared to the base-station model. The distributed, peer-to-
peer and ad hoc nature of our wireless network model makes
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Figure 1. Comparison of network models: (a) base-station model, (b) single-
hop ad hoc network model.

the bandwidth management problem significantly harder to
solve than in the case of a base-station co-ordinated wireless
network where the base-station has full control of the con-
tending flows.

The wireless network has one system selected to host the
Bandwidth Manager (BM) program. In our prototype imple-
mentation, we choose one of the more resource-rich nodes in
the network, i.e., one of the laptops, as the host system for
the BM. We assume that the BM program resides on a well-
known port in a system whose IP address is well-known in
the wireless network. A service discovery mechanism such
as the ones described in [8,12] can be used to obtain the IP
address and port number of the BM service. The BM has to
register with the service discovery system upon startup. If the
BM suddenly becomes unavailable, due to a crash or due to
mobility, an election algorithm can be run to elect a new one
after a time-out.

Note that the base-station network is merely a special case
of the single-hop ad hoc network, but with no peer-to-peer
communication between mobile nodes. (All communica-
tion, as mentioned before, is between the base-station and
the mobile nodes.) Most current wireless LANs, which adopt
the base-station network model, also use IEEE 802.11 DCF.
Hence the contention characteristics are identical to those in
a single-hop ad hoc wireless network. Our solution, which
is basically designed for the single-hop ad hoc network, thus
also works for the base-station network. Uplink and downlink
traffic between a particular mobile node and the base-station
can simply be considered as two separate single-hop flows,
and their respective channel time requirements can be allotted
accordingly by the BM. The BM in the base-station network
can be situated at the base-station itself. In this paper, for
brevity, we focus only on the single-hop ad hoc peer-to-peer
network model.

We assume a network has a set of flows F . Each flow
g ∈ F is uniquely identified by its source IP address, source
port number, destination IP address and destination port num-
ber. We call this unique identifier the flow-id of the flow.
A new flow f registers with the BM before beginning its
transmission. The application initiating flow f has a mini-
mum bandwidth requirement Bmin(f ) and a maximum band-

Figure 2. Bandwidth management system architecture.

width requirement Bmax(f ). The flow f also has an esti-
mate of the total network bandwidth Bp(f ). At the time of
registration, it specifies its minimum and maximum CTP re-
quirements, pmin(f ) and pmax(f ), to the BM. Section 2.3 dis-
cusses how pmin(f ) and pmax(f ) are obtained from Bmin(f )

and Bmax(f ), respectively. In response, the BM adds flow f

to set F and allots it a certain channel time pa(f ), when the
flow is admitted. Flow f then uses this allotted CTP pa(f )

to calculate its transmission rate. It transmits using this trans-
mission rate until either it stops or until a new pa(f ) value is
allotted to it. A new pa(f ) could be allotted to it when there
is a change in the channel characteristics or in the network
traffic characteristics.

We assume that the flows in the wireless network are well-
behaved and co-operative, i.e., they will refrain from exceed-
ing their allotted channel share (eating into other flows’ share)
and will release any channel share allotted to them when they
stop. If the flows are not well-behaved and co-operative, then
a policing mechanism (see section 2.7) can be used to detect
the “rogue” flows and eliminate them from the system.

2.2. Bandwidth management system architecture

The architecture of the bandwidth management system con-
sists of three major components as shown in figure 2: (a) the
Rate Adaptor (RA) at the application or middleware layer,
(b) the per-node Total Bandwidth Estimator (TBE) at the
MAC-layer and (c) the Bandwidth Manager (BM), which is
unique in the entire single-hop wireless network. Our system
takes advantage of cross-layer interaction between the appli-
cation/middleware and link layers.

Rate Adaptor (RA). In our design, we assume the absence
of DWFS at the MAC layer. Hence, a flow’s bandwidth con-
sumption in accordance with its allotted CTP is regulated
only by the Rate Adaptor (RA). The RA converts a flow’s
bandwidth requirements into CTP requirements, communi-
cates this to the BM, and obtains an allotted CTP for this flow
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from the BM. It then controls the transmission rate of each
flow depending on its allotted CTP. For the sake of simplicity,
in our UDP simulation experiments and testbed experiments,
the RA is built into the UDP application itself, to adapt its data
generation rate. Ideally, however, to avoid changing the ap-
plication, we recommend that the RA be implemented sepa-
rately as a module and be linked to the application at run-time.
It would thus function as middleware, just below the applica-
tion layer, and shape the applications’ traffic. Various queue-
based rate controllers are available for this purpose [16]. Our
interest is in the design of the overall bandwidth management
architecture, rather than the implementation of individual rate
control mechanisms. For our TCP simulation experiments,
we simulate queue-based rate control by having an RA per-
node at the network interface queue, rather than within the
application.

Note that, in case DWFS is present at the MAC layer, shap-
ing the traffic and enforcing flow rates can be left to it. The
RA’s function is deprecated to merely communicating with
the BM and determining the flow rate.

Total Bandwidth Estimator (TBE). The per-node Total
Bandwidth Estimator is co-located with the IEEE 802.11 pro-
tocol at the MAC layer. It estimates the total network band-
width Bp(f ) for each flow f sourced at the node it resides
on.1 Bp(f ) is what flow f perceives to be the total band-
width of the network at a particular time. In other words, at
a particular instant in time, Bp(f ) is equal to the theoretical
maximum capacity of the channel (1, 2, 5.5 or 11 Mbps for
IEEE 802.11) minus the bandwidth lost due to channel errors,
caused by fading, interference and contention experienced by
flow f ’s packets, at that instant. The physical channel errors
and contention at a particular instant in time is estimated from
the errors and contention experienced in recent history. De-
tails of the estimation method of Bp(f ) are in section 2.4.
Note that the TBE is per-node whereas it performs total band-
width estimation per-flow sourced at the node it resides on.

The TBE continuously measures the total perceived band-
width for each flow. It periodically passes this up to the RA
of the flow at the higher layers. The RA of a flow f uses
it in the translation of flow f ’s bandwidth requirements to
its CTP requirements. When the total bandwidth Bp(f ) per-
ceived by flow f changes, the channel time requirements cal-
culated using Bp(f ) also change. The TBE informs the RA
of the new Bp(f ). The RA may now need to re-negotiate on
behalf of flow f with the BM, using flow f ’s new CTP re-
quirements that are calculated with the new Bp(f ) estimate.
Since CTP allotted to flow f is directly related to its share of
total network bandwidth, if a flow perceives the total network
bandwidth as having decreased, its share of the bandwidth

1 In a single-hop peer-to-peer wireless network, we perform bandwidth man-
agement per-flow, since each flow can have a different destination. In a
base-station environment, we can perform bandwidth management per-
node since every node only communicates with the base-station. In the
base-station scenario, each node, rather than application, specifies its band-
width requirements to its RA, and bandwidth estimation is done only for
links between mobile nodes and the base-station.

will also decrease. This may cause it to fall substantially
below its minimum bandwidth requirements. Hence the re-
negotiation. We do not wish to re-negotiate for small changes
in Bp(f ), however, in order to keep re-negotiation overhead
small. The RA’s not reacting to small changes in Bp(f ) may
thus cause small violations of the minimum bandwidth re-
quirements. (But not minimum CTP requirements.) The mo-
ment a large violation occurs, the RA immediately reacts and
re-negotiates. The parameter that defines “small” and “large”
is tunable. It trades off the hardness of the bandwidth guaran-
tee with re-negotiation overhead.

Example. Assume a flow f in a 2 Mbps wireless network has
minimum bandwidth requirement 300 Kbps and perceives to-
tal network bandwidth of 1.5 Mbps. (That is, the flow f per-
ceives this to be the total capacity of the 2 Mbps channel.)
Assume further that the CTP allotted to it is 20%, thus en-
suring it just meets its minimum bandwidth requirement. If
the total network bandwidth, as perceived by f , decreases to
1.2 Mbps due to an increase in physical channel errors or con-
tention, then the 20% channel time is no longer sufficient for
the flow to meet its minimum bandwidth requirement. Its RA
must then re-negotiate for at least a 25% of the channel time.
Similarly, if a flow perceives the total network bandwidth to
have increased, it must release any excess share of the channel
it has been allotted, so that some other flow can use it.

Bandwidth Manager (BM). The Bandwidth Manager per-
forms admission control at the time of flow establishment
and bandwidth redistribution at the time of flow teardown.
Admission control involves revocation of some channel time
from existing flows and re-allocation of this portion to the new
flow. The BM also performs re-negotiation either when some
flow detects a change in its perceived bandwidth or when its
traffic characteristics change.2

The BM admits a flow only if it can allot at least its mini-
mum CTP requirement. Otherwise, the flow is rejected. The
remaining channel time as yet unallotted after all the admit-
ted flows’ minimum channel time requirements are satisfied,
is allotted on a max–min fair basis. We therefore deem our
channel time allocation scheme at the BM max–min fair with
minimum guarantee. Each flow receives whatever CTP is
allotted to it by the max–min fair algorithm, in addition to
its minimum CTP request, which is automatically guaranteed
when it is admitted. A detailed description of the max–min
fairness algorithm can be found in section 2.5 of the paper.

2.3. Bandwidth management protocol

This section describes the protocol used in the interactions be-
tween the various components of the bandwidth management
architecture and the details of the BM’s operation. The BM is

2 The centralized BM does not take on the onus of channel bandwidth esti-
mation, and leaves this to the individual per-node TBEs, because the avail-
able channel capacity is different for different peer-to-peer flows, due to
location-dependent physical errors.
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Figure 3. Bandwidth management protocol.

Table 1
Explanation of notation used in Bandwidth Management protocol.

Notation Meaning

F Set of flows admitted by the BM
g ∈ F All individual flows previously admitted by the BM
f New flow requesting admission
Bmin(f ) Minimum bandwidth requirement of flow f

Bmax(f ) Maximum bandwidth requirement of flow f

Bp(f ) Total network bandwidth as perceived by flow f

pmin(f ) Minimum channel time proportion required by flow f

pmax(f ) Maximum channel time proportion required by flow f

prem 1 − ∑
g∈F pmin(g): channel time remaining after

pmin(g),∀g ∈ F is met
pnewmax(f ) pmax(f ) − pmin(f ): maximum channel time proportion

requirement for f that is input to max–min algorithm
because pmin(f ) is already allotted

pmm(f ) Channel time proportion allotted to flow f by max–min
algorithm. This is in addition to pmin(f ) which was already
allotted before max–min algorithm began

pa(f ) Total channel time proportion allotted to flow f , i.e.,
pmin(f ) + pmm(f )

invoked at the time of flow establishment, flow teardown, sig-
nificant change in a flow’s perception of total bandwidth, or
significant change in a flow’s traffic pattern. Figure 3 shows
the actions that occur when these events happen. Table 1 is an
explanation of the notation used in the protocol description.

Flow establishment. At the time of initiating a flow f ,
the application specifies its required minimum bandwidth
Bmin(f ) and maximum bandwidth Bmax(f ), both in bits per
second, to its RA. The dRSVP [21] scheme also uses max-
imum and minimum bandwidth requirements as the specifi-
cation of utility. These values have to be each divided by
the flow f ’s perceived total network bandwidth Bp(f ) to ob-
tain its requested minimum and maximum CTPs, pmin(f ) and
pmax(f ), respectively. The total network bandwidth Bp(f )

perceived by a flow f is estimated by the TBE at the local
node. A best-effort flow will have Bmin(f ) = 0. Figure 4
shows the shape of the utility curve of the application.

Figure 4. Utility curve of users.

Note that both the CTP consumed by the flow f ’s data
packets in the forward direction as well as CTP consumed by
the acknowledgements in the reverse direction, if any, must
be included in f ’s CTP requirement. Still, it is sufficient to
do bandwidth estimation at only one of the end-points of the
link. This is because both types of packets traverse the same
wireless link, and hence face the same level of contention
and physical errors. The TBE simply quantifies the effect of
these phenomena. We perform bandwidth estimation, using
the TBE, at the source. Of course, the data and acknowl-
edgements may be of different sizes and packets of different
sizes are affected differently by the same level of physical er-
ror. Hence Bp(f ) is different for different packets of the same
flow. The TBE returns a single bandwidth estimate Bp(f ), for
the link flow f traverses, normalized to a standard packet size.
(See section 2.4.) It must be appropriately scaled for different
flow packet sizes, using the reverse of the normalization pro-
cedure, at the time of flow establishment and re-negotiation.
For VBR–UDP flows, either the mean packet size can be used
or the VBR flow can be split into CBR components, as de-
scribed later in this section. For TCP flows, separate Bp(f )

values can be derived for data and acknowledgement packets
from the single normalized value returned by the TBE.

It must be kept in mind that the TBE of flow f measures
the perceived bandwidth Bp(f ) using MAC layer frames.
These MAC layer frames include protocol headers from the
intermediate layers of the protocol stack between the appli-
cation and the link layers. The Bp(f ) scaling operation must
take into account the fact that the lower layers of the proto-
col stack will add their respective headers to each packet, and
thus consume some of the channel capacity. The size of the
lower-layer headers must be added to the application packet
size in the scaling operation.

The RA of a node registers a new flow with the node’s
TBE. Initially, the TBE has no estimate of the total network
bandwidth as perceived by this newly beginning flow. This is
because it has to use the flow’s packets themselves for obtain-
ing an estimate of the total network bandwidth, based on the
physical channel errors and contention these packets experi-
ence. But the flow has not sent out any packets yet and is still
in the process of establishment. So, when initially computing
the flow’s requested minimum and maximum CTPs, the RA
has to use a hardcoded initial total bandwidth estimate.3 Once
the flow begins, a more accurate total bandwidth estimate will
be available from the TBE. The requested minimum and max-
imum CTPs can then be modified using this new, more ac-

3 In our prototype testbed implementation, we use a 2 Mbps network and we
set this hardcoded value to 1.5 Mbps.
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curate estimate, and re-negotiation done with these modified
values.

Alternatively, in the case of a connection-oriented flow, the
first few flow-establishing packets can be used in the total
bandwidth estimation instead of the hardcoded estimate. For
example, the physical channel errors and contention faced by
TCP’s three-way handshake messages can be used in the ini-
tial measurement. If the application involves some other con-
trol messages (e.g., client asking server if file exists or not),
then these can be used. A current estimate being used by other
flows between the same end-points can also be used initially.
A fourth option is to have the BM maintain a list of current
total bandwidth estimates for all flows. Then, a new flow can
query the BM for an initial estimate. The BM simply returns
the average of the list of total bandwidth estimates.

Let the initial total bandwidth estimate, how ever it
may be obtained, for a new flow f be Bp(f ). The CTP
pmin(f ), required to satisfy the new flow f ’s minimum band-
width requirement Bmin(f ), is pmin(f ) = Bmin(f )/Bp(f ).
pmin(f ) = 0 for best-effort flows. Similarly, the CTP
pmax(f ), required to satisfy flow f ’s maximum bandwidth
requirement, is pmax(f ) = Bmax(f )/Bp(f ). The RA of the
new flow f sends the BM a request message containing
the flow-id of f , pmin(f ), pmax(f ) and a timestamp for or-
dering.

The BM checks whether, for all flows g in the set F of
previously registered flows, 1 − ∑

g∈F pmin(g) � pmin(f ).
If this is true, the new flow f is admitted (F = F ∪ {f }), else
it is rejected and a reply message offering it zero CTP is
returned to its Rate Adaptor. Note that a best-effort flow with
pmin(f ) = 0 is always admitted. A rejected flow may attempt
again later to gain access to the channel. Flows are admitted
strictly in the order they arrive, to alleviate starvation of pre-
viously rejected real-time flows. The problem of starvation of
a best-effort flow after admission is dealt with in section 2.6.

Once the new flow f is admitted, the BM must redistribute
channel time within the new set of existing flows F . Since the
original admission test was passed by flow f , accommodat-
ing it will not cause the CTP allotted to any flow g ∈ F to
fall below its minimum CTP request. Hence, the BM initially
sets allotted CTP pa(g) = pmin(g), ∀g ∈ F . The remain-
ing channel time, prem = 1 − ∑

g∈F pmin(g), is distributed
among the flows g ∈ F in max–min fair fashion. Our chan-
nel time allocation policy is thus called max–min fair with
minimum guarantee. The maximum CTP requirement for
each flow g ∈ F in the max–min fair computation is set to
pnewmax(g) = pmax(g) − pmin(g). This is because pmin(g)

has already been allotted to it and it only needs pnewmax(g)

more to fulfill its maximum CTP requirement. Thus, know-
ing prem and pnewmax(g) ∀g ∈ F , the max–min algorithm can
now proceed. Details of the max–min fairness algorithm can
be found in section 2.5.

Suppose that out of the remaining channel time prem, the
amount allotted to any flow g ∈ F by the max–min algorithm
is denoted by pmm(g). Now, 0 � pmm(g) � pnewmax(g) and∑

g∈Fpmm(g) = prem. Then, the total CTP allotted to each
flow g ∈ F is pa(g) = pmin(g)+pmm(g). Note that for best-

effort flows, since pmin(g) = 0, pa(g) = pmm(g). In other
words, channel time is allotted to best-effort flows only after
all the higher priority real-time flows are all allotted at least
their minimum share.

After the new flow f is admitted, the BM registers an entry
pertaining to it in its flow table. This entry consists of: (a) the
new flow f ’s flow-id, (b) the socket descriptor of the socket
used by the BM for communication with f ’s RA, (c) pmin(f ),
(d) pmax(f ) and (e) pa(f ). The socket descriptor is stored in
the table so that if any re-negotiation needs to be done later
with flow f ’s RA (for example, when newer flows arrive in
future or existing flows depart), this socket can be used. In
addition, a timestamp indicating the freshness of the latest
request message is also maintained for each flow. This
timestamp is used for two purposes: (a) timing out stale reser-
vations, and (b) proper ordering of multiple outstanding re-
negotiation requests from the same flow. Since reservations
can time-out, the entries in the flow table are soft-state en-
tries. If, for some reason, a flow’s reservation has timed-out
but the flow is still transmitting, this can be detected using a
policing mechanism. (See section 2.7.)

Finally, for every flow g ∈ F , the allotted CTP pa(g) is
then sent to flow g’s RA using a reply message. (Note that
the name of the message is a misnomer in the case of all flows
g ∈ F except the new flow f because, in their case, the re-
ply is gratuitous, not a response to any message they sent.)
It may be the case that all flows g ∈ F do not need to be sent
a reply message. No reply message needs to be sent to a
flow in F whose allotted CTP has not changed due to the ar-
rival of the new flow f . Although we implement the reply
message as multiple unicast messages to individual RAs for
reliability, it can also be implemented for efficiency as a sub-
net broadcast message, containing flow-id and pa(g), ∀g ∈ F .
A flow f is rejected using a unicast reply with pa(f ) = 0.
Other existing flows’ allotted CTPs are not affected.

The RA of every flow that receives a replymessage, gra-
tuitous or otherwise, from the BM sets its transmission rate
respectively to pa(g) · Bp(g) bits per second (bps). The new
flow f can now begin operation whereas the older flows sim-
ply resume operation with their respective new rates.

The timestamp in the reply to flow g indicates the last
request received from g by the BM. The value of Bp(g)

used to compute pmin(g) and pmax(g) for this requestmust
then be used in the transmission rate formula above, since it
is based on this value of Bp(g) that pa(g) was calculated by
the BM. As a new Bp(g) is returned by the TBE periodically,
a new rate is also used periodically. If the Bp(g) change is
large since the last period, re-negotiation must occur, as ex-
plained below.

Flow teardown. When a flow f terminates, its RA sends
a teardown message to the BM. The BM removes flow f

from the set of existing flows F i.e., F = F − {f }. It then
redistributes flow f ’s allotted CTP pa(f ) among the other
flows using the max–min fair algorithm with minimum guar-
antees. The RA of each flow g ∈ F (the new set F ) is
told of its newly allotted CTP by the BM. The socket de-
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scriptors in the flow table are used to send gratuitous re-
ply messages for this purpose. The entry for the terminating
flow f in the BM’s flow table is expunged. A teardown-
acknowledgement message is sent to f ’s RA.

Change in a flow’s perception of total network bandwidth.
The RA of every flow periodically obtains from the TBE the
flow’s current perceived total bandwidth. The TBE updates
the RA with the mean of the perceived total network band-
width measured for each packet successfully transmitted by
the flow in recent history. The inter-update period could be
in terms of number of packets transmitted or in terms of time.
We recommend using a hybrid scheme for determining update
period: it should be based on time when the transmission rate
of the flow is low and based on number of packets transmitted
when it is high. In our experiments, we use high transmission
rates in order to determine the performance of our scheme un-
der high network loads. Therefore, we use a perceived band-
width update interval based on number of packets. We use
a default interval of 100 transmitted packets in our experi-
ments, but we also measure how various other intervals affect
the performance of the system.

In case a newly obtained perceived bandwidth value
NEWBp(f ) differs significantly from Bp(f ), the RA must
re-negotiate its flow’s CTP with the BM, as indicated in the
example in the previous section. It must also set the value
of perceived bandwidth Bp(f ) to the newly obtained value
NEWBp(f ). Note that the RA only sets Bp(f ) to NEWBp(f )

and re-negotiates with the BM using this new value when
there is a significant change, not with every update. A new
rate using the previously allotted CTP is, however, calculated
with every update. In our experiments, we assume a deviation
δ = 15% of NEWBp(f ) from Bp(f ) as significant enough to
warrant re-negotiation. We also measure how other perceived
bandwidth deviation tolerance (δ) percentages affect system
performance.

If re-negotiation has to be done, the RA of flow f sends
a request message to the BM with flow-id, pmin(f ) and
pmax(f ). The values of pmin(f ) and pmax(f ) sent in the
request message are re-calculated using the new value of
Bp(f ). The rest of the re-negotiation procedure is almost
identical to the one used for flow establishment, both at the
BM as well as at the RA. (See figure 3.) The only difference
is that the BM does not have to add a new entry in its flow
table for f ; it only updates the already existing one.

Note that a flow f ’s re-negotiation request can be rejected
by the BM, i.e., it can receive pa(f ) = 0, in response to
the requested CTP. This means that the flow has been cut-
off in mid-operation. Unfortunately, the nature of the wire-
less network is inherently unreliable and as network resources
decrease, some flows will necessarily have to be cut-off in
mid-operation so that others can be supported. Our scheme
guarantees that each flow will obtain at least its minimum re-
quested CTP for almost 100% of its active duration. If the
system cannot guarantee the flow at least this level of QoS, it
will drop it altogether. In other words, a flow will either re-
ceive (for nearly 100% of its active duration) at least its min-

imum requested CTP pmin(f ), or it will receive no channel
time at all. The guarantee in terms of bandwidth is that the
allotted bandwidth never falls more than a factor of δ below
the minimum requested bandwidth Bmin(f ), since if Bp(f )

changes by a factor of δ, re-negotiation occurs.
Currently, we do not use any priority scheme to cut-off

particular flows. If perceived bandwidth decreases for all
flows, the first flow initiating re-negotiation is cut-off. Al-
ternate strategies to pick flows to cut-off in mid-operation are
discussed briefly in section 3.1.1.

Change in a flow’s traffic characteristics. When a VBR–
UDP flow f (e.g., MPEG video stream) needs to send a burst
of traffic at a rate different from its normal rate, it must inform
its RA. The RA will re-negotiate for a larger CTP for flow f

depending on the bandwidth of the burst. The re-negotiation
procedure is the same as in the case of change in perceived
bandwidth. At the end of the burst duration, the RA will
again re-negotiate to release the excess CTP. This solution is
equivalent to splitting up a VBR stream in the time domain
into multiple CBR streams. There exists previous literature
in the context of ATM networks [11] in which VBR streams
are split into multiple CBR streams in the time domain. Since
this scheme only involves re-organizing the traffic rather than
the network, it can be directly applied from ATM networks to
wireless networks.

Figure 5 is an MPEG-4 trace of an hour-long, 25 frames
per second, medium-quality, clip of the movie “Silence of the
Lambs”. The trace was taken from [10] and the references
therein. On the x-axis is a running count of the frame number.
On the y-axis is the frame size averaged over non-overlapping
blocks of 50 frames. One possible way to split up this VBR
flow into multiple CBR components is shown in figure 5 as
the contour of the plot. The CBR bandwidth component thus
obtained is then used as the minimum bandwidth requirement
Bmin(f ) in negotiating with the BM.

Frequent bursts could result in an explosion in re-negotia-
tion overhead. We deal with the problem of frequent bursts
in one of two ways: (a) setting Bmin(f ), at the time of burst-
induced re-negotiation, large enough to engulf multiple bursts
and (b) having large buffering at the receiver to deal with the
burst.

Figure 5. MPEG-4 trace of “Silence of the Lambs” clip with corresponding
CBR components.
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Figure 6. IEEE 802.11 unicast packet transmission sequence.

2.4. Total bandwidth estimation procedure

To determine pmin(f ) and pmax(f ), the RA of a flow f needs
to have an estimate of the total bandwidth over the wireless
link being used by the flow. To this end, we introduce a band-
width measurement mechanism based on IEEE 802.11 DCF
MAC layer, and demonstrate its robustness.

IEEE 802.11 relies on the DCF method to coordinate the
transmission of packets based on CSMA/CA without any cen-
tral control unit. The packet transmission sequence is illus-
trated in figure 6. Before transmitting a packet, a node senses
the channel to make sure that the channel is idle; otherwise it
backs off by a random interval and senses the channel again.
If the channel is idle, it transmits a RTS (Request-to-Send)
packet to signal its intention to send a packet.4 On receiv-
ing the RTS packet, the destination node replies with a CTS
(Clear-to-Send) packet to give the sender a go-ahead signal,
and to silence the destination node’s neighboring nodes. After
receiving the CTS packet, the sender sends the DATA packet,
and it is then acknowledged by an ACK packet from the re-
ceiver.

Similar to [14], we measure the throughput of transmitting
a packet as TP = S/(tr − ts), where S is the size of the packet,
ts is the time-stamp that the packet is ready at the MAC layer,
and tr is the time-stamp that an ACK has been received. Note
that the time interval tr − ts includes the channel busy and
contention time. We keep separate throughput estimates to
different neighboring nodes because the channel conditions
may be very different. We only keep an estimate for active
links, since we do not have any packets to measure tr − ts over
inactive ones.

This MAC layer measurement mechanism captures the ef-
fect of contention on a flow’s perceived channel bandwidth.
If contention is high, tr − ts will increase and the throughput
TP will decrease. This mechanism also captures the effect of
physical errors because if the RTS or DATA packets are af-
fected by channel errors, they have to be re-transmitted, upto
the re-transmission limit. This increases tr − ts and corre-
spondingly decreases the flow’s perceived bandwidth. Since
our MAC layer measurement of perceived bandwidth takes
into account the effects of both contention and physical errors
due to fading and interference on a flow, we can have the flow
react suitably to these factors by monitoring the change in per-
ceived bandwidth. It should be noted that the perceived band-
width is measured only using successful MAC layer transmis-
sions.

4 For very small packets, the sender may skip the RTS packet and directly
send out the DATA packet.

Figure 7. Raw throughput and normalized throughput at MAC layer.

It is clear that the measured throughput of a packet depends
on the size of the packet. Larger packet has higher measured
throughput because it sends more data once it grabs the chan-
nel. To make the throughput measurement independent of
the packet size, we normalize the throughput of a packet to
a pre-defined packet size. Before being used by a flow of a
particular packet size, it must be scaled to that packet size. In
figure 6, Td = S/BWch is the actual time for the channel to
transmit the data packet, where BWch is the channel’s bit-rate.
Here we assume channel’s bit-rate is a pre-defined value. The
transmission times of two packets should differ only in their
times to transmit the DATA packets. Therefore, we have:

(tr1 − ts1) − S1

BWch
= (tr2 − ts2) − S2

BWch
(1)

= S2

TP2
− S2

BWch
, (2)

where S1 is the actual data packet size, and S2 is a pre-defined
standard packet size. By equation (2), we can calculate the
normalized throughput TP2 for the standard size packet. To
verify the validity of this equation, we simulated a group
of mobile nodes within a single-hop ad hoc network using
the ns-2 network simulator [23]. We sent CBR traffic from
one node to another, and varied the packet size from small
(64 bytes) to large (640 bytes) during the course of the simu-
lation. The measured raw throughput is normalized against a
standard size (picked as 512 bytes). Figure 7 shows the result
of the measured raw throughput and its corresponding nor-
malized throughput. Obviously, the raw throughput depends
on the packet size; larger packet size leads to higher measured
throughput. The normalized throughput, on the other hand,
does not depend on the data packet size. Hence, we use the
normalized throughput to represent the bandwidth of a wire-
less link, to filter out the noise introduced by the measured
raw throughput from packets of different sizes.

Another important issue is the robustness of the MAC
layer bandwidth measurement. We measure the bandwidth of
a link in discrete time intervals by averaging the throughputs
of the recent packets in the past time window, and use it to es-
timate the bandwidth in the current time window. Obviously,
this estimation may not be accurate because the channel con-
dition may have changed. To evaluate the estimation error,
we run a CBR flow over UDP with data rate 160 Kbps from
a node to another in a 10 node one-hop environment. Back-
ground traffic consists of 1 greedy TCP flow in the light chan-
nel contention case, and 7 TCP flows in the heavy contention
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case. Here we use TCP only to generate bursty cross-traffic
to the UDP flow. We measure and normalize the throughput
of the CBR flow every 2 seconds using the average of packet
throughputs in the past time window. Our results show that
under light channel contention, over 97% of the estimates are
within 20% of error; under heavy contention, still over 80% of
the estimates are within 20% of error. We thus conclude that
using average throughput of past packets to estimate current
bandwidth is feasible and robust.

It should be noted that the bandwidth estimation mecha-
nism in no way alters the IEEE 802.11 protocol. Our band-
width estimation mechanism, with the normalization exten-
sion, was satisfactorily accurate for the scenarios in our
simulation and testbed experiments. However, the theory
behind the normalization may not be applicable for arbitrar-
ily large packet sizes or arbitrarily high bit-error rates. In
such cases, the TBE could keep an indexed table of sepa-
rate estimates for different packet size ranges per active link,
rather than maintaining a single normalized estimate per ac-
tive link and scaling it to various packet sizes at the time
of flow establishment/re-negotiation. If the indexed table
method is used, the source and destination must both perform
total bandwidth estimation, for data and acknowledgements,
respectively. The destination must periodically communicate
its bandwidth estimate for acknowledgement packets with the
source using an in-band signaling mechanism. (The signal-
ing itself consumes negligible bandwidth.) In the single nor-
malized estimate method, the source alone does the estima-
tion and appropriately scales the normalized estimate for both
data and acknowledgement packet sizes. Thus, although the
indexed table estimation method improves accuracy of the es-
timate in certain special cases, it also incurs a small storage
space and in-band signaling overhead.

2.5. Max–min fairness

Fairness is an important issue in designing our Bandwidth
Manager. In this paper, we adopt a max–min fairness algo-
rithm with minimum guarantee in allotting channel time to
the flows. This section describes the max–min algorithm to
calculate how much channel time each flow gets beyond its
guaranteed minimum requested channel time, after the flow
is admitted.

In max–min fairness [4], flows with small channel time
requests are granted their requests first; the remaining chan-
nel capacity is then evenly divided among the more demand-
ing flows. As described in section 2.3, pa(f ) is first set to
pmin(f ) for all the flows. The channel time that remains,
prem, after satisfying the flows’ minimum requirements, is
allotted to the flows in max–min fashion. The new maxi-
mum requirement for each flow in the max–min algorithm
is pnewmax(f ) = pmax(f ) − pmin(f ), because pmin(f ) has
already been allotted to it and must be subtracted from the
original maximum requirement. We denote the channel time
allotted to flow f by the max–min algorithm as pmm(f ). This
is in addition to pmin(f ) allotted before the max–min algo-
rithm is even invoked.

Input. Channel time: p_rem; set of requests: p_newmax[f ]
Output. Set of allocations: p_mm[f ]
proc Max–min(p_rem, p_newmax[f ]) ≡

R := {}; //set of satisfied flows
N := size_of (p_newmax[f ]);
p_mm[f ] := 0;
while (true) do

total_satisfied = 0;
foreach f ∈ R do

total_satisfied+ = p_mm[f ];
od
CA := (p_rem − total_satisfied)/(N − size_of (R));
stop := true;
foreach f /∈ R do

if (p_newmax[f ] < CA) then
R := R + {f };
p_mm[f ] := p_newmax[f ];
stop := false;
fi

od
if (stop) then
foreach f /∈ R do
p_mm[f ] := CA;
od
break;
fi

od

Figure 8. Max–min fair resource allocation algorithm.

The computation of the max–min allocation is as follows.
Initially, the set of flows f , whose new maximum channel
time requirement pnewmax(f ) has been satisfied, is empty:
R = ∅. Then, we compute the first-level allotment as
CA0 = prem/N , where N is the total number of flows. Now
we include all flows f with pnewmax(f ) < CA0 in set R, and
allot each of them pmm(f ) = pnewmax(f ). Next, we com-
pute CA1 = (prem − ∑

f∈R pnewmax(f ))/(N − ‖R‖). If for
all flows g /∈ R, pnewmax(g) � CA1, then we allot each of
them pmm(g) = CA1 and stop. Otherwise, we include those
flows g with pnewmax(g) < CA1 in set R, allot each of them
pmm(g) = pnewmax(g), and re-compute the next level CA2.
When the algorithm terminates, the allocation pmm(f ) for
all the flows is max–min fair. The pseudo-code for the al-
gorithm is shown in figure 8. It is clear that the computational
complexity of this algorithm is O(N2). As mentioned earlier,
after every flow f ’s pmm(f ) has been determined using the
max–min algorithm, the BM sets pa(f ) = pmin(f )+pmm(f )

and returns this value to flow f ’s RA.

2.6. Alternate channel time allocation strategies

Although we use the max–min fairness with minimum guar-
antee policy for bandwidth allocation in our implementation,
a different fairness policy or even a biased, priority-based
scheme could also be used.

In our policy, as mentioned earlier, best-effort flows are
only given access to the channel after all the real-time
flows’ minimum requirements are satisfied. This could lead
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to starvation of the best-effort flows, in the rare case that∑
g∈F pmin(g) → 100%. One way to eliminate this prob-

lem would be to partition channel time into a large minimum-
guarantee portion and a small max–min fair portion, similar
to the bandwidth partitioning in [1]. The minimum require-
ments of the real-time flows, i.e., all pmin(g) > 0, are al-
lotted only from the minimum-guarantee portion. The max–
min fair portion, along with any left over minimum-guarantee
portion, is used to allot the flows’ extra CTP pmm(g), using
just a max–min scheme. Both real-time as well as best-effort
flows, i.e., all flows with pnewmax(g) > 0, can vie for this
portion. The presence of a separate max–min fair portion en-
sures that, however large the minimum requirements of the
real-time flows, some channel time is always available for
best-effort flows to vie for, so they are never starved. The dis-
advantage of having a separate max–min fair portion is that
the channel time available to satisfy minimum guarantees of
real-time flows (the minimum-guarantee portion) is reduced,
which could lead to more real-time flows being dropped.

Another alternate scheme involves pricing of channel time
and enforcing priorities based on flow budgets. The max–
min fair policy with minimum guarantee lends itself to an ele-
gant two-tier pricing scheme. The guaranteed minimum CTP
pmin(g) is valued at a substantial price, whereas any chan-
nel time pmm(g) in excess of this is relatively very cheap.
Under this two-tier pricing scheme, users would be inclined
to request as little minimum guaranteed bandwidth as possi-
ble, in order to save cost. High minimum requirements are
thus “punished” while high maximum requirements carry no
penalty. The BM adjusts the price so as to trade-off blocking
probability of the flows with its revenue. If the price is too
high, too few flows can afford it and hence blocking probabil-
ity is high. If the price is low, blocking probability is low, but
revenue may suffer. Pricing for wireless networks has been
studied previously [17,20,22,26], but our two-tier approach is
especially suitable for our bandwidth allocation policy.

2.7. Policing

In our bandwidth management scheme, policing refers to the
task of monitoring the users, to make sure that they conform
to their allocated bandwidth. The bandwidth manager oper-
ates in two modes: normal and policing. When operating in
policing mode, the bandwidth manager listens promiscuously
to the network traffic, and checks whether a flow, identified
by the source and destination addresses and port numbers in
its packet headers, is sending out packets faster than its al-
lotted rate. Additionally, it can also catch those flows who
have not registered with the bandwidth manager. This can be
some type of “denial of service” attack by a malicious users,
or caused by some unmanaged applications.

Operating in policing mode is expensive. Therefore, the
bandwidth manager should operate in this mode only when
necessary. To this end, the bandwidth manager relies on the
sudden, sharp decrease of channel bandwidth as an indica-
tion, in the re-negotiation process. If there is a sudden flock of
re-negotiation requests due to reduction in Bp(g), it is likely

that abnormally high channel contention has occurred. Subse-
quently, the bandwidth manager switches into policing mode
to monitor the activity of the network. It may be that the chan-
nel contention is due to a sudden increase in physical errors
or it may be that it is due to a malicious or unmanaged flow.
The policing scheme can identify which of the above is the
cause. It could also happen that the unreliable subnet broad-
cast reply message did not reach a particular RA, so a flow
is continuing to transmit packets faster than its re-allotted rate.

3. Experimental results

We evaluate the performance of our Admission Control and
Dynamic Bandwidth Management system using both a proto-
type testbed as well as simulations using the ns-2 simulator.
We used our testbed when evaluating the performance of a
flow in the presence of both physical channel errors caused by
fading and interference effects as well as medium contention
from two other active stations, because there is no way to set
up physical obstacles such as walls, ceilings and doors that
cause signal weakening in ns-2. We used ns-2 simulations to
evaluate the performance of the system when there is heavy
medium contention due to the presence of a large number of
active stations.

3.1. Simulation experiments

For experiments with large numbers of nodes (�5 nodes)
and flows, we used the ns-2 simulator. We compared
the performance of an Admission Control and Bandwidth
Management-enhanced IEEE 802.11 network (henceforth
called “enhanced IEEE 802.11 scheme”) with an IEEE 802.11
network without bandwidth management (henceforth called
“base IEEE 802.11 scheme”). We used a 170 m × 170 m net-
work area and the transmission range of each node was 250 m.
Hence, the entire network area falls within every node’s trans-
mission range. The maximum theoretical channel capacity
was 2 Mbps. We used the random waypoint mobility model
with moderate node speeds in our simulations.

3.1.1. UDP throughput performance
Our first simulation scenario consisted of a 20-node network
with 10 flows. Each flow had a minimum bandwidth require-
ment of 100 Kbps and a maximum bandwidth requirement
of 200 Kbps, which are typical of an audio streaming appli-
cation. All the 10 flows used 512 byte packets. The sim-
ulation ran for 600 seconds. The transmission rate used by
our scheme at any instant was determined using the method
described in section 2.3. The transmission rate used in the
base IEEE 802.11 scheme was a constant set to the maximum
requested rate of the CBR flow, as would be the case in an
unmanaged application. The RA’s inter-update interval was
100 packets and its perceived bandwidth variation-tolerance
threshold δ = 15%, by default.

Figure 9(a) is a plot of number of packets successfully
transmitted over every 1 second interval for each of the 10
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(a) Base IEEE 802.11.

(b) Enhanced IEEE 802.11.

Figure 9. Comparative throughput performance of base and enhanced IEEE
802.11 for 10-flow scenario.

flows using the base IEEE 802.11 scheme. Figure 9(b) is the
same plot using the enhanced IEEE 802.11 scheme. Note that
in our scheme two flows needed to be cut-off in mid-operation
so that other flows’ minimum CTP requirements are not vio-
lated. One of these is cut-off at time 149 seconds and the other
at time 264 seconds. These times indicate the respective first
occasions when the flows in question requested a minimum
CTP that could not be supported. When a new flow is admit-
ted, contention increases for all the existing flows. In general,
the flow that notices an “unacceptably” poor channel qual-
ity and “complains” first is dropped. Alternate flow dropping
strategies can also be employed, such as dropping the flow
last admitted. Pricing could also pay a role here: the flow
paying the least can be dropped.

It is clearly evident from the plots that our protocol dra-
matically improves throughput fairness. In the base IEEE
802.11 scheme, flows often fall far below their minimum
bandwidth requirement over the 1 second measurement in-
terval, resulting in a chaotic plot. Using our scheme, flows
almost never fall below their minimum bandwidth require-
ment shown with the horizontal line at 24 packets per second.
(100 Kbps/4096 bit packets is approximately 24 packets per
second.) Even when they do, it is only by a small amount.
Our scheme thus ensures that the minimum bandwidth re-
quirements of the flows are met with a far higher probability
than the base IEEE 802.11 scheme. Figure 10 is a 100-second
snapshot from the combined plot of figures 9(a) and 9(b) that
shows the comparative behavior of a single flow (flow 1).

Figure 10. Comparative behavior of a single flow over base 802.11 versus
enhanced 802.11.

(a) Without smoothing.

(b) With smoothing.

Figure 11. Perceived bandwidth and re-negotiations corresponding to its vari-
ation.

Figure 11(a) shows the variation of perceived bandwidth
for one of the flows in the above experiment as measured by
its TBE at the MAC layer. The superimposed stepwise curve
shows the bandwidth last used for re-negotiation in the above
experiment. Recall that δ = 15%. We also experimented with
smoothed perceived bandwidth estimates, which reduced the
overhead of re-negotiation frequency. Figure 11(b) is a plot
of a running average of the measured perceived bandwidth
with exponential decay, which is used for smoothing of the
estimate. The smoothed estimate falls as contention increases
and rises when the two flows are dropped and contention de-
creases. Other methods to reduce re-negotiation overhead are
described in the next subsection.

In section 1, we mentioned that improving fairness is es-
sential for providing minimum throughput guarantees to wire-
less multimedia applications. The key factor enabling our
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scheme to provide minimum bandwidth requirement guar-
antees with a high probability, is its improved fairness. No
flow takes up excess bandwidth during a particular interval
thereby depriving another flow of bandwidth and resulting in
a large throughput discrepancy (i.e., poor fairness) between
the flows. Our scheme also reduces jitter in throughput as
compared to base IEEE 802.11. Throughput jitter is the dif-
ference in throughput observed over two consecutive same-
sized time intervals. It should be as low as possible for a CBR
flow. We use 1 second time intervals. We thus designate fair-
ness and throughput jitter as the key performance measures
that characterize the performance of our system. The better
these measures, the higher the probability of the flows meet-
ing their minimum bandwidth requirements.

While our scheme focuses on ensuring that flows receive
their minimum throughput, the delay and delay jitter are
also improved as a by-product of our bandwidth management
scheme. Since we co-operatively control the sending rate of
the flows, we observe a negligible packet loss rate when using
our scheme. Due to the rate control, queue length is uniformly
short, queuing delay is small, and congestion loss is avoided.
Since contention is uniformly low, delay jitter is also im-
proved. With base IEEE 802.11, however, since the transmis-
sion rate is set to the maximum, a 33% packet loss rate results
due to congestion and the resultant queue overflow. When
using our scheme without perceived bandwidth smoothing,
each flow re-negotiates its allotted CTP once every 14 sec-
onds on average. In section 3.2.2, we determine that each of
these re-negotiations can take upto 60 ms in the presence of
contention. This does not affect the flow too much because it
continues sending at a rate dictated by the previously allotted
CTP and current value of Bp(f ) during this interval. It does
however represent a small amount of network traffic over-
head. The mean throughput of an active flow for our scheme
in the above scenario is 8% lower than that of an active flow in
base IEEE 802.11. We believe that this lower mean through-
put is a small price to pay for the vastly improved stability
in throughput. The latter property is essential for multimedia
applications. In the next subsection, we will discuss the rea-
sons for throughput deterioration and present mechanisms to
reduce the flow-initiated re-negotiation overhead.

3.1.2. Overhead for UDP experiments
There exists a trade-off between network traffic overhead and
performance in terms of fairness and jitter. We need to be able
to quantify the fairness and throughput jitter so that we can
measure how much they are affected when we try to reduce
overhead.

In our simulations, we measure the number of packets of
each flow transmitted over each 1 second interval in the 600
second run. Let us denote the number of packets transmit-
ted by flow f over second i as N

f
i . Let the average over all

flows of number of packets transmitted in second i be denoted
as N̂i . Let the set of active flows, i.e., flows that have been es-
tablished but not yet torn down or cut-off, during second i

be A. We only measure throughput per second for the dura-

(a) Base IEEE 802.11.

(b) Enhanced IEEE 802.11.

Figure 12. Comparative throughput performance of base and enhanced IEEE
802.11 for 3-flow scenario with identical bandwidth requirements.

tion in which all flows are active together. Assume that the
number of seconds for which the measurement is done is n.

We define a fairness metric FM = ∑
f∈A|Nf

i − N̂i |/‖A‖.
We also define a throughput jitter metric for a flow f , JMf =
∑n−1

i=1 |Nf
i − N

f

i+1|/(n − 1). The overall jitter metric JM is
the mean of the JMf ’s, i.e., JM = ∑

f∈AJMf /‖A‖.
For the experiments in this subsection, we use a differ-

ent network scenario in which there are 6 nodes in the ns-
2-simulated wireless network and 3 flows. The flows each re-
quire a minimum throughput of 200 Kbps (approximately 48
packets/sec.) and a maximum throughput of 600 Kbps. We
ran this simulation scenario for a duration of 300 seconds. All
other simulation parameters exactly remain the same from the
previous subsection. We used the period when all three flows
are active for all our measurements.

Figures 12(a) and 12(b) show the number of packets trans-
mitted over every 1 second for base IEEE 802.11 and en-
hanced 802.11, respectively. Once again, it is evident from
the plots that our scheme performs better in terms of both fair-
ness and throughput jitter. However, we apply our metric to
determine exactly how much our scheme improves these per-
formance measures. We obtained a value of FM = 6.72 pack-
ets for base IEEE 802.11 versus FM = 4.06 packets for our
scheme. (Lower FM means better fairness.) We also obtained
JM = 8.80 packets for base IEEE 802.11 vs. a JM = 4.93
packets for our scheme. (Lower JM means lower through-
put jitter.) We conclude that for this particular scenario, our
scheme results in a 60–80% improvement in performance.
Each flow in our scheme requests a re-negotiation of CTP
once every 7 seconds, without perceived bandwidth smooth-
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Table 2
Effect of Bp(f ) inter-update period on performance and overhead.

Inter-update period FM JM Overhead
(pkts.) (pkts.) (pkts.) (requests/flow/sec.)

50 3.62 4.37 0.5
100 4.06 4.66 0.143
150 4.15 4.93 0.059
200 4.18 5.10 0.019

ing. This is lower than the 14 seconds for the scenario in the
previous section because the transmission rate is higher and
hence the 100-packet inter-update interval is reached faster.

As in the case of the scenario in the previous subsection,
there is a 28% packet drop rate in the case of base IEEE
802.11, but negligible drop rate using our scheme. Also as
in the previous scenario, the mean throughput of base IEEE
802.11 is 15% higher during the period under measurement
(all 3 flows are active) than our scheme. This is because of
three reasons: (a) the flows are pumping data into the net-
work as fast as possible in order to get as much throughput as
they can in the base IEEE 802.11 scheme while we are using
rate control, (b) our TBE is configured to return a conserva-
tive estimate for Bp(f ), and (c) in the Dynamic Bandwidth
Management scheme, the re-negotiation messages between
the various RAs and the BM consume some network band-
width.

The conservative Bp(f ) estimate was used to minimize
packet drop rate. The cost of using such a conservative esti-
mate is that our enhanced IEEE 802.11 scheme under-utilizes
the network. Mean throughput is less than it would be under
full network utilization. However, the TBE’s estimate can be
suitably tuned so that throughput of our scheme approaches
that of the base IEEE 802.11 scheme and network utilization
increases. On the other hand, this will also increase the packet
drop rate of our scheme and thereby degrade performance as
packets are dropped randomly from flows. So, there exists a
trade-off between throughput and packet drop rate.

In addition to the perceived bandwidth smoothing de-
scribed in the previous section, we now discuss two other
methods to minimize re-negotiation overhead and hence the
network bandwidth re-negotiation consumes. One method is
to increase the inter-update period between successive per-
ceived bandwidth updates from the TBE to the RA. Recall
that we use 100 packets as the default inter-update interval
in our experiments. Table 2 shows how overhead and perfor-
mance vary with different inter-update intervals. As the inter-
update interval increases, some changes in perceived band-
width go undetected and cannot be responded to. Hence, the
fairness and throughput jitter worsen while the overhead im-
proves. The overhead is measured as the frequency of re-
negotiation requests per flow. The threshold tolerance to per-
ceived bandwidth changes was set at the default of δ = 15%
for this experiment.

The other method to reduce re-negotiation overhead is
to increase the tolerance to changes in perceived bandwidth
Bp(f ). Recall that we define significant change as a δ = 15%
change in perceived bandwidth. If we define significant

Table 3
Effect of various Bp(f ) variation tolerance levels δ on performance and over-

head.

Tolerance level FM JM Overhead
(%) (pkts.) (pkts.) (requests/flow/sec.)

10 3.22 4.36 0.333
15 4.06 4.66 0.143
20 4.89 5.19 0.056
25 5.77 5.37 0.026

change as, say, a δ = 25% change, then we can reduce
re-negotiation overhead because the RA now waits longer
and tolerates more Bp(f ) fluctuation before initiating re-
negotiation. Again, this worsens the performance of the sys-
tem because fidelity to bandwidth variations is reduced. Ta-
ble 3 shows how overhead and performance vary with differ-
ent levels of tolerance to Bp(f ) variation. The inter-update
interval was set to 100 packets for this experiment. Tables 2
and 3 both show that for a small price in terms of perfor-
mance, we can obtain large gains in overhead reduction.

3.1.3. Additional UDP performance results
In this section, we present results for two additional scenar-
ios: (a) when the flows have different minimum bandwidth
requirements and (b) when the arrival time of the flows is
staggered. We use the 6-node, 3-flow scenario used in the
previous section, with the default perceived bandwidth toler-
ance of δ = 15% and the default inter-update interval of 100
packets.

Figure 13 shows the comparative base IEEE 802.11 and
enhanced IEEE 802.11 throughput performance when the 3
flows each have different minimum bandwidth requirements.
The minimum requirements of the 3 flows are 100 Kbps,
200 Kbps and 400 Kbps, respectively. The maximum band-
width requirement, 600 Kbps, is the same for all 3 flows.
The plots show that while no guarantee can be made with
base IEEE 802.11, we can make coarse guarantees with our
scheme.

While in all our previous scenarios, all participating flows
started at around the same time, figure 14 shows the through-
put performance of the enhanced IEEE 802.11 scheme when
the start times are staggered. All simulation parameters are
identical to those in section 3.1.2, except the staggered start
times and the length of the simulation run, which is set to
200 seconds. The bandwidth requirements are identical for
all 3 flows, as in section 3.1.2. This plot is similar to figure 1
from [5] and figure 11 from [2], which were for a base-station
network with centralized scheduling. We have produced a
similar effect for a single-hop ad hoc network that uses the
IEEE 802.11 protocol’s DCF.

3.1.4. TCP experiments
So far our simulation experiments have focused on multime-
dia applications and UDP flows. In this section we investi-
gate the behavior of TCP flows and their interactions with the
BM scheme. To this end, we simulate three TCP flows, each
running between different nodes, in a single-hop ad hoc net-
work managed by a BM, i.e., using enhanced IEEE 802.11.
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(a) Base IEEE 802.11.

(b) Enhanced IEEE 802.11.

Figure 13. Comparative throughput performance of base and enhanced IEEE
802.11 for 3-flow scenario with different minimum bandwidth requirements.

Figure 14. Enhanced IEEE 802.11 performance for 3-flow scenario with
staggered start times.

TCP traffic is best-effort and elastic, so pmin(f ) is set to zero
and pmax(f ) to 100%. As mentioned in section 2.3, different
Bp(f ) values derived from the same normalized bandwidth
estimate are used for data and acknowledgements, due to their
different packet sizes, when obtaining their respective CTP
requirements. The size of the network interface queue is 50
packets, and the maximum congestion window size for a TCP
flow is 128 packets. The experiment lasts 200 seconds. While
for the UDP experiments, rate-control using the RA is done
in the UDP application, in the TCP experiments, queue-based
rate control is done per-node at the network interface queue.
The interface queue only releases packets at the rate allotted
by the BM.

(a) Base IEEE 802.11.

(b) Enhanced IEEE 802.11.

Figure 15. TCP congestion window behavior when interface queue size is
smaller than congestion window limit.

Figure 15(b) shows the congestion window sizes of the
three TCP flows, in the enhanced IEEE 802.11 case. They
each expose the same behavior: the window size increases
each time to 50 packets, cuts back and the cycle repeats. This
behavior is due to TCP’s additive-increase multiplicative-
decrease (AIMD) congestion control algorithm, where the
congestion window size will decrease only when a packet loss
event is encountered. Packet loss occurs only when the queue
overflows, because of co-ordinated channel access ensured by
the RA. Queue overflow occurs only when congestion win-
dow exceeds the maximum queue size. A TCP flow will keep
increasing its congestion window size up to the queuing limit.
In fact, this “probing” of congestion window size is TCP’s
way of aligning itself to the available bandwidth of the net-
work. Without knowing the BM’s allocated rate for this node,
a TCP flow has to fill the router queue before it cuts back
its congestion window size, which incurs unnecessary long
queuing delay for the packets. However, this behavior does
not forfeit its allocated bandwidth, as TCP always keeps the
queue non-empty.

As comparison, we run the same TCP experiments over
a single-hop ad hoc network without the bandwidth manage-
ment, i.e., using base IEEE 802.11. Figure 15(a) shows that
the congestion window sizes of the three flows follow the
same “saw-tooth” pattern as in figure 15(b). But the maxi-
mum window size that each flow can reach may not be ex-
actly the same, because of the unfairness in the channel ac-
cess, and hence in time to first packet loss, for each queue.
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Table 4
Performance and throughput loss comparison using TCP with interface queue

size smaller than congestion window limit.

Scheme FM JM Pkts. T’put
(pkts.) (pkts.) dropped (total acks recvd.)

Base IEEE 802.11 6.70 9.40 565 45065
Enhanced IEEE 802.11 2.12 2.39 33 35698

Figure 16. TCP congestion window behavior when interface queue size is
larger than congestion window limit.

Unmanaged release of packets from the queue results in un-
equal congestion window growth and causes unfairness. As
a result, the fairness metric (FM) and jitter metric (JM) of
the flows deteriorates, and the number of dropped packets are
significantly larger than that in the BM managed scheme, as
shown in table 4. The total number of dropped packets is
greater in the base IEEE 802.11 case because an entire win-
dow of packets may be dropped at a time before TCP resets
its congestion window size, whereas in the enhanced IEEE
802.11 case, a single packet loss results in window reset. The
overall throughput of the TCP flows in the enhanced IEEE
802.11 case, however, is smaller than that in the base IEEE
802.11 scenario. This is similar to the result for UDP flows
as shown in section 3.1.2. We also experimented with less
conservative Bp(f ) estimates, which resulted in a decrease
in throughput disparity between the base and enhanced IEEE
802.11 cases, at the cost of some performance deterioration.
Thus the Bp(f ) values can be used to trade-off performance
(as measured by the FM and JM) and throughput loss, as with
the UDP experiments.

Another scenario of running TCP over BM is setting each
node’s interface queuing limit to be larger (150 packets) than
the congestion window limit (128 packets) of a TCP flow. We
run the experiments for this scenario for 150 seconds. TCP’s
congestion window size can never reach the maximum inter-
face queue size, and hence there is no packet loss as result of
queue overflow. In this case, we can expect TCP’s congestion
window size to stay at its maximum limit without fluctuat-
ing, because there is no packet loss at the MAC layer either.
Figure 16 shows this behavior. Note that the slow conver-
gence speed of TCP’s congestion window size does not im-
pact its throughput efficiency, as the interface queue is kept
non-empty at all times. However, in order to minimize queu-
ing delay, it is advisable to set TCP’s congestion window
limit to a small value when running over a bandwidth man-

Table 5
Performance and throughput loss comparison using TCP with interface queue

size larger than congestion window limit.

Scheme FM JM Pkts. T’put
(pkts.) (pkts.) dropped (total acks recvd.)

Base IEEE 802.11 6.53 8.50 0 33804
Enhanced IEEE 802.11 2.51 2.72 0 26577

Figure 17. Single-hop ad hoc network testbed.

aged network. Table 5 compares the fairness performance and
throughput loss for the base and enhanced IEEE 802.11 sce-
narios for the case where congestion window limit is less than
the interface queue size. From the plot in figure 16, it is ob-
vious that the throughput disparity, as a percentage, between
the base and enhanced IEEE 802.11 cases in this scenario,
decreases with time.

3.2. Testbed experiments

We used our testbed experiments to evaluate the throughput
performance and the request-reply delay overhead in the pres-
ence of both physical channel errors as well as contention
from a limited number of active stations. Our testbed (see fig-
ure 17) consisted of 3 IBM ThinkPad laptops, each equipped
with an ORiNOCO PCMCIA 802.11b wireless card config-
ured in peer-to-peer ad hoc mode.

We used a rate-adaptive CBR audio streaming application
over UDP in our testbed experiments. The audio streaming
application could operate at 5 different QoS levels between
32 Kbps and 256 Kbps depending on the available channel
capacity perceived by the TBE. At the maximum QoS (256
Kbps), all audio samples were transmitted while at lower lev-
els fewer samples were sent, and the audio was reconstructed
through interpolation at the receiver. The purpose of the test-
bed experiments was to study the feasibility of our scheme in
a testbed with a realistic single-hop ad hoc network environ-
ment. The RA in the application and the TBE communicated
via the /proc interface.
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Figure 18. Indoor testbed experiment plot.

3.2.1. Throughput performance
We conducted two throughput experiments, one indoors and
one outdoors. In each case, we started some unmanaged ping
sessions, as shown in figure 17, to bring about contention.
The ping ICMP packet transmission on the channel also ar-
tificially reduced its bandwidth so that the bandwidth per-
ceived by the audio streaming application actually fluctuated
between 32 and 256 Kbps depending on the physical errors.
In the absence of the pings, the reduction in perceived band-
width brought about by the physical errors alone was not suf-
ficient to cause the audio streaming application to adapt its
quality. The physical errors, at their worst, reduced the per-
ceived bandwidth by a few hundreds of Kbps. Given a 2 Mbps
channel and an application with a peak rate of 256 Kbps,
these errors thus had no effect on the application. Its qual-
ity level did not fluctuate. To bring about adaptation on the
part of the application, the physical errors had to vary the
available channel capacity for the application between 32 and
256 Kbps. Hence, we used the pings to contend with the ap-
plication for the channel and thus artificially reduce the avail-
able channel capacity it perceives to the necessary range. The
pings brought down the available channel capacity to around
500 Kbps so that fading and interference errors could then re-
duce it further below the 256 Kbps threshold needed for the
application to adapt.

Figure 18 shows the throughput performance for the in-
doors scenario. On the x-axis is time in 45 second units. The
y-axis shows the adaptation of the audio streaming applica-
tion, between 32 and 256 Kbps, to the change in available
channel capacity. The channel bit-rate was fixed at 2 Mbps
at the network cards. The perceived bandwidth variation-
tolerance was set at δ = 15% and the inter-update interval
was 100 packets. The BM was located on the same machine
as the sender, 12.0.0.11.

The flurry of re-negotiations with the BM on the left-
hand side of the plot corresponds to our moving the sender
(12.0.0.11) down to a secluded portion of the basement of the
building while the receiver (12.0.0.12) and the third laptop
(12.0.0.10) remained in the lab on the second floor. While
in the basement, the sender moved around, down narrow cor-
ridors, over staircases and through fire doors. As the level
of fading and interference changed drastically, the perceived
channel capacity also changed drastically and hence the flurry
of channel time re-negotiations. The contending pings also
were affected by the physical errors and produced variable
contention, thus inducing even greater instability in the appli-
cation QoS.

We then brought the sender back to the second floor, the
perceived bandwidth returned to around 500 Kbps, and the
quality of the audio returned to its maximum. We then placed
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Figure 19. Outdoor testbed experiment plot.

the sender and receiver next to each other so that physical er-
rors were rare. The 3 dips in the graph on the right-hand side
correspond to experiments with no physical errors, but 3 dif-
ferent levels of contention due to 3 different ping rates. All
3 of these ping rates were greater than those used for the first
part of this experiment. In the first part, the pings reduced the
available channel capacity to around 500 Kbps and the phys-
ical errors dragged it further down. In this part there were
no physical errors, but the larger ping rates themselves took
the available channel capacity below 256 Kbps, causing re-
negotiation from the application. The purpose of this experi-
ment with no physical errors was to demonstrate the effect of
the contending ping sessions: they produce a reduction in the
perceived available channel capacity of the managed audio
streaming application, in a controlled fashion, and the reduc-
tion is a constant one.

Next, we performed another set of experiments outdoors.
The channel bit-rate was set at 5.5 Mbps for this experiment.
As before, we had pings produce contention to artificially re-
duce available channel capacity for the audio streaming flow.
Other parameters such as the value of δ and the inter-update
interval were the same as in the indoor experiment. In the
outdoor scenario, we used only two of the laptops. The BM
was once again co-located with the sender, 12.0.0.11. At

the start of the experiment, the sender 12.0.0.11 and the re-
ceiver 12.0.0.12 were next to each other on the sidewalk of
a street. Then, keeping the receiver 12.0.0.12 stationary on
the sidewalk, the sender 12.0.0.11 was moved away by a per-
son walking at a normal pace down the street on the sidewalk.
When the sender was around 150 meters away, the available
channel capacity perceived by the audio flow began fluctu-
ating due to signal fading effects. This resulted in a flurry of
re-negotiations shown in figure 19. The sender then wandered
for a while around the point 150 meters away before return-
ing to the starting position. As the sender moved closer to the
receiver, at one point, the available channel capacity returned
to its ping-induced constant level and the application returned
to its highest quality level.

We repeated our experiments using ARS (auto rate selec-
tion) feature of the wireless card, instead of using constant
rates 2 Mbps and 5.5 Mbps mentioned above. Our results
were very similar when using ARS as compared to when
using fixed rates. We also experimented with the BM at
the destination node, with no change in performance. The
request-reply delay overhead for re-negotiation requests does
not affect performance much because the application paral-
lelly continues transmitting at its previously allotted CTP un-
til the re-negotiation reply arrives, a few milliseconds later.
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3.2.2. Request-reply delay
The request-reply delay is the time delay between the send-
ing of a request message and the receipt of a reply mes-
sage. All our control messages had a 32-byte payload. This
exchange of messages occurs both during flow establishment
as well as when perceived bandwidth changes significantly.
We set the bandwidth of the network to be 5.5 Mbps, as in
the case of the outdoor experiment. We used all 3 laptops for
the request-reply delay experiments, with 12.0.0.11 being the
sender, 12.0.0.12 being the receiver and the BM being located
on 12.0.0.10. We found that, if there is no contention, each
request-reply round-trip took 23 ms on average. In the pres-
ence of ping-induced contention, each request-reply round-
trip took 61 ms on average. Flow establishment occurs only
once per flow, obviously, and if the perceived bandwidth does
not change much, then the 20–60 ms request-reply delay is a
small one.

4. Related work

In this section we discuss two areas of related work: (a) cen-
tralized channel allocation, and (b) distributed fair scheduling
in single-hop and multi-hop wireless networks.

In wireless network environment, past research has fo-
cused on flow scheduling at the access-point to achieve cer-
tain fairness criteria between flows competing for the wireless
channel [5,7,15]. Bianchi et al. [5] proposed the “utility fair”
criteria in bandwidth allocation, where each user’s bandwidth
is allocated in such a way that their individual utility is equal-
ized. It assumes that the central manager at the base station
has exact knowledge of the asymptotic utility curves of all the
applications, which might be difficult to obtain. The flows in
our scheme can specify a simple linear utility curve using just
two points. In our scheme, the BM guarantees a minimum
bandwidth for each flow, and allots the rest of the channel
capacity in a max–min fashion to each flow up to its maxi-
mum request. We believe our approach is simple yet effective
in a smart-room where random users walk up to the room and
share the wireless channel. Another difference is that we use a
distributed peer-to-peer transmission (details in section 2.1),
rather than an access-point model, in allocating the channel
resources.

Another wireless network channel allocation scheme is the
effort-limited fair scheduling by Eckhardt and Steenkiste [9].
It adjusts the “air time” of a flow to meet its minimum band-
width requirement in response to channel error rates, only up
to a certain factor (called the “power factor”), to avoid starv-
ing other best-effort flows. The usage of air time to measure
the bandwidth requirement of a flow is similar to the “chan-
nel time” in our scheme. However, it is unclear how the power
factor can be chosen for different flows because this will give
preferential treatment to certain users. In our scheme, when
a flow’s minimum requirement cannot be satisfied, the flow
is simply rejected. This creates incentive for the users to set
a minimum channel time requirement as small as possible to
reduce the possibility of being denied access to the channel.

In [25], the authors propose an admission control scheme
for a peer-to-peer, single-hop, ad hoc wireless network model
similar to the one we have used. Their scheme requires the use
of special probe packets to obtain the service curve, which is
an estimate of network load. Using the service curve, one-
time admission control is performed. In contrast, our scheme
estimates network load using the data packets of the connec-
tion itself. Moreover, we perform dynamic bandwidth re-
negotiation over the course of the connection, in addition to
admission control at flow startup.

Another area of related work is the distributed weighted
fair scheduling (DWFS) schemes in single-hop and multi-
hop wireless networks [3,13,18,19,24]. As mentioned before,
our bandwidth management scheme is required to assist the
DWFS scheme when it is available. At the same time, as
shown in our experiments, our scheme also works well with-
out any underlying DWFS schemes. This is a very important
feature because today’s IEEE 802.11 network interface card
only implements the standard DCF MAC protocol without
any DWFS extensions. Therefore, our bandwidth manage-
ment scheme, of which we already have a working prototype,
is highly deployable in today’s smart-rooms.

5. Conclusion

In this paper, we presented an Admission Control scheme
to determine what fraction of channel time each flow in
a single-hop ad hoc wireless network receives. To this
end, we mapped the bandwidth requirement at the applica-
tion/middleware layer to a channel time proportion (CTP)
requirement at the MAC layer. We presented an applica-
tion/middleware layer rate control mechanism to ensure that
flows conform to their respective CTPs. Since one-time ad-
mission control is not sufficient to handle the changes in net-
work and flow characteristics, we also presented a Dynamic
Bandwidth Management system that adapts the flows’ respec-
tive CTPs during the course of their operation. The adaptation
can be a response to change in the network environment or
change in a particular flow’s traffic characteristics. The sim-
plicity and robustness of our system enables the incorporation
of elegant pricing and security features into it. We have devel-
oped a prototype implementation of the system and we have
used this implementation in a testbed, in addition to extensive
simulations, to demonstrate the feasibility and utility of our
scheme.
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