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ABSTRACT

Dynamic Bayesian Networks:

Representation, Inference and Learning

by

Kevin Patrick Murphy

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

Modelling sequential data is important in many areas of science and engineering. Hidden Markov models

(HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For

example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been

used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs

and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs

by allowing the state space to be represented in factored form, instead of as a single discrete random variable.

DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian.

In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact

and approximate inference in DBNs, and how to learn DBN models from sequential data.

In particular, the main novel technical contributions of this thesis are as follows: a way of representing

Hierarchical HMMs as DBNs, which enables inference to be done in O(T ) time instead of O(T 3), where

T is the length of the sequence; an exact smoothing algorithm that takes O(log T ) space instead of O(T );

a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds

on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored

frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of

applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization

and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety

of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation

of the field of sequential data modelling.
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Chapter 1

Introduction

1.1 State-space models

Sequential data arises in many areas of science and engineering. The data may either be a time series,

generated by a dynamical system, or a sequence generated by a 1-dimensional spatial process, e.g., bio-

sequences. One may be interested either in online analysis, where the data arrives in real-time, or in offline

analysis, where all the data has already been collected.

In online analysis, one common task is to predict future observations, given all the observations up to

the present time, which we will denote by y1:t = (y1, . . . , yt). (In this thesis, we only consider discrete-time

systems, hence t is always an integer.) Since we will generally be unsure about the future, we would like to

compute a best guess. In addition, we might want to know how confident we are of this guess, so we can

hedge our bets appropriately. Hence we will try to compute a probability distribution over the possible future

observations; we denote this by P (yt+h|y1:t), where h > 0 is the horizon, i.e., how far into the future we

want to predict.

Sometimes we have some control over the system we are monitoring. In this case, we would like to

predict future outcomes as a function of our inputs. Let u1:t denote our past inputs, and ut+1:t+h denote our

next h inputs. Now the task is to compute P (yt+h|u1:t+h, y1:t).
“Classical” approaches to time-series prediction use linear models, such as ARIMA, ARMAX, etc. (see

e.g., [Ham94]), or non-linear models, such as neural networks (either feedforward or recurrent) or decision

trees [MCH02]. For discrete data, it is common to use n-gram models (see e.g., [Jel97]) or variable-length

Markov models [RST96, McC95].

There are several problems with the classical approach. First, we must base our prediction of the future

on only a finite window into the past, say y
t−ℓ:t, where ℓ ≥ 0 is the lag, if we are to do constant work

per time step. If we know that the system we are modelling is Markov with an order ≤ ℓ, we will suffer

no loss of performance, but in general the order may be large and unknown. Recurrent neural nets try to

overcome this problem by using internal state, but they are still not able to model long-distance dependencies

[BF95]. Second, it is difficult to incorporate prior knowledge into the classical approach: much of our

knowledge cannot be expressed in terms of directly observable quantities, and black-box models, such as

neural networks, are notoriously hard to interpret. Third, the classical approach has difficulties when we have

multi-dimensional (multi-variate) inputs and/or outputs. For instance, consider the problem of predicting

(and hence compressing) the next frame in a video stream using a neural network. Actual video compression

schemes (such as MPEG) try to infer the underlying “cause” behind what they see, and use that to predict the

next frame. This is the basic idea behind state-space models, which we discuss next.

In a state-space model, we assume that there is some underlying hidden state of the world that generates

the observations, and that this hidden state evolves in time, possibly as a function of our inputs.1 In an online

1The term “state-space model” is often used to imply that the hidden state is a vector in IRK , for some K; I use the term more

generally to mean a dynamical model which uses any kind of hidden state, whether it is continuous, discrete or both. e.g., I consider

HMMs an example of a state-space model. In contrast to most work on time series analysis, this thesis focuses on models with discrete

and mixed discrete-continuous states. One reason for this is that DBNs have their biggest payoff in the discrete setting: combining

multiple continuous variables together results in a polynomial increase in complexity (see Section 2.4.2), but combining multiple discrete
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setting, the goal is to infer the hidden state given the observations up to the current time. If we letXt represent

the hidden state at time t, then we can define our goal more precisely as computing P (Xt|y1:t, u1:t); this is

called the belief state.

Astrom [Ast65] proved that the belief state is a sufficient statistic for prediction/control purposes, i.e.,

we do not need to keep around any of the past observations.2 We can update the belief state recursively using

Bayes rule, as we explain below. As in the case of prediction, we maintain a probability distribution over Xt,

instead of just a best guess, in order to properly reflect our uncertainty about the “true” state of the world.

This can be useful for information gathering; for instance, if we know we are lost, we may choose to ask for

directions.

State-space models are better than classical time-series modelling approaches in many respects [Aok87,

Har89, WH97, DK00, DK01]. In particular, they overcome all of the problems mentioned above: they do

not suffer from finite-window effects, they can easily handle discrete and multi-variate inputs and outputs,

and they can easily incorporate prior knowledge. For instance, often we know that there are variables that

we cannot measure, but whose state we would like to estimate; such variables are called hidden or latent.

Including these variables allows us to create models which may be much closer to the “true” causal structure

of the domain we are modelling [Pea00].

Even if we are only interested in observable variables, introducing “fictitious” hidden variables often

results in a much simpler model. For example, the apparent complexity of an observed signal may be more

simply explained by imagining it is a result of two simple processes, the “true” underlying state, which

may evolve deterministically, and our measurement of the state, which is often noisy. We can then “explain

away” unexpected outliers in the observations in terms of a faulty sensor, as opposed to strange fluctuations

in “reality”. The underlying state may be of much lower dimensionality than the observed signal, as in the

video compression example mentioned above.

In the following subsections, we discuss, in general terms, how to represent state-space models, how to

use them to update the belief state and perform other related inference problems, and how to learn such mod-

els from data. We then discuss the two most common kinds of state-space models, namely Hidden Markov

Models (HMMs) and Kalman Filter Models (KFMs). In subsequent chapters of this thesis, we will discuss

representation, inference and learning of more general state-space models, called Dynamic Bayesian Net-

works (DBNs). A summary of the notation and commonly used abbreviations can be found in Appendix D.

1.1.1 Representation

Any state-space model must define a prior, P (X1), a state-transition function, P (Xt|Xt−1), and an observa-

tion function, P (Yt|Xt). In the controlled case, these become P (Xt|Xt−1, Ut) and P (Yt|Xt, Ut); we allow

the observation to depend on the control so that we can model active perception. For most of this thesis, we

will omit Ut from consideration, for notational simplicity.

We assume that the model is first-order Markov, i.e., P (Xt|X1:t−1) = P (Xt|Xt−1); if not, we can

always make it so by augmenting the state-space. For example, if the system is second-order Markov, we just

define a new state-space, X̃t = (Xt,Xt−1), and set

P (X̃t = (xt, xt−1)|X̃t−1 = (x′t−1, xt−2)) = δ(xt−1, x
′
t−1)P (xt|xt−1, xt−2).

Similarly, we can assume that the observations are conditionally first-order Markov: P (Yt|Y1:t−1,Xt) =
P (Yt|Xt, Yt−1). This is usually further simplified by assuming P (Yt|Yt−1,Xt) = P (Yt|Xt). These condi-

tional independence relationships will be explained more clearly in Chapter 2.

We assume that the transition and observation functions are the same for all time; the model is said to

be time-invariant or homogeneous. (Without this assumption, we could not model infinitely long sequences.)

If the parameters do change over time, we can just add them to the state space, and treat them as additional

random variables, as we will see in Section 6.1.1.

variables results in an exponential increase in complexity, since the new “mega” state-space is the cross product of the individual

variables’ state-spaces; DBNs help ameliorate this combinatorial explosion, as we shall see in Chapter 2.
2This assumes that the hidden state space is sufficiently rich. We discuss some ways to learn the hidden state space in Chapter 6.

However, learning hidden state representations is difficult, which has motivated alternative forms of sufficient statistics [LSS01].
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Figure 1.1: The main kinds of inference for state-space models. The shaded region is the interval for which

we have data. The arrow represents the time step at which we want to perform inference. t is the current

time, and T is the sequence length. See text for details.

There are many ways of representing state-space models, the most common being Hidden Markov

Models (HMMs) and Kalman Filter Models (KFMs). HMMs assume Xt is a discrete random variable3,

Xt ∈ {1, . . . ,K}, but otherwise make essentially no restrictions on the transition or observation function;

we will explain HMMs in more detail in Section 1.2. Kalman Filter Models (KFMs) assume Xt is a vector

of continuous random variables, Xt ∈ RK , and that X1:T and Y1:T are jointly Gaussian. We will explain

KFMs in more detail in Section 1.3. Dynamic Bayesian Networks (DBNs) [DK89, DW91] provide a much

more expressive language for representing state-space models; we will explain DBNs in Chapter 2.

A state-space model is a model of how Xt generates or “causes” Yt and Xt+1. The goal of inference is

to invert this mapping, i.e., to infer X1:t given Y1:t. We discuss how to do this below.

1.1.2 Inference

We now discuss the main kinds of inference that we might want to perform using state-space models; see

Figure 1.1 for a summary. The details of how to perform these computations depend on which model and

which algorithm we use, and will be discussed later.

Filtering

The most common inference problem in online analysis is to recursively estimate the belief state using Bayes’

rule:

P (Xt|y1:t) ∝ P (yt|Xt, y1:t−1)P (Xt|y1:t−1)

= P (yt|Xt)




∑

xt−1

P (Xt|xt−1)P (xt−1|y1:t−1)





where the constant of proportionality is 1/ct = 1/P (yt|y1:t−1). We are licensed to replace

P (yt|Xt, y1:t−1) by P (yt|Xt) because of the Markov assumption on Yt. Similarly, the one-step-ahead pre-

3In this thesis, all discrete random variables will be considered unordered (cardinal), as opposed to ordered (ordinal), unless otherwise

stated. (For example, Xt ∈ {male, female} is cardinal, but Xt ∈ {low, medium, high} is ordinal.) Ordinal values are sometimes useful

for qualitative probabilistic networks [Wel90].
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diction, P (Xt|y1:t−1), can be computed from the prior belief state, P (Xt−1|y1:t−1), because of the Markov

assumption on Xt.

We see that recursive estimation consists of two main steps: predict and update; predict means computing

P (Xt|y1:t−1), sometimes written as X̂t|t−1, and update means computing P (Xt|y1:t), sometimes written as

X̂t|t. Once we have computed the prediction, we can throw away the old belief state; this operation is

sometimes called “rollup”. Hence the overall procedure takes constant space and time (i.e., independent of t)
per time step.

This task is traditionally called “filtering”, because we are filtering out the noise from the observations

(see Section 1.3.1 for an example). However, in some circumstances the term “monitoring” might be more

appropriate. For example, Xt might represent the state of a factory (e.g., which pipes are malfunctioning),

and we wish to monitor the factory state over time.

Smoothing

Sometimes we want to estimate the state of the past, given all the evidence up to the current time, i.e.,

compute P (X
t−ℓ|y1:t), where ℓ > 0 is the lag, e.g., we might want to figure out whether a pipe broke L

minutes ago given the current sensor readings. This is traditionally called “fixed-lag smoothing”, although

the term “hindsight” might be more appropriate. In the offline case, this is called (fixed-interval) smoothing;

this corresponds to computing P (Xt|y1:T ) for all 1 ≤ t ≤ T .

Smoothing is important for learning, as we discuss in Section 1.1.3.

Prediction

In addition to estimating the current or past state, we might want to predict the future, i.e., computeP (Xt+h|y1:t),
where h > 0 is how far we want to look-ahead. Once we have predicted the future hidden state, we can easily

convert this into a prediction about the future observations by marginalizing out Xt+h:

P (Yt+h = y|y1:t) =
∑

x

P (Yt+h = y|Xt+h = x)P (Xt+h = x|y1:t)

If the model contains input variablesUt, we must specify ut+1:t+h in order to predict the effects of our actions

h steps into the future, since this is a conditional likelihood model.

Control

In control theory, the goal is to learn a mapping from observations or belief states to actions (a policy) so as to

maximize expected utility (or minimize expected cost). In the special case where our utility function rewards

us for achieving a certain value for the output of the system (reaching a certain observed state), it is sometimes

possible to pose the control problem as an inference problem [Zha98a, DDN01, BMI99]. Specifically, we

set Yt+h to the desired output value (and leave Yt+1:t+h−1 hidden), and then infer the values (if any) for

Ut+1, . . . , Ut+h which will achieve this, where h is our guess about how long it will take to achieve the goal.

(We can use dynamic programming to efficiently search over h.) The cost function gets converted into a prior

on the control/input variable. For example, if the prior over Ut is Gaussian,N (Ut; 0,Σ), Ut ∼ N (0,Σ), then

the mode of the posterior P (Ut+1:t+h|y1:t, yt+h, u1:t) will correspond to a sequence of minimal controls

(minimal in the sense of having the smallest possible length, as measured by a Mahalanobis distance using

Σ) which achieves the desired output sequence.

If Ut is discrete, inference amounts to enumerating all possible assignments to Ut+1:t+h, as in a decision

tree; this is called receeding horizon control. We can (approximately) solve the infinite horizon control using

similar methods so long as we discount future rewards at a suitably high rate [KMN99].

The general solution to control problems requires the use of influence diagrams (see e.g., [CDLS99, ch8],

[LN01]). We will not discuss this topic further in this thesis.
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Viterbi decoding

In Viterbi decoding (also called “abduction” or computing the “most probable explanation”), the goal is to

compute the most likely sequence of hidden states given the data:

x∗1:t = arg max
x1:t

P (x1:t|y1:t)

(In the following subsection, we assume that the state space is discrete.)

By Bellman’s principle of optimality, the most likely to path to reach state xt consists of the most likely

path to some state at time t− 1, followed by a transition to xt. Hence we can compute the overall most likely

path as follows. In the forwards pass, we compute

δt(j) = P (yt|Xt = j)max
i
P (Xt = j|Xt−1 = i)δt−1(i)

where

δt(j)
def
= max

x1:t−1

P (X1:t = x1:t−1,Xt = j|y1:t).

This is the same as the forwards pass of filtering, except we replace sum with max (see Section B.2). In

addition, we keep track of the identity of the most likely predecessor to each state:

ψt(j) = arg max
i
P (Xt = j|Xt−1 = i)δt−1(i)

In the backwards pass, we can compute the identity of the most likely path recursively as follows:

x∗t = ψt+1(x
∗
t+1)

Note that this is different than finding the most likely (marginal) state at time t.
One application of Viterbi is in speech recognition. Here, Xt typically represents a phoneme or syllable,

and Yt typically represents a feature vector derived from the acoustic signal [Jel97]. x∗
1:t is the most likely

hypothesis about what was just said. We can compute the N best hypotheses in a similar manner [Nil98,

NG01].

Another application of Viterbi is in biosequence analysis, where we are interested in offline analysis of

a fixed-length sequence, y1:T . Yt usually represents the DNA base-pair or amino acid at location t in the

string. Xt often represents whether Yt was generated by substitution, insertion or deletion compared to some

putative canonical family sequence. As in speech recognition, we might be interested in finding the most

likely “parse” or interpretation of the data, so that we can align the observed sequence to the family model.

Classification

The likelihood of a model,M , is P (y1:t|M), and can be computed by multiplying together all the normalizing

constants that arose in filtering:

P (y1:t) = P (y1)P (y2|y1)P (y3|y1:2) . . . P (yT |y1:T−1) =

T∏

t=1

ct (1.1)

which follows from the chain rule of probability. This can be used to classify a sequence as follows:

C∗(y1:T ) = arg max
C

P (y1:T |C)P (C)

where P (y1:T |C) is the likelihood according to the model for class C, and P (C) is the prior for class C. This

method has the advantage of being able to handle sequences of variable-length. By contrast, most classifiers

work with fixed-sized feature vectors.4

4One could pretend that successive observations in the sequence are iid, and then apply a naive Bayes classifier: P (y1:T |C) =
∏T

t=1 P (yt|C). However, often it matters in what order the observations arrive, e.g., in classifying a string of letters as a word. There

has been some work on applying support vector machines to variable length sequences [JH99], but this uses an HMM as a subroutine.
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Summary

We summarize the various inference problems in Figure 1.1. In Section 3.7, we will show how all of the

above algorithms can be formulated in terms of a set of abstract operators which we will call forwards and

backwards operators. There are many possible implementations of these operators which make different

tradeoffs between accuracy, speed, generality, etc. In Sections 1.2 and 1.3, we will see how to implement

these operators for HMMs and KFMs. In later chapters, we will see different implementations of these

operators for general DBNs.

1.1.3 Learning

A state-space model usually has some free parameters θ which are used to define the transition model,

P (Xt|Xt−1), and the observation model, P (Yt|Xt). Learning means estimating these parameters from data;

this is often called system identification.

The usual criterion is maximum-likelihood (ML), which is suitable if we are doing off-line learning with

large data sets. Suppose, as is typical in speech recognition and bio-sequence analysis, that we have Ntrain

iid sequences, Y = (y1
1:T , . . . y

Ntrain
1:T ), where we have assumed each sequence has the same length T for

notational simplicity. Then the goal of learning is to compute

θ∗ML = arg max
θ
P (Y |θ) = arg max

θ
logP (Y |θ)

where the log-likelihood of the training set is

logP (Y |θ) = log

Ntrain∏

m=1

P (ym
1:T |θ) =

Ntrain∑

m=1

logP (ym
1:T |θ)

A minor variation is to include a prior on the parameters and compute the MAP (maximum a posteriori)

solution

θ∗MAP = arg max
θ

logP (Y |θ) + logP (θ)

This can be useful when the number of free parameters is much larger than the size of the dataset (the prior

acting like a regularizer to prevent overfitting), and for online learning (where at timestep t the dataset only

has size t).
What makes learning state-space models difficult is that some of the variables are hidden. This means

that the likelihood surface is multi-modal, making it difficult to find the globally optimal parameter value.5

Hence most learning methods just attempt to find a locally optimal solution.

The two standard techniques for ML/MAP parameter learning are gradient ascent6, and EM (expectation

maximization), both of which are explained in Appendix C. Note that both methods use inference as a

subroutine, and hence efficient inference is a prerequisite for efficient learning. In particular, for offline

learning, we need need to perform fixed-interval smoothing (i.e., computing P (Xt|y1:T , θ) for all t): learning

with filtering may fail to converge correctly. To see why, consider learning to solve murders: hindsight is

always required to infer what happened at the murder scene.7

For online learning, we can use fixed-lag smoothing combined with online gradient ascent or online EM.

Alternatively, we can adopt a Bayesian approach and treat the parameters as random variables, and just add

them to the state-space. Then learning just amounts to filtering (i.e., sequential Bayesian updating) in the

augmented model, P (Xt, θt|y1:t). Unfortunately, inference in such models is often very difficult, as we will

see.

A much more ambitious task than parameter learning is to learn the structure (parametric form) of the

model. We will discuss this in Chapter 6.

5One trivial source of multi-modality has to do with symmetries in the hidden state-space. Often we can permute the labels of the

hidden states without affecting the likelihood.
6Ascent, rather than descent, since we are trying to maximize likelihood.
7This example is from [RN02].

6



1.2 Hidden Markov Models (HMMs)

We now give a brief introduction to HMMs.8 The main purpose of this section is to introduce notation and

concepts in a simple and (hopefully) familiar context; these will be generalized to the DBN case later.

1.2.1 Representation

An HMM is a stochastic finite automaton, where each state generates (emits) an observation. We will use

Xt to denote the hidden state and Yt to denote the observation. If there are K possible states, then Xt ∈
{1, . . . ,K}. Yt might be a discrete symbol, Yt ∈ {1, . . . , L}, or a feature-vector, Yt ∈ IRL.

The parameters of the model are the initial state distribution, π(i) = P (X1 = i), the transition model,

A(i, j) = P (Xt = j|Xt−1 = i), and the observation model P (Yt|Xt).
π(·) represents a multinomial distribution. The transition model is usually characterized by a conditional

mulitnomial distribution: A(i, j) = P (Xt = j|Xt−1 = i), where A is a stochastic matrix (each row sums

to one). The transition matrix A if often sparse; the structure of the matrix is often depicted graphically,

as in Figure 1.2 which depicts a left-to-right transition matrix. (This means low numbered states can only

make transitions to higher numbered states or to themselves.) Such graphs should not be confused with the

graphical models we will introduce in Chapter 2.

1 2 3 4

Figure 1.2: A left-to-right state transition diagram for a 4-state HMM. Nodes represent states, and arrows

represent allowable transitions, i.e., transitions with non-zero probability. The self-loop on state 2 means

P (Xt = 2|Xt−1 = 2) = A(2, 2) > 0.

If the observations are discrete symbols, we can represent the observation model as a matrix: B(i, k) =
P (Yt = k|Xt = i). If the observations are vectors in IRL, it is common to represent P (Yt|Xt) as a Gaussian:

P (Yt = y|Xt = i) = N (y;µi,Σi)

where N (y;µ,Σ) is the Gaussian density with mean µ and covariance Σ evaluated at y:

N (y;µ,Σ) =
1

(2π)L/2|Σ|
1
2

exp
(
− 1

2 (y − µ)′Σ−1(y − µ)
)

A more flexible representation is a mixture of M Gaussians:

P (Yt = y|Xt = i) =

M∑

m=1

P (Mt = m|Xt = i)N (y;µm,i,Σm,i)

where Mt is a hidden variable that specifies which mixture component to use, and P (Mt = m|Xt = i) =
C(i,m) is the conditional prior weight of each mixture component. For example, one mixture component

might be a Gaussian centered at the expected output for state i and with a narrow variance, and the second

component might be a Gaussian with zero mean and a very broad variance; the latter approximates a uniform

distribution, and can account for outliers, making the model more robust.

In speech recognition, it is usual to assume that the parameters are stationary or time-invariant, i.e.,

that the transition and observation models are shared (tied) across time slices. This allows the model to be

applied to sequences of arbitrary length. In biosequence analysis, it is common to use position-dependent

observation models, Bt(i, k) = P (Yt = k|Xt = i), since certain positions have special meanings. These

models can only handle fixed-length sequences. However, by adding a background state with a position-

invariant distribution, the models can be extended to handle varying length sequences. In this thesis, we will

usually assume time/position-invariant parameters, but this is mostly for notational simplicity.

8See [Rab89] for an excellent tutorial, and [Ben99] for a review of more recent developments; [MZ97] provides a thorough mathe-

matical treatise on HMMs. The book [DEKM98] provides an excellent introduction to the application of HMMs to biosequence analysis,

and the book [Jel97] describes how HMMs are used in speech recognition.
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1.2.2 Inference

Offline smoothing can be performed in an HMM using the well-known forwards-backwards algorithm, which

will be explained in Section 3.2. In the forwards pass, we recursively compute the filtered estimate αt(i) =
P (Xt = i|y1:t), and in the backwards pass, we recursively compute the smoothed estimate γt(i) = P (Xt =
i|y1:T ) and the smoothed two-slice estimate ξt−1,t|T (i, j) = P (Xt−1 = i,Xt = j|y1:T ) which is needed for

learning.9

If X can be in K possible states, filtering takes O(K2) operations per time step, since we must do a

matrix-vector multiply at every step. Smoothing therefore takes O(K2T ) time in the general case. If A is

sparse, and each state has at most Fin predecessors, then the complexity is (KFinT ).

1.2.3 Learning

In this section we give an informal explanation of how to do offline maximum likelihood (ML) parameter

estimation for HMMs using the EM (Baum-Welch) algorithm. This will form the basis of the generalizations

in Chapter 6.

If we could observe X1:T , learning would be easy. For instance, the ML estimate of the transition matrix

could be computed by normalizing the matrix of co-occurrences (counts):

ÂML(i, j) =
N(i, j)

∑

k N(i, k)

where

N(i, j) =

T∑

t=2

I(Xt−1 = i,Xt = j)

and I(E) is a binary indicator that is 1 if event E occurs and is 0 otherwise. Hence N(i, j) is the number of

i → j transitions in a given sequence. (We have assumed there is a single training sequence for notational

simplicity. If we have more than one sequence, we simply sum the counts across sequences.) We can estimate

P (Yt|Xt) and P (X1) similarly.

The problem, however, is that X1:T is hidden. The basic idea of the EM algorithm, roughly speaking, is

to estimate P (X1:T |y1:T ) using inference, and to use the expected (pairwise) counts instead of the real counts

to estimate the parameters θ. Since the expectation depends on the value of θ, and the value of θ depends on

the expectation, we need to iterate this scheme.

We start with an initial guess of θ, and then perform the E (expectation) step. Specifically, at iteration k
we compute

E[N(i, j)|θk] = E

T∑

t=2

I(Xt−1 = i,Xt = j|y1:T ) =

T∑

t=2

P (Xt−1 = i,Xt = j|y1:T ) =

T∑

t=2

ξt−1,t|T (i, j)

ξ can be computed using the forwards-backwards algorithm, as discussed in Section 3.2. E[N(i, j)|θk] is

called the expected sufficient statistic (ESS) for A, the transition matrix. We compute similar ESSs for the

other parameters.

We then perform an M (maximization) step. This tries to maximize the value of the expected complete-

data log-likelihood:

θk+1 = arg max
θ
Q(θ|θk)

where Q is the auxiliary function

Q(θ|θk) = EX1:T

[
P (y1:T ,X1:T |θ)|θk

]

9It is more common to define α as an unconditional joint probability, αt(i) = P (Xt = i, y1:t). Also, it is more common to define

the backwards pass as computing βt(i) = P (yt+1:T |Xt = i); γt(i) and ξt−1,t|T can then be derived from αt(i) and βt(i). These

details will be explained in Section 3.2. The chosen notation is designed to bring out the similarity with inference in KFMs and general

DBNs.
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For the case of multinomials, it is easy to show that this amounts to normalizing the expected counts:

Âk+1
ML (i, j) ∝ E[N(i, j)|θk]

[BPSW70, DLR77] proved that the EM algorithm is guaranteed to increase the likelihood at each step

until a critical point (usually a local maximum) is reached. In practice, we declare convergence when the

relative change in the log-likelihood is less than some threshold.10 See Section C.4.2 for more details of the

EM algorithm.

1.2.4 The problem with HMMs

Suppose we want to track the state (e.g., the position) of N objects in an image sequence. Let each object be

in one of k possible states. ThenXt = (X1
t , . . . ,X

N
t ) can haveK = kN possible values, since we must form

the Cartesian product of the state-spaces of each individual object. This means that we require an exponential

number of parameters (exponential in the number of objects) to specify the transition and observation models,

which means we will need a lot of data to learn the model (high sample complexity). In addition, inference

takes exponential time, e.g., forwards-backwards takes O
(
Tk2N

)
(high computational complexity). DBNs

will help ameliorate both of these problems.

1.3 Kalman Filter Models (KFMs)

We now give a brief introduction to KFMs, also known as linear dynamical systems (LDSs), state-space mod-

els, etc.11 The main purpose of this section is to introduce notation and concepts in a simple and (hopefully)

familiar context; these will form the basis of future generalizations.

1.3.1 Representation

A KFM assumes Xt ∈ IRNx , Yt ∈ IRNy , Ut ∈ IRNu , and that the transition and observation functions are

linear-Gaussian, i.e.,

P (Xt = xt|Xt−1 = xt−1, Ut = u) = N (xt;Axt−1 +Bu+ µX , Q)

and

P (Yt = y|Xt = x,Ut = u) = N (y;Cx+Du+ µY , R)

In other words, Xt = AXt−1 + BUt + Vt, where Vt ∼ N (µX , Q) is a Gaussian noise term. Similarly,

Yt = CXt + DUt + Wt, where Wt ∼ N (µY , R) is another Gaussian noise term assumed independent

of Vt. The noise terms are assumed to be temporally white, which means Vt ⊥ Vt′ (i.e., Vt is marginally

independent of Vt′ ) for all t 6= t′, and similarly for Wt,

A is a Nx ×Nx matrix, B is a Nx ×Nu matrix, C is a Ny ×Nx matrix, D is a Ny ×Nu matrix, Q is a

Nx ×Nx positive semi-definite (psd) matrix called the process noise, and R is a Ny ×Ny psd matrix called

the observation noise. As for HMMs, we assume the parameters are time-invariant.

Without loss of generality, we can assume µX and µY are 0, since we can always augment Xt with the

constant 1, and add µX (muY ) to the first column of A (C) respectively. Similarly, we can assume Q or R is

diagonal; see [RG99] for details.

Example

Suppose we are tracking an object as it moves through IR2. Let Xt = (xt, yt, ẋt, ẏt) represent the position

and velocity of the object. Consider a constant-velocity model; however, we assume the object will get

10The fact that the likelihood stops changing does not mean that the parameters stop changing: it is possible for EM to cause the

estimate to oscillate in parameter space, without changing the likelihood.
11See [RG99, Min99] for good tutorials on KFMs from the DBN perspective. There are many textbooks that give a more classical

treatment of KFMs, see e.g., [AM79, BSF88].

9



“buffetted” around by some unknown source (e.g., the wind), which we will model as Gaussian noise. Hence







xt

yt

ẋt

ẏt







=







1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1













xt−1

yt−1

ẋt−1

ẏt−1







+ Vt

where ∆ is the sampling period, Vt ∼ N (0, Q) is the noise, and Q is the following covariance matrix

Q =







Qx Qx,y 0 0
Q′

x,y Qy 0 0
0 0 0 0
0 0 0 0







Qx is the variance of the noise in the x direction,Qy is the variance of the noise in the y direction, andQx,y is

the cross-covariance. (If the bottom right matrix were non-zero, this would be called a “random acceleration

model”, since it would add noise to the velocities.)

Assume also that we only observe the position of the object, but not its velocity. Hence

(
xo

t

yo
t

)

=

(
1 0 0 0
0 1 0 0

)







xt

yt

ẋt

ẏt







+Wt

where Wt ∼ N (0, R).
Intuitively we will be able to infer the velocity by taking successive differences between the observed

positions; however, we need to filter out the noise first. This is exactly what the Kalman filter will do for us,

as we will see below.

1.3.2 Inference

The equations for Kalman filtering/smoothing can be derived in an analogous manner to the equations for

HMMs: see Section 3.6.1.

Example

We illustrate the Kalman filter and smoother by applying them to the tracking problem in Section 1.3.1.

Suppose we start out at position (10, 10) moving to the right with velocity (1, 0). We sampled a random

trajectory of length 15, and show the filtered and smoothed trajectories in Figure 1.3.

The mean squared error of the filtered estimate is 4.9; for the smoothed estimate it is 3.2. Not only is the

smoothed estimate better, but we know that it is better, as illustrated by the smaller uncertainty ellipses; this

can help in e.g., data association problems (see Section 2.4.6).

1.3.3 Learning

It is possible to compute ML (or MAP) estimates of the parameters of a KFM using gradient methods [Lju87]

or EM [GH96b, Mur98]. We do not give the equations here because they are quite hairy, and in any case are

just a special case of the equations we present in Section C.2.2. Suffice it to say that, conceptually, the

methods are identical to the learning methods for HMMs.

1.3.4 The problem with KFMs

KFMs assume the system is jointly Gaussian. This means the belief state must be unimodal, which is inap-

propriate for many problems, especially those involving qualitative (discrete) variables. For example, some

systems have multiple modes or regimes of behavior; an example is given in Figure 1.4: either the bird moves

to the left, to the right, or it moves straight (which can be modelled as a equal mixture of the left and right
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Figure 1.3: Results of inference for the the tracking problem in Section 1.3.1. (a) Filtering. (b) Smoothing.

Boxes represent the true position, stars represent the observed position, crosses represented the estimated

(mean) position, ellipses represent the uncertainty (covariance) in the position estimate. Notice that the

smoothed covariances are smaller than the filtered covariances, except at t = T , as expected.

Figure 1.4: If a bird/plane is heading towards an obstacle, it is more likely to swerve to one side or another,

hence the prediction should be multi-modal, which a KFM cannot do. This figure is from [RN02].

11



models), i.e., the dynamics is piece-wise linear. This model is called a switching KFM; we will discuss this

and related models in Section 2.4.3. Unfortunately, the belief state at time t may have O(K t) modes; indeed,

in general inference in this model is NP-hard, as we will see in Section 3.6.3. We will consider a variety of

approximate inference schemes for this model.

Some systems have unimodal posteriors, but nonlinear dynamics. It is common to use the extended (see

e.g., [BSF88]) or unscented Kalman filter (see e.g., [WdM01]) as an approximation in such cases.

1.4 Overview of the rest of the thesis

The rest of this thesis is concerned with representation, inference and learning in a class of models called

dynamic Bayesian networks (DBNs), of which HMMs and KFMs are just special cases. By using DBNs, we

are able to represent, and hence learn, much more complex models of sequential data, which hopefully are

closer to “reality”. The price to be paid is increased algorithmic and computational complexity.

In Chapter 2, we define what DBNs are, and give a series of examples to illustrate their modelling

power. This should provide sufficient motivation to read the rest of the thesis. The main novel contribution of

this chapter is a way to model hierarchical HMMs [FST98] as DBNs [MP01]. This change of representation

means we can use the algorithms in Chapter 3, which takeO(T ) time, whereas the original algorithm [FST98]

takes O(T 3) time. The reduction in complexity from cubic to linear allows HHMMs to be applied to long

sequences of data (e.g., biosequences). We then discuss, at some length, the relationship between HHMMs

and other models, including abstract HMMs, semi-Markov models and models used for speech recognition.

In Chapter 3, we discuss how to do exact inference in DBNs. The novel contributions are a new way

of applying the junction tree algorithm to DBNs, and a way of trading time for space when doing (offline)

smoothing [BMR97a]. In particular, we show how to reduce the space requirements from O(T ) to O(log T ),
where T is the length of the sequence, if we increase the running time by a log T factor. This algorithm

enables us to learn models from very long sequences of data (e.g., biosequences).

In Chapter 4, we discuss how to speed up inference using a variety of deterministic approximation

algorithms. The novel contributions are a new algorithm, called the factored frontier (FF) [MW01], and an

analysis of the relationship between FF, loopy belief propagation (see Section B.7.1), and the Boyen-Koller

[BK98b] algorithm. We also compare these algorithms empirically on the problem of modeling freeway

traffic using coupled HMMs [KM00]. We then survey algorithms for approximate inference in switching

KFMs.

In Chapter 5, we discuss how to use Sequential Monte Carlo (sampling) methods for approximate filter-

ing. The novel contributions are an explanation of how to apply Rao-Blackwellised particle filtering (RBPF)

to general DBNs [DdFMR00, MR01], and the application of RBPF to a problem in mobile robotics called

SLAM (Simultaneous Localization and Mapping) [Mur00]. This enables one to learn maps with orders of

magnitude more landmarks than is possible using conventional (extended Kalman filter based) techniques.

For completeness, we also discuss how to apply RBPF and Rao-Blackwellised Gibbs sampling to switching

KFMs.

In Chapter 6, we explain how to do learning, i.e., estimate the parameters and structure of a DBN from

data. The main novel contributions are an extension of the structural EM algorithm [Fri97, Fri98] to the

DBN case [FMR98], plus various applications of DBNs, including discovering motifs from synthetic DNA

sequences, predicting people’s movements based on tracking data, and modelling freeway traffic data.

The appendices contain background material on graphical models that is not specific to DBNs. Ap-

pendix A defines various kinds of probabilistic graphical models, and introduces some conditional probability

distributions that will be used throughout the thesis. Appendix B contains some novel material on ways of

handling evidence in the junction tree algorithm (Section B.4.8), and a variational approximation for infer-

ence in BNs that have discrete nodes with continuous parents (Section B.5.3). Appendix C contains some

novel material on computing ML estimates for tied conditional linear Gaussian distributions (Section C.2.2),

and an experimental comparison of the speed of EM vs gradient methods (Section C.4.3). Although the re-

maining material is not novel, we do not know of any books or articles that provide such a broad treatment of

the field; as such, we believe the appendices have merit in their own right. Appendix D defines some of the

more frequently used notation and abbreviations.

12



1.5 A note on software

Many of the algorithms and examples in this thesis have been implemented using my Bayes Net Toolbox for

Matlab (BNT) [Mur01b]. This is open-source and is freely available from

www.cs.berkeley.edu/∼murphyk/Bayes/bnt.html.

1.6 Declaration of previous work

This thesis is based on the following previously published material:

• “Space-efficient inference in dynamic probabilistic networks”, J. Binder, K. Murphy and S. Russell.

IJCAI 1997. Section 3.7.1.

• “Learning the structure of dynamic probabilistic networks”, N. Friedman, K. Murphy and S. Russell.

UAI 1998. Section 6.2.1.

• “A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables”,

K. Murphy. UAI 1999. Section B.5.3.

• “Loopy Belief Propagation for Approximate Inference: an Empirical Study”, K. Murphy, Y. Weiss and

M. Jordan. UAI 1999. Section B.7.1.

• “A Dynamic Bayesian Network Approach to Figure Tracking Using Learned Dynamic Models”, V.

Pavlovic, J. Rehg, T-J. Cham, and K. Murphy. ICCV 1999. Section 4.3.

• “Bayesian Map Learning in Dynamic Environments”, K. Murphy. NIPS 2000. Section 5.3.2.

• “Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks”, A. Doucet, N. de Freitas, K.

Murphy and S. Russell. UAI 2000. Section 5.3.

• “Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks”, K. Murphy and S. Russell. In

Sequential Monte Carlo Methods in Practice, Doucet et al (eds), 2001. Section 5.3.

• “The Factored Frontier Algorithm for Approximate Inference in DBNs”, K. Murphy and Y. Weiss.

UAI 2001. Section 4.2.

• “Linear time inference in hierarchical HMMs”, K. Murphy and M. Paskin. NIPS 2001. Section 2.3.9.

• “The Bayes Net Toolbox for Matlab”, K. Murphy. Computing Science and Statistics: Proceedings of

the Interface, 2001. Appendices.

• “A Coupled HMM for Audio-Visual Speech Recognition”, A. Nefian, L. Liang, X. Pi, L. Xiaoxiang,

C. Mao and K. Murphy. ICASSP 2002. Section 2.3.8.
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Chapter 2

DBNs: Representation

2.1 Introduction

In this chapter, I define what DBNs are, and then give a “laundry list” of examples of increasing complexity.

This demonstrates the versatility (expressive power) of DBNs as a modelling language, and shows that DBNs

are useful for a wide range of problems. This should serve as motivation to read the rest of the thesis.

The unifying perspective of DBNs brings out connections between models that had previously been

considered quite different. This, plus the existence of general purpose DBN software, such as BNT [Mur01b]

and GMTK [BZ02], will hopefully discourage people from writing new code (and new papers!) everytime

they make what often amounts to just a small tweak to some existing model.

The novel contribution of this chapter is a way to represent hierarchical HMMs (HHMMs) [FST98] as

DBNs [MP01]; this is discussed in Section 2.3.9. Once an HHMM is represented as a DBN, any of the

inference and learning techniques discussed in this thesis can be applied. In particular, exact inference using

the junction tree algorithm (see Chapter 3) enables smoothing to be performed in O(T ) time, whereas the

original algorithm required O(T 3) time. This is just one example of the benefits of thinking in terms of

DBNs.

Since DBNs are an extension of Bayes nets (BNs), the reader is assumed to already be familiar with

BNs; read Appendix A for a refresher if necessary.

2.2 DBNs defined

A dynamic Bayesian network (DBN) [DK89] is a way to extend Bayes nets to model probability distributions

over semi-infinite collections of random variables, Z1, Z2, . . .. Typically we will partition the variables into

Zt = (Ut,Xt, Yt) to represent the input, hidden and output variables of a state-space model. We only consider

discrete-time stochastic processes, so we increase the index t by one every time a new observation arrives.

(The observation could represent that something has changed (as in e.g., [NB94]), making this a model of a

discrete-event system.) Note that the term “dynamic” means we are modelling a dynamic system, not that

the network changes over time. (See Section 2.5 for a discussion of DBNs which change their structure over

time.)

A DBN is defined to be a pair, (B1, B→), where B1 is a BN which defines the prior P (Z1), and B→
is a two-slice temporal Bayes net (2TBN) which defines P (Zt|Zt−1) by means of a DAG (directed acyclic

graph) as follows:

P (Zt|Zt−1) =

N∏

i=1

P (Zi
t |Pa(Zi

t))

where Zi
t is the i’th node at time t, which could be a component of Xt, Yt or Ut, and Pa(Zi

t) are the parents

of Zi
t in the graph. The nodes in the first slice of a 2TBN do not have any parameters associated with them,

but each node in the second slice of the 2TBN has an associated conditional probability distribution (CPD),
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which defines P (Zi
t |Pa(Zi

t)) for all t > 1. The form of these CPDs is arbitrary: see Tables A.1 and A.2 for

some examples.

The parents of a node, Pa(Zi
t), can either be in the same time slice or in the previous time slice, i.e.,

we assume the model is first-order Markov. However, this is mostly for notational simplicity: there is no

fundamental reason why we cannot allow arcs to skip across slices. The arcs between slices are from left to

right, reflecting the causal flow of time. If there is an arc from Z i
t−1 to Zi

t , this node is called persistent. The

arcs within a slice are arbitrary, so long as the overall DBN is a DAG.1 Intuitively, directed arcs within a slice

represent “instantaneous” causation. It is also useful to allow undirected arcs within a slice, which model

correlation or constraints rather than causation; the resulting model is then called a (dynamic) chain graph

[Dah00]. However, we will not consider such models in this thesis.

We assume the parameters of the CPDs are time-invariant, i.e., the model is time-homogeneous. If

parameters can change, we can add them to the state-space and treat them as random variables. Alternatively,

if there is only a finite set of possible parameter values (e.g., corresponding to different regimes), we can add

a hidden variable which selects which set of parameters to use.

The semantics of a DBN can be defined by “unrolling” the 2TBN until we have T time-slices. The

resulting joint distribution is then given by

P (Z1:T ) =
T∏

t=1

N∏

i=1

P (Zi
t |Pa(Zi

t))

The difference between a DBN and an HMM is that a DBN represents the hidden state in terms of a

set of random variables, X1
t , . . . ,X

Nh

t , i.e., it uses a distributed representation of state. By contrast, in an

HMM, the state space consists of a single random variable Xt. The difference between a DBN and a KFM is

that a KFM requires all the CPDs to be linear-Gaussian, whereas a DBN allows arbitrary CPDs. In addition,

HMMs and KFMs have a restricted topology, whereas a DBN allows much more general graph structures.

The examples below will make this clearer.

Before diving into a series of DBN examples, we remark that some other ways of representing time in

the context of BNs have been proposed in the UAI community, e.g., [AC95, DG95, SY99] and the references

therein. However, very few of these formalisms have genuinely more expressive power (as opposed to just

having nicer “syntactic sugar”) than DBNs, and those that do are generally intractable, from the point of

view of inference, learning or both. In the engineering community, DBNs have become the representation

of choice because they embody a good tradeoff between expressiveness and tractability, and include the vast

majority of models that have proved succesful in practice, as we will see below.

2.3 Representing HMMs and their variants as DBNs

X1 X2 X3

Y1 Y2 Y3

Figure 2.1: An HMM represented as an instance of a DBN, unrolled for 3 slices. Since the structure repeats,

the model can be defined by showing just the first two slices.

We can represent an HMM as a DBN as shown in Figure 2.1. We follow standard convention and use

shading to mean a node is observed; clear nodes are hidden. This graph represents the following conditional

independence assumptions: Xt+1 ⊥ Xt−1|Xt (the Markov property) and Yt ⊥ Yt′ |Xt, for t′ 6= t. The latter

assumption can be relaxed, as we discuss in Section 2.3.3.

1The intra-slice topology of the first slice may be different from the other slices, since the first slice may either represent the stationary

distribution of the chain (if we assume the process started at t = −∞), or the initial conditions of the chain (if we assume the process

started at t = 1).
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π A

X1 X2 X3

Y1 Y2 Y3

B

Figure 2.2: An HMM in which we explicitly represent the parameters (nodes with outgoing dotted arcs) and

the fact that they are tied across time-slices. The parameters are P (X1 = i) = π(i), P (Xt = j|Xt−1 = i) =
A(i, j), and P (Yt = j|Xt = i) = B(i, j). If the CPD for Y is a Gaussian, we would replace the B node

with the mean and covariance parameters.

As is usual for Bayesian networks, we must define the conditional probability distribution (CPD) of each

node given its parents. For the HMM in Figure 2.1, this means defining P (X1), P (Xt|Xt−1) and P (Yt|Xt).
The CPD for P (X1) is usually represented as a vector, which represents a multinomial distribution, i.e.,

P (X1 = i) = π(i), where 0 ≤ π(i) ≤ 1 and
∑

i π(i) = 1. The CPD for P (Xt|Xt−1) is usually represented

as a stochastic matrix, i.e., P (Xt = j|Xt−1 = i) = A(i, j) where each row (which represents a conditional

multinomial) sums to 1. The CPD for P (Yt|Xt) can take a variety of forms. If Yt is discrete, we could

use a conditional multinomial, represented as a stochastic matrix: P (Yt = j|Xt = i) = B(i, j). If Yt is

continuous, we could use a conditional Gaussian or a conditional mixture of Gaussians (see Section 2.3.1).

We discuss more “exotic” types of CPDs, which use fewer parameters, in Section A.3.2.

If we assume that the parameters are time-invariant, we only need to specify P (X1), P (X2|X1) and

P (Y1|X1); the CPDs for future slices are assumed to be the same as in the first two slices. This can massively

reduce the amount of data needed to learn them. We can model this time-invariance assumption explicitly by

viewing the parameters as random variables: see Figure 2.2.

One advantage of representing HMMs as DBNs is that it becomes easy to create variations on the basic

theme. We discuss some of these models below.

2.3.1 HMMs with mixture-of-Gaussians output

X1 X2 X3

M1 M2 M3

Y1 Y2 Y3

Figure 2.3: An HMM with mixture of Gaussians output.

In speech recognition, it is common to represent P (Yt|Xt = i) using a mixture of Gaussians (MoG)

for each state i. We can either treat MoG as a primitive CPD type, or we can explicitly model the mixture

variable as shown in Figure 2.3. The CPDs for the Y and M nodes are as follows:

P (Yt|Xt = i,Mt = m) = N (yt;µi,m,Σi,m)

P (Mt = m|Xt = i) = C(i,m)
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Suppose we modify the observation CPD so it first performs a linear projection of the data onto a sub-

space, i.e.,

P (Yt|Xt = i,Mt = m) = N (Ayt;µi,m,Σi,m)

Maximum likelihood in this model (for a single t) is equivalent to heteroscedastic mixture discriminant anal-

ysis [KA96] (heteroscedastic since the covariance is not shared across classes (values of Xt), and mixture

because of the Mt term). Unfortunately, there is no closed form solution for the M step in this case; if we had

fully tied Σ, we could at least use standard (and fast) eigenvector methods (see [KA96] for details).

2.3.2 HMMs with semi-tied mixtures

X1 X2 X3

M1 M2 M3

µ1 Σ1 A1 µ2 Σ2 A2 µ3 Σ3 A3

Y1 Y2 Y3

~µ ~Σ ~A

Figure 2.4: An HMM with semi-tied covariance matrices. The (set of) global parameters are the nodes at

the bottom with outgoing dotted arcs. The local parameters for a slice, µt, Σt, and At, are determinsitically

chosen from the global parameters using Mt and optionally Xt.

In speech recognition, it is common that Yt ∈ IR39, so estimating a full covariance matrix for each state

ofXt andMt requires a lot of data. An alternative is to assume there is a single global pool of Gaussians, and

each state corresponds to a different mixture over this pool. This is called a semi-continuous or tied-mixture

HMM [Gal99]. In this case, there is no arc from Xt to Yt, so the CPD for Y becomes

P (Yt|Mt = m) = N (yt;µm,Σm)

The effective observation model becomes

P (Yt|Xt = i) =
∑

m

P (Mt = m|Xt = i)N (yt;µm,Σm)

Hence all information about Yt gets to Xt via the “bottleneck” Mt. The advantages of doing this are not only

reducing the number of parameters, but also reducing the number of Gaussian density calculations, which

speeds up inference dramatically. For instance, the system can calculate N (yt;µm,Σm) for each m, and

then reuse these in a variety of different models by simple reweighting: typically P (Mt = m|Xt = i) is

non-zero for only a small number of m’s [Jel97, p161]. The Mt → Yt arc is like vector quantization, and the

Xt →Mt arc is like a dynamic reweighting of the codebook.

More sophisticated parameter tying schemes are also possible. Figure 2.4 represents an HMM with

semi-tied covariance matrices [Gal99]. The CPDs for this model are as follows:

P (Yt = y|µt,Σt, At) = N (yt;µt, AtΣtA
′
t)

P (µt|~µ,Mt = m,Xt = i) = δ(µt, µi,m)

P (At| ~A,Xt = i) = δ(At, Ai)

P (Σt|~Σ,Mt = m,Xt = i) = δ(Σt,Σm,i)
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Typically each Σm,i is assumed to be diagonal, but Ai converts this into a full matrix. In practice, we

can “compile out” the deterministic CPDs, so that the overall graph looks like Figure 2.3, but where the

observation CPD is defined as follows:

P (Yt = y|Mt = m,Xt = i) = N (yt;µi,m, AiΣi,mA
′
i)

To compute ML parameter estimates in this model, we must use a nonlinear optimization method in the M

step of EM (see Section C.4.2), since the covariance is bilinear in Ai and Σi,m. We can further reduce the

number of parameters by associating an A matrix with a set of states of Xt, instead of having one matrix per

state.

2.3.3 Auto-regressive HMMs

X1 X2 X3

Y1 Y2 Y3

Figure 2.5: An auto-regressive HMM.

The standard HMM assumption that Yt ⊥ Yt′ |Xt is quite strong, and can be relaxed at little extra cost as

shown in Figure 2.5. We will call this model an auto-regressive HMM (AR-HMM).2 The AR-HMM model

reduces the effect of the Xt “bottleneck”, by allowing Yt−1 to help predict Yt as well; this often results in

models with higher likelihood.

If Y is discrete (e.g., for language modelling: see Section 2.3.5), the CPD for Y can be represented as a

table. If Y is continuous, one possibility for the CPD for Y is

P (Yt = yt|Xt = i, Yt−1 = yt−1) = N (yt;Wiyt−1 + µi,Σi)

whereWi is the regression matrix given thatXt is in state i. This model is also known as a correlation HMM,

conditionally Gaussian HMM switching regression model, switching Markov model [Ham90], or switching

regression model.

2.3.4 Buried Markov Models

Buried Markov models [Bil98] generalize auto-regressive HMMs by allowing non-linear dependencies be-

tween the observable nodes. Furthermore, the nature of the dependencies can change depending on the value

of Xt: see Figure 2.6 for an example. (Such a model is called a Bayesian “multi net”.) [Bil00] introduces the

EAR metric, which is a way to learn such structures in a discriminative way.3

2.3.5 Mixed-memory Markov models

As we mentioned in the introduction, one of the simplest approaches to modelling sequential data is to

construct a Markov model of order n− 1. These are often called n-gram models, e.g., when n = 2, we get a

bigram model, and when n = 3, we get a trigram model, as shown in Figure 2.7.

When Xt is a discrete random variable with many possible values (e.g., if Xt represents words), then

there might not be enough data to reliably estimate P (Xt = k|Xt−1 = j,Xt−2 = i). A common approach

is to create a mixture of lower-order Markov models:

P (Xt|Xt−1,Xt−2) =

α3(Xt−1,Xt−2)f(Xt|Xt−1,Xt−2) + α2(Xt−1,Xt−2)f(Xt|Xt−1) + α1(Xt−1,Xt−2)f(Xt)

2Confusingly, the term “auto-regressive HMM” refers to two different models, the one being discussed here and the one in [Rab89],

which is also called a linear predictive or hidden filter HMM, which looks like a regular HMM when represented as a DBN, but which

uses a state-dependent auto-correlation function for the observation distribution.
3The basic idea is to avoid modelling features of the data which are common to all classes, but instead to focus on aspects of the

structure that affect the decision boundaries.
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Figure 2.6: A buried Markov model. Depending on the value of the hidden variables, Xt, the effective graph

structure between the components of the observed variables, Yt, can change. Two different instantiations are

shown. Thanks to Jeff Bilmes for this figure.

X1 X2 X3 X4

Figure 2.7: A trigram (second-order Markov) model, which defines P (Xt|Xt−1,Xt−2).

St−3 St−2 St−1 St

Xt−3 Xt−2 Xt−1 Xt

St ≥ 2

St ≥ 1

Figure 2.8: A mixed-memory Markov model. The dashed arc from St to Xt means St is a switching parent:

it is used to decide which of the other parents to use, either Xt−1 or Xt−2 or both. The conditions under

which each arc is active are shown for the Xt node only, to reduce clutter. The dotted arcs from Xt−1 and

Xt−2 to St are optional. See text for details. Based on Figure 15 of [Bil01].

where the α coefficients may optionally depend on the history, and f(·) is an arbitrary (conditional) proba-

bility distribution. This is the basis of the method called deleted interpolation [Jel97, CG96].

As with mixtures of Gaussians, we can either represent mixtures of multinomials as a primitive CPD,

or we can explicitely model the latent mixture variable as in Figure 2.8. Here St = 1 means use a unigram,

St = 2 means use bi- and unigrams, and St = 3 means use tri-, bi- and uni-grams. St is called a switching

parent, since it determines which of the other parents links are active, i.e., the effective topology of the graph

changes depending on the value of the switch; the result is called a (dynamic) Bayesian multinet [Bil00].

Since St is hidden, the net effect is to use a mixture of all of these. The arcs from Xt−2 and Xt−1 to St

model the fact that the coefficients can depend on the identity of the words in the window.

A very similar approach, called mixed-memory Markov models [SJ99], is to always use mixtures of

bigrams: if St = 1, we use P (Xt|Xt−1), and if St = 2, we use P (Xt|Xt−2). This can be achieved by

simply changing the “guard condition” on the Xt−1 to Xt link to be St = 1 instead of St ≥ 1; similarly, the

guard on theXt−2 toXt link becomes St = 2 instead of St ≥ 2. Hence St acts like the input to a multiplexer,

choosing one of the parents to feed into Xt; Using the terminology of [BZ02], St is the switching parent, and

the other parents are the conditional parents. The overall effect is to define the CPD as follows:

P (Xt|Xt−1, . . . ,Xt−n) =

n∑

i=1

Ai(Xt−i,Xt)π(i)
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An alternative is to cluster the words and then try to predict the next word based on the current cluster;

this is called a class-based language model. The cluster identity is a hidden random variable, as in a regular

HMM; the words are the observations.

Of course, the mixed-memory and class-based techniques can be combined by using an auto-regressive

HMM, to get the best of both worlds.

2.3.6 Input-output HMMs

U1 U2 U3

X1 X2 X3

Y1 Y2 Y3

Figure 2.9: An input-output HMM. The dotted arcs are optional.

An input-output HMM [BF96] is a probabilistic mapping from inputs, U1:T , to outputs, Y1:T . (We relax

the requirement that the input and output be the same length in Section 2.3.11.) This can be modelled as a

DBN as shown in Figure 2.9. If the inputs are discrete, the CPD for X can be represented as a 3-dimensional

array, P (Xt = j|Xt−1 = i, Ut = k) = A(i, j, k). If the input is continuous-valued, the CPD for X can be

represented as a conditional softmax function (see Section A.3.2), or as a neural network.

2.3.7 Factorial HMMs

X1
1 X1

2 X1
3

X2
1 X2

2 X2
3

X3
1 X3

2 X3
3

Y1 Y2 Y3

Figure 2.10: A factorial HMM with 3 chains.

Factorial HMMs [GJ97] use a single output variable but have a distributed representation for the hidden

state, as shown in Figure 2.10. Note that, although all the chains are a priori independent, once we condition

on the evidence, they all become coupled; this is due to the explaining away phenomenon [Pea88]. This

makes inference intractable if there are too many chains, as we discuss in Chapter 3.

The CPDs for the hidden nodes, P (X
(d)
t |X(d)

t−1), can be represented by Nx × Nx matrices (assum-

ing each chain can be in one of Nx states). A naive representation for the CPD for the observed nodes,

P (Yt|X(1)
t , . . . ,X

(D)
t ), which we shall abbreviate to P (Yt|X(1:D)

t ), would require O(Nx
D) parameters,

for each possible combination of the parents. We discuss some more parsimonious representations in Sec-

tion A.3.2.

A factorial HMM, like any DBN, can be converted to a regular HMM by creating a single “mega” vari-

able, Xt, whose state space is the Cartesian product of the component state spaces. However, this is a bad

idea: the resulting “flat” representation is hard to interpret, inference in the flat model will be exponentially
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slower (see Chapter 3), and learning will be harder because there may be exponentially many more param-

eters. In particular, although the entries of the transition matrix of the flat HMM would have constraints

between them, it is hard to exploit these constraints either in inference or learning. For example, if D = 2,

we have

P (X1
t = j1,X

2
t = j2|X1

t−1 = i1,X
2
t−1 = i2) = P (X1

t = j1|X1
t−1 = i1)× P (X2

t = j2|X2
t−1 = i2).

That is, the entries of the transition matrix for the flat HMM are computed by multiplying together the entries

of the transition matrices for each chain in the factorial HMM.

If all CPDs are linear-Gaussian, graphical structure corresponds to sparse matrices in the traditional sense

of having many zeros (see Section 2.4.2); in such a case, the compound DBN can be converted to a flat model

without loss of efficiency or information.

2.3.8 Coupled HMMs

X1
1 X1

2 X1
3

Y 1
1 Y 1

2 Y 1
3

X2
1 X2

2 X2
3

Y 2
1 Y 2

2 Y 2
3

X3
1 X3

2 X3
3

Y 3
1 Y 3

2 Y 3
3

Figure 2.11: A coupled HMM with 3 chains.

In a coupled HMM [SJ95, Bra96], the hidden variables are assumed to interact locally with their neigh-

bors. Also, each hidden node has its own “private” observation. This is shown in Figure 2.11.

I have used CHMMs for two different applications: audio-visual speech recognition (AVSR) and for

modelling freeway traffic. In the AVSR application, there are two chains, one represents the audio stream and

one representing the video stream; please see [NLP+02] for details. [NY00] also used a two-chain CHMM for

automatic speech recognitions (ASR). To reduce the number of parameters, they defined P (X1
t |X1

t−1,X
0
t−1)

as a mixture of two bigram models (c.f., Section 2.3.5):

P (X1
t |X1

t−1,X
0
t−1) = A11(X1

t |X1
t−1)P (St = 1) +A10(X1

t |X0
t−1)P (St = 0)

In the traffic application, Xd
t represents the hidden traffic status (free-flowing or congested) at location

d on the freeway at time t. Y d
t represents the reading returned by a magnetic loop detector, which (roughly

speaking) is an indicator of traffic speed. The underlying traffic state at location d and time t is assumed to

depend on its previous state and the previous states of its immediate spatial neighbors. Since the detectors

are placed in a line down the middle of the highway, each location only has 2 neighbors, upstream and

downstream. Please see [KM00] for details.

2.3.9 Hierarchical HMMs (HHMMs)

The Hierarchical HMM (HHMM) [FST98] is an extension of the HMM that is designed to model domains

with hierarchical structure and/or dependencies at multiple length/time scales. In an HHMM, the states of
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the stochastic automaton can emit single observations or strings of observations. Those that emit single

observations are called “production states”, and those that emit strings are termed “abstract states”. The

strings emitted by abstract states are themselves governed by sub-HHMMs, which can be called recursively.

When the sub-HHMM is finished, control is returned to wherever it was called from; the calling context is

memorized using a depth-limited stack.

Example of an HHMM

1 2

3 4 5

6 7 8 9 10 11 12 13

a b c d

14 15 16

x y

Figure 2.12: State transition diagram for a four-level HHMM representing the regular expression

a+|a+(xy)+b|c(xy)+d. Solid arcs represent horizontal transitions between states; dotted arcs represent ver-

tical transitions, i.e., calling a sub-HMM. Double-ringed states are accepting (end) states; we assume there

is at least one per sub-HMM; when we enter such a state, control is returned to the parent (calling) state.

Dahsed arcs are emissions from production (concrete) states; In this example, each production state emits a

single symbol, but in general, it can have a distribution over output symbols.

We illustrate the generative process with Figure 2.12, which shows the state transition diagram of an

example HHMM which models the regular expression a+|a+(xy)+b|c(xy)+d.4 We start in the root state.

Since this is an abstract state, it calls its sub-HHMM, entering into state 3 or 4; this is called a “vertical

transition”. Suppose it enters state 3. Since 3 is abstract, it enters its child HMM via its unique entry point,

state 6. Since 6 is a production state, it emits the symbol “a”. It may then loop around and exit, or make a

horizontal transition to 7. State 7 then enters its sub-HMM (state 14), which emits “x”. State 14 makes a

horizontal transition to state 15, and then emits “y”. Suppose at this point we make a horizontal transition

to state 16, which is the end state for this sub-HMM. This returns control to wherever we were called from

— in this case, state 7. State 7 then makes a horizontal transition to state 8, which emits “b”. State 8 is then

forced to make a horizontal transition to the end state, which returns control to state 3. State 3 then enters its

end state (5), and returns control to the root (1). The root can then either re-enter its sub-HMM, or enter its

end state, which terminates the process.

An HHMM cannot make a horizontal transition before it makes a vertical one; hence it cannot produce

the empty string. For example, in Figure 2.12, it is not possible to transition directly from state 1 to 2.

Related models

While HHMMs are less powerful than stochastic context-free grammars (SCFGs) and recursive transition

networks (RTNs) [JM00], both of which can handle recursion to an unbounded depth, unlike HHMMs, they

are sufficiently expressive for many practical problems, which often only involve tail-recursion (i.e., self

4This means the model must produce one or more ’a’s, or one or more ’a’s followed by one or ’x’s and ’y’s followed by a single ’b’,

or a ’c’ followed by one or more ’x’s and ’y’s followed a ’d’.
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transitions to an abstract state). Furthermore, HHMMs can be made much more computationally efficient

than SCFGs. In particular, while the original inference algorithm for HHMMs was O(T 3), as for SCFGs,

once we have converted the HHMM to a DBN (see Section 2.3.9), we can use any of the techniques in

Chapter 3 to do inference in O(T ) time [MP01].5

HHMMs are also closely related to cascades of finite state automata [Moh96, PR97b], but are fully

probabilistic. A somewhat similar model, called a cascaded Markov model, was proposed in [Bra99b]; in this

model, each HMM state represents a non-terminal in an SCFG, which can be used to generate a substring.

Other HMM-SCFG hybrids have been proposed; for example, [IB00] suggest creating one HMM to recognize

each terminal symbol, and then combing them using an SCFG. Unfortunately, inference and learning in such

models is much more complicated than with an HHMM, not only because inference takes O(T 3) time, but

also because the output of the bank of HMMs is a probability distribution over symbols at each position, as

opposed to a single symbol as the standard SCFG inference routines expect.

[PW96] discuss a way of combining static Bayes nets with SCFGs, but their goal is to represent a

probability distribution over the parse trees obtained from an SCFG. [ND01] show how Bayes nets can be

used as a model of how humans combine cues when parsing ambiguous sentences online.

Converting an HHMM to an HMM

ǫ

a b c d

x y x y

Figure 2.13: State transition diagram of the HHMM in Figure 2.12 flattened to a regular HMM. Each state is

labelled by the symbol it emits; ǫ represents the empty string. The initial and final states are omitted.

Any HHMM can be converted to a regular HMM by creating an HMM state for every leaf in the HHMM

state transition diagram (i.e., every legal HHMM stack configuration). The resulting state-space may be

smaller, because it does not contain abstract states, but may also be larger, because shared sub-structure (such

as the sub-expression (xy)+) must be duplicated. See Figure 2.13 for an example.

Computing the parameters of the resulting flat HMM is not always trivial. The probability of an i to j
transition in the flat model is the sum over all paths from i to j in the hierarchical model which only pass

through abstract (non-emitting) states. For example, in Figure 2.13, the probability of a self-transition from

state a to a is given by

Pflat(a→ a) = Ph(6→ 6) + Ph(6→ 9→ 3→ 6) = Ph(6|6) + Ph(9|6)Ph(6|3)

where Ph represents probabilities in the HHMM.

The HMMs used in speech recognition are essentially hierarchical (see Section 2.3.10), but are always

flattened into a single level state space for speed and ease of processing. Simiarly, combinations of weighted

transducers [Moh96, PR97b] are always flattened into a single transducer before use. Although it is always

possible to convert an HHMM to an HMM, just as with any DBN, there are several disadvantages to doing

so:

• Flattening loses modularity, since the parameters of the sub-HMMs get combined in a complex way,

as we have just seen.

5The inference algorithm for SCFGs, which is called the inside-outside algorithm (see e.g., [JLM92, JM00]), takes O(T 3) no matter

what the grammar is.
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• A flat HMM cannot easily provide a multi-scale interpretation of the data.6

• Training HMMs separately and combining them into a hierarchical model requires segmented data.

(This is the approach adopted in [HIM+00] for example.)

• The parameters in a flat HMM are constrained, but it is hard to exploit these constraints during inference

and learning, because the constrained parameters are products of the free parameters, as we saw in the

example above, and in the case of flattening factorial HMMs in Section 2.3.7. By contrast, it is easy to

do parameter estimation in an HHMM. Furthermore, the fact that sub-models are re-used in different

contexts can be represented, and hence learned, using an HHMM, but not using an HMM.

Representing the HHMM as a DBN

F 1
1 F 1

2 F 1
3

Q1
1 Q1

2 Q1
3

F 2
1 F 2

2 F 2
3

Q2
1 Q2

2 Q2
3

F 3
1 F 3

2 F 3
3

Q3
1 Q3

2 Q3
3

Y1 Y2 Y3

Figure 2.14: A 3-level HHMM represented as a DBN. Qd
t is the state at time t, level d; F d

t = 1 if the HMM

at level d has finished (entered its exit state), otherwise F d
t = 0. Shaded nodes are observed; the remaining

nodes are hidden. In some applications, the dotted arcs fromQ1 and the dashed arcs fromQ2 may be omitted.

We can represent the HHMM as a DBN as shown in Figure 2.14. (We assume for simplicity that all

production states are at the bottom of the hierarchy; this restriction is lifted in Section 2.3.9.) The state of the

HMM at level d and time t is represented by Qd
t . The state of the whole HHMM is encoded by the vector

~Qt = (Q1
t , . . . , Q

D
t ); intuitively, this encodes the contents of the stack, that specifies the complete “path” to

take from the root to the leaf state in the state transition diagram.

F d
t is a binary indicator variable that is “on” (has value 1) if the HMM at level d and time t has just

“finished” (i.e., is about to enter an end state), otherwise it is “off” (has value 0). Note that if F d
t = 1, then

F d′

t = 1 for all d′ > d; hence the number of F nodes that are “off” represents the effective height of the

“context stack”, i.e., which level of the hierarchy we are currently on.

6It is also possible to interpret a single integer, representing the flat state, as a vector of integers, representing the HHMM state.

However, sometimes it is useful to explicitly represent the different variables, instead of doing this post-processing interpretation: see

Section 2.3.10 for example.
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The downward arcs between theQ variables represent the fact that a state “calls” a sub-state. The upward

arcs between the F variables enforce the fact that a higher-level HMM can only change state when the lower-

level one is finished. This ensures proper nesting of the parse trees, and is the key difference between an

HHMM and a hidden Markov decision tree [JGS96]. (An HMDT looks similar to Figure 2.14, except it lacks

the F nodes and the upward going arcs.)

We now define the conditional probability distributions (CPDs) of each of the node types below, which

will complete the definition of the model. We consider the bottom, middle and top layers of the hierarchy

separately (since they have different local topology), as well as the first, middle and last time slices.

Bottom level (d = D, t = 2 : T − 1): QD follows a Markov chain with parameters determined by which

sub-HMM it is in, which is encoded by the vector of higher-up state variables Q1:D−1
t , which we will

represent by the integer k for brevity.7 Instead of QD entering its end state, it “turns on” FD instead,

to mean it is finished (see Section 2.3.9 for more details); This will be a signal that higher-level HMMs

can now change state. In addition, it will be a signal that the next value of QD should be drawn from

its prior distribution (representing a vertical transition), instead of its transition matrix (representing a

horizontal transition). Formally, we can write this as follows:

P (QD
t = j|QD

t−1 = i, FD
t−1 = f,Q1:D−1

t = k) =

{

ÃD
k (i, j) if f = 0

πD
k (j) if f = 1

where we have assumed i, j 6= end, where end represents the end-state for this HMM. AD
k is the

transition matrix for level D given that the parent variables are in state k, and ÃD
k is just a rescaled

version of this (see Section 2.3.9 for details on the rescaling). Similarly, πD
k is the initial distribution

for level D given that the parent variables are in state k. The equation for FD is simply

P (FD
t = 1|Q1:D−1

t = k,QD
t = i) = AD

k (i, end).

Intermediate levels (d = 2 : D − 1, t = 2 : T − 1): As before,Qd follows a Markov chain with parameters

determined by Q1:d−1, and F d specifies whether we should use the transition matrix or the prior. The

difference is that we now also get a signal from below, F d+1, specifying whether the sub-model has

finished or not; if it has, we are free to change state, otherwise we must remain in the same state.

Formally, we can write this as follows:

P (Qd
t = j|Qd

t−1 = i, F d+1
t−1 = b, F d

t−1 = f,Q1:d−1
t = k) =







δ(i, j) if b = 0

Ãd
k(i, j) if b = 1 and f = 0

πd
k(j) if b = 1 and f = 1

(2.1)

F d should “turn on” only if Qd is “allowed” to enter a final state, the probability of which depends on

the current context Q1:d−1. Formally, we can write this as follows:

P (F d
t = 1|Qd

t = i, Q1:d−1
t = k, F d+1

t = b) =

{
0 if b = 0
Ad

k(i, end) if b = 1
(2.2)

Top level (d = 1, t = 2 : T − 1): The top level differs from the intermediate levels in that theQ node has no

Q parent to specify which distribution to use. The equations are the same as above, except we eliminate

the conditioning on Q1:d−1
t = k. (Equivalently, we can imagine a dummy top layer HMM, which is

always in state 1: Q0
t = 1. This is often how HHMMs are represented, so that this top-level state is the

root of the overall parse tree, as in Figure 2.12.)

Initial slice (t = 1, d = 1 : D): The CPDs for the nodes in the first slice are as follows: P (Q1
1 = j) = π1(j)

for the top level and P (Qd
1 = j|Q1:d−1

1 = k) = πd
k(j), for d = 2, . . . ,D.

Final slice (t = T , d = 1 : D): To ensure that all sub-HMMs have reached their end states by the time we

reach the end of sequence, we can clamp F d
T = 1 for all d. (In fact, it is sufficient to clamp F 1

T = 1,

since this implies F d
T = 1 for all d.) A similar trick was used in [Zwe98], to force all segmentations to

be consistent with the known length of the sequence.

7If the state transition diagram is sparse, many of these joint configurations will be impossible; k will only index the valid configu-

rations. Such sparse CPDs can be conveniently represented using decision trees (see Section A.3.2).
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Observations: If the observations are discrete symbols, we may represent P (Ot| ~Qt) as a table. If the ob-

servations are real-valued vectors, we can use a Gaussian for each value of ~Qt. We discuss more

parsimonious representations in Section A.3.2. Alternatively, we can condition Ot only on some of

its parents. This is often done in speech recognition: the acoustic observations depend only on the

bottom two levels of the hierarchy (the sub-phones and phones), and not on the top level (the words):

see Section 2.3.10 for details.

Handling end states

Unlike the automaton representation, the DBN never actually enters an end state (i.e., Qd
t can never taken on

the value “end”); if it did, what should the corresponding observation be? (Unlike an HMM, a DBN must

generate an observation at every time step.) Instead, Qd
t causes F d

t to turn on, and then enters a new (non-

terminal) state at time t+ 1, chosen from its initial state distribution. This means that the DBN and HHMM

transition matrices are not identical. However, they satisfy the following equation:

Ãd
k(i, j)

(
1−Ad

k(i, end)
)

= Ad
k(i, j)

where A represents the HHMM transition matrix, Ã represents the DBN transition matrix, and Ad
k(i, end) is

the probability of terminating from state i. The reason is that the probability of each horizontal transition in

the DBN gets multiplied by the probability that F d
t = 0, which is 1− Ad

k(i, end); this product should match

the original probability. It is easy to see that the new matrix is stochastic (i.e.,
∑K

j=1 Ã
d
k(i, j) = 1), since the

original matrix satisfies
∑K

j=1A
d
k(i, j) +Ad

k(i, end) = 1, where K is the number of states.

Allowing production states at different levels

1 2

3 4 5

6 7 8 9 10 11 12 13

14 15 16 17 18 19 20

a b x y c d

Figure 2.15: State transition diagram of the HHMM in Figure 2.12, except all production states are at the

leaves.

In [FST98], the authors remark that putting all the production (concrete) states at the bottom level did

not result in learning “interesting” hierarchical structure (i.e., the results were essentially the same as using

a flat HMM). They therefore constructed the automaton topology by hand, and allowed production states at

multiple levels of the hierarchy, at randomly chosen locations. (We discuss HHMM learning in Chapter 6; for

now we assume that the parameters — and hence the topology of the state-transition diagram — are known.)

So far, the DBN representation has assumed that all the production states are at the bottom level. This

can always be made the case, as illustrated in Figure 2.15. However, we now develop a way to directly encode

in the DBN the fact that concrete states can occur at different levels in the hierarchy. We simply ensure that

when Qd
t enters a concrete state, it causes all the Q nodes below it to enter a special “uninformative” or

“null” state. In addition, all the F nodes below level d will be forced on, so that level d is free to change

state without waiting for its children to finish. The observation distribution will ignore null states, so the
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distribution simplifies from P (Ot|Q1:D
t ) to P (Ot|Q1:d

t ) if Qd
t is a concrete state. It is straightforward to

modify the CPD definitions to cause this behavior.

The above solution is somewhat inefficient since it introduces an extra dummy value, thus increasing the

size of the state space of each level by one. A more elegant solution is to allow some arcs to “disappear”

conditionally on the values of the Q nodes, i.e., let the Q nodes act both as regular nodes and as switching

parents (c.f., Section 2.3.5). Specifically, when Qd
t enters a concrete state, all the outgoing links from nodes

Qd′

t and F d′

t , for d′ > d, would be rendered effectively (i.e., parametrically) redundant. It is straightforward

to modify the CPD definitions to cause this behavior.

Advantages of representing the HHMM as a DBN

There are several advantages of representing the HHMM as a DBN rather than using the original formulation

[FST98] in terms of nested state-transition diagrams. First, we can use generic DBN inference and learning

procedures, instead of having to derive (fairly complicated) formulas by hand. Second, exact DBN inference

takes O(QDT ) time, whereas the algorithm proposed in [FST98] takes O(QDT 3) time. Third, it is easier to

change the model once it is represented as a DBN, e.g., to allow factored hierarchical state spaces.

2.3.10 HHMMs for Automatic speech recognition (ASR)

a n a

7 8 9

1 2 3

b a n 4 5 6

ah n er

Figure 2.16: HMM state transition diagram for a model encoding two possible pronunciations of “banana”,

the British version (bottom fork: middle “a” is long, and final “a” has “r” appended), and the American

version (top fork: all “a”s are equal). Dotted lines from numbers to letters represent deterministic emissions.

The states may have self-loops (not shown) to model duration.

Consider modelling the pronunciation of a single word. In the simplest case, the can be described as a

sequence of phones, e.g., “dog” is “d - o - g”. This can be represented as a (left-to-right) finite state automaton.

But consider a word like “yamaha”: the first “a” is followed by “m”, but the second “a” is followed by “h”.

Hence some automaton states need to share the same phone labels. (Put another way, given a phone label, we

cannot always uniquely identify our position within the automaton/word.) This suggests that we use an HMM

to model word pronunciation. Such a model can also cope with multiple pronunciations, e.g., the British or

American pronunciation of “banana” (see Figure 2.16).8

Let Qh
t be the hidden automaton state at time t, and Qt be the observed phone. For the yamaha model,

we have Qh
t ∈ {1, . . . , 9} and Qt ∈ {/y/, /aa/, /m/, /a/, /h/}. Note that P (Qt = k|Qh

t = q) = δ(B(q), k) is a

delta function (e.g., state 2 only emits “aa”). Also, the transition matrix, P (Qh
t = q′|Qh

t−1 = q) = A(q, q′),
can always be made upper diagonal by renumbering states, and will typically be very sparse.

Now suppose that we do not observe the phones directly, but that each phone can generate a sequence of

acoustic vectors; we will model the acoustic “appearance” and duration of each phone with a phone HMM.

The standard approach is to embed the appropriate phone HMMs into each state of the word HMM. However,

we then need to tie the transition and observation parameters between different states.

8The “yamaha” example is from Jeff Bilmes, the “banana” example is from Mark Paskin.
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Qh
1 Qh

2 Qh
3

Q1 Q2 Q3

F s
1 F s

2 F s
3

S1 S2 S3

Y1 Y2 Y3

Figure 2.17: A DBN for modelling the pronunciation of a single word. Qh is the state (position) in the word

HMM; Q is the phone; S is the state (position) within the phone HMM, i.e., the subphone; Y is the acoustic

vector. F s is a binary indicator variable that turns on when the phone HMM has finished.

Qh
1 Qh

2 Qh
3

F s
1 F s

2 F s
3

Q1 Q2 Q3

Y1 Y2 Y3

Figure 2.18: A DBN for modelling the pronunciation of a single word, where each phone is modelled by a

single state. This is the simplification of Figure 2.17 if S has only one possible value. This corresponds to

the model used in [Zwe98].

An alternative is to make the parameter tying graphically explicit by using HHMMs; this allows the tying

pattern to be learned. Specifically, let each state of the word model,Qh
t , emitQt which then “calls” the phone

HMM. The state of the phone HMM at time t is St; this is called the subphone. Since we don’t know how

long each phone lasts, we introduce F S which only turns on, allowing Qh
t to make a transition, when the

phone HMM has finished. This can be accomplished as shown in Figure 2.17. F S is conditioned on Qt, not

Qh
t , which represents the fact that the duration depends on the phone, not the automaton state (i.e., duration

information is tied). Similarly, Yt is conditioned on Qt but not Qh
t .

Normally the phone HMMs are 3-state left-to-right HMMs. However, if we use a single state HMM,

we can simplify the model. In particular, if St can have only one possible value, it can be removed from

the graph; the duration of the phone will be determined by the self-loop probability on the corresponding

hidden state in the word HMM. The resulting DBN is shown in Figure 2.18, and corresponds to the model

used in [Zwe98]. If the word HMM has a strict left-to-right topology, Qh
t deterministically increases by 1 iff

FS
t = 1; hence P (FS

t = 1|Qt = k) = 1 − A(i, i), where i is any state that (deterministically) emits the

phone k. If the word HMM is not left-to-right, then F S can specify which out-arc to take from state Qh
t−1,

so P (Qh
t |Qh

t−1, F
s
t−1) becomes deterministic [ZR97].

The above was a model for a single word. If we have a sequence of words, we add another layer to the
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hierarchy, and condition the variables inside the word HMM (i.e., Qh and Q) on the (hidden) identity of the

word: see Figure 2.19. The fact that the duration and appearance are not conditioned on the word represents

the fact that the phones are shared across words: see Figure 2.20. Sharing the phone models dramatically

reduces the size of the state space. Nevertheless, with, say, 6000 words, 60 phones, and 3 subphones, there

are still about 1 million unique states, so a lot of training data is required to learn such models. (In reality,

things are even worse because of the need to use triphone contexts, although these are clustered, to avoid

having 603 combinations.)

Note that the number of legal values for Qh
t can vary depending on the value of Wt, since each word has

a different-sized HMM pronunciation model. Also, note that silence (a gap between words) is different from

silent (non-emitting) states: silence has a detectable acoustic signature, and can be treated as just another

word (whose duration is of course unknown), whereas silent states do not generate any observations.

We now explicitly define all the CPDs for t > 1 in the model shown in Figure 2.19.

P (Wt = w′|Wt−1 = w,FW
t−1 = f) =

{
δ(w,w′) if f = 0
A(w,w′) if f = 1

P (FW
t = f |Qh

t = q,Wt = w,FS
t = b) =







δ(f, 0) if b = 0
1−Aw(q, end) if b = 1 and f = 0
Aw(q, end) if b = 1 and f = 1

P (Qh
t = q′|Qh

t−1 = q,Wt = w,FW
t−1 = f, FS

t−1 = b) =







δ(q, q′) if b = 0
Aw(q, q′) if b = 1 and f = 0
πw(q′) if b = 1 and f = 1

P (Qt = k|Qh
t = q,Wt = w) = δ(Bw(q), k)

P (F s
t = 1|St = j,Qt = k) = Ak(j, end)

P (St = j|St−1 = i, Qt = k, Ft−1 = f) =

{
Ak(i, j) if f = 0
πk(j) if f = 1

where A(w,w′) is the word bigram probability; Aw(q, q′) is the transition probability between states in word

model w, πw(q) is the initial state distribution, and Bw(q) is the phone deterministically emitted by state q
in the HMM for word w, and similarly, Ak(i, j) πk(j) and Bk(j, yt) are the parameters for the k’th phone

HMM. We could model P (Yt|St = j,Qt = k) using a mixture of Gaussians, for example.

Training HHMMs for ASR

When training an HMM from a known word sequence, we can use the model in Figure 2.21. We specify the

sequence of words, ~w, but not when they occur. If W h
t = k, it means we should use the k’th word at time

t; hence P (Wt = w|W h
t = k, ~w) = δ(w,wk) is a delta function, c.f., the relationship between Qh and Q.

Also, W h increases by 1 iff FW = 1, to indicate the next word in the sequence.

In practice, we can “compile out” the ~w node, by changing the CPDs for the W nodes for each training

sequence. If the mapping from words to phones is fixed, we can also compile out W h, W , and FW , resulting

in the model shown in Figure 2.17 (or Figure 2.18 if we don’t use subphones). Now Qh acts as an index

into the known (sub)phone sequence corresponding to ~w, so its CPD becomes deterministic (increase Qh

by 1 iff FS
t−1 = 1, which occurs iff the phone HMM has finished), and the CPD for the phone becomes

P (Qt = k|Qh
t = i) = Bw(q, k), if i corresponds to state q in word HMM w. This is equivalent to combining

all the word HMMs together, and giving all their states unique numbers, which is the standard way of training

HMMs from a known phonetic sequence.

Note that the number of possible values for W h in Figure 2.21 is now Tin, the number of words in the

input training sequence. One concern is that this might make inference intractable. The simplest approach

to inference is to combine all the interface variables (see Section 3.4) into one “mega” variable, and then use

a (modified) forwards-backwards procedure, which has complexity O(ToutN
2), where N is the number of

states of the mega variable, and Tout is the length (number of frames) of the output (observed) sequence. The

interface variables (the ones with outgoing temporal arcs) in Figure 2.21 are as follows: W h
t ∈ {1, . . . , Tin},

Qh
t ∈ {1, . . . , P}, St ∈ {1, . . . ,K}, FW

t ∈ {0, 1}, FS
t ∈ {0, 1}, where P is the max number of states in

any word model, and K is the maximum number of states in each phone HMM (typically 3). Hence it would
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W1 W2 W3

Fw
1 Fw

2 Fw
3

Qh
1 Qh

2 Qh
3

Q1 Q2 Q3

F s
1 F s

2 F s
3

S1 S2 S3

Y1 Y2 Y3

Figure 2.19: A DBN for continuous speech recognition. Note that the observations, Yt, the transition prob-

abilities, St, and the termination probabilities, F S
t , are conditioned on the phone Qt, not the position within

the phone HMM Qh
t , and not on the word, Wt.

needon thewords

phones

sub-

phones

aa n end n iy d dh

n

ax

iy

end

end

endend

Figure 2.20: An example HHMM for an ASR system which can recognize 3 words (adapted from [JM00]).

The phone models (bottom level) are shared (tied) amongst different words; only some of them are shown.
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~w

Wh
1 Wh

2 Wh
3

W1 W2 W3

Fw
1 Fw

2 Fw
3

Qh
1 Qh

2 Qh
3

Q1 Q2 Q3

F s
1 F s

2 F s
3

S1 S2 S3

Y1 Y2 Y3

Figure 2.21: A DBN for training a continuous speech recognition system from a known word sequence ~w.

In practice, the ~w node can be absorbed into the CPDs for W . Also, if the mapping from words to phones is

fixed, we can also compile out W h, W , and FW , resulting in the much simpler model shown in Figure 2.17

(or Figure 2.18 if we don’t use subphones).
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appear that exact smoothing requires O(ToutT
2
inP

2K2) time. However, because of the left-to-right nature of

the transition matrices for W h, Qh and S, this can be reduced to O(ToutTinPK) time. This is the same as

for a standard HMM (up to constant factors), since there are N = TinPK states created by concatenating

the word HMMs for the whole sequence.

When training, we know the length of the sequence, so we only want to consider segmentations that

“use up” all the phones. We can do this by introducing an extra “end of sequence” (eos) variable, that

is clamped to some observed value, say 1, and whose parents are Qh
T and F s

T ; we define its CPD to be

P (eos = 1|Qh
T = i, F s

T = f) = 1 iff i is the last phone in the training sequence, and f = 1. (The reason we

require f = 1 is that this represents the event that we are just about to transition to a (silent) accepting state.)

This is the analog of only examining paths that reach the “top right” part of the HMM trellis, where the top

row represents the final accepting state, and the right column represents the final time slice. This trick was

first suggested in [Zwe98]. A simpler alternative is simply to set Qh
T = i and F s

T = 1 as evidence; this has

the advantage of not needing any extra variables, although it is only possible if there is only one state (namely

i) immediately preceeding the final state (which will be true for a counting automaton of the kind considered

here).

General DBNs for ASR

So far, we have focussed on HHMMs for ASR. However, it is easy to create more flexible models. For

example, the observation nodes can be represented in factored form, instead of as a homogeneous vector-

valued node. (Note that this only affects the computation of the conditional likelihood terms, Bt(i, i) =
P (yt|Qt = i), so the standard forwards-backwards algorithm can be used for inference.) More general

hidden nodes can also be used, representing the state of the articulators, e.g., position of the tongue, size of

mouth opening, etc [Zwe98]. If the training set just consists of standard speech corpora, there is nothing to

force the hidden variables to have this “meaningful” intrepretation. [Row99, RBD00] trained on data where

they were able to observe the articulators directly; the resulting models are much easier to intrepret. See

[Bil01] for a more general review of how graphical models can be used for ASR.

2.3.11 Asynchronous IO-HMMs

When training an HHMM for ASR, we are essentially learning a probabilistic mapping from ~w = W1:Tin

to Y1:Tout
, where typically Tin ≪ Tout. This is like an asychronous input-output HMM [BB96], which can

handle input and output sequences of different lengths. (Note that the complexity of the inference algorithm

for asychronous IO-HMMs in [BB96] is O(TinTout), just like the DBN method. By contrast, inference is a

synchronous IO-HMM, where Tin = Tout = T , only takes time O(T ).)
Bengio [Ben99] suggested using IO-HMMs for ASR, treating the acoustic sequence as input and the

words as output, the opposite of what we discussed above. There are two problems with this. First, we may

be forced to assign high probability to unlikely observation sequences; this is because we are conditioning

on the acoustics instead of generating them: if there is only one outgoing arc from a state, it must have

probability one no matter what the input is, because we normalize transition probabilities on a per-state level.

This has been called the “label bias problem” [MFP00]. A second and more important problem is that the

“meaning” of the states in an IO-HMM is different than in an HMM. In particular, the states summarize past

acoustics, rather than past words, so the kind of sharing of phone models we discussed above, that is vital to

successful performance, cannot be used.9

2.3.12 Variable-duration (semi-Markov) HMMs

The self-arc on a state in an HMM defines a geometric distribution over waiting times. Specifically, the

probability we remain in state i for exactly d steps is p(d) = (1− p)pd−1, where p = A(i, i) is the self-loop

probability. To allow for more general durations, one can use a semi-Markov model. (It is called semi-

Markov because to predict the next state, it is not sufficient to condition on the past state: we also need to

know how long we’ve been in that state.) We can model this as a special kind of 2-level HHMM, as shown in

Figure 2.22. The reason there is no Q to F arc is that the termination process is deterministic. In particular,

9Y. Bengio, personal communication, 3/18/02.
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Q1 Q2 Q3

F1 F2 F3

QD
1 QD

2 QD
3

Y1 Y2 Y3

Figure 2.22: A variable-duration HMM modelled as a 2-level HHMM. Qt represents the state, and QD
t

represents how long we have been in that state (duration).

the bottom level counts how long we have been in a certain state; when the counter expires (reaches 0), the

F node turns on, the parent node Q can change state, and the duration counter, QD, resets. Hence the CPD

for the bottom level is as follows:

P (QD
t = d′|QD

t−1 = d,Qt = k, Ft−1 = 1) = pk(d′)

P (QD
t = d′|QD

t−1 = d,Qt = k, Ft−1 = 0) =

{
1 if d > 1 and d′ = d− 1
0 otherwise

Note that pk(d) could be represented as a table (a non-parametric approach) or as some kind of parametric

function. If pk(d) is a geometric distribution, this emulates a standard HMM.

The naive approach to inference in this HHMM takes O(TD2K2) time, where D is the maximum

number of steps we can spend in any state, and K is the number of HMM states; this is the same complexity

as the original algorithm [Rab89]. However, we can exploit the fact that the CPD for QD is deterministic to

reduce this to O(TDK2). This is faster than the original algorithm because we do dynamic programming

on the joint state-space of Q and QD, instead of just Q. Also, we can apply standard inference and learning

procedures to this model, without having to derive the (somewhat hairy) formulas by hand.

A more efficient, but less flexible, way to model non-geometric waiting times is to replace each state with

n new states, each with the same emission probabilities as the original state [DEKM98, p69]. For example,

consider this model.

1 2 3 4
1− p 1− p 1− p1− p

p p p p

Obviously the smallest sequence this can generate is of length n = 4. Any path of length l through the

model has probability pl−n(1− p)n; the number of possible paths is
(

l−1
n−1

)
, so the total probability of a path

of length l is

p(l) =

(
l − 1
n− 1

)

pl−n(1− p)n

This is the negative binomial distribution. By adjusting n and the self-loop probabilities of each state, we can

model a wide range of waiting times.

2.3.13 Mixtures of HMMs

[Smy96] defines a mixture of HMMs, which can be used for clustering (pre-segmented) sequences. The basic

idea is to add a hidden cluster variable as a parent to all the nodes in the HMM; hence all the distributions

are conditional on the (hidden) class variable. A generalization of this, which I call a dynamical mixture of

HMMs, adds Markovian dynamics to the mixture/class variable, as in Figure 2.23. This model has several

33



X1 X2

X11 X12 X13 X21 X22 X23

Y11 Y12 Y13 Y21 Y22 Y23

Figure 2.23: A dynamical mixture of HMMs, aka an embedded HMM. Here we have 2 sequences, both of

length 3. Obviously we could have more sequences of different lengths, and multiple levels of the hierarchy.

A static mixture of HMMs would combine X2 and X1.

X1,1 X1,2 X 1,3

X1

X2

X2,1 X2,2 X2,3

Y1,1 Y1,2 Y1,3

Y2,1 Y2,2 Y2,3

forehead

eyes

nose

mouth

chin

end

end

end

end

end

(a) (b)

Figure 2.24: An embedded HMM for face recognition represented (a) as a DBN and (b) as the state transition

diagram of an HHMM (dotted arcs represent calling a sub-HMM). We assume there are 2 rows and 3 columns

in the image, which is clear from the DBN representation, but not from the HHMM representation. The

number of states in each sub-model can be different, which is clear from the HHMM but not the DBN. The

DBN in (a) is just a rotated version of the one in Figure 2.23.

names in the literature: “hierarchical mixture of Markov chains” [Hoe01], “embedded HMM” [NI00], and

“pseudo-2D” HMM [KA94]. The reason for the term pseudo-2D is because this model provides a way of

extending HMMs to 2D data such as images. The basic idea is that each row of an image is modelled by

a row HMM, all of whose states are conditioned on the state of the column HMM. The overall effect is to

allow dynamic warping in both the horizontal and vertical directions (although the warping in each row is

independent, as noted by Mark Paskin).

Nefian [NI00] used embedded (2D) HMMs for face recognition. In this model, the state of each row

could be forehead, eyes, nose, mouth or chin; each pixel within each row could be in one of 3 states (if the

row was in the forehead or chin state) or in one of 6 states otherwise. The “meaning” of the horizontal states

was not defined; they just acted as positions within a left-to-right HMM, to allow horizontal warping of each

feature. See Figure 2.24.

The key difference between an embedded HMM and a hierarchical HMM is that, in an embedded HMM,

the ending “time” of each sub-HMM is known in advance, since each horizontal HMM models exactly C
observations, where C is the number of columns in the image. Hence the problem of deciding when to return

control to the (unique) parent state is avoided. This makes inference in embedded HMMs very easy.

Embedded HMMs should not be confused with switching HMMs, shown in Figure 2.25. This is different
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from an embedded HMM because each substate emits a single observation, not a fixed-length vector; also, it

is different from a 2-level HHMM, because there is nothing forcing the top level to change more slowly than

the bottom level.

Q1
1 Q1

2 Q1
3

Q2
1 Q2

2 Q2
3

Y1 Y2 Y3

Figure 2.25: A switching HMM, aka a 2-level hidden Markov decision tree. This is different from a 2-level

HHMM, because there is nothing forcing the top level to change more slowly than the bottom level.

2.3.14 Segment models
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Figure 2.26: A schematic depiction of a segment model, from [Bil01]. The Xt nodes are observed, the rest

are hidden.

The basic idea of the segment model [ODK96] is that each HMM state can generate a sequence of obser-

vations instead of just a single observation. The difference from an HHMM is that the length of the sequence

generated from state qi is explicitly determined by a random variable li, as opposed to being implicitly de-

termined by when its sub-HHMM enters its end state. Furthermore, the total number of segments, τ , is a

random variable. Hence the likelihood is given by

P (y1:T ) =
∑

τ

∑

q1:τ

∑

l1:τ

li∏

i=1

P (τ)P (qi|qi−1, τ)P (li|qi)P (yt0(i):t1(i)|qi, li)

where and t0(i) =
∑i−1

j=1 lj + 1 and t1(i) = t0(i) + li − 1 are the start and ending times of segment i.
A first attempt to represent this as a graphical model is shown in Figure 2.26. This is not a fully specified

graphical model, since the Li’s are random variables, and hence the topology is variable. Also, there are

some dependencies that are not shown (e.g., the fact that
∑τ

i=1 li = T ), and some dependencies might

not exist (e.g., the Yi’s in a segment may not be fully interconnected). We will give a more accurate DBN

representation of the model below.

Let us consider a particular segment and renumber so that t0 = 1 and t1 = l. In a variable-length HMM,

P (y1:l|q, l) =
l∏

k=1

P (yk|q)
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τ

S1 S2 S3

Q1 Q2 Q3

F1 F2 F3

L1 L2 L3

R1 R2 R3

Y1 Y2 Y3

Figure 2.27: A stochastic segment model.

(If p(l|q) is a geometric distribution, this becomes a regular HMM.) A simple generalization is to condition

on some function of the position within the segment:

P (y1:l|q, l) =
l∏

k=1

P (yk|q, rk)

where rk is the region corresponding to position k within the segment. This can be modelled as shown

in Figure 2.27. We have added a deterministic counter, St, which counts the number of segments. We

constrain ST = τ , rather like the end-of-sequence trick for HHMMs (see Section 2.3.10). The Lt nodes

is a deterministic down-counter, and turns on F when it reaches zero, as in a semi-Markov model (see

Section 2.3.12).

Alternatively, we can define a conditional Gaussian segment model [DRO93]

P (y1:l|q, l) =
l∏

k=1

P (yk|yk−1, q, rk)

We just modify Figure 2.27 by adding an arc from Yt−1 to Yt; however, we want this arc to “disappear” when

Ft−1 = 1, since that indicates the end of a segment. Hence we need to add an arc from Ft−1 to Yt as well.

We then define

P (Yt|Yt−1, Rt = r,Qt = q, Ft−1 = f) =

{
N (yt;Ar,qyt−1,Σr,q) if f = 0
N (yt;µr,q,Σr,q) if f = 1

In general, P (y1:l|q, l) can be an arbitrary joint distribution, e.g., consider an undirected graphical model

connecting yk to yk−1 and yk+1. However, representing this graphically can get messy.

2.3.15 Abstract HMMs

[BVW00a] describes the “Abstract HMM” (AHMM), which is very closely related to HHMMs. (They have

3 slightly different models in [BVW00a, BVW00b, BVW01]; we consider the version in [BVW00b].) These
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F 1
1 F 1

2 F 1
3

abstract π Q1
1 Q1

2 Q1
3

F 2
1 F 2

2 F 2
3

concrete π Q2
1 Q2

2 Q2
3

action A1 A2 A3

state S1 S2 S3

obs Y1 Y2 Y3

Figure 2.28: The DBN for a 3-level abstract HMM, from [BVW00b]. Note that we call the top layer level 1,

they call it level D. Note also that we draw F d
t above Qd

t , they draw it below, but the topology is the same.

The lines from the global world state St are shown dotted merely to reduce clutter. The top level encodes

the probability of choosing an abstract policy: P (Q1
t = π′|St−1 = s) = σ(s, π′). The second level encodes

the probability of choosing a concrete policy: P (Q2
t = π|St−1 = s,Q1

t = π′) = σπ′(s, π). The third level

encodes the probability of choosing a concrete action: P (At = a|St−1 = s,Q2
t = π) = σπ(s, a). The last

level encodes the world model: P (St = s′|St−1 = s,At = a).

authors are interested in inferring what policy an agent is following by observing its effects in the world. (We

do not observe the world state, but we assume that the agent does.)

A (stochastic) policy is a (probabilistic) mapping from (fully observed) states to actions: σπ(s, a) =
P (do action a|in state s). An abstract (stochastic) policy is a (probabilistic) mapping from states to lower

level abstract policies, or “macro actions”. An abstract policy can call a sub-policy, which runs until termina-

tion, returning control to the parent policy; the sub-policy can in turn call lower-level abstract policies, until

we reach the bottom level of the hierarchy, where a policy can only produce concrete actions. [BVW00a]

consider abstract policies of the “options” kind [SPS99], which is equivalent to assuming that there are no

horizontal transitions within a level. (HAMs [PR97a] generalize this by allowing horizontal transitions (i.e.,

internal state) within a controller.) This simplifies the CPDs, as we see below.

This can be modelled by the DBN shown in Figure 2.28. It is obviously very similar to an HHMM, but

is different in several respects, which we now discuss.

• There is a global world state variable St, that is a parent of everything.

• The bottom level represents a concrete action, which always finishes in one step; hence there is no

FA
t = F 3

t node, and no At−1 to At arc.

• There is no arc from F 2
t to Q1

t+1, since levels cannot make horizontal transitions (so F 1
t turns on as

soon as F 2
t does).

• There is no arc from Q1
t to At or Yt. In general, they assume Qd

t only depends on its immediate parent,

Qd−1
t , not its whole context, Q1:d−1

t . This substantially reduces the number of parameters (and allows

for more efficient approximate inference10). However, it may also lose some information. For example,

10We can apply Rao-Blackwellised particle filtering to sample the F and S nodes; if each Q node has a single parent, the Q nodes

form a chain, and can be integrated out exactly.
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if the bottom level controller determines how to leave a room via a door, we may be able to predict the

future location of the agent (e.g., will it leave via the left or right door) more accurately if we take into

account the complete calling context (e.g., the top-level goals).

• There is no arc from Q1
t to F 2

t . They assume the termination probability depends on the current policy

only, not on the calling context.

Given these assumptions, the CPDs simplify as follows.

P (F d
t = 1|Qd

t = π, St = s, F d+1
t = b) =

{
0 if b = 0
βπ(s) if b = 1

where βπ(s) is the probability of terminating in state s given that the current policy is π.

P (Qd
t = j|Qd

t−1 = i, Qd−1
t = π, St−1 = s, F d

t−1 = f) =

{
δ(i, j) if f = 0
σπ(s, j) if f = 1

where σπ(s, j) is the probability that abstract policy π chooses to call sub-policy j in state s.

1-level AHMMs

G1 G2 G3

FG
1 FG

2 FG
3

S1 S2 S3

Y1 Y2 Y3

Figure 2.29: A 1-level AHMM. FG
t turns on if state St statisfies goalGt; this causes a new goal to be chosen.

However, the new state may depend on the old state; hence there is no arc from FG
t−1 to St to “reset” the

submodel.

In [BVW01], they consider the special-case of a 1-level AHMM, which is shown in Figure 2.29. This has

a particularly simple interpretation: Q1
t ≡ Gt represents the goal that the agent currently has, and Q2

t ≡ St

is the world state. It is similar to a variable duration HMM (see Section 2.3.12), except the duration depends

on how long it takes to satisfy the goal.

The transition matrix for G is the same as for Q1 in an HMMM, except we never reset.

P (Gt = j|Gt−1 = i, FG
t−1 = f) =

{
δ(i, j) if f = 0
AG(i, j) if f = 1

([BVW01] consider the special case where AG(i, j) is a deterministic successor-state function for goals.)

The transition matrix for FG is the same as for FD in an HMMM:

P (FG
t = 1|Gt = g, St = i) = AS

g (i, end)

The transition matrix for S is the same as for QD in an HHMM, except we never “reset”, since FG is

not a parent (since the next state always depends on the previous state, even if the goal changes):

P (St = j|Gt−1 = g, St−1 = i) = AS
g (i, j)
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2.4 Continuous-state DBNs

So far, all the DBNs we have looked at have only had discrete-valued hidden nodes. We now consider

DBNs with continuous-valued hidden nodes, or mixed discrete-continuous systems (sometimes called hybrid

systems). In this section, we adopt the (non-standard) convention of representing discrete variables as squares

and continuous variables as circles.11

2.4.1 Representing KFMs as DBNs

The graph structure for a KFM looks identical to that for an HMM or an IO-HMM (see Figures 2.1 and

Figure 2.9), since it makes the same conditional independence assumptions. However, all the nodes are

continuous, and the CPDs are all linear-Gaussian, i.e.,

P (Xt = xt|Xt−1 = xt−1, Ut = u) = N (xt;Axt−1 +Bu+ µX , Q)

P (Yt = y|Xt = x,Ut = u) = N (y;Cx+Du+ µY , R)

In the linear-Gaussian case, but not the HMM case, there is a one-to-one correspondence between zeros in

the parameter matrices and absent arcs in the graphical model, as we discuss in Section 2.4.2.

2.4.2 Vector autoregressive (VAR) processes

Figure 2.30: A VAR(2) process represented as a graphical model. From [DE00]. The link from X3
t−3 →

X4
t−1 exists because A2(4, 3) = 1

5 > 0.

A vector autoregressive (VAR) processes of order L has the form

Xt = A1Xt−1 + · · ·+ALXt−L + ǫt

where ǫt ∼ N (0,Σ). This is equivalent to a DBN of order L where all CPDs are linear-Gaussian. There is a

one-to-one correspondence between zeros in the regression matrices and absent inter-slice arcs of the DBN.

Specifically, we can show that [DE00]

Xa
t−u → Xb

t iff Au(b, a) 6= 0

11In an influence diagram [Sha88], square nodes represent decision or action variables; however, in this thesis, we will not consider

influence diagrams. When we do have control variables, they will denoted as shaded round root nodes — shaded because we assume

they are always known, round because we are agnostic about whether they are discrete or continuous, and roots because we assume they

are exogeneous (we do not model what causes them).
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for 1 ≤ u ≤ L. If the intra-slice connections are modelled as undirected arcs (so the overall model becomes

a time series chain graph), we can also show a one-to-one correspondence between zeros in the precision

(concentration) matrix K = Σ−1 and absent intra-slice arcs [Lau96]:

Xa
t —Xb

t iff K(a, b) 6= 0

For example, consider the following VAR(2) process with parameters

A1 =









3
5 0 1

5 0 0
0 3

5 0 − 1
5 0

2
5

1
3

3
5 0 0

0 0 0 − 1
2

1
5

0 0 1
5 0 2

5









, A2 =









0 0 − 1
5 0 0

0 0 0 0 0
0 0 0 0 0
0 0 1

5 0 1
3

0 0 0 0 − 1
5









and

Σ =









1 1
2

1
3 0 0

1
2 1 − 1

3 0 0
1
3 − 1

3 1 0 0
0 0 0 1 0
0 0 0 0 1









, Σ−1 =









2.13 −1.47 −1.2 0 0
−1.47 2.13 1.2 0 0
−1.2 1.2 1.8 0 0

0 0 0 1 0
0 0 0 0 1









This is illustrated in Figure 2.30.

Since sparse graphical structure is isomorphic to sparse matrices in a linear-Gaussian system, traditional

techniques for representation (using block matrices), inference12 and learning suffice: graphical models don’t

provide much added value. Hence in the rest of this section we focus on non-linear/ non-Gaussian and mixed

discrete-continuous systems.

A model called a causality graph [DE00, Dah00, Eic01] can be derived from the time-series chain graph

by aggregatingX i
t for all t into a single nodeX i. The result is a graph in which nodes represent (components

of) whole time series, and absence of edges correspond to what are called “Granger noncausality relation-

ships” (see [DE00, Dah00, Eic01] for details). The causality graph can be further simplified to an undirected

correlation graph by a procedure akin to moralization. In the resulting graph, the edge X i — Xj is missing

iff timeseries Xi and Xj are uncorrelated conditioned on all the remaining timeseries. If we have non-linear/

non-Gaussian relationships, uncorrelated must be replaced by the stronger notion of independent which, of

course, is hard to measure in the non-discrete case (see [BJ01] for a promising kernel-based approach in the

context of ICA).

2.4.3 Switching KFMs

SX
1 SX

2 SX
3

X1 X2 X3

Y1 Y2 Y3

SY
1 SY

2 SY
3

Figure 2.31: A switching Kalman filter model. The dotted arcs are optional. Square nodes are discrete, round

nodes are continuous.

12In a VAR process, all the variables are assumed to be observed (this is the standard assumption in time-series analysis). Hence

there is no need to do state estimation. Prediction is straightforward, since there are no future observations to condition on. The only

challenging problem is structure learning (model selection), which we discuss in Chapter 6.
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In Figure 2.31 we show a switching KFM, where we have omitted the input U for simplicity. (This

model has various other names, including switching linear dynamical system (LDS), switching state-space

model (SSM), jump-Markov model, jump-linear system, conditional dynamic linear model (DLM), etc. The

term “jump” or “switch” implies St is discrete, whereas “conditional” leaves open the possibility that St is

continuous.) Although it is traditional to have only one discrete switch variable, I have shown two, one for

the dynamics and one for the observations, since their semantics is quite different (see below). The CPDs for

this model are as follows:

P (Xt = xt|Xt−1 = xt−1, S
X
t = i) = N (xt;Aixt−1 + µX

i , Qi)

P (Yt = y|Xt = x, SY
t = j) = N (y;Cjx+ µY

j , Rj)

P (SX
t = j|SX

t−1 = i) = AX(i, j)

P (SY
t = j|SY

t−1 = i) = AY (i, j)

Switching dynamics is useful for modelling piece-wise linear behavior (one way of approximating non-

linear models), or multiple types or “modes” of behavior, e.g., I have succesfully used switching KFMs for

visual tracking of people as they walk, run, skip, etc. [Mur98]; see also the manoeuvering plane example in

Figure 1.4.

Switching observations can be used to approximate non-Gaussian noise models by a mixture, to model

outliers (see Section 1.2.1), or to model data association ambiguity (see Section 2.4.6). Modelling outliers

using mixtures of Gaussians was discussed in Section 1.2.1. Note that if the outlier is caused by the sensor

being broken, we might expect such outliers to persist; this is modelled by the SY
t−1 → SY

t arc (see Sec-

tion 2.4.4). If we are just trying to approximate non-Gaussian noise, it would make more sense to remove the

SY
t−1 → SY

t arc.

Of course, we may have many discrete variables. For example, if Xt is vector valued, it is sometimes

useful to associate one discrete variable for each component ofXt, so each can have its own piece-wise linear

dynamics. Similarly, if Yt is a vector, SY may be factored; this is useful for fault diagnosis applications (see

Section 2.4.4). For another example, consider the problem of online blind deconvolution [LC95]. In this

problem, we see

yt =

q
∑

i=0

θist−i + ǫt

where the mixing coefficients θ are unknown, St is a hidden discrete random variable, and ǫt is a Gaussian

noise term. For example, when q = 2,




st

st−1

st−2



 =





0 0 0
1 0 0
0 1 0









st−1

st−2

st−3



+





1
0
0



st

We can represent this in matrix form as follows:

θt = θt−1

xt = Hxt−1 +Wst

yt = θ′txt + ǫt

where xt = (st:t−q)
′, θt = (θ0:q

t )′,W = (1, 0, . . . , 0)′, andH is the matrix shown above (for the case q = 2):

We can represent this as a DBN as shown in Figure 2.32. This is clearly a conditionally linear dynamical

system.

Unfortunately, exact inference in switching KFMs is intractable, since the belief state at time t hasO(K t)
modes, where K is the number of discrete values, for reasons we explain in Section 3.6.3. We therefore

need to use approximate inference. We discuss deterministic approximations in Section 4.3, and stochastic

approximations in Section 5.3.1.

2.4.4 Fault diagnosis in hybrid systems

One of the most important applications of hybrid systems is fault diagnosis. Consider the model in Fig-

ure 2.33, which is a benchmark problem in the fault diagnosis community [MB99] (typically one considers
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St−1 St

St−2 St−1

St−3 St−2

y1 y1

θt−1 θt

Figure 2.32: A DBN for blind deconvolution.

Figure 2.33: The two-tank system. The goal is to infer when pipes are blocked or have burst, or sensors have

broken, from (noisy) observations of the flow out of tank 1, F1o, out of tank 2, F2o, or between tanks 1 and

2, F12. R1o is a hidden variable representing the resistance of the pipe out of tank 1, P1 is a hidden variable

representing the pressure in tank 1, etc. From Figure 11 of [KL01].

n tanks, for n ≫ 2). This is a nonlinear system, since flow = pressure / resistance (or flow = pressure ×
conductance). More problematically, the values of the resistances can slowly drift, or change discontinuously

due to burst pipes. Also, the sensors can fail intermittently and give erroneous results. We can model all of

this using a DBN as shown in Figure 2.34. As in any switching KFM, inference in this model is intractable,

but particle filtering [KL01] and other approximate inference algorithms [LP01] have been used successfully

on this model.

2.4.5 Combining switching KFMs with segment models

Although inference in general switching KFMs is intractable, there are tractable special cases. A trivial

one is where the switch nodes don’t actually switch. More interesting is the model in Figure 2.35 (based

on [DRO93]), where the switch nodes are piecewise constant: they remain fixed during a segment, which is

modelled using a single KFM, but are allowed to switch at segment boundaries (whose locations are of course

unknown). In addition, the model is assumed to reset once it crosses a segment boundary, i.e., the state in

the first slice of a new segment is independent of the state in the last slice of the previous segment. (This

is not evident from the graph structure, but is implicit in the CPDs.) Hence we can reason about segment

independently (conditioned on knowing the boundaries), by running K Kalman filters per segment; we use

the forwards-backwards algorithm to figure out boundary locations. For details, see [DRO93].
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Figure 2.34: The two tanks system of Figure 2.33 modelled as a DBN. Discrete nodes are squares, continuous

nodes are circles. Abbreviations: R = resistance, P = pressure, F = flow, M = measurement, RF = resistance

failure, MF = measurement failure. Adapted from Figure 12 of [KL01].

2.4.6 Data association

We now discuss a special kind of switching KFM which we will use later in the thesis. Consider a factorial

HMM where all of the chains have linear-Gaussian CPDs except one, call it St, which is discrete and is used

to “select” which of the hidden chains to “pass through” to the output, i.e., the CPD for P (Yt|X1:D
t , St) is a

(Gaussian) multiplexer:

P (Yt = y|St = i,X
(1)
t , . . . ,X

(D)
t ) = N (y;WiX

(i)
t + µi,Σi)
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Q1 Q2 Q3

F1 F2 F3

QD
1 QD

2 QD
3

X1 X2 X3

Y1 Y2 Y3

Figure 2.35: A switching KFM/ segment model hybrid. Square nodes are discrete, round nodes are continu-

ous. We have omitted the segment counting control apparatus shown in Figure 2.27.

X1
1 X1

2 X1
3

X2
1 X2

2 X2
3

S1 S2 S3

Y1 Y2 Y3

Figure 2.36: A DBN for the data association problem. The observation Yt is from one of two independent

KFMs, as determined by the multiplexer node St. Square nodes are discrete, round nodes are continuous.

This is shown in Figure 2.36. (This is what [GH98] call a “switching state-space model”, although only the

observations switch, not the dynamics.)

One important application for this model is for representing the data association (correspondence) prob-

lem [BSF88, BS90, BSL93]. In this case, one of the “objects” X1
t , . . . ,X

D
t , is assumed to have generated

the observation Yt, but we just don’t know which. St is a latent variable which specifies the identity of the

source of the observation Yt.

The data association problem is extremely common. For example, consider tracking a single target in

clutter (e.g., one missile surrounded by decoys). If St = 1, we know the measurement was generated by

the missile, so we update its state estimate using Yt; if St = 0, we know the measurement was generated

by the “background”, so we ignore it. Of course, we do not know the value of St, so in principle we should

consider both values; this is called multiple hypothesis tracking (MHT) [BSF88, CH96]. Unfortunately, the

hypothesis tree at time t has 2t leaves, corresponding to all possible assigments to S1:t, so some pruning is

necessary. Alternatively, we can use Monte Carlo techniques [PROR99].13

A simple alternative to MHT in the single target case is to see if an observation falls within the 95%
confidence ellipse/ validation gate (given by Cov[Yt|Xt−1], which is computed using an (extended) Kalman

filter); if it does we assume the observation was generated by the target, otherwise we assume it was generated

by the background. If there is more than one observation inside the ellipse, we pick the nearest (most likely).

Of course, since we using a 95% threshold, we expect this to fail once every 20 time steps; however, we can

sometimes recover from incorrect associations using future observations.

13Note that, if all hidden variables are discrete, including the X i’s, exact inference (using constant time per update) is always possible;

unfortunately, each step takes O(KD) time, where D is the number of objects and K is the number of states each object can be in (see

Section 3.5)/ Data association and tracking using discrete-state DBNs is discussed in [MF92, NB94].
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In the multi-target case, an observation might fall inside the validation gate (confidence ellipse) of several

objects. In this case, we can either assign the observation to the nearest target (using Mahalanobis distance),

or compute the likelihood of all possible joint assignments of observations to targets, and pick the most likely

one [CH96]. Note that the nearest neighbor rule might assign the same measurement to multiple objects,

which leads to inaccuracies.

2.4.7 Tracking a variable, unknown number of objects

When we are tracking multiple targets, the measurement could have been caused by any of them, the back-

ground, or perhaps a new target that has entered the “scene”. (This problem also arises in mobile robotics,

in particular in the SLAM (simultaneous localization and mapping) problem, which we will discuss in Sec-

tion 5.3.2.) A standard way to detect the presence of new objects is if an observation arises that does not

fall inside the validation gate (confidence ellipse) of any existing object; in this case, it could either be due

to a new object, or due to background clutter, so we consider both hypotheses, and add the new object to a

provisional list. Once the object on the provisional list receives a minimum number of measurements inside

its validation gate, it is added to the state space. It is also possible for an object to be removed from the state

space if it has not been updated recently (e.g., it left the area of interest). Hence in general we must allow the

state space to grow and shrink dynamically. We discuss this further in Section 2.5.

2.5 First order DBNs

In Section 2.4.7, we discussed tracking an unknown, variable number of objects. In AI, such models are called

“first order”, as opposed to “propositional” models, which deal with a fixed set of attributes. See Section A.5

for a brief discussion of first-order probabilistic models, and [BRP01] for a discussion of first-order MDPs.

In a first order DBN, we must decide when to create a new object, and when to delete an old one

(not necessarily because it ceased to exist (e.g., was blown up by a missile), but maybe just because we no

longer want to reason about it, c.f., the frame problem in AI). In the tracking case, we used an heuristic (the

provisional list) to decide when to add an object, triggered by “surprising” observations. In online model

selection (see Section 6.1.1), we propose new basis functions at random, and check to see if they increased

the model fit. (Obviously we could use smarter proposal distributions.)

In addition to creating a new object, we must decide how the new object relates to the existing ones.

In the previous examples, we implicitly assumed the new object was unrelated to existing ones, i.e., had

zero cross-covariance. However, in certain applications, the relationships between objects might be more

important and/or easier to estimate than the object properties themselves [Gui02]. In general, we need to

estimate both object properties and their relations, e.g., for image understanding [Gre93, BGP97], natural

language understanding [GC92], etc.
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Chapter 3

Exact inference in DBNs

3.1 Introduction

The goal of inference in a DBN is to compute the marginals P (X i
t |y1:τ ); if τ = t this is filtering, if τ > t,

this is smoothing, and if τ < t this is prediction. For learning, we must also be able to compute the family

marginals P (Pa(X i
t),X

i
t |y1:τ ).

In this chapter, we show to perform these inferences using a pair of abstract forwards/ backwards oper-

ators c.f., [LBN96] and [RN02, ch.17]. We will then discuss increasingly efficient ways to implement these

operators for general DBNs, culminating in a discussion of the lower bounds on complexity of exact infer-

ence in DBNs. For most of this chapter, we assume all hidden variables are discrete. We address inference in

models with continuous (or mixed discrete-continuous) state-spaces in Section 3.6.

The main novel contributions are the island algorithm — a way of doing offline smoothing in O(log T )
space instead of the usual O(T ) space — and the interface algorithm — a simple way to implement the

forwards/ backwards operators using the junction tree algorithm.

Since inference in DBNs uses inference in BNs as a subroutine, you are strongly recommended to read

Appendix B before reading this chapter.

3.2 The forwards-backwards algorithm

We will now review how to do (fixed-interval) smoothing in an HMM using the well-known forward-

backwards (FB) algorithm. This algorithm can be applied to any discrete-state DBN, by converting the

DBN to an HMM. We also present a number of variations on the standard algorithm, which will prove to be

useful later in the thesis.

The basic idea of the FB algorithm is to recursively compute αt(i)
def
=P (Xt = i|y1:t) in the forwards

pass1, to recursively compute βt(i)
def
=P (yt+1:T |Xt = i) in the backwards pass, and then to combine them to

produce the final answer γt(i)
def
=P (Xt = i|y1:T ):

P (Xt = i|y1:T ) =
1

P (y1:T )
P (yt+1:T |Xt = i, y1:t)P (Xt = i, y1:t)

=
1

P (y1:T )
P (yt+1:T |Xt = i)P (Xt = i|y1:t)

or

γt ∝ αt. ∗ βt

where .∗ denotes elementwise product, i.e., γt(i) ∝ αt(i)βt(i).

1It is more common (see e.g., [Rab89]) to define αt(i) = P (Xt = i, y1:t); the difference is discussed in Section 3.2.1.
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3.2.1 The forwards pass

We compute α recursively as follows.

αt(j)P (Xt = j|y1:t) =
1

ct
P (Xt = j, yt|y1:t−1)

where

P (Xt = j, yt|y1:t−1) =

[
∑

i

P (Xt = j|Xt−1 = i)P (Xt−1 = i|y1:t−1)

]

P (yt|Xt = j) (3.1)

and

ct = P (yt|y1:t−1) =
∑

j

P (Xt = j, yt|y1:t−1) (3.2)

In vector-matrix notation, this becomes

αt ∝ OtA
′αt−1 (3.3)

where A′ denotes the transpose of A and Ot(i, i)
def
=P (yt|Xt = i) is a diagonal matrix containing the condi-

tional likelihood of the evidence at time t. (This is the only way in which the evidence affects the algorithm.

Hence we can use any model for P (Yt|Xt = i).)
The base case is

α1(j) = P (X1 = j|y1) =
1

c1
P (X1 = j)P (Y1|X1 = j)

or

α1 ∝ O1π

If we did not normalize at each step, then we would be computing αt(i) = P (Xt = i, y1:t). However,

this joint probability will become very small for large t, and hence this quantity will rapidly underflow. One

solution is to work in the log-domain. An alternative is to normalize, i.e., to compute αt(i) = P (Xt = i|y1:t),
which always sums to one. Not only does this prevent underflow, but it is also a much more meaningful

quantity (a filtered state estimate). We keep track of the normalizing constants so that we can compute the

likelihood of the sequence:

P (y1:T ) = P (y1)P (y2|y1)P (y3|y1:2) . . . P (yT |y1:T−1) =
T∏

t=1

ct

3.2.2 The backwards pass

We compute the β’s recursively as follows. The base case is

βT (i) = 1

since Pr(yT+1:T |XT = i) = Pr(∅|XT = i) = 1. The recursive step is

P (yt+1:T |Xt = i) =
∑

j

P (yt+2:T ,Xt+1 = j, yt+1|Xt = i)

=
∑

j

P (yt+2:T |Xt+1 = j, yt+1,Xt = i)P (Xt+1 = j, yt+1|Xt = i)

=
∑

j

P (yt+2:T |Xt+1 = j)P (yt+1|Xt+1 = j)P (Xt+1 = j|Xt = i)

or

βt = AOt+1βt+1

Note that the backwards algorithm requires the evidence stream in the form of Ot, but can be run indepen-

dently of the forwards algorithm. This is sometimes called the “two filter” approach to smoothing. However,
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βt = P (yt+1:T |Xt) is a conditional likelihood, not a filtered estimate; see Section 3.2.5 for a “proper”

two-filter smoothing algorithm.

Since βt = P (yt+1:T |Xt) is a conditional likelihood, it need not sum to one. To prevent underflow, we

normalize at every step. The normalization constant is arbitrary, since it will cancel when we compute γt:

P (Xt|y1:T ) ∝ P (Xt, y1:t)P (yt+1:T |Xt) = (Ctαt)βt ∝ (Ctαt)(dtβt)

where Ct =
∏t

i=1 ct = P (y1:t) and dt is any constant. Rabiner [Rab89] chooses dt = ct, but in BNT2, I use

dt =
∑

i βt(i), which is computable without reference to α.

3.2.3 An alternative backwards pass

The fact that βt is not a true probability distribution, besides being unintuitive, presents problems when we

consider Kalman filter models.3 Hence we now derive a way of computing γt recursively without first having

to first compute βt. I call this the α/γ algorithm instead of the α/β algorithm. This derivation turns out to be

equivalent to the junction tree algorithm (see Section B.4) applied to this model [SHJ97].)

The α/γ algorithm exploits the fact that Xt−1 ⊥ yt+1:T |Xt as follows.

γt−1(i) =
∑

j

ξt−1,t|T (i, j)

where

ξt−1,t|T (i, j)
def
= P (Xt−1 = i,Xt = j|y1:T )

= P (Xt−1 = i|Xt = j, y1:t)P (Xt = j|y1:T )

= P (Xt−1 = i,Xt = j|y1:t)
P (Xt = j|y1:T )

P (Xt = j|y1:t)

= ξt−1,t|t(i, j)
γt(j)

αt(j)

and

ξt−1,t|t(i, j)
def
= P (Xt−1 = i,Xt = j|y1:t)
∝ P (yt|Xt = j)P (Xt = j|Xt−1 = i)P (Xt−1 = i|y1:t−1)

= Ot(j, j)A(i, j)αt−1(i)

We can think of the ratio
P (Xt=j|y1:T )
P (Xt=j|y1:t)

as an update factor, or equivalently, as the backwards message,

since

P (Xt = j|y1:T )

P (Xt = j|y1:t)
=

P (Xt = j, y1:T )

P (Xt = j|y1:t)P (y1:T )

=
P (Xt = j|y1:t)P (yt+1:T |Xt = j)

P (Xt = j|y1:t)P (y1:T )

∝ βt(j).

This update factor is “absorbed” into the two-slice distribution P (Xt−1,Xt|y1:t), which is then marginalized

down to yield P (Xt−1|y1:T ). This is the standard way of performing inference in the junction tree algorithm

(see Section B.4.4).

2Specifically, in the function BNT/HMM/forwards-backwards.m.
3In KFMs, αt can be represented in moment form (i.e., in terms of E[Xt|y1:t] and Cov[Xt|y1:t]), or in canonical (information)

form (see Section B.5.1). However, βt must be represented in canonical form, since it is not necessarily normalizable. Unfortunately,

even in this form, the required inverses may not exist. Hence in the backwards (smoothing) pass, it is better to compute γt directly,

which can always be represented in moment form, since it is a probability distribution. This is also essential for switching KFMs,

since the standard moment-matching (weak marginalisation) approximation is only applicable if the message is in moment form (see

Section B.5.2).
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3.2.4 Two-slice distributions

When we do parameter estimation (see Section 1.2.3), we will also need to compute the two-slice distribution

ξt−1,t|T (i, j)
def
=P (Xt−1 = i,Xt = j|y1:T ). If we use the α/γ (junction tree) algorithm, the two-slice

distribution has already been computed. If we use the α/β algorithm, this can be computed using

P (Xt−1 = i,Xt = j|y1:T ) ∝ P (Xt = j|Xt−1 = i)P (Xt−1 = i|y1:t−1)P (yt|Xt = j)P (yt+1:T |Xt = j)

or

ξt−1,t|T ∝ A. ∗ αt−1Otβ
′
t

where the normalizing constant ensures
∑

i,j ξt−1,t|T (i, j) = 1.

3.2.5 A two-filter approach to smoothing

We have already remarked that βt = P (yt+1:T |Xt) is a conditional likelihood; it would seem more natural to

use the backwards filtered estimate β̂t
def
=P (Xt|yt+1:T ) (we start at t + 1 so we don’t double-count yt when

we combine with αt). We now derive a novel recursive backwards update for β̂t. (An analogous result for

KFMs can be found in [FP69].)

First we define the reverse transition matrix as follows:

Ar(j, i)
def
=P (Xt = i|Xt+1 = j) =

P (Xt+1 = j|Xt = i)P (Xt = i)

P (Xt+1 = j)

Let Πt(i, i)
def
=P (Xt = i) be a diagonal matrix. Then we can write

Ar(j, i) =
A(i, j)Πt(i, i)

Πt(j, j)

This is only defined if Πt(j, j) > 0 for all j and t. (This is not true for a left-to-right transition matrix, for

example.)

Assuming Ar exists, we can derive the backwards filter as follows.

P (Xt = i|yt+1:T ) ∝ P (Xt = i, yt+1|yt+2:T )

=
∑

j

P (Xt = i|yt+1,Xt+1 = j, yt+2:T )P (yt+1,Xt+1 = j|yt+2:T )

=
∑

j

P (Xt = i|Xt+1 = j)P (yt+1|Xt+1 = j)P (Xt+1 = j|yt+2:T )

or, more concisely,

β̂t ∝ A′
rOt+1β̂t+1

where the constant of proportionality is 1/P (yt+1|yt+2:T ). This has an appealing symmetry with the forwards

algorithm, but is only applicable if Ar exists.

Finally, can combine the two filters as follows.

P (Xt = i|y1:T ) ∝ P (Xt = i|y1:t)P (yt+1:T |Xt = i)

= P (Xt = i|y1:t)
P (yt+1:T ,Xt = i)

P (Xt = i)

∝ P (Xt = i|y1:t)
P (Xt = i|yt+1:T )

P (Xt = i)

or

γt(i) ∝
αt(i)β̂t(i)

Πt(i, i)
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3.2.6 Time and space complexity of forwards-backwards

If X can be in K possible states, filtering takes O(K2) operations per time step, since we must do a matrix-

vector multiply at every step. Smoothing therefore takes O(K2T ) time. (If A is sparse, and each state has at

most Fin predecessors, then the complexity is (KFinT ), e.g., for a left-to-right HMM, Fin = 2 (predecessor

state and self-arc), so the complexity is O(KT ).) Smoothing also needs O(KT ) space, since we must store

αt for t = 1, . . . , T until we do the backwards pass. For complex models, in which K can be very large,

and long sequences, in which T is large, we often find that we run out of space. Section 3.7.1 discusses a

way to reduce the space complexity to O(K log T ), while still performing exact inference (at the expense of

a slowdown by a O(log T ) factor).

3.2.7 Abstract forwards and backwards operators

We have now seen several different ways of performing filtering and smoothing in HMMs, depending on

whether we use α/β, α/γ, etc. To hide these details from higher-level inference algorithms, we define abstract

forwards and backwards operators.

The forward operator is denoted by

(ft|t, Lt) = Fwd(ft−1|t−1, yt)

where ft|t is the forwards “message”4, and Lt = logP (yt|y1:t−1) is the conditional log-likelihood of the

observation; this is a measure of surprise (the “innovation” probability). The backward operator is denoted

by

bt|T = Back(bt+1|T , ft|t)

where bt|T is the backwards “message”. The base cases will be denoted by (f1|1, L1) = Fwd1(y1) and

bT |T = backT(fT |T ).
The “meaning” of the forwards and backwards messages depends on which algorithm we use. In general

all we can say is that bt|T is some “object” (in the programming language sense) from which we can compute

P (Zi
t |y1:T ) and P (Zi

t ,Pa(Zi
t)|y1:T ) for any node Zi

t and its parents.

3.3 The frontier algorithm

The forwards-backwards algorithm for HMMs works by exploiting the fact that Xt d-separates the past from

the future. For a DBN, the set of all hidden nodes, X
(1:D)
t , d-separates the past from the future. The frontier

algorithm [Zwe96] is a way of updating the joint distribution on this set of nodes without needing to create, yet

alone multiply by, an O(KD ×KD) transition matrix. The basic idea is to “sweep” a Markov blanket across

the DBN, first forwards and then backwards. We shall call the nodes in the Markov blanket the “frontier set”,

and denote it by F ; the nodes to the left and right of the frontier will be denoted by L and R. At every step

of the algorithm, we ensure F d-separates L and R. The forwards pass corresponds to the computation of α,

and the backwards pass to the computation of β. We give the details below.5

3.3.1 Forwards pass

We use the original notation from [Zwe96], so hF refers to the hidden nodes in F , eF refers to the ev-

idence in F , eL refers to the evidence in L, and eR refers to the evidence in R. In the forwards pass,

P (F )
def
=P (hF , eF , eL) (in practice, we normalize to get P (hF |eF , eL)). We can compute this recursively as

4This notation is based on the convention from Kalman filtering, where E[Xt|y1:τ ] is denoted by x̂τ .
5A special case of the frontier algorithm, applied to factorial HMMs, was published in Appendix B of [GJ97]. Since there are no

cross links between the hidden nodes in an FHMM, there are no constraints on the order in which nodes are added to or removed from

the frontier, so the resulting algorithm is much simpler than the general case presented here. The frontier algorithm is itself a special

case of the junction tree algorithm. We describe it here because it is simple to understand, and because it is the inference algorithm used

in GMTK [BZ02].
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follows. We can add a node N to the frontier (move it from R to F ) when all its parents are already in the

frontier:

P (eL, eF , hF , N) = P (eL, eF , hF )P (N |eF , hF )

since N⊥eL|eF , hF . P (eL, eF , hF ) is available by inductive assumption. In other words, adding a node

consists of multiplying its CPD onto the frontier.

We can remove a node N (move it from F to L) when all its children are in the frontier. This can be

done as follows. Let L+N represent L∪{N}, and F −N represent F \ {N}. Consider first the case that N
is hidden, so eL+N = eL and eF−N = eF .

P (eL+N , eF−N , hF−N ) = P (eL, eF , hF−N )

=
∑

N

P (eL, eF , N, hF−N )

=
∑

N

P (eL, eF , hF )

where the last line follows since hF−N∪{N} = hF . In other words, removing a node simply means

marginalizing it out. (If we replace sum with max, we get what [Zwe98] calls the “chain decoding” al-

gorithm.) The case where N is observed is similar:

P (eL+N , eF−N , hF−N ) = P (eL+N , eF−N , hF )

= P (eL, eN , eF−N , hF )

= P (eL, eF , hF )

We can skip the marginalization since N is observed; hence this is essentially a no-op. Note that this proce-

dure is equivalent to the variable elimination algorithm (see Section B.2) with a specific ordering.

3.3.2 Backwards pass

In the backwards pass, P (F )
def
=P (eR|hF , eF ). We can advance the frontier from slice t + 1 to slice t by

adding and removing nodes in the opposite order that we used in the forwards pass, e.g., suppose in the

forward pass we add X1
t , remove X1

t−1, add X2
t , remove X2

t−1; then in the backwards pass we would add

X2
t−1, remove X2

t , add X1
t−1, remove X1

t . Adding a node means moving it from L to F ; removing a node

means moving it from F to R; hence R is the set of nodes that have been “processed”, the opposite of the

forwards pass.

When we add node N to F , we want to compute P (eR|eF , hF , N). Because N was removed at this

step in the forwards pass, we know that all N ’s children are in F , which “shield” N from eR; hence

P (eR|eF , hF , N) = P (eR|eF , hF ). So adding N simply means expanding the domain of the frontier to

contain it, by duplicating all the existing entries, once for each possible value of N .

When we remove node N from F (and add it to R), we want to compute P (eR+N |eF−N , hF−N ) from

P (eR|eF , hF ). Consider first the case that N is a hidden node, so eR+N = eR, and eF−N = eF . Then we

have

P (eR+N |eF−N , hF−N ) = P (eR|eF , hF−N )

=
∑

N

P (N, eR|eF , hF−N )

=
∑

N

P (N |eF , hF−N )P (eR|N, eF , hF−N )

=
∑

N

P (N |eF , hF−N )P (eR|eF , hF )

since hF−N∪{N} = hF . In other words, to remove node N , we multiply in N ’s CPD (this is possible since

all of N ’s parents will be in F , since N was added at this step in the forwards pass) and then marginalize out

N .
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X1(1)

X2(2)

X1(2)

. . . .

add X1(t) add X2(t) remove X1(t-1) remove X2(t-1)add X3(t)

X3(2)

X2(1)

Figure 3.1: The frontier algorithm applied to a coupled HMM with 5 chains (see Figure 2.11); observed

leaves (i.e., y1:T ) are omitted for clarity. Nodes inside the box are in the frontier. The node being operated on

is shown shaded; only connections with its parents and children are shown; other arcs are omitted for clarity.

See text for details.

If N is observed, the procedure is basically the same, except we don’t need to marginalize out N , since

it only has one possible value.

P (eR+N |eF−N , hF−N ) = P (eR+N |eF−N , hF )

= P (eN , eR|eF−N , hF )

= P (eN |eF−N , hF )P (eR|eN , eF−N , hF )

3.3.3 Example

We now give an example of the forwards pass applied to a coupled HMM: refer to Figure 3.1. The frontier

initially contains all the nodes in slice t − 1: Ft,0
def
=αt−1 = P (X1:D

t−1 |y1:t−1). We then advance the frontier

by moving X1
t from R to F . To do this, we multiply in its CPD P (X1

t |X1
t−1,X

2
t−1):

Ft,1 = P (X1
t ,X

1:D
t−1 |y1:t−1) = P (X1

t |X1
t−1,X

2
t−1)× Ft,0

Next we add in X2
t :

Ft,2 = P (X1:2
t ,X1:D

t−1 |y1:t−1)

= P (X2
t |X1

t−1,X
2
t−1,X

3
t−1)× Ft,1

Now all of the nodes that depend on X1
t−1 are in the frontier, so we can marginalize X1

t−1 out (move it from

F to L):

Ft,3 = P (X1:2
t ,X2:D

t−1 |y1:t−1) =
∑

X1
t−1

Ft,2

The process continues in this way until we compute

Ft,D = P (X1:D
t |y1:t−1)

Finally, we weight this factor by the likelihood to get

Ft+1,0 = αt = P (X1:D
t |y1:t) ∝ P (yt|X1:D

t )× Ft,D =

D∏

i=1

P (yi
t|Xi

t)× Ft,D
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Figure 3.2: A worst case DBN from a complexity point of view, since we must create a clique which contains

all nodes in both slices.

3.3.4 Complexity of the frontier algorithm

It is clear that in the above example, exact smoothing takes O(TDKD+2) time and space, since the frontier

never contains more thanD+2 nodes, and it takesO(D) steps to sweep the frontier from t−1 to t. In general,

the running time of the frontier algorithm is exponential in the size of the largest frontier. We would therefore

like to keep the frontiers as small as possible. Unfortunately, computing an order in which to add and remove

nodes so as to minimize the sum of the frontier sizes is equivalent to finding an optimal elimination ordering,

which is known to be NP-hard [Arn85]. Nevertheless, heuristics methods, such as greedy search [Kja90],

often perform as well as exhaustive search using branch and bound [Zwe96]. (See Section B.3.5 for more on

elimination orderings.)

In the best case, which occurs when all the chains are disconnected, as in a factorial HMM, the frontier

algorithm does O(D) multiplications by O(K ×K) matrices to advance the frontier from slice t− 1 to slice

t (and similarly in the backwards direction). Each of these K×K matrices must be multiplied onto the joint,

which has size O(KD). Hence the total amount of work, in the best case, is O(DKD+1) per time step; for a

regular HMM (D = 1), this becomes O(K2), as expected. In the worst case, which occurs for a DBN like

the one in Figure 3.2, the total amount of work is O(K2D), as in the FB algorithm. To see this, note that

we must add all the nodes in slice t, while keeping all the nodes in slice t − 1 in the frontier, before we can

remove any nodes; this is because the bottom node depends on all nodes in slice t and all nodes in slice t− 1,

i.e., the corresponding moral graph is a clique containing both slices. Adding the nodes in slice t one by one

to the frontier takes
∑D

i=1K
D+i = KD KD+1−1

K−1 = O(K2D) time, since the frontier grows from size KD

to K2D; marginalizing them out also takes O(K2D) time. In general, the algorithm will always take at least

O(TKD+Fin+1), where Fin is the maximal number of parents of any node within the same slice.

3.4 The interface algorithm

The frontier algorithm uses all the hidden nodes in a slice to d-separate the past from the future. This set is

larger than it needs to be, and hence the algorithm is sub-optimal (see Table 3.1). I claim that the set of nodes

with outgoing arcs to the next time-slice is sufficient to d-separate the past from the future; following [Dar01],

I will call this set the “forward interface”. For example, the forward interface for Figure 3.4 is {X1
t ,X

4
t }. I

now state and prove this result formally.

Definition. Let the set of temporal arcs between slices t − 1 and t be denoted by E tmp(t) = {(u, v) ∈
E|u ∈ Vt−1, v ∈ Vt}, where Vt are the nodes in slice t. The forward interface is defined as It

def
= {u ∈

Vt|(u, v) ∈ Etmp(t + 1), v ∈ Vt+1}, i.e., the nodes which have children in the next slice. The set of

non-interface nodes is Nt = Vt \ It.
Lemma. {V1:t−1, Nt} ⊥ Vt+1:T |It, i.e., the forward interface d-separates the past from the future, where

the past is Nt and earlier nodes, and the future is Vt+1 and later nodes.

Proof. Let I be a node in the interface, connected to a node P in the past and a node F in the future (which
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Figure 3.3: The Mildew DBN, designed for foreacasting the gross yield of wheat based on climatic data,

observations of leaf area index (LAI) and extension of mildew, and knowledge of amount of fungicides used

and time of usage [Kja95]. Nodes are numbered in topological order, as required by BNT.

DBN Figure Slice-size Frontier Back Fwd

BAT 4.2 28 18 9 10

Water 4.1 12 8 8 8

Mildew 3.3 9 9 4 5

Cascade 3.5 4 4 4 1

Uffe 3.4 4 4 3 2

Table 3.1: Sizes of various separating sets for different DBNs. The slice-size is the total number of nodes per

slice. The frontier is the total number of hidden nodes per slice. Back is the size of the backwards interface,

i.e., the number of nodes with incoming temporal arcs, plus parents of such nodes in the same slice (see text

for precise definition). Fwd is the size of the forward interface, i.e., the number of nodes with children in the

next slice.

must be a child of I , by definition). If P is a parent, the graph looks like this: P → I → F . If P is a child,

the graph looks like this: P ← I → F . Either way, we have P ⊥ F |I , since I is never at the bottom of

a v-structure. Since all paths between any node in the past and any node in the future are blocked by some

node in the interface, the result follows. �

Kjaerulff [Kja95] defines a related quantity, which he called the interface, but which I will call the

backward interface, to avoid confusion with the forward interface. He defines the backward interface to

be all nodes v s.t. v, or one of its children, has a parent in slice t − 1, i.e., int(t) = {v ∈ Vt|(u, v) ∈
Etmp(t) or ∃w ∈ ch(v) : (u,w) ∈ Etmp(t), u ∈ Vt−1}. The reason for this definition is the following:

when we eliminate a node from slice t− 1, we will create a term which involves all nodes which depend on

it, including those in slice t; some of the slice t terms will involve parents in slice t as well. For example,
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Figure 3.4: The “Uffe” DBN, from Figure 3 of [Kja95]. Nodes are numbered topologically, as required by

BNT. The dotted undirected arcs are moralization arcs. The backward interface is shaded.

Figure 3.5: The “cascade” DBN, from Figure 2 of [Dar01]. This graph has a treewidth of 2.

consider eliminating the nodes from slice 1 of Figure 3.4. We have

∑

X3
1

P (X4
1 |X3

1 )
∑

X2
1

∑

X1
1

P (X1
1 )P (X2

1 |X1
1 )P (X3

1 |X1
1 ,X

2
1 )P (X1

2 |X1
1 )

︸ ︷︷ ︸

λ(X3
1 ,X1

2 )
︸ ︷︷ ︸

λ(X1
2 ,X4

1 )

and ∑

X4
1

P (X4
2 |X3

2 ,X
4
1 )λ(X1

2 ,X
4
1 )

︸ ︷︷ ︸

λ(X1
2 ,X4

2 ,X3
2 )

Clearly we have coupled all the nodes in the backward interface, since the backward interface for Figure 3.4

is {X1
t ,X

3
t ,X

4
t }.

The forward interface can sometimes be dramatically smaller than the backward interface (see Table 3.1).

For an extreme example, consider Figure 3.5: The forward interface is {1} but the backward interface is all

the nodes in the slice. It is easy to see that the size of the forward interface is never larger than the size of the

backward interface if all temporal arcs are persistence arcs, i.e., edges of the form X i
t−1 to Xi

t .

The other problem with the backward interface is that using it does not lead to a simple online inference

algorithm; the one in [Kja95] involves a complicated procedure for dynamically modifying jtrees. Below I

present a much simpler algorithm, which always uses the same jtree structure, constructed from a modified

two-slice temporal Bayes net (2TBN) using an unconstrained elimination ordering, but with the restriction

that the nodes in the forward interface must belong to one clique.
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Figure 3.6: A schematic illustration of how to join the junction trees for each 1 1
2 -slice DBN. It are the

interface nodes for slice t, Nt are the non-interface nodes. Dt is the clique in Jt containing It−1. Ct is the

clique in Jt containing It. The square box represents a separator, whose domain is It.
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Figure 3.7: The DAGs for an HMM with mixture of Gaussians output, glued together by their interface nodes,

Xt. The non-interface is Nt = (St, Yt).

3.4.1 Constructing the junction tree

Let Gt be the DAG created from slices t − 1 and t from the unrolled DBN. A “1 1
2 -slice DBN” Ht (H for

half) is the DAG created by eliminating all non-interface nodes (and their arcs) from the first slice of Gt, i.e.,

Ht = It−1∪Vt. (For t = 1, H1 = V1.)

We now construct a jtree, Jt, for each Ht. (See Section B.3 for details on how to construct a jtree.) We

must enforce the constraint that It−1 and It each form a clique, since we need P (It−1) and P (It). This can

be ensured by simply adding edges to the moral graph between all nodes in It−1, and similarly for It, before

construcing Jt.

We can now “glue” all the junction trees together via their interfaces, as shown in Figures 3.6 and 3.7.

We can perform inference in each tree separately, and then pass messages between them via the interface

nodes, first forwards and then backwards. We give the details below.

3.4.2 Forwards pass

In the forwards pass, we are given a prior belief state P (It−1|y1:t−1), which is passed from Ct−1 to Dt,

where Ct−1 is the clique in Jt−1 containing It−1 and Dt is the clique in Jt containing It−1. We then call

collect-evidence on Jt with Ct as the root, which has the effect of doing one step of Bayesian updating.

Finally we marginalize down the distribution over Ct onto It to compute P (It|y1:t), and pass this to the next

slice. In more detail, the steps are as follows.

1. Construct Jt, where all clique and separator potentials are initialized to the identity element (1’s in the

case of discrete potentials).

2. From Jt−1, extract the potential on Ct−1, and marginalize it down to It−1; this represents the prior,

P (It−1|y1:t−1). Multiply the prior onto the potential for Dt.
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3. Multiply the CPDs for each node in slice t onto the appropriate potential in Jt, using yt where neces-

sary.

4. Collect evidence to the root Ct.

5. Return all clique and separator potentials in Jt.

We will denote this operator abstractly as

(ft|t, Lt) = Fwd(ft−1|t−1, yt)

where ft|t contains the clique and separator potentials in Jt. As with HMMs, to prevent underflow, we must

normalize all the messages (or else work in the log domain). The normalization constant at the root, Ct, will

be ct = P (yt|y1:t), which can be used to compute the log-likelihood, Lt.

For the first slice, we skip the step involving the prior (step 2). This will be denoted by

(f1|1, L1) = Fwd1(y1)

After collecting to Ct, not all nodes (cliques) in Jt will have “seen” all the evidence y1:t. For example,

in Figure 3.7, if we collect to X2, then the distribution on S2 will be P (S2|y2) rather than the full filtered

distribution, P (S2|y1:2), since S2 will only have received a message from Y2 below, and not from X2 above.

Hence we must additionally perform a distribute-evidence operation from Ct to compute the distribution over

all nodes in Jt; this will be performed in the backwards pass. Hence even when filtering, we must perform a

backwards pass, but only within a single slice.

3.4.3 Backwards pass

In the backwards pass, we distribute evidence from Ct, and then pass a message fromDt to Ct−1. The details

are as follows.

1. The input is ft|t, which contains the clique and separator potentials over all nodes in Jt, and bt+1|T ,

which contains the clique and separator potentials over all nodes in Jt+1.

2. From bt+1|T , extract the potential on Dt+1, and marginalize it down to It; this represents P (It|y1:T ).

3. Update the potential on Ct in Jt by absorbing from the potential on Dt+1 in Jt+1 as follows:

φ∗C = φC ×
∑

D\C φD
∑

C\D φC

where C = Ct and D = Dt+1.6

4. Distribute evidence from the root Ct.

5. Return all clique (and optionally separator) potentials.

We will denote this operator by

bt|T = Back(bt+1|T , ft|t)

To start the process at the final slice, we just distribute evidence from CT (no need to absorb from JT+1,

which does not exist).

bT |T = BackT(fT |T )

6In the forwards pass, we implicitely computed φ∗
D = φD ×

∑
C\D φC

∑
D\C φD

where C = Ct−1 and D = Dt. However, since Dt is

initially all 1s, we simplified this to φD =
∑

C\D φC = P (It−1|y1:t−1). In otherwords, we simply set the potential on Dt to be

P (It−1|y1:t−1), with a suitably extended domain.
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Figure 3.8: A DBN in which all the nodes in the last slice become connected when we eliminate the first 3 or

more slices, even though the max clique size is 2.

3.4.4 Complexity of the interface algorithm

The complexity of the interface algorithm can be characterized as follows.

Theorem. The complexity of the interface algorithm is between Ω(KI+1) and O(KI+D), where I is

the size of the forwards interface, D is the number of hidden nodes per slice, and K is the maximum number

of values each discrete hidden node can take.

Proof.7 When we create the 1 1
2 slice jtree, the nodes are It−1∪Vt. Let w be the size of the maximum clique

created by eliminating this set according to some ordering π. Clearly I + 1 ≤ w, all the nodes in It−1 have

a target in Vt, and w ≤ I +D, since each node in It−1 can be connected to at most D nodes in Vt. We now

show these bounds are tight. The lower bound can be achieved by a Markov chain, where I = 1, so w = 2
(the cliques correspond to (Xt−1,Xt). The upper bound can be achieved by the DBN shown in Figure 3.2.

�

3.5 Computational complexity of exact inference in DBNs

We proved above that the interface algorithm always takes at least Ω(KI+1) time, where I is the size of the

forwards interface. But this is a lower bound on the algorithm, not on the problem itself. To get a lower

bound on the problem, we need to distinguish offline and online inference.

3.5.1 Offline inference

The simplest way to do exact inference in a DBN is to “unroll” the DBN for T slices and then apply any in-

ference algorithm to the resulting static Bayes net. As discussed in Appendix B, the cost of this is determined

by the tree width:

Theorem. Consider a 2TBN G with D nodes per slice, each of which has a maximum of K pos-

sible discrete values. Let GT = UT (G) be this DBN unrolled for T slices. Then the complexity of

any offline inference algorithm is at least Ω(Kw), where w is the treewidth, i.e., the max clique size of

triangulate(moralize(GT )) using an optimal elimination ordering.

In general, w ≥ I , the size of the forwards interface, but this is not always the case. For example, in

Figure 3.8, I = 4 but w = 2, since the graph is a tree.

7This proof is based on similar ones in [Dar01].
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3.5.2 Constrained elimination orderings

When doing inference with sequences that can have variable lengths, it becomes too expensive to repeatedly

unroll the DBN and convert it to a jtree. The approach taken in [Zwe98] is to unroll the DBN once, to some

maximum length Tmax, construct a corresponding jtree, and then to “splice out” redundant cliques from the

jtree when doing inference on a shorter sequence.

To ensure there is some repetitive structure to the junction tree which can be spliced out, we must use a

constrained elimination ordering, in which we eliminate all nodes from slice t before any from slice t + 1.

The temporal constraint ensures that we create “vertical” cliques, which only contain nodes from neighboring

time-slices, instead of “horizontal” cliques, which can span many time-slices. The resulting jtree is said to be

constrainedly triangulated.

For example, consider the DBN in Figure 3.3. Using the constrained min-fill heuristic, as implemented

in BNT, resulted in the following elimination ordering: 7, 1, 2, 4, 5, 6, 7, 3, 8. The corresponding jtree, for

4 slices, is shown in Figure 3.9. The cliques themselves are shown in Figure 3.11. Notice how the jtree

essentially has a head, a repeating body, and then a tail; the head and tail are due to the boundaries on the left

and right. This is shown schematically in Figure 3.10. Zweig [Zwe98] shows how to identify the repeating

structure (by looking for “isomorphic” cliques); this can then be “spliced out”, to create a jtree suitable for

offline inference on shorter sequences. By contrast, Figure 3.12 shows the cliques which result from an

unconstrained elimination ordering, for which there is no repeating pattern.

Figure 3.9: The jtree for 4 slices of the Mildew DBN (Figure 3.3) created using a constrained elimination

ordering. Notice how the backward interface (cliques 9, 17 and 25) are separators. Node 28 in slice 4 is not

connected to the rest of the DBN. The corresponding clique (26) is arbitrarily connected to clique 1 (nodes

3,5,7,8 in slice 1) to make the jtree a tree instead of a forest.

Figure 3.10: A schematic illustration of a generic jtree for a DBN. The diamonds represent the head and tail

cliques, the boxes represent the ’body’ cliques, that get repeated. The dotted arc illustrates how some slices

can be ’spliced out’ to create a shorter jtree. Based on Figure 3.10 of [Zwe98].

3.5.3 Consequences of using constrained elimination orderings

Using a constrained elimination ordering for offline inference is suboptimal. For example, Figure 3.8 shows

a DBN where the treewidth is 2 (since the graph is essentially a tree), but a constrained elimination ordering

creates cliques of size D = 4 for slices after t ≥ 4.8 This is a consequence of the following theorem.

8You can verify this and other facts experimentally using the following BNT script: BNT/examples/dynamic/jtree-clq-

test.m.
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Figure 3.11: A representation of the cliques in the constrained Mildew jtree (Figure 3.9). Each row represents

a clique, each column represents a DBN variable. The repetitive structure in the middle of the jtree is evident.

For example, rows 17 and 25 are isomorphic, because their “bit pattern” is the same (101100011), and is

exactly 9 columns apart. (The bit pattern refers to the 0s and 1s, which is a way of representing which DBN

nodes belong to each clique set.)
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Figure 3.12: This is like Figure 3.11, but using an unconstrained elimination ordering. Notice how some

cliques span more than two consecutive time slices, e.g., cliques 22 is {18, 26, 27, 30}.

Theorem (Constrained elimination ordering) [RTL76]. Let A1, . . . , An be an elimination sequence tri-

angulating the (moral) graph G, and let Ai, Aj be two non-neighbors in G, i < j. Then the elimination

sequence introduces the fill-in Ai−Aj iff there is a path Ai−X1− . . .−Aj such that all intermediate nodes

Xk are eliminated before Ai.

For example, in Figure 3.8, for any t ≥ 4, every node in slice t is connected to every other node in slice t
via some (undirected) path through the past; hence all the nodes in slice t become connected in one big clique

in the triangulated graph.

Another example is the coupled HMM in Figure 3.13. Even though chain 1 is not directly connected

to chain 4, they become correlated once we unroll the DBN. Indeed, the unrolled DBN looks rather like a

grid-structured Markov Random Field, for which exact inference is known to be intractable. (More precisely,

the tree width of an N = n× n 2D grid with nearest-neighbor (4 or 8) connectivity is O(n) [RS91].)

Although a constrained elimination order cannot yield smaller cliques than an unconstrained one, in
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Figure 3.13: A coupled HMM with 4 chains. Even though chain 1 is not directly connected to chain 4, they

become correlated once we unroll the DBN, as indicated by the dotted line.

my experience the constraint nearly always helps the min-fill heuristic find much better elimination orders;

similar findings are reported in [Dar01]. (Recall that finding the optimal elimination order is NP-hard.)

However, Bilmes reports (personal communication) that by using the unconstrained min-fill heuristic with

multiple restarts, the best such ordering tends to be one that eliminates nodes which are not temporally far

apart, i.e., it is similar to imposing a constraint that we eliminate all nodes within a small temporal window,

but without having to specify the width of the window ahead of time (since the optimal window might span

several slices). The cost of finding this optimal elimination ordering can be amortized over all inference runs.

3.5.4 Online inference

X1
1 X1

2 X1
3 X1

4

X2
1 X2

2 X2
3 X2
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1 X3

2 X3
3 X3
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X4
1 X4

2 X4
3 X4
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Figure 3.14: A DBN in which the nodes in the last slice do not become connected when we eliminate the first

3 or more slices. Dotted lines represent moralization arcs.

For an online algorithm to use constant space and time per iteration, there must be some finite time t at

which it eliminates all earlier nodes. Hence online inference must used constrained elimination orderings.

The above suggests that perhaps online inference always takes at least Ω(KI+1) time. However, this is

false: Figure 3.14 provides a counter-example. In this case, the largest clique in both the constrained and

unconstrained jtree is the triple {X3
t−1,X

4
t−1,X

4
t }, because there is no path through the past X’s which

connects all the nodes in the last slice. So in this case inference is cheaper than O(KI).
The interface in Figure 3.14 has size 4, even though it could be represented in factored form without loss

of accuracy. We can identify this sort of situation as follows: unroll the DAG for D slices, where D is the
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Figure 3.15: The adjacency matrices for the closure of the moralized unrolled graphs for two DBNs. (a) The

DBN in Figure 3.8; the bottom right 4 × 4 block is all 1s, indicating that the interface is all the nodes. (b)

The DBN in Figure 3.14; the bottom right 4× 4 block is sparse, indicating that the interface is {1}, {2}, and

{3, 4}.

number of nodes per slice; moralize the unrolled graph; find the transitive closure of the moral graph; extract

the subgraph corresponding to the last slice; finally, find the strongly connected components of the subgraph,

and call them C1, . . . , CC — these are the factors in the interface. See Figure 3.15 for some examples.

We will denote this sequence of operations as

(C1, . . . , CC) = cc (cl(m(UD(G)))∩VD)

where cc(G) means returns the connected components of G, G∩VD means the subgraph of G containing

nodes in slice D, cl(G) means the transitive closure of G, m(G) means the moral graph of G, and UD(G)
means unroll the 2TBN G for D slices. We summarize our results as follows.

Conjecture. Consider a 2TBN G with D nodes per slice, each of which has a maximum of K possible

discrete values. Let (C1, . . . , CC) = cc (cl(m(UD(G)))∩VD) be the connected components, as described

above. Let m = maxC
i=1 Ci be the size of the largest interface factor, and let Fin be the maximal number of

parents of any node within the same slice. Then the complexity of any online inference algorithm is at least

Ω(Km+Fin+1).

We can achieve this lower bound using what I call the “factored interface” algorithm: this is a simple

modification to the interface algorithm, which maintains the distributions over the Ci’s in factored form.

3.5.5 Conditionally tractable substructure

The pessimistic result in the previous section is purely graph-theoretic, and hence is a worst-case (distribution-

free) result. It sometimes happens that the CPDs encode conditional independencies that are not evident in

the graph structure. This can lead to significant speedups. For example, consider Figure 3.16. This is a

schematic for two “processes” (here represented by single nodes), B and C, both of which only interact with

each other via an “interface” layer, R.

The forward interface is {R,B,C}; since B and C represent whole subprocesses, this might be quite

large. Now suppose we remove the dotted arcs, so R becomes a “root”, which influences B and C. Again,

the forward interface is {R,B,C}. Finally, suppose that R is in fact a static node, i.e., P (Rt|Rt−1) =
δ(Rt, Rt−1). (For example, R might be a fixed parameter.) In this case, the model can be simplified as

shown in Figure 3.17. This model enjoys the property that, conditioned onR, the forward interface factorizes

[TDW02]:

P (R,Bt, Ct|y1:t) = P (Bt|R, y1:t)P (Ct|R, y1:t)P (R|y1:t) = P (Bt|R, yB
1:t)P (Ct|R, yC

1:t)P (R|y1:t)
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Figure 3.16: Two “processes”, here represented by single nodes, B and C, only interact with each other via

an “interface” layer, R.

where yt = (yB
t , y

C
t ). This follows since Bt⊥yC

1:t|R and Ct⊥yB
1:t|R, i.e., evidence which is local to a

process does not influence other processes: the R node acts like a barrier. Hence we can recursively update

each subprocess separately:

P (Bt|R, yB
1:t) = P (Bt|R, yB

1:t−1, y
B
t )

∝ P (yB
t |Bt)

∑

b

P (Bt|Bt−1 = b,R)P (Bt−1 = b|R, yB
1:t−1)

The distribution over the root variable can be computed at any time using

P (R|y1:t) ∝
∑

b

P (R)P (Bt = b|R, y1:t)

The reason we cannot apply the same factoring trick to the model in Figure 3.16 is that P (Bt|Rt, y1:t) 6=
P (Bt|Rt, y

B
1:t), since there is a path (e.g., via Rt−1) connecting Y C

t to Bt. If we could condition on the

whole chain R1:t instead of just on Rt, we could factor the problem. Of course, we cannot condition on all

possible values of R1:t, since there are Kt of them; however, we can sample representative instantiations.

Given these samples, we can update the processes exactly. See Section 5.3.3 for an application of this idea to

the SLAM problem.

We discuss how to exploit other kinds of “parametric” (non-graphical) conditional independence for

exact inference in Section B.6.2. In general, the nodes in the interface will not be conditionally independent,

even if we exploit parametric properties in the CPDs. However, they may be only weakly correlated. This is

the basis of the approximation algorithms we discuss in the next two chapters.

3.6 Continuous state spaces

3.6.1 Inference in KFMs

The equations for Kalman filtering/ smoothing can be derived in an analogous manner to the equations for

HMMs, except the algebra is somewhat heavier. Please see e.g., [BSL93, Min99, Jor02] for derivations. Here

we just state the final results without proof.
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Figure 3.17: Conditioned on the static root, the interface is fully factored.

Forwards pass

Let us denote the mean and covariance of the belief state P (Xt|y1:t) by (xt|t, Vt|t). The forward operator,

(xt|t, Vt|t, Lt) = Fwd(xt−1|t−1, Vt−1|t−1, yt;At, Ct, Qt, Rt)

is defined as follows.9 First, we compute the predicted mean and variance.

xt|t−1 = Axt−1|t−1

Vt|t−1 = AVt−1|t−1A
′ +Q

Then we compute the error in our prediction (the innovation), the variance of the error, the Kalman gain

matrix, and the conditional log-likelihood of this observation.

et = yt − Cxt|t−1

St = CVt|t−1C
′ +R

Kt = Vt|t−1C
′S−1

t

Lt = logN (et; 0, St)

Finally, we update our estimates of the mean and variance.

xt|t = xt|t−1 +Ktet

Vt|t = (I −KtC)Vt|t−1 = Vt|t−1 −KtStK
′
t

These equations are more intuitive than they may seem. For example, our expected belief about xt is equal

to our prediction, xt|t−1, plus a weighted error term, Ktet, where the weight Kt = Vt|t−1C
′S−1

t , depends

on the ratio of our prior uncertainty, Vt|t−1, to the uncertainty in our error measurement, St.

Backwards pass

The backwards operator

(xt|T , Vt|T , Vt−1,t|T ) = Back(xt+1|T , Vt+1|T , xt|t, Vt|t;At+1, Qt+1)

9Normally random variables are upper case letters, and their values are lower case; however, in this and other sections, we follow the

other convention that scalars and vectors are lower case, and matrices are upper case.
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is defined as follows (this is the analog of the γ recursion in Section 3.2.3). First we compute the following

predicted quantities (or we could pass them in from the filtering stage):

xt+1|t = At+1xt|t

Vt+1|t = At+1Vt|tA
′
t+1 +Qt+1

Then we compute the smoother gain matrix.

Jt = Vt|tA
′
t+1V

−1
t+1|t

Finally, we compute our estimates of the mean, variance, and cross variance Vt,t−1|T = Cov[Xt−1,Xt|y1:T ].10

xt|T = xt|t + Jt

(
xt+1|T − xt+1|t

)

Vt|T = Vt|t + Jt

(
Vt+1|T − Vt+1|t

)
J ′

t

Vt−1,t|T = Jt−1Vt|T

These equations are known as the Rauch-Tung-Striebel (RTS) equations. It is also possible to derive a two-

filter approach to smoothing, as for HMMs (see [Jor02, ch13] and [FP69]). In this case, the analog of Πt is

Σt, which can be computed from the following Lyapunov equation:

Σt = E[XtX
′
t] = E[(AXt−1 +Wt)(AXt−1 +Wt)

′] = AE[Xt−1X
′
t−1]A

′ +E[WtW
′
t ] = AΣt−1A

′ +Q

The limit of this, limt→∞ Σt, is known as the Riccati matrix.

Time and space complexity of Kalman filtering/smoothing

If Xt ∈ IRNx , and Yt ∈ IRNy , then Kt is a Nx ×Ny matrix, St is a Ny ×Ny matrix, and At is a Nx ×Nx

matrix. The cost per update is O(min(N 2
x , N

3
y )); the N2

x term arises from the Axt−1|t−1 computation; the

N3
y term arises from inverting St. (For sparse matrices, it is possible to reduce the computational complexity

considerably, especially if we use the information filter.) If we want to track N objects, each of size Nx,

inference takes O((NxN)2); hence KFMs do not suffer from the exponential growth in complexity that

HMMs do. However, they are rather restrictive in their assumptions: see Section 1.3.4.

3.6.2 Inference in general linear-Gaussian DBNs

Any DBN in which all CPDs are linear-Gaussian can be converted to a KFM, just as any DBN in which

all hidden variables are discrete can be converted to an HMM. If we have D hidden continuous variables,

each a vector of size K, the compound state-space will have size KD, and inference (using the Kalman

filter/smoother) will take O((KD)2) time per step. Hence the complexity only grows polynomially in D,

unlike the discrete case, in which the complexity grows exponentially in D. Furthermore, the matrices of

the compound KFM will be sparse, often block diagonal, reflecting the graph structure. Hence a standard

Kalman filter/smoother will usually be as efficient as using the junction tree algorithm.

3.6.3 Switching KFMs

Consider the switching KFM in Figure 2.31. This is a conditionally Gaussian (CG) model (see Section B.5):

if we knew S1:T , the distribution overX1:T , Y1:T would be jointly Gaussian. [LSK01] prove that inference in

CG networks is NP-hard, even if the structure is a (poly)tree, such as a switching KFM where the horizontal

arcs between the switch nodes are absent. The proof is by reduction from subset sum, but the intuition is as

follows: the prior P (X1) is a mixture of K Gaussians, depending on S1; when we marginalize out S1, we

are still left with a mixture of K Gaussians; each one of these gets “passed through” K different matrices,

depending on the value of S2, resulting in a mixture of K2 Gaussians, etc; in general, the belief state at

time t is a mixture of Kt Gaussians. We discuss some approximate inference algorithms for this model in

Sections 4.3 and 5.3.1.

10The cross variance term is usually computed recursively, but this is unnecessary [Min99], c.f., in an HMM, we can compute ξt−1,t

directly rather than recursively, as shown in Section 3.2.4.
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function smoother(y1:T )

f1|1 = Fwd1(y1)
for t = 2 : T

ft|t = Fwd(ft−1|t−1, yt)
bT |T = BackT(fT |T )
for t = T − 1 : 1

bt|T = Back(bt+1|T , ft|t)

Figure 3.18: Pseudo-code for offline smoothing.

3.6.4 Non-linear/ non-Gaussian models

KFMs support exact inference because of two facts: a Gaussian pushed through a linear transformation,

and subjected to additive Gaussian noise, still results in a Gaussian; and updating a Gaussian prior with a

Gaussian likelihood, using Bayes’ rule, results in a Gaussian posterior. In other words, Gaussians are closed

under Bayesian updating in KFMs. A few other distributions enjoy this property (see [WH97]), but in general,

exact inference in DBNs with hidden continuous nodes which have CPDs other than linear-Gaussian is not

possible.11 In particular, exact inference in systems which are non-linear and/or non-Gaussian is usually not

possible. We must therefore resort to approximations. There are essentially two classes of approximations,

deterministic and stochastic: see Chapters 4 and 5 respectively.

3.7 Online and offline inference using forwards-backwards operators

We have now seen several different ways of performing filtering and smoothing in DBNs. To hide these

details from higher-level inference algorithms, we defined the abstract forwards and backwards operators. In

this section, we use these operators to derive generic efficient filtering and smoothing algorithms.

3.7.1 Space-efficient offline smoothing (the Island algorithm)

In Figure 3.18 we give pseudo-code for computing (b1|T , . . . , bT |T ) using a generalized forwards-backwards

algorithm. Rather than returning (b1|T , . . . , bT |T ), we assume the output is “emitted” to some “consumer”

process which e.g., computes the sufficient statistics needed for learning,
∑

t bt|T , which can be represented

in O(S) space, where S is the size of a forwards or backwards message for a single time-slice.12

Although the expected sufficient statistics take constant space, the above algorithm uses O(ST ) tem-

porary storage, since it needs to store ft|t for t = 1, . . . , T . To see that this might be a problem, consider

the BATnet shown in Figure 3.19. Here, S ∼ 103. To learn the parameters of this model, we need training

sequences of length at least T ∼ 105. Hence the storage requirements are ∼ 108 bytes. Longer sequences or

more complex models (e.g., for speech recognition or biosequence analysis) will clearly require much more

space.

We now present a way to reduce the space requirements from O(ST ) to O(SC logC T ), where C is a

tunable parameter of the algorithm to be explained below. The catch is that the running time increases from

O(T ) toO(T logC T ). (This algorithm was first presented in [BMR97a]; an equivalent algorithm is presented

in [ZP00].)
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Figure 3.19: The BATnetwork (see Figure 4.2) unrolled for 5 slices.
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Figure 3.20: The basic idea behind the Island algorithm, with T = 24, C = 1. At the top level, we call

Island(f0, b25, y1:24), which computes b1, b12 and b24. (f0 and b25 are dummy boundary conditions used at

the top level.) Then we call Island(f1, b12, y2:11), followed by Island(f12, b24, y13:23).

Basic idea

The key insight is that, given a “boundary condition” on the left, we can do the forwards pass in constant

space by recursively computing ft|t = Fwd(ft−1|t−1, yt) and throwing away the result at each step; and

similarly for the backwards pass, given a boundary condition on the right. In the island algorithm, we run

the forwards/backwards algorithm, but instead of throwing away the results, we store the “messages” at C
“islands” or “checkpoints” (plus at the two boundaries). This divides the problem into C + 1 subproblems,

on which we can call the algorithm recursively. See Figure 3.20.13

Time and space complexity of the island algorithm

The total running time of the algorithm satisfies the following recurrence:

R(T ) = C
T

C
+ CR

(
T

C

)

since we are dividing a sequence of length T into C sequences of length T/C, each of which takes O(T/C)
time to compute; then we must call the function C times recursively. Solving this recurrences gives R(T ) =
O(T logC T ).

11Exact inference in DBNs in which all hidden nodes are discrete is always possible, although it may not be efficient. Continuous

nodes that are observed do not cause a problem, no matter what their distribution, since they only affect the inference by means of the

conditional likelihood, c.f., the Ot(i, i) = P (yt|Xt = i) term for HMMs.
12In the Hugin architecture, we store clique and separator potentials for the 1 1

2
slice DBN; for the Shafer-Shenoy architecture, we

just store the clique potentials (see Section B.4.5). When applied to an HMM with K states, Hugin uses S = K2 space, whereas

Shafer-Shenoy uses S = K space.
13A related approach to space-efficient inference in arbitrary Bayes nets appears in [Dar00]. Standard exact inference takes O(new)

time and space, where n is the number of nodes and w is the treewidth. Darwiche’s algorithm reduces the space requirement to O(n)
but increases the time requirement to O(new log n). In the current context, n = O(T ), so this is not a big win.
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Figure 3.21: Results of the Island algorithm on the BATnet. D represents the maximum depth of recursion

allowed before switching over to the linear-space algorithm.

The total amount of space is bounded by the depth of the tree, D ≤ logC T , times the amount of

space needed at each recursive invocation, which is O((C + 2)S). (This is because we must store check-

points at C positions plus the two boundaries at every level on the call stack.) So the total space required is

O(SC logC T ).
We can tradeoff the space vs time requirements by varying the number of checkpoints, C. For example,

for the BATnet, forC = 2, we reduce the space requirements from 1011 to 107, but the running time increases

by a factor of 16. If we use C =
√
T = 316 checkpoints, the space decreases from 1011 to 108, but the

running time only doubles (since log√
T T = 2). We can also vary the depth at which we “bottom out”, i.e.,

switch over to the linear space algorithm. Some results on the BATnet are shown in Figure 3.21

Pseudo-code

In Figure 3.22, we give pseudo-code for computing b1|T , . . . , bT |T in a non-sequential order using space for

C +2 messages. When the length of the sequence is less than Tmin, we switch over to the usual O(T )-space

smoothing routine. To simplify notation, we assume that Fwd(f, yt) calls Fwd1(yt) when f is the (initial)

empty message ∅; similarly, Back(b, f) calls BackT(f) when b is the initial empty message. (This saves us

from having to clutter the code with if-then statements that check for boundary conditions.) Also, we use the

Matlab notation a : s : b to denote the list (a, a + s, . . . , a + cs), where c = ⌊(b − a)/s⌋. a : 1 : b will be

shortened to a : 1, and a : −1 : b counts down. We start by calling Island(∅, ∅, y1:T , C, Tmin).

Example

Suppose C = 1, T = 24 and Tmin = 6, as in Figure 3.20. We compute f [1] = f1|1, f [2] = f12|12,

f [3] = f24|24, b[1] = b1|24, b[2] = b12|24, and b[3] = b24|24; we also store the positions of the checkpoints:

t[1] = 1, t[2] = 12, t[3] = 24. After emitting b[1], b[2] and b[3], we call Island(f [1], b[2], y2:11) and then

Island(f [2], b[3], y13:23).

Constant-space smoothing?

Here is a trivial algorithm to do smoothing in O(1) space (i.e., independent of T ); unfortunately it takes

O(T 2) time, rendering it useless in practice. The algorithm is as follows [Dar01]: for each 1 ≤ k ≤ T , do

the following: first run a forwards filter from t = 1 to t = k, to compute αk in constant space (only keeping
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function Island(f, b, y, C, Tmin)
T = length(y)
if T ≤ Tmin

base-case(f, b, y); return

f [1] = f ; t[1] = 1; k = 2
stepsize = ⌊T/(C + 1)⌋
checkpoints = 1 : stepsize : T ∪ {T}
for t = 1 : T

f = Fwd(f, yt)
if t ∈ checkpoints

f [k] = f ; t[k] = t; k = k + 1
k = C + 2; b[k] = b
for t = T : 1

b = Back(b, f)
if t ∈ checkpoints

b[k] = b; emit b; k = k − 1
for k = 2 : C + 2

Island(f [k − 1], b[k], y(t[k − 1] + 1 : t[k] − 1))

function base-case(f, b, y)
T = length(y)
f [0] = f
for t = 1 : T

f [t] = Fwd(f [t− 1], yt)
for t = T downto 1

b = Back(b, f [t])
emit b

Figure 3.22: Pseudo-code for the Island algorithm (space-efficient smoothing).
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f1|1 = Fwd1(y1)
for t = 2 : L

ft|t = Fwd(ft−1|t−1, yt)
for t = L+ 1 : ∞

ft|t = Fwd(ft−1|t−1, yt)
bt|t = BackT(ft|t)
for τ = t− 1 downto t− L

bτ |t = Back(bτ+1|t, fτ |τ )
emit bt−L|t

Figure 3.23: Pseudo-code for fixed-lag smoothing, first attempt.

αt−1 and αt in memory at each step t), then run a backwards filter from t = T downto t = k, to compute βk

in constant space, and then combine the results.

Here is a hypothetical algorithm for smoothing in O(1) space and O(T ) time. First run the forwards

algorithm, ft|t = Fwd(ft−1|t−1, yt), forgetting all the intermediate results (i.e., only keeping fT |T ), and then

run the backwards algorithm, computing ft|t = Fwd−1(ft+1|t+1, yt+1) and bt|T = Back(bt+1|T , ft|t) in

parallel. We call this the “country dance” algorithm, because you can think of the forward pass as running to

the end to pick up its “partner”, bT |T , and the two of them moving together back to the start.

Unfortunately, inverting the forward operator is impossible in general: to compute P (Xt|y1:t) from

P (Xt+1|y1:t+1) requires figuring out how to “undo” the effect of the transition and the observation yt+1.

This is most easily seen from the forwards equation for HMMs:

αt+1 ∝ Ot+1A
′αt

Inverting this yields

αt ∝ (A′)−1O−1
t+1αt+1

But any system in which there is more than one way of reaching a state cannot be inverted. Also, any system

with invertible observations is essentially fully observed, so no inference is necessary. (The same argument

holds for inverting the backwards operator.) Although this does not constitute a formal proof, I conjecture

that smoothing in O(S) space and O(ST ) time is impossible (see also Section 3.7.2).

3.7.2 Fixed-lag (online) smoothing

Fixed-lag smoothing estimates P (Xt−L|y1:t), where L > 0 is the lag. If the delay can be tolerated, then this

is clearly a more accurate estimate than the filtered quantity P (Xt−L|y1:t−L), which does not take “future”

evidence into account. (The benefit of using a smoother depends on the signal-to-noise ratio.)

One way to implement this is to augment the state-space of the DBN with lagged copies of Xt as in

the blind deconvolution model in Section 2.4.3. In the case of KFMs, the the Kalman filter equations can

be modified in a straightforward way [Moo73] to implement filtering in this model, which is equivalent to

fixed-lag smoothing in the original model.

For the KFM case, the state-space grows from O(S) to O(LS), and the computation grows from O(S2)
toO(LS2) per time step, where S = |X|. However, discrete state-spaces grow fromO(S) toO(SL), and the

computation also grows exponentially. Hence we now present an algorithm that uses O(SL) time and space

to do fixed-lag smoothing in arbitrary DBNs.

In Figure 3.23, we show a first attempt at implementing a fixed-lag smoother. Suppose L = 2; after

t > 2, this will “emit” b1|3, b2|4, b3|5, etc. to some “consumer” process. Since this is an online algorithm, we

cannot store the messages for all t. Hence we must use a wrap-around buffer of lengthL+1, as in Figure 3.24.

(f [i] is the i’th entry in this buffer; k is a pointer to the position in the buffer that contains the most recent

forward message. We assume one-based indexing, and use the notation t⊕ 1 and t⊖ 1 to represent addition/

subtraction modulo L.)

70



f [1] = Fwd1(y1)
for t = 2 : L

f [t] = Fwd(f [t− 1], yt)
k = L+ 1
for t = L+ 1 : ∞

(bt−L|t, f [1 : L], k) = FLS(yt, f [1 : L], k)

function (b, f [1 : L], k) = FLS(yt, f [1 : L], k)
L = length(f)
k′ = k ⊖ 1
f [k] = Fwd(f [k′], yt)
b = BackT(f [k])
for τ = 1 : L

b = Back(b, f [k′])
k′ = k′ ⊖ 1

k = k ⊕ 1

Figure 3.24: Pseudo-code for fixed-lag smoothing, final version.

f1|1 = Fwd1(y1)
b1|1 = BackT(f1|1)
for t = 2 : ∞

ft|t = Fwd(ft−1|t−1, yt)
bt|t = BackT(ft|t)

Figure 3.25: Pseudo-code for online filtering.

Time and space complexity of fixed-lag smoothing

It is clear that the FLS algorithm takes O(LS) time and space. We could implement this in O(S) time and

space if we could compute bt−L|t from bt−L−1|t−1 (see e.g., [RN02, ch.17]). However, this requires that the

model be invertible, as in Section 3.7.1. I conjecture that constant time fixed-lag smoothing (i.e., an algorithm

which does an amount of work which is independent of the lag) is impossible in general.

Constant-time FLS would entail changing our beliefs about an event long in the past without having to

consider any intermediate events; this amounts to “action at a distance”, which seems impossible. However, if

we had a hierarchical model, we might be able to approximate this behavior by reasoning (message passing)

at a longer length/time scale; see Section 2.3.9 for a discussion of such a hierarchical model.

3.7.3 Online filtering

Filtering is just fixed-lag smoothing where the lag L = 0. In this case, the above code simplifies to the code

shown in Figure 3.25. Note that, in general, we have to call the backwards operator even though we are doing

filtering; however, we only do the backwards pass within one slice. This will be explained in Section 3.4.2.

Since this is an online algorithm, we cannot store the messages for all t. However, we can update ft|t
and bt|t in place. Hence filtering takes O(S) space and time per step (where the constant depends on the size

of the model, but not on t).14

14This of course assumes the basic operators can be implemented in closed form. This is not true e.g., for a switching KFM. See

Section 3.6.3
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Chapter 4

Approximate inference in DBNs:

deterministic algorithms

4.1 Introduction

In the case of discrete state-spaces, exact inference is always possible, but may be computationally pro-

hibitive, since it takes Ω(Kmaxi{Ci}+Fin+1) operations per time step, where Ci is the size of the i’th clique

in the forward interface, and Fin is the maximal numer of parents within the same slice of any node (see

Section 3.5.4). Typically max{Ci} = O(D), the number of hidden persistent nodes per slice, making exact

inference intractable for large discrete DBNs.

A standard approximation in the discrete case, known as the Boyen-Koller (BK) algorithm [BK98b], is

to approximate the joint distribution over the interface as a product of marginals. Unfortunately, sometimes

even this approximation can be intractable, since BK does exact inference in a 2-slice DBN. This motivates

the factored frontier (FF) algorithm [MW01], which can be seen as a more aggressive form of approximation

than BK. I show that BK and FF are both special cases of loopy belief propagation (LBP). In Section 4.2.4,

I experimentally compare exact, FF, BK, and LBP on a number of DBNs. The FF algorithm, the connection

between FF, BK and LBP, and the experimental evaluation are the main novel contributions of this chapter.

In the case of continuous state-spaces, if everything is linear-Gaussian, we can apply the Kalman fil-

ter/smoother. But if we have non-linear and/or non-Gaussian distributions, exact inference is usually not

possible. I briefly review some deterministic approximations for this case.

Finally, I consider the problem of mixed discrete-continuous state-spaces. As we saw in Section 3.6.3,

exact inference in a switching KFM takes O(Kt) operations at the t’th time step. In Section 4.3, I review the

classica moment matching approximate filtering algorithm [BSL93], and its extension to the smoothing case

[Mur98]. I also describe how to apply expectation propagation (EP) [Min01] to a switching KFM [HZ02]. It

turns out that (in this case) EP is just an iterated version of moment matching, just as LBP is just an iterated

version of FF.

Since inference in DBNs uses inference in BNs as a subroutine, you are strongly recommended to read

Appendix B before reading this chapter.

Very little is known about the accuracy of the approximation algorithms discussed in this chapter (in

contrast to the Monte Carlo approximations in the next chapter). In Section 4.2.1, we state the main result

for the BK algorithm which shows the approximation error remains bounded; however, it is unclear how

tight the bound is. The theoretical results on loopy belief propagation (LBP) discussed in Section B.7.1 also

apply to the DBN case; again, however, it is often intractable to compute the expression which determines the

accuracy. At the time of writing, the author is unaware of any theoretical results on expectation propagation

(and hence of moment matching, which is just a special case of EP).
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Figure 4.1: The water DBN, designed to monitor a waste water treatement plant. This model is originally from

[JKOP89], and was modified by [BK98b] to include (discrete) evidence nodes. The dotted arcs group together

nodes that will be used in the BK approximation: see Section 4.2.1. Nodes are numbered in topological order,

as required by BNT.

4.2 Discrete-state DBNs

4.2.1 The Boyen-Koller (BK) algorithm

If the interface cliques are too large, one approach is to approximate the joint on the interface as the product

of marginals of smaller terms; this is the basic idea behind the BK algorithm [BK98b, BK98a, BK99].

More precisely, BK constructs the junction tree for the 1 1
2 slice DBN Ht, but does not require all the

interface nodes to be in the same clique; i.e., P (It|y1:t) is no longer represented as a single clique potential.

Instead, we approximate the belief state by a product of marginals, P (It|y1:t) ≈
∏C

c=1 P (Ic
t |y1:t), where

P (Ic
t |y1:t) is the distribution on nodes in cluster c. The set of clusters partitions the nodes in the interface.

Hence rather than connecting together all the nodes in the interface, we just connect together the nodes in

each cluster. The assumption is that this will result in smaller cliques in the 2TBN. Figures 4.3 and 4.4 show

that the max clique size is indeed reduced in some cases. The basic reason is that we only had to triangulate

the two-slice network, not the unrolled network.

The accuracy of the BK algorithm depends on the clusters that we use to approximate the belief state.

Exact inference corresponds to using a single cluster, containing all the interface nodes. The most aggressive

approximation corresponds to using D clusters, one per variable; we call this the “fully factorized” approxi-

mation.

We can implement BK by slightly modifying the interface algorithm (see Section 3.4), as we explain

below.

Forwards pass

1. Initialize all clique and separator potentials in Jt to 1s, as before.

2. Include the CPDs and evidence for slice t as before.

3. To incorporate the prior, we proceed as follows. For each cluster c, we find the smallest cliques Ct−1

and Dt in Jt−1 and Jt whose domains include c; we then marginalize φCt−1
onto Ic

t−1 and multiply

this onto φDt
.
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Figure 4.2: The BATnet, designed to monitor the state of an autonomous car (the Bayesian Automated Taxi,

or BATmobile) [FHKR95]. The transient nodes are only shown for the second slice, to minimize clutter. The

dotted arcs group together nodes that will be used in the BK approximation: see Section 4.2.1. Thanks to

Daphne Koller for providing this figure. Nodes are numbered in topological order, as required by BNT.
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Figure 4.3: Clique size distribution for different levels of BK approximation applied to the BATnet

(Figure 4.2). The cliques of size 2 are due to the observed leaves. (a) Exact: the interface is

{7, 14, 16, 17, 19, 20, 21, 23, 25, 27}. (b) Partial approximation: the interface sets are {7, 14, 16, 17, 19} and

{20, 21, 23, 25, 27}, as in Figure 4.2. (c) Fully factorized approximation: the interface sets are the singletons.
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Figure 4.4: Clique size distribution for different levels of BK approximation applied to the water DBN

(Figure 4.1). The cliques of size 2 are due to the observed leaves. (a) Exact: the interface is {1, . . . , 8}.
(b) Partial approximation: the interface sets are {1, 2}, {3, 4, 5, 6} and {7, 8}, as in Figure 4.1. (c) Fully

factorized approximation: the interface sets are the singletons.
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Figure 4.5: The BK algorithm as a series of update (U) and projection (P) steps.

4. We collect and distribute evidence to/from any clique.

The reason we must collect and distribute evidence is because the clusters which constitute the interface may

be in several cliques, and hence all of them must be updated before being used as the prior for the next step.

If there is only one cluster, it suffices to collect to the clique that contains this cluster.

Backwards pass

A backwards (smoothing) pass for BK was described in [BK98a]. ([KLD01] describes a similar algorithm

for general BNs called “up and down mini buckets”.) Again, it can be implemented by a slight modification

to the interface algorithm:

1. Construct Jt from ft|t as before.

2. To incorporate the backwards message, we proceed as follows. For each cluster c, we find the smallest

cliques Dt+1 in Jt+1 and Ct in Jt whose domains include c; we then marginalize φDt+1
onto Ic

t and

absorb it into φCt
.

3. We collect and distribute evidence to/from any clique.

Analysis of error in BK

The forwards pass may be viewed more abstractly as shown in Figure 4.5. We start out with a factored

prior, α̃t−1, do one step of exact Bayesian updating using the junction tree algorithm (which may couple

some of the clusters together), and then “project” the coupled posterior α̂t down to a factored posterior, α̃t,

by computing marginals. This projection step computes α̃t = arg minq∈S D(α̂t||q), where S is the set

of factored distributions, and D(p||q)def
=
∑

x p(x) log p(x)/q(x) is the Kullback-Liebler divergence [CT91].

This is an example of assumed density filtering (ADF) [Min01].

As an algorithm, BK is quite straightforward. The main contribution of [BK98b] was the proof that the

error remains bounded over time, in the following sense:

E KL(αt||α̃t) ≤
ǫt
γ∗

where the expectation is take over the possible observation sequences, γ∗ is the mixing rate of the DBN, and

ǫt is the additional error incurred by projection, over and above any error inherited from the factored prior:

ǫt = KL(αt||α̃t)−KL(αt||α̂t).

The intuition is that, even though projection introduces an error at every time step, the stochastic nature of

the transitions, and the informative nature of the observations, reduces the error sufficiently to stop it building

up.
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The best case for BK is when the observations are perfect (noiseless), or when the transition matrix is

maximally stochastic (i.e., P (Xt|Xt−1) is independent of Xt−1), since in either case, errors in the prior are

irrelevant. Conversely, the worst case for BK is when the observations are absent or uninformative, and the

transition matrix is deterministic, since in this case, the error grows over time. (This is consistent with the

theorem, since deterministic processes can have infinite mixing time.) In Section 5.2, we will see that the

best case for BK is the worst case for particle filtering (when we propose from the prior), and vice versa.

4.2.2 The factored frontier (FF) algorithm

Just as BK represents the interface distribution in factored form, so FF represents the frontier distribution in

factored form. Of course, we don’t need the whole frontier, only the interface, so the real difference is in

the way these approximate distributions are updated. BK takes in a factored prior, does one step of exact

updating using the jtree algorithm, and then projects the results back down to factored form. Unfortunately,

for some models, even one step of exact updating is intractable. For example, consider a model of a video

sequence, in which each time slice is an N = n× n 2D lattice, and in which Xt(i, j) has a connection from

Xt−1(i, j). in this case, the largest clique in the 2TBN has size at least n =
√
N , since this is the size of the

max clique in a 2D grid without any additional incoming temporal arcs. Hence the running time of BK is at

least Ω(TNK
√

N ), even in the case of fully factorized BK.

Instead of doing exact updating and then projecting, FF computes the marginals directly. That is, when

we add a node to the frontier, we do not multiply its CPD onto the joint frontier, but just compute a “local”

joint over the parents, multiply the CPD onto this, and then marginalize out:

P (Xi
t |E) = P (Xi

t |Pa(Xi
t))

∏

u∈Pa(Xi
t )

P (u|E)

where the marginal distributions over the parents, P (u|E), are available from the frontier (since we never add

a node until all its parents are in the frontier), and E is the evidence in, and to the left of, the frontier. Adding

a node to the frontier entails adding its marginal, computed as above, to the list of marginals. Removing

a node from the frontier entails removing the corresponding marginal from the list, which of course takes

constant time. The backwards pass is analogous. This algorithm clearly takes O(TDKFin+1) time, where

D is the number of nodes per slice, no matter what the DBN topology.

4.2.3 Loopy belief propagation (LBP)

Loopy belief propagation for general graphical models is explained in Section B.7.1.

FF is a special case of LBP

The key assumption in LBP is that the messages coming into a node are independent (which is true in a

tree). But this is exactly the same assumption that we make in the FF algorithm! In fact, it is easy to see

that FF is just LBP with a specific forwards-backwards (FB) message passing schedule, instead of the more

common parallel protocol (see Section B.4.2). The fixed points of LBP are the same, no matter what protocol

is used. However, if there is not a unique fixed point, the algorithms may end up at different answers. They

can also have different behavior in the short term. In particular, if the DBN is in fact a tree, then a single

FB iteration (2TD message computations) will result in the exact posteriors, whereas it requires T iterations

of the decentralized protocol (each iteration computing 2TD messages in parallel) to reach the same result;

hence the centralized algorithm is more efficient [PS91]. For loopy graphs, it is not clear which protocol is

better; it depends on whether local or global information is more important for computing the posteriors. One

can imagine performing iterations within a slice and also between slices in an interleaved manner.

BK is a special case of LBP

It turns out that BK is also equivalent to a single forwards-backwards pass of LBP, although on a slightly

modified graph (see Figure 4.6). The key insight is that BK also uses a factored prior, but does an exact up-

date step. To simulate the exact update, we can create two “mega nodes” that contain all the (hidden) forward
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(a)

(b)

Figure 4.6: Illustration of the clustering process. (a) This is a modified version of a DBN with 4 persistent

variables. The big “mega nodes” contain the joint distribution on the whole slice. We have omitted the non-

persisitent variables (e.g., observations) for clarity. LBP applied to this graph is equivalent to BK. (b) This is

like (a), except we have created overlapping clusters of size 2, for additional accuracy.

interface nodes in that slice. The messages coming into the first mega node are assumed independent; they

are then multiplied together to form the (approximate) prior; a single message is then sent to the second mega

node, corresponding to the exact update step; finally, the individual marginals are computed by marginaliza-

tion, and the process is repeated. Of course, BK does not actually construct the mega nodes, and does the

exact update using junction tree, but the two algorithms are functionally equivalent.

To simulate BK when the clusters contain more than one node, and possible overlap, we simply create

mega-nodes, one per cluster, before applying the above transformation: see Figure 4.6 for an example.

Iteration helps

Since FF and BK are equivalent to one iteration of LBP, on the regular and clustered graphs respectively,

we can improve on both of these algorithms by iterating more than once. This gives the algorithm the

opportunity to “recover” from its incorrect independence assumptions. (This is also the intuition behind

expectation propagation [Min01].) We will see in the Section 4.2.4 that even a small number of iterations can

help dramatically.

4.2.4 Experimental comparison of FF, BK and LBP

In this section, we compare the BK algorithm with k iterations of LBP on the original graph, using the FB

protocol (k = 1 iteration corresponds to FF). We used a coupled HMM model with N = 10 chains trained

on some real freeway traffic data using exact EM [KM00]. We define the total L1 error in the marginals as

∆t =
∑N

i=1

∑K
s=1 |P (Xi

t = s|y1:T ) − P̂ (Xi
t = s|y1:T )|, where P (·) is the exact posterior and P̂ (·) is the

approximate posterior. (We could have used KL divergence instead.) In Figure 4.7, we plot this against t for

1–4 iterations of LBP. Clearly, the posteriors are oscillating, and this happens on many sequences with this

model. We therefore used the damping trick described in Section B.7.1; let m be the damping factor. It is

clear from Figure 4.8 that damping helps considerably. The results are summarised in Figure 4.9, where we

see that after a small number of iterations, LBP with m = 0.1 is doing better than BK. Other sequences give

similar behavior.

To check that these results are not specific to this model/ data set, we also compared the algorithms on the

water DBN shown in Figure 4.1. We generated observation sequences of length 100 from this model using

random parameters and binary nodes, and then compared the marginal posteriors as a function of number of

iterations and damping factor. The results for a typical sequence are shown in Figure 4.10. This time we see

that there is no oscillation (this is typical for data sampled from a model with random parameters), and that

as few as two iterations of LBP can outperform BK.
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Figure 4.7: L1 error on marginal posteriors vs. timeslice after iterations 1–4 of undamped LBP applied to the

traffic CHMM. The L1 error oscillates with a period of 2 (as seen by the similarity between the graphs for

iterations 1/3 and 2/4); this implies that the underlying marginals are oscillating with the same period.
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Figure 4.8: Iterations 1, 2, and 18 of LBP with damping factor m = 0.1, and after using 1 iteration of BK, on

the traffic CHMM.
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Figure 4.9: Results of applying LBP to the traffic CHMM with 10 chains. The lower solid horizontal line is

the error incurred by BK. The oscillating line is the error incurred by LBP using damping factor m = 0; the

lowest curve corresponds to m = 0.1 and the highest to m = 0.8. The upper horizontal line corresponds to

not updating the messages at all (m = 1), and gives an indication of performance based on local evidence

alone.

In addition to accuracy, it is also interesting to see how the algorithms compare in terms of speed. We

therefore generated random data from CHMMs with N = 1, 3, . . . , 11 chains, and computed the posteriors

using the different methods. The running times are shown in Figure 4.11. It is clear that both BK and FF/LBP

have a running time which is linear in N (for this CHMM model), but the constant factors of BK are much

higher, due to the complexity of the algorithm, and in particular, the need to perform repeated marginalisa-

tions. This is also why BK is slower than exact inference for N < 11, even though it is asymptotically more

efficient.

4.3 Switching KFMs

As we saw in Section 3.6.3, the belief state in a switching KFM at time t has size O(K t). We now discuss

some approximations.

4.3.1 GPB (moment matching) algorithm

The exponential belief state in a switching KFM arises because CG potentials are not closed under marginal-

ization (see Section B.5.2). A common approximation is to always represent the belief state using Kn−1

Gaussians; this is sometimes called the GPB(n) (Generalized Pseudo Bayesian) approximation [SM80,

TSM85, BSL93, Kim94, WH97], and is an instance of assumed density filtering (ADF). For example, in

the GBP2 algorithm, the prior has K modes, each gets “passed” through the K different filters, and the re-

sulting mixture of K2 Gaussians is “collapsed” to the best mixture of K Gaussians, one Gaussian per value

of St. This is shown schematically in Figure 4.14. A fast approximation to the GPB2 algorithm, which

79



1 1.5 2 2.5 3 3.5 4 4.5 5
4

5

6

7

8

9

10

11

12
x 10

−3

iterations

L
1

 e
rr

o
r

0  
0.1
0.2

Figure 4.10: Same as Figure 4.9, but for the water network. The dotted lines, from bottom to top, represent

m = 0, m = 0.1 and m = 0.2. The solid line represents BK.
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St−1 St St+1

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

Figure 4.12: A switching Kalman filter model. Square nodes are discrete, round nodes are continuous.

Zt−1, Zt Zt Zt, Zt+1 Zt+1 Zt+1, Zt+2

Figure 4.13: A jtree for 4 slices of the switching KFM in Figure 4.12. We use the shorthand Zt = (St,Xt),
and have omitted the observation nodes Yt for simplicity. It is possible to construct a jtree with smaller

cliques, namely (St−1,Xt−1, St)− [Xt−1, St]− (Xt−1,Xt, St)− [Xt, St], etc.

requires K Kalman filter updates per step rather than K2, known as the interacting multiple models (IMM)

approximation, is shown schematically in Figure 4.15 [BSL93].

The best Gaussian approximation to a mixture of K Gaussians (in the sense of minimizing KL distance)

is obtained by moment matching, also known as weak marginalization (see Section B.5.2). In fact, the GPB2

procedure is identical to the (forwards pass of the) standard jtree algorithm applied to the jtree shown in

Figure 4.13. (Note that this is a weak jtree: see Section B.3.6.)

One advantage of the jtree formulation is that it is simple to do backwards smoothing: we just apply

the standard message passing scheme to the jtree in the backwards direction. In particular, we do not need

to make the additional approximation used in [Kim94, Mur98]. Since the collapsing approximation is only

applicable to messages represented in moment form (see Section B.5.1), we use the α/γ formulation instead

of the α/β formulation (see Section 3.2), since β is a conditional likelihood that cannot be represented in

moment form.

4.3.2 Viterbi approximation

Although we cannot compute
∑

St−1

∫

Xt−1
φ(St−1,Xt−1, St,Xt) exactly, and have to use moment matching

(see Section B.5.2), we can compute maxSt−1

∫

Xt−1
φ(St−1,Xt−1, St,Xt): for each St, we simply pick the

most likely St−1, and integrate out the correspondingXt−1. In general, one can maintainH hypotheses in the

prior, update each of them to give KH posterior modes, and then select theH most likely. This classical idea

can be extended to the smoothing context as follows [PRCM99]: compute P (Xt−1,Xt, St−1, St|y1:t, s∗1:t−2)
by doing a forwards Viterbi pass in the jtree, where s∗1:t = arg maxs1:t

P (s1:t|y1:t), and then compute

P (Xt−1,Xt|s∗1:T , y1:T ) using the RTS smoother (or the jtree algorithm) with parameters specified by s∗1:T .

(Note we keep H = K hypotheses in the belief state at every step.)

Note that this is not the same as computing P (Xt−1, St−1,Xt, St|y1:T ) which is what we would really

like in order to get the exact expected sufficient statistics needed for EM. For instance, the Viterbi approx-

imation says P (Xt, St = i|y1:T ) = 0 for all i 6= s∗t . However, if the “regimes” are easy to segment, the

responsibilities P (St|y1:T ) are approximately delta-functions, so the Viterbi approximation is a good one.

(This is the basis of Viterbi training, which is widely used in speech recognition.) If the Viterbi approxima-

tion does not hold, one can obviously sample S1:T (see Section 5.4.1).

4.3.3 Expectation propagation

Consider the jtree in Figure 4.13. If we could marginalize CG potentials in closed form, a single forwards-

backwards pass would suffice to do exact smoothing; furthermore, since this tree is a chain, the α and β
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Figure 4.14: The GPB2 algorithm for the case of a binary switch. bi
t−1 = P (Xt−1, St−1 = i|y1:t−1) is the

prior, bi,jt = P (Xt, St−1 = i, St = y|y1:t), and bjt = P (XtSt = y|y1:t) is the approximate posterior. The

filter box implements the Kalman filter equations (see Section 3.6.1). The merge box implements the weak

marginalization/ moment matching equations (see Section B.5.2).
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Figure 4.15: The IMM (interacting multiple models) algorithm for the case of a binary switch.
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for t = 1 : T
αt(zt) = 1
βt(zt) = 1
if t == 1
ψ1(z1) = P (y1|z1)P (z1)

else

ψt(zt−1, zt) = P (yt|zt)P (zt|zt−1)
while not converged

for t = 1 : T
if t == 1
p̂(z1) = ψ1(z1)β1(z1)

else

p̂(zt−1, zt) = αt−1(zt−1)ψt(zt−1, zt)βt(zt)
q(zt) = Collapsest−1

∫
xt−1

p̂(zt−1, zt)

αt(zt) = q(zt)
βt(zt)

for t = T : 1
p̂(zt−1, zt) = αt−1(zt−1)ψt(zt−1, zt)βt(zt)
q(zt−1) = Collapsest

∫
xt
p̂(zt−1, zt)

βt−1(zt−1) =
q(zt−1)

αt−1(zt−1)

Figure 4.16: Pseudo-code for EP applied to a switching KFM, based on [HZ02]. Zt = (Xt, St). Collapse

refers to weak marginalization.

messages would not interact (see Section B.4.6). However, since the messages only contain the first two

moments, rather than the full belief state, multiple iterations may help improve accuracy; this is the basic

idea behind expectation propagation (EP) [Min01]. The general algorithm is explained in Section B.7.2; a

special case of it, applied to the switching KFM, is shown in Figure 4.16 (based on [HZ02]). This could be

converted to an online algorithm if we used a fixed lag window.

Note that the BK algorithm is also an instance of EP, where the messages are factored. In this case, Zt

refers to all the nodes in slice t of the DBN, and the computation of αt−1(zt−1)ψt(zt−1, zt)βt(zt) is done

using jtree. The collapse procedure simply means computing the desired product of marginals on the nodes

in the forward interface.

4.3.4 Variational methods

A structured variational approximation for a special case of a switching KFM, in which the discrete variable

selects which hidden variable gets observed (see Section 2.4.6), was proposed in [GH98]. This decoupled the

problem into parallel chains, very much like the variational approximation for factorial HMMs [GJ97]. The

variational parameter for the discrete chain plays the role of the conditional likelihood term P (Yt|St = i) in

a regular HMM; the variational parameters for the continuous chains represent the responsibility of that chain

for the evidence: this weights the observations by changing the observation covariance matrix.

A structured variational approximation for the arguably more useful switching KFM in which the dis-

crete variable changes the dynamics (see Section 2.4.3) was sketched in [PRM00]. Again, the proposed

approximating structure consists of two chains, one discrete and one continuous. The discrete variational

parameters are the conditional likelihoods, as before, but for the continuous chain, it is the system covariance

and transition matrices which represent the variational parameters (since they summarize influence from the

discrete nodes above).
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4.4 Non-linear/ non-Gaussian models

4.4.1 Filtering

The standard way to do filtering in non-linear models is to do a local linearization around xt|t−1, and then

apply the Kalman filter to the resulting model; this is called the (iterated) Extended Kalman filter (EKF). An

alternative to the EKF is the unscented Kalman filter (see [WdM01] for a review), which avoids the need to

compute the Jacobian, and generally approximates the covariance more accurately.

For non-Gaussian noise models, other techniques can be used. For example, suppose P (Yt|Xt) is a

generalized linear model [MN83] e.g., Poisson or log-normal. (The overall model is called a dynamic gen-

eralized linear model.) One can then use moment matching and approximate the posterior P (Xt|y1:t) as

Gaussian [WH97]. It is straightforward to generalize this approximation to the DBN case [SSG99].

In all of the above algorithms, the posterior is being approximated by a Gaussian. If the true posterior is

highly multimodal, it is probably better to use particle filtering, which we discuss in Chapter 5.

4.4.2 Sequential parameter estimation

Online parameter estimation is equivalent to sequential Bayesian updating (see Section 6.1.1). If the parame-

ters have conjugate priors and the model is fully observed (see Appendix C), this can be done in closed form

(see e.g., [CDLS99, sec 9.4] for the case of multinomial CPDs with Dirichlet priors, or [WH97] for various

continuous densities).

Difficulties arise if the priors are not conjugate and/or there is partial observability. Various classical

techniques for collapsing the mixture of parameters that result from partial observability are discussed in

[CDLS99, sec. 9.7]. Alternatively, we can use sequential variational Bayes [HT01]. If the goal is to do

simultaneous state and parameter estimation, we can run two EKFs in parallel [WN01]. Stochastic solutions,

based on particle filtering, are discussed in Section 5.2. Methods based on online EM are discussed in

Section C.4.5.

4.4.3 Smoothing

In an offline setting, one can afford more expensive techniques. For state estimation one can use the extended

Kalman smoother [GR98], and for parameter estimation, one can use EM (see Section C.4.2). Stochastic

solutions, mostly based on Gibbs sampling, are discussed in Section 5.4. See [DK00] for a recent review of

non-linear/ non-Gaussian time-series analysis techniques.
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Chapter 5

Approximate inference in DBNs:

stochastic algorithms

5.1 Introduction

Stochastic (sampling) algorithms come in two flavors: offline and online. Offline methods are usually based

on importance sampling (likelihood weighting) or Monte Carlo Markov Chain (MCMC) [GRS96], which

includes Gibbs sampling and simulated annealing as special cases. Online methods usually use particle

filtering (PF), also known as sequential importance sampling (SIS), sequential Monte Carlo, the bootstrap

filter [Gor93], the condensation algorithm [IB96], survival of the fittest [KKR95], etc.: see [AMGC02, LC98,

Dou98] for good tutorials, and [DdFG01] for a collection of recent papers. DBNs specify P (Xt|Xt−1) in a

compact form, and hence can be “plugged in” to any PF algorithm. I discuss this in Section 5.2.

Sampling algorithms have several advantages over deterministic approximation algorithms: they are

easy to implement, they work on almost any kind of model (all kinds of CPDs can be mixed together, the

state-space can have variable size, the model structure can change), they can convert heuristics into provably

correct algorithms by using them as proposal distributions, and, in the limit of an infinite number of samples

(in “asymptotia”), they are guaranteed to give the exact answer.

The main disadvantage of sampling algorithms is speed: they are often significantly slower than deter-

ministic methods, often making them unsuitable for large models and/or large data sets. In this chapter, I

discuss how to get the best of both worlds by combining exact and stochastic inference. The basic idea is

to “integrate out” some of the variables using exact inference, and apply sampling to the remaining ones;

this is called Rao-Blackwellisation [CR96]. When combined with particle filtering, the resulting algorithm is

called Rao-Blackwellised particle filtering (RBPF). In Section 5.3.1, I explain how RBPF can be applied to a

switching KFM [AK77, CL00, DGK99]. The first novel contribution appears in Section 5.3.2, where I apply

RBPF to the SLAM (simultaneous localization and mapping) problem. In Section 5.3.3, I discuss how to ap-

ply RBPF to arbitrary DBNs. Finally, in Section 5.4.1, I briefly discuss how to combine Rao-Blackwellisation

and MCMC.

5.2 Particle filtering

The basic idea behind particle filtering (PF) is to approximate the belief state by a set of weighted particles

or samples:

P (Xt|y1:t) ≈
Ns∑

i=1

wi
tδ(Xt,X

i
t)

(In this chapter, X i
t means the i’th sample of Xt, and Xt(i) means the i’th component of Xt.) Given a prior

of this form, we can compute the posterior using importance sampling. In importance sampling, we assume

the target distribution, π(x), is hard to sample from; instead, we sample from a proposal or importance
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distribution q(x), and weight the sample according to wi ∝ π(x)/q(x). (After we have finished sampling,

we can normalize all the weights so
∑

i w
i = 1). We can use this to sample paths with weights

wi
t ∝

P (xi
1:t|y1:t)

q(xi
1:t|y1:t)

P (x1:t|y1:t) can be computed recursively using Bayes rule. Typically we will want the proposal distribution

to be recursive also, i.e., q(x1:t|y1:t) = q(xt|x1:t−1, y1:t)q(x1:t−1|y1:t−1). In this case we have

wi
t ∝ P (yt|xi

t)P (xi
t|xi

t−1)P (xi
1:t−1|y1:t−1)

q(xi
t|xi

1:t−1, y1:t)q(x
i
1:t−1|y1:t−1)

=
P (yt|xi

t)P (xi
t|xi

t−1))

q(xi
t|xi

1:t−1, y1:t)
wi

t−1

def
= ŵi

t × wi
t−1

where we have defined ŵi
t to be the incremental weight.

For filtering, we only care about P (Xt|y1:t), as opposed to the whole trajectory, so we use the following

proposal, q(xt|xi
1:t−1, y1:t) = q(xt|xi

t−1, yt), so we only need to store xi
t−1 instead of the whole trajectory.

In this case the weights simplify to

ŵi
t =

P (yt|xi
t)P (xi

t|xi
t−1)

q(xi
t|xi

t−1, yt)
(5.1)

The most common proposal is to sample from the prior: q(xt|xi
t−1, yt) = P (xt|xi

t−1). In this case, the

weights simplify to ŵi
t = P (yt|xi

t). For predicting the future, sampling from the prior is adequate, since there

is no evidence. This technique can be used e.g., to stochastically evaluate policies for (PO)MDPs [KMN99].)

But for monitoring/ filtering, it is not very efficient, since it amounts to “guess until you hit”. For example,

if the transitions are highly stochastic, sampling from the prior will result in particles being proposed all over

the space; if the observations are highly informative, most of the particles will get “killed off” (i.e., assigned

low weight). In such a case, it makes more sense to first look at the evidence, yt, and then propose:

q(xt|xi
t−1, yt) = P (xt|xi

t−1, yt) ∝ P (yt|xt)P (xt|xi
t−1)

In fact, one can prove this is the optimal proposal distribution, in the sense of minimizing the variance of

the weights (a balanced distribution being more economical, since particles with low weight are “wasted”).

Unfortunately, it is often hard to sample from this distribution, and to compute the weights, which are given

by the normalizing constant of the optimal proposal:

ŵi
t = P (yt|xi

t−1) =

∫

xt

P (yt|xt)P (xt|xi
t−1)

In Section 5.2.1, we will discuss when it is tractable to use the optimal proposal distribution.

Applying importance sampling in this way is known as sequential importance sampling (SIS). A well

known problem with SIS is that the number of particles with non-zero weight rapidly goes to zero, even if we

use the optimal proposal distribution (this is called particle “impoverishment”). An estimate of the “effective”

number of samples is given by

Neff =
1

∑Ns
i=1(w

i
t)

2
(5.2)

If this drops below some threshold, we can sample with replacement from the current belief state. Essentially

this throws out particles with low weight and replicates those with high weight (hence the term “survival

of the fittest”). This is called resampling, and can be done in O(Ns) time. After resampling, the weights

are reset to the uniform distribution: the past weights are reflected in the frequency with which particles are

sampled, and do not need to be kept. Particle filtering is just sequential importance sampling with resampling

(SISR). The resampling step was the key innovation in the ’90s; SIS itself has been around since at least the

’50s. The overall algorithm is sketched in Figure 5.1.
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function [{xi
t, w

i
t}
Ns
i=1] = PF({xi

t−1, w
i
t−1}

Ns
i=1, yt)

for i = 1 : Ns

Sample xi
t ∼ q(·|xi

t−1, yt)
Compute ŵi

t from Equation 5.1

wi
t = ŵi

t × wi
t−1

Compute wt =
∑Ns

i=1 w
i
t

Normalize wi
t := wi

t/wt

Compute Neff from Equation 5.2

if Neff < threshold

π = resample({wi
t}
Ns
i=1)

x·t = xπ
t

wi
t = 1/Ns

Figure 5.1: Pseudo-code for a generic particle filter. The resample step samples indices with replacement

according to their weight; the resulting set of sampled indices is called π. The line x·
t = xπ

t simply duplicates

or removes particles according to the chosen indices.

function [xi
t, ŵ

i
t] = LW(xi

t−1, yt)
ŵi

t = 1
xi

t = empty vector of length N
for each node i in topological order

Let u be the value of Pa(Xi
t) in (xi

t−1, x
i
t)

If Xi
t not in yt

Sample xi
t ∼ P (Xi

t |Pa(Xi
t) = u)

else

xi
t = the value of Xi

t in yt

ŵi
t = ŵi

t × P (Xi
t = xi

t|Pa(Xi
t) = u)

Figure 5.2: Pseudo-code for likelihood weighting.

Although resampling kills off unlikely particles, it also reduces the diversity of the population (which

is why we don’t do it at every time step; if we did, then wi
t = ŵi

t). This a particular severe problem is the

system is highly deterministic (e.g., if the state space contains static parameters). A simple solution is to

apply a kernel around each particle and then resample from the kernel. An alternative is to use an MCMC

smoothing step; a particularly succesful version of this is the resample-move algorithm [BG01].

5.2.1 Particle filtering for DBNs

To apply PF to a DBN, we use the likelihood weighting (LW) routine [FC89, SP89] in Figure 5.2 to sample

xi
t and compute ŵi

t. The proposal distribution that LW corresponds to depends on which nodes of the DBN

are observed. In the simplest case of an HMM, where the observation is at a leaf node, LW samples from the

prior, P (Xi
t |xi

t−1), and the computes the weight as w = P (yt|xi
t). (We discuss how to improve this below.

See also [CD00].)

In general, some of the evidence might occur at arbitrary locations within the DBN slice. In this case,

the proposal is q(xt, yt) =
∏

j P (xt(j)|Pa(Xt(j))), and the weight is w(xt, yt) =
∏

j P (yt(j)|Pa(Yt(j))),
where xt(j) is the (value of the) j’th hidden node at time t, and yt(j) is the (value of the) j’th observed

node at time t, and the parents of both Xt(j) and Yt(j) may contain evidence. This is consistent, since (as
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observed in [RN02])

P (xt, yt) =
∏

j

P (xt(j)|Pa(Xt(j)))×
∏

j

P (yt(j)|Pa(Yt(j))) = q(xt, yt)w(xt, yt)

Optimal proposal distribution

Since the evidence usually occurs at the leaves, likelihood weighting effectively samples from the prior,

without looking at the evidence. A general way to take the evidence into account while sampling, suggested

in [FC89, KKR95], is called “evidence reversal”. This means applying the rules of “arc reversal” [Sha86]

until all the evidence nodes become parents instead of leaves. To reverse an arc from X → Y , we must add

Y ’s unique parents, Yp, to X , and add X’s unique parents, Xp, to Y (both nodes may also share common

parents, C): see Figure 5.3. The CPDs in the new network are given by

P (Y |Xp, C, Yp) =
∑

x

P (Y |C, Yp)P (x|Xp, C)

P (X|Xp, C, Yp) =
P (Y |X,C, Yp)P (X|Xp, C)

P (Y |Xp, C, Yp)

Note that Xp, Yp and C could represent sets of variables. Hence the new CPDs could be much larger than

before the arc reversal. (One way to ameliorate this affect, for tree-structured CPDs, is discussed in [CB97].)

Of course, if there are multiple evidence nodes, not all of the arcs have to be reversed. In the case of DBNs,

the operation is shown in Figure 5.4. The new CPDs are

P (Yt|Xt−1) =
∑

xt

P (Yt|xt)P (xt|Xt−1)

P (Xt|Xt−1, Yt) =
P (Yt|Xt)P (Xt|Xt−1)

P (Yt|Xt−1)

Arc reversal was proposed by [Sha86] as a general means of inference in Bayesian networks. Since then,

the junction tree (jtree) algorithm has come to dominate, since it is more efficient. It is possible to efficiently

sample from P (X|E) by first building a jtree, collecting evidence to the root, and then, in the distribute

phase, drawing a random sample from P (XCi\Si
|xSi

, E) for each clique Ci, where Si is the separator nearer

to the root [Daw92]. This is the optimal method.

Unfortunately, for continuous valued variables (when PF is most useful), it is not always possible to

compute the optimal proposal distribution, because the new CPDs required by arc reversal, or the potentials

required by jtree, cannot be computed. An important exception is when the observation model, P (Yt|Xt), is

(conditionally) linear-Gaussian, and the process noise is Gaussian (although the dynamics can be non-linear),

i.e.,

P (Xt|xi
t−1) = N (Xt; ft(x

i
t−1), Qt)

P (Yt|Xt) = N (yt;HtXt, Rt)

In this case, one can use the standard Kalman filter rules to show that [AMGC02]

P (Xt|xi
t−1, yt) = N (Xt;mt,Σt)

ŵi
t = P (yt|xi

t−1) = N (yt;Htft(xt−1), Qt +HtRtH
′
t)

where

Σ−1
t = Q−1

t +HtR
−1
t Ht

mt = Σt

(
Q−1

t ft(x
i
t−1) +H ′

tR
−1
t yt

)

If the model does not satisfy these requirements, one can still use a Gaussian approximation of the form

q(Xt|xi
t−1, yt) constructed e.g., using the unscented transform [vdMDdFW00]. (This is the sense in which

any heuristic can be converted into an optimal algorithm.) If the process noise is non-Gaussian, but the

observation model is (conditional) linear-Gaussian, once can propose from the likelihood and weight by the

transition prior. (This observation was first made by Nando de Freitas, and has been exploited in [FTBD01].)
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X Y

Xp C Yp

X Y

Xp C Yp

(a) (b)

Figure 5.3: Arc reversal. (a) The original network. (b) The network after reversing the X → Y arc. The

modified network encodes the same probability distribution as the original network.

Xt−1 Xt

Yt

Xt−1 Xt

Yt

(a) (b)

Figure 5.4: A DBN (a) before and (b) after evidence reversal.

Smoothing discrete state-spaces

When applying PF to (low dimensional) continuous state-spaces, it is easy to place a (Gaussian) kernel

around each particle before resampling, to prevent “particle collapse”. However, most DBNs that have been

studied have discrete state-spaces. In this case, we can use the smoothing technique proposed in [KL01]. Let

Wt =
∑Ns

i=1 w
i
t. We add a certain fraction, α, of Wt to all entries in the state-space that are consistent with

the evidence (i.e., which give it non-zero likelihood), and then renormalize. (This is like using a uniform

Dirichlet prior.) That is, the smoothed approximate belief state is

P̂ (x|y1:t) =
α+

∑

i:xi
t=x w

i
t

Z

if x is consistent with yt, and P̂ (x|y1:t) = 0 otherwise. The sum is over all particles that are equal to x; if

there are no such particles, the numerator has value α. The normalizing constant is Z = Wt +αM , whereM
is the total number of states consistent with yt. (We discuss how to compute M below.) We can sample from

this smoothed belief state as follows. With probability Wt/Z, we select a particle as usual (with probability

wi
t), otherwise we select a state which is consistent with the evidence uniformly at random.

Computing M is equivalent to counting the number of satisfying assignments, which in general is #-P

hard (worse than NP-hard). If all CPDs are stochastic, we can compute M using techniques similar to Bayes

net inference. Unfortunately, the cost of exactly computing M may be as high as doing exact inference. A

quick and dirty solution is to add probability mass of α to all states, whether or not they are consistent with

the evidence.

Combining PF with BK

[NPP02] suggested combining particle filtering with the Boyen-Koller algorithm (see Section 4.2.1), i.e.,

approximating the belief state by

P̂ (Xt|y1:t) ≈
C∏

c=1

1

Nc

Nc∑

i=1

δ(Xt,c, x
i
t,c)

where C is the number of clusters, and Nc is the number of particles in each cluster (assumed uniformly

weighted). By applying PF to a smaller state-space (each cluster), they reduce the variance, at a cost of

increasing the bias by using a factored representation. They show that this method outperforms standard

PF (sampling from the prior) on some small, discrete DBNs. However, they do not compare with BK.

Furthermore, it might be difficult to extend the method to work with continuous state-spaces (when PF is
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most useful), since the two proposed methods of propagating the factored particles — using jtree and using

an equi-join operator — only work well with discrete variables.

5.3 Rao-Blackwellised Particle Filtering (RBPF)

The Rao-Blackwell theorem shows how to improve upon any given estimator under every convex loss func-

tion. At its core is the following well-known identity:

Var[τ(X,R)] = Var[E(τ(X,R)|R)] +E[Var(τ(X,R)|R)]

where τ(X,R) is some estimator of X and R. Hence τ ′(X,R) = E(τ(X,R)|R) is a lower variance estima-

tor. So if we can sample R and compute this conditional expectation analytically, we will need less samples

(for a given accuracy). Of course, less samples does not necessarily mean less time: it depends on whether

we can compute the conditional expectation efficiently or not. In the following, we will always assume this

is the case.

5.3.1 RBPF for switching KFMs

Consider the switching KFM in Figure 4.12. If we knew S1:t, we could compute P (Xt|y1:t, s1:t) exactly

using a Kalman filter. Hence we can apply particle filtering to St, which lives in a small, discrete space,

and integrate out Xt, which lives in a (potentially) large, continuous space. This idea was first proposed in

[AK77] (without the resampling step) and independently in [CL00, DGK99] using the modern PF method.

Algorithmically, what this means is that each particle i contains a sampled value for St, which implicitely

represents a whole trajectory, si
1:t, plus the sufficient statistics for the Kalman filter conditioned on this

trajectory, µi
t = E[Xt|y1:t, si

1:t] and Σi
t = Cov[Xt|y1:t, si

1:t]. If we propose from the prior, q(St|si
t−1) =

P (St|si
t−1), we can compute the weight using the one-step-ahead prediction likelihood:

ŵi
t =

P (yt|si
t)P (si

t|si
t−1)

P (si
t|si

t−1)

=

∫

xt

P (yt|xt, s
i
t)P (xt|si

1:t, y1:t−1)

= P (yt|y1:t−1, s
i
1:t)

= N (yt;CsAsµ
i
t−1, Cs(AsΣ

i
t−1A

′
s +Qs)C

′
s +Rs)

where s = si
t. This term is just a byproduct of applying the Kalman filtering equations to the sufficient statis-

tics µi
t−1,Σ

i
t−1 with the parameter set θs = (As, Cs, Qs, Rs). The overall algorithm is shown in Figure 5.5.

Note that we can use this algorithm even if St is not discrete.

If the number of values of St is sufficiently small, and the ratio of transition noise (for St) to observation

noise sufficiently high, it might be beneficial to use the optimal proposal distribution, which is given by

P (St = s|si
1:t−1, y1:t) ∝ P (yt|St = s, si

1:t−1, y1:t−1)P (St = s|si
t−1)

In this case, the incremental weight is just the normalizing constant for the optimal proposal:

ŵi
t =

∑

s

P (yt|St = s, si
1:t−1, y1:t−1)P (St = s|si

t−1)

The modified algorithm is shown in Figure 5.6. This is more expensive than sampling from the prior, since

for each particle i, we must loop over all states s. However, this may require fewer particles, making it faster

overall.

Fault diagnosis

In principle, it is straightforward to apply RBPF to problems in fault diagnosis, such as the DBN in Fig-

ure 2.33. Unfortunately, in that model, there are a large number of discrete variables, so it is too expensive to
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function [{si
t, µ

i
t,Σ

i
t, w

i
t}] = RBPF-SKFM-prior({si

t−1, µ
i
t−1,Σ

i
t−1, w

i
t−1}, yt)

for i = 1 : Ns

Sample si
t ∼ P (St|s

i
t−1)

(µi
t,Σ

i
t, ŵ

i
t) = KF(µi

t−1,Σ
i
t−1, yt, θsi

t
)

wi
t = ŵi

t × wi
t−1

Compute wt =
∑Ns

i=1 w
i
t

Normalize wi
t := wi

t/wt

Compute Neff from Equation 5.2

if Neff < threshold

π = resample({wi
t}
Ns
i=1)

s·t = sπ
t , µ·

t = µπ
t , Σ·

t = Σπ
t

wi
t = 1/Ns

Figure 5.5: Pseudo-code for RBPF applied to a switching KFM, where we sample from the prior.

function [{si
t, µ

i
t,Σ

i
t, w

i
t}] = RBPF-SKFM-opt({si

t−1, µ
i
t−1,Σ

i
t−1, w

i
t−1}, yt)

for i = 1 : Ns

for each s
(µs,Σs, L(s)) = KF(µi

t−1,Σ
i
t−1, yt, θs)

q(s) = L(s) × P (St = s|si
t−1)

ŵs =
∑

s q(s)
Normalize q(s) := q(s)/ŵs

Sample s ∼ q(·)
si

t = s, µi
t = µs, Σi

t = Σs, ŵi
t = ŵs

wi
t = ŵi

t × wi
t−1

. . .

Figure 5.6: Pseudo-code for RBPF applied to a switching KFM, where we sample from the optimal proposal.

The third return argument from the KF routine is L(s) = P (yt|St = s, si
1:t−1, y1:t−1). . . . means the code

continues as in Figure 5.5.
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use the optimal proposal. Obviously one could propose from the prior, but there is an alternative, determinis-

tic heuristic that works well in this case [LP01], namely: enumerate the discretes in order according to their

prior probability. This exploits the fact that it is more likely that there is a single fault than that there are two

faults, etc. (Since this is a non-linear model, even conditioned on the discretes, one must apply the EKF or

UPF, instead of the KF, to each particle.)

Enumerating in a priori order is not applicable if the discrete variables represented cardinal (as opposed

to ordinal) quantities, as occurs e.g., in data association problems. Another problem with this scheme is

that although faults may have low (prior) probability, they may have a high cost. One should therefore take

the loss function into account when proposing samples [TLV01]. An alternative technique in [CT02] tries

to identify the most likely assignment to the discretes by allocating a different number of samples to each

discrete hypothesis in an adaptive way; this is similar to Hoeffding races [MM93].

Stochastic vs deterministic approximations

RBPF for switching KFMs is very similar to classical multiple hypothesis tracking (MHT). It is not clear

which is better. The argument between stochastic vs deterministic approximations often boils down to matters

of taste.

5.3.2 RBPF for simultaneous localisation and mapping (SLAM)

When a mobile robot moves through the world, it is important that it knows where it is; this is called the

localization problem. It is not always possible to use GPS to solve this problem (e.g., in indoor environments).

However, by comparing what it sees with a map of the world, the robot can infer its location (not always

uniquely). There are two popular representations for maps: metric (grid-based) and topological. We restrict

our attention to the first.

A metric map is usually represented as an occupancy grid [ME85], which is a binary matrix where 1’s

represent cells which contain obstacles and 0’s represent free space. Since we have discretized space, we

can think of the map (assumed to be static) as defining the observation (and transition) matrix of an HMM.

Hence the map can be learned using EM [TBF98]. (EM provides a solution to the following chicken-and-egg

problem: to localize, the robot must know the map, but the learn the map, the robot must know its location.)

This learning is usually done offline, after a human has joysticked the robot through the environment.

Localization simply means inferring P (Lt|y1:t, u1:t), where Lt is the location of the robot, y1:t are

the sensor measurements (typically from a sonar or laser range finder, plus odometry information from the

wheels) and u1:t are the control signals sent to the motors. (Henceforth we shall use z1:t = (y1:t, u1:t)
for brevity.) In principle, this inference problem can be solved exactly by using the forwards algorithm for

HMMs. In practice, this is too slow, since the state-space, though discrete, is very large (millions of cells).

However, one can apply particle filters in a straightforward way [FTBD01].

Offline map learning with EM is unsatisfactory for many reasons. An online solution, where we regard

the map as a random variable and perform joint Bayesian inference to compute P (Lt,Mt|z1:t), is much more

useful, since it can handle maps that change, and it gives a confidence estimate in the map (which can be used

to guide exploration). This joint estimation problem is usually called SLAM (simultaneous localization and

mapping).

The standard approach to SLAM (see e.g., [DNCDW01] for a recent account) is to represent the map

as a list of locations of landmarks. One then just applies the (extended) Kalman filter. Unfortunately, if

there are NL landmarks, this has complexity O(NL
2), since the covariance matrix has size NL × NL. In

Section 5.3.2, I show how RBPF can reduce this to O(Ns × NL), where Ns is the number of particles. By

using an appropriate control policy, Ns can be kept constant. Consequently, we can solve the SLAM problem

in much larger environments than traditional techniques. By using a tree-based data-structure, [MTKW02]

reduced the complexity even further, to O(Ns × logNL), and demonstrated that the algorithm works on a

real robot in an environment with 50,000 landmarks.

A disadvantage of representing maps as a list of landmark locations is that this requires identifying

landmarks, which requires extracting features (such as corners) from the sensors and then solving the data

association problem (see Section 2.4.6). This is often solved by placing beacons with unique identifiers

into the environment (e.g., Durrant-Whyte submerges beacons below the sea so he can map the seabed
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using autonomous submarines.) The advantage of grid-based maps is that they merely require evaluating

P (yt|Lt,Mt), where yt could be a complex signal (e.g., a dense set of laser range finder distance readings)

from an unmodifed environment. (P (yt|Lt,Mt) is often represented using a neural network [Thr98].) (Of

course, the disadvantage of occupancy grids is that they provide a very low-level (hard-to-intrepret) repre-

sentation.) Below I show how RBPF can also be applied to the SLAM problem using an occupancy grid

representation.

The basic idea

Consider a robot that can move on a discrete, two-dimensional grid, and which can observe the “color” of

the cells in a 3 × 3 neighborhood centered on its current location, (LX
t , L

Y
t ). The “color” of a cell could

represent whether it is occupied or not. However, for simplicity of exposition, we shall assume that the robot

can move anywhere — think of the robot as gliding over a multi-colored checkerboard. (This is a standard

assumption.) Hence the map (which stores the color of each cell) affects the observation, Yt, but not the

position: see Figure 5.7.

If we could do inference in this DBN, we would have solved the SLAM problem. Unfortunately, exact

inference is intractable. If there are K colors and the grid has size NL, the belief state, P (Mt|z1:t), has

size O(KNL), because all the grid cells become correlated due to sharing a common observed child c.f., the

explaining away phenomenon in factorial HMMs (Section 2.3.7).

However, note the following crucial insight [Mur00]: if we knew L1:t, the grid cells would not become

correlated, because we would always know exactly which cells to update for each measurement, c.f., the data

association problem (Section 2.4.6). Hence if we sample paths L1:t, we can represent the belief state as

P (Mt, Lt|z1:t) ≈
Ns∑

i=1

∏

j

P (Mt(j)|z1:t, Li
1:t)P (Li

t|z1:t)

where Mt(j) is the j’th grid cell at time t. (I have assumed a factored prior, P (M1) =
∏

j P (M1(j)).) This

can be implemented similarly to RBPF for switching KFMs: each particle contains a sample of Li
t and a

product of factors, P (Mt(j)|z1:t, Li
1:t), only one of which will get updated at every step (namely the entry

j = Li
t).

1

Results for a 1D grid

To evaluate the effectiveness of this idea, we constructed a simple 1D grid world which was small enough to

allow for an exact solution. Specifically, we used the grid in Figure 5.8, with NL = 8 and K = 2, so exact

inference takes about 50,000 operations per time step (!).

We assume that the robot sees a noisy version of the color of the cell at its current location:

P (yt|m1, . . . ,mNL
, Lt = l)

{
1− po if yt = ml

po if yt 6= ml

where po is the probability that a color gets misread (observation error). We also assume that the robot can

only move left or right, depending on the control input, Ut. The robot moves in the desired direction with

probability 1−pa, and otherwise stays put. In addition, it cannot move off the edges of the grid. Algebraically,

this becomes

P (Lt = l′|Lt−1 = l, Ut =→) =







1− pa if l′ = l + 1 and 1 ≤ l′ < NL

pa if l = l′ and 1 ≤ l′ < NL

1 if l = l′ = NL

0 otherwise

The equation for P (Lt = l′|Lt−1 = l, Ut =←) is analogous. In Section 5.3.2, we will consider the case of a

robot moving in two dimensions. In that case, the motion model will be slightly more complex.

1[Pfe01] shows that maintaining the marginals of a belief state is sufficient for exact inference (of future marginals) iff the CPDs have

the form of a multiplexer. However, he does not consider the case in which the evidence node also has this form, as we assume here.
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Figure 5.7: The DBN used in the map-learning problem. M represents the map, R the robot’s location, Y
the observation, and U the input (control). There is one arc from each (i, j) cell of Mt to Yt. Similarly, each

(i, j) cell of Mt connects to the corresponding (i, j) cell in Mt+1. P (Yt|Mt, Lt) is a multiplexer CPD, i.e.,

P (Yt|Mt, Lt = j) = f(Yt,Mt(j)).
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Figure 5.8: A one-dimensional grid world.
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Figure 5.9: Results of exact inference on the 1D grid world. (a) A plot of P (Mt(i) = 1|y1:t), where i is the

vertical axis and t is the horizontal axis; lighter cells are more likely to be color 1 (white). The pattern in

the right hand column consists of alternating white and black stripes, which means it has learned the correct

map. Notice how the ambiguity about the colors of cells 5–7 at time 9 gets resolved by time 11. (b) A plot of

P (Lt = i|y1:t), i.e., the estimated location of the robot at each time step.

Finally, we need to specify the prior. The robot is assumed to know its initial location, so the prior

P (L1) is a delta function: P (L1 = 1) = 1. If the robot did not know its initial location, there would be no

well-defined origin to the map; in other words, the map is relative to the initial location. Also, the robot has

a uniform prior over the colors of the cells. However, it knows the size of the environment, so the state space

has fixed size.

For simplicity, we fixed the control policy as follows: the robot starts at the left, moves to the end,

and then returns home. Suppose there are no sensor errors, but there is a single “slippage” error at t = 4.

What this means is that the robot issued the “go right” command, but the robot actually stayed in the same

place. It has no way of knowing this, except by comparing what it sees with what it already knows about the

environment, which is very little: by the time the slippage occurs, all the robot knows is the color of the cells

it has already seen: cells to the right could have any color, hence if it sees two black cells in a row, it cannot

tell if this is how the world really is, or whether it has got stuck, and hence is seeing the same cell twice.

Clearly this is an extreme case, but it serves to illustrate the point.

We summarize the evidence sequence below, where Ut represents the input (control action) at time t.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lt 1 2 3 4 4 5 6 7 8 7 6 5 4 3 2 1

Yt 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0

Ut - → → → → → → → ← ← ← ← ← ← ← ←

The exact marginal belief states, P (Lt|z1:t) and P (Mt|z1:t), are shown in Figure 5.9. At each time step,

the robot thinks it is moving one step to the right, but the uncertainty gradually increases. However, as the

robot returns to “familiar territory”, it is able to better localize itself, and hence the map becomes “sharper”,

even in cells far from its current location. Note that this effect only occurs because we are modelling the

correlation between all the cells. (The need for this was first pointed out in [SSC88].)

In Figure 5.10, we show the results obtained using RBPF with 50 particles proposed from the prior.

The results shown are for a particular random number seed; other seeds produce qualitatively very similar
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Figure 5.10: Results of the RBPF algorithm on the 1D grid world using 50 particles.
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Figure 5.11: Results of the BK algorithm on the 1D grid world.
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Figure 5.12: A simple 2D grid world. Grey cells denote doors (which are either open or closed), black denotes

walls, and white denotes free space.

results, indicating that 50 particles are in fact sufficient in this case. Obviously, as we increase the number of

particles, the error and variance decrease, but the running time increases linearly. We discuss the question of

how many particles we need in Section 5.3.2.

For comparison purposes, we also tried the fully factorized version of the BK algorithm (see Sec-

tion 4.2.1). The results of using BK are shown in Figure 5.11. As we can see, it performs very poorly in

this case, because it ignores correlation between the cells. Of course, it is possible to use larger clusters, but

unless we model the correlation between all of the cells, we will not get good results.

Results for a 2D grid

Now we now consider the 10 × 10 grid world in Figure 5.12. We use four “colors”, which represent closed

doors, open doors, walls, and free space. Doors can toggle between open and closed independently with prob-

ability pc = 0.1, but the other “colors” remain static; hence the cell transition matrix, P (Mt(j)|Mt−1(j)),
is 





1− pc pc 0 0
pc 1− pc 0 0
0 0 1 0
0 0 0 1







The robot observes a 3×3 neighborhood centered on its current location. The probability that each pixel gets

misclassified is po = 0.1. The robot can move north, east, south or west; there is a pa = 0.1 chance it will

accidently move in a direction perpendicular to the one specified by Ut.

We use a control policy that alternates between exploring new territory when the robot is confident of its

location, and returning to familiar territory to relocalize itself when the entropy of P (Lt|y1:t) becomes too

high, as in [FBT98].

The results of applying the RBPF algorithm to this problem, using 200 particles, are shown in Fig-

ure 5.13. We see that by time 50, it has learnt an almost perfect map, even though the state space has size

4100.

Results for IR2

Recently the above idea has been extended so it works with maps represented in terms of landmark (x, y)
locations instead of occupancy grids [MTKW02]. In this case, we sample the sequence of poses (posi-

tion plus orientation) of the robot, Lt ∈ IR3; conditioned on a trajectory, the map factorizes as before,

P (Mt|Li
1:t, z1:t) =

∏

j P (Mt(j)|Li
1:t, z1:t), only now Mt(j) ∈ IR2, and P (Mt(j)|Li

1:t, z1:t) is represented

as a Gaussian distribution using a mean vector and a 2 × 2 covariance matrix. This technique, which takes

O(NLNs) operations per time step, scales much better than the standard EKF technique, which has com-

plexity O(NL
2), assuming the number of particles is reasonable (see Section 5.3.2). Some results are shown

in Figure 5.14. In fact, by using a tree-based data structure, we can share submatrices between particles,

even if they have different histories; this reduces the update cost of each particle from O(NL) to O(logNL)
[MTKW02]. Unfortunately, this scheme is rather complex and has not yet been implemented (Thrun, per-

sonal communication).
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How many particles do we need?

The number of particles required depends both on the noise parameters and the structure of the environment.

(If every cell has a unique color, localization, and hence map learning, is easy.) Since we are sampling

trajectories, the number of hypotheses grows exponentially with time. In the worst case, the number of

particles needed may depend on the length of the longest cycle in the environment, since this determines how

long it might take for the robot to return to “familiar territory” and “kill off” some of the hypotheses (since

a uniform prior on the map cannot be used to determine Lt when the robot is visiting places for the first

time). In the 1D example, the robot was able to localize itself quite accurately when it reached the end of the

corridor, since it knew that this corresponded to cell 8. In the 2D example, to keep the number of particles

constant, I found it necessary to use a control policy that backtracked whenever the robot got lost. Thrun et

al. found that a similar policy worked well in the continuous case.

5.3.3 RBPF for general DBNs: towards a turn-key algorithm

We have now seen two different examples of RBPF, applied to a switching KFM and to the SLAM DBN. In

both cases, a human decided which nodes to sample and which to integrate out. However, if we are to build

an autonomous life-long learning agent, it must decide by itself how to do inference (especially if it is doing

online structure learning). Given an arbitrary DBN, how should it decide which nodes to sample?

The key requirement is that, conditioned on the sampled nodes, call them Rt, we should be able to

compute P (Xt|ri
1:t, y1:t) more efficiently than by sampling everything. Determining whether this is the case

or not depends not only on the graph structure, but also on the parameterization. For example, if the system

is linear-Gaussian, conditional on Rt, we know we can perform the computation in closed form using the

Kalman filter. To automate this kind of knowledge would require a theorem prover/ symbolic algebra package

c.f., the AutoBayes project [FS02]. If the system is not linear-Gaussian, it might be nearly so, conditioned on

some other variables, and hence we could apply an EKF or UKF. It will be very hard to automatically detect

this kind of situation.

Sometimes the graph structure will be revealing, even without knowing the details of the CPDs. For

example, consider sampling Rt in Figure 5.15. Even to sample from the prior, we must compute

P (Rt|r(i)1:t−1, y1:t−1) =
∑

xt−1

P (Rt|r(i)1:t−1, y1:t−1, xt−1)P (xt−1|r(i)1:t−1, y1:t−1)

=
∑

xt−1

P (Rt|r(i)t−1, xt−1)P (xt−1|r(i)1:t−1, y1:t−1)

Since this requires summing or integrating over Xt−1, this will in general be infeasible. Hence we typically

assume that the nodes that are being sampled have no incoming arcs from non-sampled nodes; in this case,

we require there to be no arc from Xt−1 to Rt. Hence the sampled nodes will generally be roots of the graph

(R for root), or children of sampled roots. Note that parameters are usually root nodes; once the parameters

have been sampled, the remaining variables can often be handled exactly.

In the best case, the problem decomposes into two or more completely separate subproblems, conditioned

on the root(s). An example was shown in Figure 3.16, where it is crucial that the dotted arcs coming into the

root are absent. If the dotted arcs were present, Rt would act like a common observed child, correlating the

subprocesses instead of separating them.

5.4 Smoothing

So far, we have only considered filtering problems. Often we want to compute P (Xt|y1:T ), or the fixed lag

version, P (Xt−L|y1:t). This is especially useful for learning (see Chapter 6). This can be done by sampling

trajectories using particle filtering, and then recalculating the particles’ weights via a backwards recursion

[GDW00]. However, we would really like future evidence to affect the positions of the particles as well as

their weights. It is possible to run a PF in both the forwards and backwards directions [IB98], but this has

complexity O(Ns
2), so is not popular.
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Figure 5.15: Example of an DBN for which RBPF is unsuitable.

The most widely used technique is based on MCMC, in particular, Gibbs sampling (see e.g., [DK02]

for a very recent approach). Unfortunately, Gibbs sampling mixes very slowly for time series, because the

data are correlated. It is therefore crucial to use Rao-Blackwellisation. The most important case where this is

possible is in conditionally linear-Gaussian models, which we discuss below.

5.4.1 Rao-Blackwellised Gibbs sampling for switching KFMs

Carter and Kohn [CK96] proposed the following Rao-Blackwellised MCMC algorithm for inference in

switching KFMs. ([KN98] is a whole book devoted to MCMC for switching KFMs.)

1. Randomly initialise s01:T .

2. For i = 1, 2, . . . until convergence

(a) For t = 1, . . . , T , sample si
t ∼ P (St|y1:T , si

−t)

(b) Compute xi
0:T = E

[
x0:T |yi

1:t, s
i
1:T

]

where si
−t

def
=
(
si
1, . . . , s

i
t−1, s

i−1
t+1, . . . , s

i−1
T

)
contains new values of St to the left of t, and old values to the

right. The final estimate is then obtained by averaging the samples si
1:T and xi

1:T , possibly discarding an

initial segment corresponding to the burn-in period of the Markov chain.

The main issue is how to efficiently compute the sampling distribution P (St|y1:T , si
−t). [CK96] propose

an O(T ) algorithm which involves first running the backwards Kalman filter2, and then working forwards,

sampling St and doing Bayesian updating conditional on the sampled value.

The paper is hard to read because of the heavy notation involved in explicitely manipulating Gaussians.

Here, we rederive the algorithm for the simpler case in which X is a discrete random variable. (Y can have

an arbitrary distribution, since it is observed.) The original algorithm can then be recovered by replacing the

discrete multiplication and addition operators on the Xt nodes with their Gaussian equivalents, as discussed

in Section B.5. We then show how to apply the same idea to arbitrary DBNs using the jtree algorithm.

Computing the sampling distribution

The sampling distribution is

P (st|y1:T , s−t) ∝ P (y1:T |s1:T )P (st|s−t)

2[CK96] assume that the transition matrices are all invertible, so they can compute the backwards filter in moment form (c.f.,

Section 3.2.5). [DA99] use the information form of the backwards filter, which does not require invertible dynamics.
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The first term is given by

P (y1:T |s1:T ) =
∑

i

P (yt+1:T |y1:t, s1:T ,Xt = i)P (y1:t,Xt = i|s1:T )

=
∑

i

P (yt+1:T |st+1:T ,Xt = i)P (y1:t,Xt = i|s1:t)

= P (y1:t|s1:t)
∑

i

P (yt+1:T |st+1:T ,Xt = i)P (Xt = i|y1:t, s1:t)

= P (y1:t−1|s1:t−1)P (yt|y1:t−1, s1:t)
∑

i

P (yt+1:T |st+1:T ,Xt = i)P (Xt = i|y1:t, s1:t)

Hence, dropping terms that are independent of st,

P (st|y1:T , s−t) ∝ P (st|st−1)P (st+1|st)P (yt|y1:t−1, s1:t)
∑

i

P (yt+1:T |st+1:T ,Xt = i)P (Xt = i|y1:t, s1:t)

The P (Xt = i|y1:t, s1:t) and P (yt|y1:t−1, s1:t) terms can be computed by running the forwards algorithm on

the X/Y HMM, sampling St as we go. The P (yt+1:T |st+1:T ,Xt = i) term can be computed by using the

backwards algorithm on the X/Y HMM. The key observation is that this term is independent of s
(k)
1:t , and

hence can be computed ahead of time, before sampling s1:t on the forwards pass.

Using the jtree algorithm

We now show how to implement the above scheme using the jtree algorithm. The jtree is shown in Fig-

ure 4.13. Let us make the first clique (on the left) the root. Initially the clique potentials will contain the

CPDs: φ(Xt−1, St−1,Xt, St) = P (yt|Xt, St)P (St|St−1)P (Xt|Xt−1, St). After instantiating S1:T , and

doing a backwards pass (collect to root), the separator potentials contain terms of the form φ(Xt, St) ∝
P (yt+1:T |st+1:T ,Xt, st), c.f., βt in an HMM. Now, in the forwards pass (distribute from root), we sample all

the S variables in a clique using Dawid’s algorithm [Daw92] (see Section 5.2.1). Hence the updated separator

potentials have the form φ∗(Xt−1, St−1) ∝ P (Xt−1|y1:T , s∗1:t−1, st:T ), c.f. γt in an HMM. The message

entering a clique is now
φ∗(Xt−1, St−1)

φ(Xt−1, St−1)
∝ P (Xt−1, y1:t−1|s∗1:t−1)

since αt ∝ γt/βt. Combining, we have

αtφ(Xt−1, St−1,Xt, St)βt ∝ P (Xt−1, St−1,Xt, St|y1:T , s∗1:t−1, s1:t)

Hence we can sample a new St and continue. This is equivalent to the algorithm above.

Stochastic vs deterministic approximations

An obvious question is: how does the above Rao-Blackwellised Gibbs sampler compare to offline deter-

ministic approximations such as variational methods and expectation propagation, in terms of accuracy vs

computation time. As far as I know, this have never been studied.
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Chapter 6

DBNs: learning

The techniques for learning DBNs are mostly straightforward extensions of the techniques for learning BNs

(see Appendix C); we discuss the differences in Section 6.1. The novel contributions of this chapter are

the application of these algorithms. In Section 6.2.1, we discuss how to use the structural EM algorithm to

learn “genetic network” topologies from synthetic data [FMR98]. In Section 6.2.2, we discuss how to use

hierarchical HMMs to discover “motifs” buried in synthetic data. In Section 6.2.3, we discuss how to use

abstract HMMs to predict a person’s goal as they move through a building, based on real tracking data. In

Section 6.2.4, we discuss how to model some real traffic flow data using coupled HMMs [KM00]. Note that

most of these “applications” are more proof of concept rather than serious attempts to solve the respective

problems. However, we believe they illustrate the applicability of DBNs.

6.1 Differences between learning static and dynamic networks

6.1.1 Parameter learning

Offline learning

To do offline parameter estimation, we can use the techniques discussed in Appendix C, such as EM. Here

we just comment on some points that are applicable specifically to dynamical systems.

• Parameters must be tied across time-slices, so we can model sequences of unbounded length. This is

straightforward to handle: we simply pool the expected sufficient statistics for all nodes that share the

same parameters.

• The parameters, π, for P (X1) are usually taken to represent the initial state of the dynamical system;

in this case, π can be estimated independently of the transition matrix. However, if π represents the

stationary distribution of the system, the parameters of π and the transition model become coupled. A

way to compute maximum likelihood estimates (MLEs) in this case is discussed in [Nik98].

• Linear-Gaussian DBNs (i.e., KFMs) have been studied very extensively. In some cases, closed-form

solutions to the MLEs can be found. In particular, for a KFM with no output noise, one can use

subspace methods [OM96].1 This is analogous to the fact that PCA can be used instead of EM for

noise-free factor analysis [RG99].

Online learning

To do online parameter estimation, we simple add the parameters to the state space and then do online infer-

ence (i.e., filtering). We give some examples in Section 6.2.5. For (non-Bayesian) techniques for recursive

(online) parameter estimation in partially observed linear dynamical systems, see [LS83, Lju87].

1These are implemented in the n4sys function in the Matlab system identification toolbox. For an impressive application of this

technique to synthesizing dynamic visual textures, see [SDW01].
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6.1.2 Structure learning

When learning the structure of a DBN, we can learn the intra-slice connectivity, which must be a DAG, and

the inter-slice connectivity, which is equivalent to the variable selection problem, since for each node in slice

t, we must choose its parents from slice t− 1. If we assume the intra-slice connections are fixed, this means

structure learning for DBNs reduces to feature selection.

If the system is fully observed, we can apply standard feature selection algorithms, such as forward or

backwards stepwise selection, or the leaps and bounds algorithm [HTF01, p55]. Hierarchical priors, which

encode the fact that we only expect a subset of the inputs to be relevant to each output, are discussed in

[NJ01]. These can be used inside a greedy search or an MCMC algorithm.

When the system is partially observed, structure learning becomes computationally intensive. One prac-

tical approach is the structural EM (SEM) algorithm (see Section C.8.2). It is straightforward to extend this to

DBNs [FMR98]. We give an example in Section 6.2.1. An extension to the structural EM algorithm for DBNs

is presented in [BFK99]. These authors add extra hidden variables when violations of the first-order Markov

condition are detected. (A very similar idea was proposed in [McC95] for learning POMDP state-spaces).

See also [ELFK00] for methods to discover hidden variables in static Bayes nets.

Learning uses inference as a subroutine, so learning can be slow. We can obviously use standard approx-

imate DBN inference algorithms to speed things up, but there is an additional, natural approximation which

arises in the context of the SEM algorithm: Since SEM needs to compute the joint distribution over sets of

nodes which may not all belong to the same clique, one may approximate the joint as a product of marginals

[BFK99].

6.2 Applications

6.2.1 Learning genetic network topology using structural EM

Here we describe some initial experiments using DBNs to learn small artificial examples typical of the causal

processes involved in genetic regulation. We generate data from models of known structure, learn DBN

models from the data in a variety of settings, and compare these with the original models. The main purpose

of these experiments is to understand how well DBNs can represent such processes, how many observations

are required, and what sorts of observations are most useful. We refrain from describing any particular

biological process, since we do not yet have sufficient real data on the processes we are studying to learn a

scientifically useful model.

Simple genetic systems are commonly described by a pathway model—a graph in which vertices rep-

resent genes (or larger chromosomal regions) and arcs represent causal pathways (Figure 6.1(a)). A vertex

can either be “off/normal” (state 0) or “on/abnormal” (state 1). The system starts in a state which is all 0s,

and vertices can “spontaneously” turn on (due to unmodelled external causes) with some probability per unit

time. Once a vertex is turned on, it stays on, but may trigger other neighboring vertices to turn on as well—

again, with a certain probability per unit time. The arcs on the graph are usually annotated with the “half-life”

parameter of the triggering process. Note that pathway models, unlike BNs, can contain directed cycles. For

many important biological processes, the structure and parameters of this graph are completely unknown;

their discovery would constitute a major advance in scientific understanding.

Pathway models have a very natural representation as DBNs: each vertex becomes a state variable, and

the triggering arcs are represented as links in the transition network of the DBN. The tendency of a vertex

to stay “on” once triggered is represented by persistence links in the DBN. Figure 6.1(b) shows a DBN

representation of the five-vertex pathway model in Figure 6.1(a). The nature of the problem suggests that

noisy-ORs (or noisy-ANDs) should provide a parsimonious representation of the CPD at each node (see

Section A.3.2). To specify a noisy-OR for a node with k parents, we use parameters q1, . . . , qk, where qi is

the probability the child node will be in state 0 if the ith parent is in state 1. In the five-vertex DBN model

that we used in the experiments reported below, all the q parameters (except for the persistence arcs) have

value 0.2. For a strict persistence model (vertices stay on once triggered), q parameters for persistence arcs

are fixed at 0. To learn such noisy-OR distributions, we used the EM techniques discussed in Section C.2.3.

We also tried using gradient descent, following [BKRK97], but encountered difficulties with convergence

in cases where the optimal parameter values were close to the boundaries (0 or 1). To prevent structural
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Figure 6.1: (a) A simple pathway model with five vertices. Each vertex represents a site in the genome, and

each arc is a possible triggering pathway. (b) A DBN model that is equivalent to the pathway model shown in

(a). (c) The DBN model extended by adding a switch node S and an observation node O, whose value either

indicates that this slice is hidden, or it encodes the state of all of the nodes in the slice.
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Figure 6.2: Results of structural EM for the pathway model in Figure 6.1. We plot the number of incorrect

edges against number of training slices, for different levels of partial observability. 20% means that 20% of

the slices, chosen at random, were fully hidden. Top: tabular CPDs; bottom: noisy-OR CPDs.
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Figure 6.3: As in Figure 6.2, except we plot relative log-loss compared with the generating model on an

independent sample of 100 sequences. Top: tabular CPDs; bottom: noisy-OR CPDs.

overfitting, we used a BIC penalty, where the number of parameters per node was set equal to the number of

parents.

In all our experiments, we enforced the presence of the persistence arcs in the network structure. We

used two alternative initial topologies: one that has only persistence arcs (so the system must learn to add

arcs) and one that is fully interconnected (so the system must learn to delete arcs). Performance in the two

cases was very similar. We assumed there were no arcs within a slice.

We experimented with three observation regimes that correspond to realistic settings:

• The complete state of the system is observed at every time step.

• Entire time slices are hidden uniformly at random with probability h, corresponding to intermittent

observation.

• Only two observations are made, one before the process begins and another at some unknown time tobs

after the process is initiated by some external or spontaneous event. This might be the case with some

disease processes, where the DNA of a diseased cell can be observed but the elapsed time since the

disease process began is not known. (The “initial” observation is of the DNA of some other, healthy

cell from the same individual.)

This last case, which obtains in many realistic situations, raises a new challenge for machine learning. We

resolve it as follows: we supply the network with the “diseased” observation at time slice T , where T is

with high probability larger than the actual elapsed time tobs since the process began.2 We also augment the

DBN model with a hidden “switch” variable S that is initially off, but can come on spontaneously. When

the switch is off, the system evolves according to its normal transition model P (Xt|Xt−1, S = 0), which is

to be determined from the data. Once the switch turns on, however, the state of the system is frozen—that

is, the conditional probability distribution P (Xt|Xt−1, S) is fixed so that Xt = Xt−1 with probability 1.

The persistence parameter for S determines a probability distribution over tobs; by fixing this parameter such

that (a priori) tobs < T with high probability, we effectively fix a scale for time, which would otherwise be

2With the q parameters set to 0.2 in the true network, the actual system state is all-1s with high probability after about T = 20, so

this is the length used in training and testing.
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arbitrary. The learned network will, nonetheless, imply a more constrained distribution for tobs given a pair

of observations.

We consider two measures of performance. One is the number of different edges in the learned network

compared to the generating network, i.e., the Hamming distance between their adjacency matrices. The

second is the difference in the logloss of the learned model compared to the generating model, measured

on an independent test set. Our results for the five-vertex model of Figure 6.1(a) are shown in Figures 6.2

and 6.3. We see that noisy-ORs perform much better than tabular CPTs when the amount of missing data is

high. Even with 40% missing slices, the exact structure is learned from only 30 examples by the noisy-OR

network.3 However, when all-but-two slices are hidden, the system needs 10 times as much data to learn. The

case in which we do not even know the time at which the second observation is made (which we modeled

with the switching variable) is even harder to learn (results not shown).

Of course, it will not be possible to learn real genetic networks using techniques as simple as this. For

one thing, the data sets (e.g., micro-arrays) are noisy, sparse and sampled at irregular intervals.4 Second,

the space of possible models is so huge that it will be necessary to use strong prior domain knowledge to

make the task tractable. Succesful techniques will probably be more similar to “computer assisted pathway

refinement” [ITR+01] than to “de novo” learning.

6.2.2 Inferring motifs using HHMMs

Motifs are short patterns which occur in DNA and have certain biological significance (see e.g., [XJKR02]

and references therein). In the simplest case, a motif can be represented as a string over the alphabet Σ =
{A,C,G, T}. More realistically, a motif can be represented as a probability distribution over strings of a

fixed length; if each position (column) is assumed to be independent, this is often called a profile.

Given a set of sequences, the problem is discover all the motifs in the set. It is common to “wish away”

the model selection problem by assuming the number of motif types, and their lengths, are known already.

It is also common to assume motifs do not overlap, and to model the “background” by a single multinomial,

which contains the overall probabilities of each letter in the alphabet. With these assumptions, we can model

the problem by using a 2-level HHMM, as shown in Figure 6.4.

M1 B M2

M1
1 M1

2 end B1 end M2
1 M2

2 M2
3 end

Figure 6.4: State transition diagram of an HHMM for modelling two types of motifs of lengths 2 and 3, and

a single-state background model.

The transition probabilities for the top level of this model encode the probability of transition from the

background to a motif of type 1 or 2. (We assume we cannot go directly from one motif to another.) The

self-loop probability for state B1 encodes the expected length of the inter-motif background segments by

using a geometric distribution. The output distribution of state M j
i represents the profile column for position

i in motif type j.
I conducted the following very simple experiment, to see how feasible it is to learn motifs in an unsu-

pervised fashion. I created a set of Ntrain = 100 strings, each of length T = 20, with each position drawn

uniformly at random from Σ. I then “embedded” a single occurrence of a known motif, say “accca”, at a

random position (away from the boundaries) in each string. Here is a sample of the training data.

gcggccgtccacccacagtt

cagcagtgttaacccaggtt

cgtatacccagctagctcga

3What is not clear from the graphs, however, is that noisy-ORs require many more EM iterations to converge, and each iteration is

much slower; this is because of the extra hidden nodes we introduce to learn the noisy-OR CPDs.
4See [BJGGJ02] for a spline-based interpolation approach which could be useful as a preprocessing step for learning model structure.
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I created an HHHM like the one in Figure 6.4, but with a single motif type of length 4. I initialized

parameters randomly, but subject to the known state transition topology, and ran EM until convergence. I

then computed the MAP motif by looking at the most likely output symbol for each M j
i . Even using multiple

restarts, I found that it was almost impossible to recover the “true” motif.

To make the problem easier, I added the prior knowledge that I expected the output distributions of states

in the motif model (but not the background model) to be (nearly) deterministic, i.e., each column in the motif

should only emit a single symbol, although I did not specify which one. This can be modelled by using a

minimum entropy prior [Bra99a]:

P (θ) ∝ e−H(θ)

where θ are the multinomial parameters for a given column, and H(θ) = −∑i θi log θi is the entropy.5

With the minent prior, EM reliably recovered the “true” motif.6 For example, here is the learned profile for

each state, where the rows represent A,C,G, T in that order, and columns represent the 5 states of the motif

sub-HMM.

0.95977 0.0182 0.0024127 3.9148e-05 0.96126

0.0097752 0.96917 0.97285 0.9954 0.02166

0.00060423 0.012363 0.023105 0.0003953 0.0053652

0.029847 0.00026544 0.0016343 0.0041678 0.011715

Taking the most probable entry per column indicates that the system has learned the “accca” pattern.

In the future I plan to work with Eric Xing on extending this model so that it can be applied to real motif

data.

6.2.3 Inferring people’s goals using abstract HMMs

We now show how a DBN can be used to infer people’s intentional states by observing their behavior c.f.,

Section 2.3.15. The raw data consists of the estimated (x, y) position of a person as they move through

the ground floor of a house; this is inferred from a series of stationary laser range finders, as shown in

Figure 6.5. The aim is to predict which landmark they will go to next. The landmarks are manually chosen

locations within the building, and correspond to top level goal states. In addition to the person’s goal, Gt,

the actual position of the person, St, is represented using another discrete state variable; this is essentially a

vector quantization of their actual, observed (but noisy) (x, y) position, Yt.
7 The overall DBN is shown in

Figure 2.29.

We trained this model using EM from a single training sequence of length T ∼ 2000. We automatically

segmented the sequence into pieces by detecting periods of no motion (which simulated the person spending

time at the goal landmark), and then manually labelled each segment with the its goal end-point: see Fig-

ure 6.6. After training, the observed nodes essentially tiled the space where the person walked, as shown

in Figure 6.7. The transition matrix for the state nodes, P (St|St−1, Gt), is like a conditional plan, in that

it specifies what state the person goes to next, given the state they were in and conditioned on their goal.

However, it is unlike a plan in that it does not (explicitly) optimize any cost function. An example is shown in

Figure 6.8. The transition matrix for the goal nodes is shown in Figure 6.9. This can be estimated by simple

counting, since we assume the goals are always observed in the training data.

To demonstrate that the abstract HMM was better than the HMM at predicting, we compute P (Gt|y1:t)
using two models, one with the learned P (Gt|Gt−1) and one with a uniform P (Gt|Gt−1). We compared this

with the ground truth, which is available from the hand-labelled data. The results are shown in Figure 6.10.

The bimodality of the posterior during time 57–85 using the uniform (bottom) model indicates an ambiguity

between the two goals states 5 (TV) and 7 (study). By using longer range information about what order the

person moves from goal to goal, we can eliminate the ambiguity (middle graph in figure), and correctly infer

that the person’s goal is state 3 (armchair).

5An alternative prior would be to use a mixture of Dirichlets [BHK+93], with one mixture component for each base, plus a fifth

component representing a uniform Dirichlet prior. A more biologically sophisticated prior, which models characteristic “shapes” in the

motif such as the “U” shape (which represented conserved (low entropy) ends with variable (high entropy) middles), is discussed in

[XJKR02].
6This example is included in the BNT distribution in BNT/examples/dynamic/HHMM/Motif/learn-motif-hhmm.m.
7By modelling P (Yt|St) as a mixture of Gaussians, we can get some robustness to outliers.
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Figure 6.5: Laser range finding data from the ground floor of a house: Dark regions correspond to obstacles

like walls and furniture, white regions correspond to free space. Once a map has been learned, any new

obstacles which are not in the map are assumed to be people. In this way, the trajectory of a moving person

(shown as a wiggly blue line) can be inferred. Various places where the person likes to spend a lot of time

are labelled, and are considered landmarks or goals. This data is from [BBT02].

6.2.4 Modelling freeway traffic using coupled HMMs

Many urban freeways are equipped with induction loop detectors. These detectors can report three kinds of

information in real-time [Hal96]: the number of vehicles passing the location during a given time interval

(flow rate), the fraction of time that vehicles are over the detector (occupancy), and the vehicle velocities

averaged over the time interval. Here, we will restrict ourselves to aggregated velocity data. See Figures 6.11

and 6.12 for a sample of the data we are using, which was collected from I-880 in Oakland, California. For

details about this dataset, see [KCB00].

In Figure 6.11, we can clearly see onset, propagation and dissipation of traffic congestion; this appears

as the well-known inverted triangular shape [May90]. Essentially, traffic gets slower downstream, this effect

propagates upstream, only to eventually disappear. There are various theories which try to explain this kind of

behavior, based on models of fluid flow, cellular automata, and microscopic computer simulations. But all of

these approaches have limitations, particularly the need to tune many parameters specific to each individual

freeway.

In this section, we try to learn a model of traffic velocities from data. We assume that there is a hidden

variable at each of the L detector locations, which takes on K possible values, typically two (free flow and

congestion), and that the observed velocity is a noisy representation of the current state. (We use a discrete

hidden variable, since the time series of the average velocity vector is highly nonlinear.)

The most naive model is to assume each hidden state variable evolves independently, resulting in L
independent HMMs. However, such a model cannot capture spatial correlation, and hence is incapable of

capturing the global dynamics, such as the inverted triangle shape. The other extreme is to assume each
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Figure 6.6: Semi-supervised training of a 2-level HHMM. The person’s goal and (x, y) positions are ob-

served, but the state, St, and the finished status, Ft, are hidden. K = kitchen, DR = dining room, etc.
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Figure 6.7: Learned observation distributions P (Yt|St). Each ellipse represents the coavriance matrix of the

Gaussian for a given state St.
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Figure 6.8: Learned state transition matrix P (St+1|St, Gt+1 = 1).

8 kitchen

7 TV

1 kitchen 2 dining rm

6 dining rm

5 study

3 armchair
4 entrance

Figure 6.9: Learned goal transition matrix P (Gt|Gt−1). Only the non-zero arcs are shown.
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Figure 6.10: Inferring goals using three different methods. Rows represent states (goal locations), columns

represent time. Shading represents P (Gt|y1:t). First line: ground truth. Second line: using the learned goal

transition matrix. Third line: using a uniform goal transition matrix.

Figure 6.11: The full data set contains the velocity field for 20 weekdays, 2-7pm, between February 22 and

March 19, 1993. The measurements come from 10 loop detectors (0.6 miles apart) in the middle lane of

I-880, with 1 measurement per 30 seconds. Here we plot the first four days, temporally subsampled by 2.

The x-axis corresponds to time, and the y-axis to space. Vehicles travel upward in this diagram. The darkest

gray-scale corresponds to the average velocity of 20 miles per hour (mph) and the lightest to 70 mph. The

isolated dark blob on the right edge of the fourth day is probably due to a sensor failure.

variable at time t depends on all the other (hidden) variables at time t− 1; this results in a single HMM with

a state space of size KL, which requires KL(KL − 1) parameters just to specify its transition matrix. We

therefore adopt a middle ground, and assume each variable only depends on its local neighbors in space and

time; such a model has been called a coupled HMM (see Section 2.3.8). We describe the model in more detail

below.

We will estimate the parameters using EM. The M step is straightforward, but the E step is in general

computationally intractable. We therefore need to use approximate inference. Below we compare particle

filtering (Section 5.2) and the Boyen-Koller (BK) algorithm (Section 4.2.1). We then give the results of

learning using exact and approximate inference in the E step. Finally, we discuss the adequacy of the model

in light of our results.

The model

Assume there are L loop detector stations indexed by l = 1, ..., L, from upstream to downstream. The

observed (aggregated) velocity yl,t (mph) at location l and time t has a distribution that depends only on the
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Figure 6.12: The velocity measurements for day 4 at locations 2, 4, 6 and 8. The x-axis is minutes (0 to 300),

the y-axis is mph. The sudden drop from 64 to 10 mph at location 6 (which corresponds to the dark blob in

Figure 6.11) is probably due to a sensor failure.

underlying state variable xl,t ∈ S = {s1, · · · , sK}. The simplest model is a binary chain with K = 2,

where the two states sC and sF correspond to ‘congestion’ and ‘free flow’. We initialise the mean for the

congested state to be less than the mean for the free-flow state, although we do not enforce this constraint

during learning.

We assume that the hidden process of xt = (x1,t, · · · , xL,t) ∈ S⊗L is Markovian and its transition

probability can be decomposed as P (xt+1|xt) =
∏L

l=1 P (xl,t+1|xt) =
∏L

l=1 P (xl,t+1|xl−1,t, xl,t, xl+1,t),
i.e., the traffic state at a location is affected only by the previous state of the neighboring locations. The initial

distribution on the state is assumed to decompose as P (X1) =
∏L

l=1 P (Xl,1). Finally, the observed velocity

is a Gaussian whose mean and variance depends on the underlying state at the location: P (yl,t|xl,t = sk) ∼
N(µl,k, σ

2
l,k). We need LK3(K − 1) + 2K2(K − 1) parameters to specify the transition model, 2LK to

specify the observation model. and LK to specify the initial distributions. If L = 10 and K = 2, this is a

total of 88 + 40 + 20 = 148 parameters.

Because of the non-stationary nature of the data, we split the 5 hour period of each day into five 1-hour

blocks (60 time slices). Then we fit a binary state (K = 2) CHMM for each block separately, considering 20

days as independent replicates of the process. We use days 1,3,...,19 as the training set and 2,4,...,20 as the

test set. Hence we have 10× 60 observations to fit 148 parameters per model.

Inference

Exact inference in this model takes O(T (L − 1)KL+2) time and space. For L = 10, K = 2 and T = 60,

this is about 2 million operations. Although this is tractable, in the future we hope to scale up to modeling

complex freeway networks with L ∼ 100 detectors and K ∼ 5 states, so we wanted to examine the perfor-

mance of approximate inference. We tried both particle particle filtering (Section 5.2) and the BK algorithm

(Section 4.2.1).

For particle filtering, we used the optimal proposal distribution, and between Ns = 100 and Ns = 1000
particles. Note that our samples are complete paths from t = 1, . . . , T , so we can easily estimate the smoothed

joint posterior P (Xπ,t−1,Xl,t|y1:T ), where π = (l− 1, l, l+ 1) are the parents of l; we need this quantity to

compute the expected sufficient statistics for EM. For BK, we used the fully factorized approximation, with

one variable per cluster.

To compare the accuracy of PF and BK relative to exact inference, we computed the smoothed posterior

marginal estimates P (Xl,t|y1:T ) using each of the methods on each of the test sequences, and using the

estimated parameters. The results for test sequence 2 using the 4-5pm model are shown in Figure 6.13,

using parameters estimated using EM/PF. BK yields posterior estimates that are indistinguishable from exact

inference to at least three decimal places. PF yields a noisier estimate, but it is still very accurate: define

∆l,t to be the L1 difference of the estimates computed using exact and PF; then the empirical mean of this

quantity is 0.0139±0.0093 for 100 particles, and 0.0135±0.0028 for 1000 particles. We see that using more
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particles slightly increases the accuracy and reduces the variance, but it seems that 100 particles is sufficient.

The reason for this is the near-deterministic nature of the transitions (see below) and the informativeness of

the observations.

Since the inference algorithms perform similarly, we expect the estimated parameters to be similar, too.

This is indeed the case for the µ and σ parameters of the observation model, where the differences are not

statistically significant (even using only 100 particles). PF does a poorer job at estimating the transition

parameters, however, due to the fact that it only counts 100 sample paths per sequence. The total normalized

L1 error is 4.9 for BK and 8.0 for PF. Using more particles would obviously help.

In addition to accuracy, speed is a major concern. A single E step takes about 1 second/slice using exact

inference, about 1.3 s/slice using BK, and about 0.1 s/slice using PF with 100 particles.8 The reason that

BK is slower than exact (in this case) is because of the high constant factors, due to the complexity of the

algorithm, and especially the need to perform the projection (marginalisation) step. Of course, the asymptotic

complexity of BK is linear in L, while exact inference is exponential in L, so it is clear that for larger models,

BK will rapidly become faster than exact.

The learned model

To aid interpretability of the parameters, we initialised the means for state 0 (congestion) to be 40 mph, and

for state 1 (free flow) to be 60 mph. All other parameters were initialised randomly. We ran EM until the

change in log-likelihood was less than 10−4, which usually took 10–20 iterations. Some of the learned µ and

σ values (using exact inference) are shown in Figure 6.14. The parameters for the models for 3-4pm, 4-5pm

and 5-6pm are all very similar; we call this the “rush-hour” model. The parameters for the models for 2-3pm

and 6-7pm are also very similar; we call this the “offpeak” model.

It is clear that when the traffic is slow, the variance is high, but when the traffic is fast, the variance is

low. It is also clear that congestion gets worse as one approaches location 10, which corresponds to the part

of I-880 that is near the San Mateo Bridge, a notorious bottleneck. Thus the learned µ and σ values seem

sensible. Unfortunately, we were not able to intrepret the transition parameters in any meaningful way. The

estimated parameter values are fairly insensitive to the initialisation and the inference algorithm used in the

E step.

One of the advantages of a generative model is that we can simulate future traffic patterns. A typical

sample drawn from this model is shown in Figure 6.15. We see that this resembles the training data; in

particular, the model is capable of generating the triangular shape.

Using the model for prediction

Once trained, we can use the model to do online prediction. For exact inference, we first compute αt+∆|t =
P (Xt+∆|y1:t) = M∆αt|t, where M is the transition matrix of the equivalent HMM; we then compute

P (Yt+∆|y1:t), which is a mixture of Gaussians with αt+∆|t as the mixing weights. See Figure 6.16 for an

example. We compared these predictions to the naive approach of predicting that the future is the same as

the present, ŷt+∆ = yt, for leads up to 20 minutes ahead. For the sequence in Figure 6.16, the rms error is

10.83 for the naive method and 9.76 for the model-based method. (We are ignoring the predicted σ, i.e., the

confidence in the prediction, which is only available for the model-based approach.) Other sequences give

similar results. It is clear from these numbers, and from the figure, that our predictions are not very accurate.

We discuss ways to improve the model in the next section.

Discussion

Perhaps the most serious problem with our approach is that we have learned a separate model for each 1

hour period between 2-7pm, making it tricky to predict across boundaries. One approach would be to use

the posterior from the previous model as the prior for the next. Alternatively, we could fit a single (mixture)

model, by adding an extra hidden variable to each time slice to represent the current regime; all the other

variables could then be conditioned on this. (In this case, the fully factorized version of BK takes O(TLK5),

8Jaimyoung Kwon implemented PF in S-Plus on a 400 MHz PC. Kevin Murphy implemented exact inference and BK in Matlab on

a Sun Ultra. The latter code is part of BNT. These times were measured using sequences of length T = 60.
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Figure 6.13: Posterior estimates of the probability of being in the free-flow state for the 4-5pm model on

test sequence 2. Dotted lines represent exact/BK (which are indistinguishable at this resolution), dot-dash is

PF with 100 particles, and dash-dash is PF with 1000 particles. Plots denotes locations 1 to 10 in left-right,

top-bottom order. Notice how the change from free-flow to congested takes place earlier in the downstream

locations.
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Figure 6.14: Maximum likelihood estimates of the mean and standard deviations of the models for block 1

(2-3 pm) and block 3 (4-5 pm). Crosses refer to the congested state, circles to free-flow.
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Figure 6.15: Data sampled from the learned model for 4-5pm.

since the maximum clique size is 5.) Such a switching model could capture periodic non-stationarities. The

number of regimes could be chosen using cross validation, although our results suggest that two might be

sufficient, corresponding to rush-hour and off-peak.

115



0 50

15

20

25

30

35

40

45

50

55

60

65

site 7

0 50

15

20

25

30

35

40

45

50

55

60

65

site 8

0 50

15

20

25

30

35

40

45

50

55

60

65

site 9

0 50

15

20

25

30

35

40

45

50

55

60

65

site 10

Figure 6.16: 20 minute-ahead predictions. Solid is the truth, dotted is the naive prediction, dashed (in the

middle of the error bars) uses the model.

We could also choose the number of hidden states for each location based on cross-validation. However,

it is clear that K = 2 is inadequate, since it is incapable of distinguishing whether congestion is increasing or

decreasing. It would be straightforward to use K > 2, or to make the model second-order Markov by adding

longer distance dependencies, or to add extra variables to represent the (sign of the) derivative of the speed.

A third weakness is our assumption of Gaussian noise on the observations. Sensor failures, such as those

shown in Figure 6.11, clearly invalidate this assumption. We can use a mixture of Gaussians as the noise

model to handle this.

In the future, we plan to try using K > 2 with the switching model. We will also include a deterministic

node that encodes the current time; thus predictions will be based both on historical patterns (using the time

node) and the current state of the system (using the other hidden nodes). Ultimately, our goal is to predict

travel time, rather than just velocity. We plan to build a model that can take as input the belief state about

the current conditions, and combine it with historical (supervised) data, to provide a real-time travel forecast

engine.

6.2.5 Online parameter estimation and model selection for regression

Here we discuss how to do online learning in the context of linear and non-linear regression. This section is

based on [Jor02] and [AdFD00].

Linear regression

Suppose we want to recursively (i.e., sequentially, or online) estimate the coefficients, α, in a linear regression

model, where we assume the noise level, R, is known. This can be modelled as shown in Figure 6.17. The

CPDs are as follows:

P (α0) = N (α0; 0,∞I)
P (yt|xt, αt) = N (yt;x

′
tαt, R)

P (αt|αt−1) = N (αt;αt−1, 0)
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Figure 6.17: A DBN for the recursive least squares problem.
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Figure 6.18: A DBN for sequential Bayesian non-linear regression.

We do not need to specify the CPD for xt, since in linear regression, we assume the input is always known,

so it suffices to use a conditional likelihood model. The infinite variance for α0 is an uninformative prior.

The zero variance for αt reflects the fact that the parameter is constant.

We can perform exact inference in this model using the Kalman filter, where αt is the hidden state, and

we use a time-varying output matrix Ct = x′t; we set the transition matrix to A = I , the transition noise to

K = 0, and the observation noise to R. Now recall the Kalman filter equations from Section 3.6.1:

xt|t = Axt|t−1 +Kt(yt − CAxt−1|t−1)

Kt = Vt|tC
′R−1

(This equation for Kt can be derived using the matrix inversion lemma.) Applied to this particular problem,

we have

α̂t|t = αt−1|t−1 + Vt|txtR
−1(yt − x′tαt−1|t−1) = αt−1|t−1 + Vt|tR

−1(yt − x′tαt−1|t−1)xt

This equation, plus the update for Vt|t, is known as the recursive least squares (RLS) algorithm; if we approx-

imate Vt|tR
−1 by a constant, this reduces to the least mean squares (LMS) algorithm [Jor02].

Non-linear regression

Now consider a non-linear regression model [AdFD00]:

yt =

k∑

j=1

aj,tφ(||xt − µj,t||) + bt + β′
txt + nt

where nt ∼ N (0, σt) is a noise term and φ(||xt − µj,t||) is e.g., a radial basis function (RBF); if k = 0, this

reduces to a linear regression model. We can write this in vector-matrix form as follows:

yt = D(µt, xt)αt + nt
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Figure 6.19: A DBN for sequential Bayesian model selection.

where αt = (at, bt, βt) are all the weights. The resulting DBN is shown in Figure 6.18. If we allow the

parameters to change over time (modelled by a random walk), the CPDs are

P (µt|µt−1) = N (µt;µt−1, δµI)

P (αt|αt−1) = N (αt;αt−1, δαI)

P (log σt| log σt−1) = N (log σt; log σt−1, δσI)

P (yt|xt, αt, µt) = N (yt;D(µt, xt)αt, σt)

(I have omitted the priors at time 1 for simplicity.)

We can do inference in this model using particle filtering.9 In fact, since this model is linear in αt, we

only need to sample µt and σt, and can integrate out αt using a Kalman filter: see Section 5.3. Alternative,

fully deterministic approximations are discussed in Section 4.4.2.

Non-linear regression with online model selection

Now we will let the number of basis functions (and hence the size of the state space) vary over time [AdFD00].

Let Kt be the number of bases at time t, and let Mt be a random variable with five possible values: B=birth,

D=death, S=split, M=merge and N=no-change. These specify the ways in which Kt can increase/decrease

by 1 at each step. Birth means we create a new basis function; its position can depend on the previous basis

function centers, µt−1, as well as the current data point, xt; death means we remove a basis function at

random, split means we split one center into two, and merge means we combine two centers into one. We

9If we do not add noise to the parameters (i.e., if δ = 0), the particle filter will not work; see [LW01] for a possible fix.
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enforce that 0 ≤ Kt ≤ Kmax at all times. The DBN is shown in Figure 6.19, and the CPDs are as follows.

P (Mt = (B,D, S,M,N)|Kt−1 = k) =







( 1
2 , 0, 0, 0,

1
2 ) if k = 0

( 1
4 ,

1
4 ,

1
4 , 0,

1
4 ) if k = 1

(0, 1
3 , 0,

1
3 ,

1
3 ) if k = Kmax

( 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ) otherwise

P (Kt = k′|Kt−1 = k,Mt = m) =







δ(k′, k + 1) if m = B or m = S
δ(k′, k − 1) if m = D or m = M
δ(k′, k) if m = N

P (µt|µt−1,Mt = m) =







N (µt;µt−1, δµI) if m = N
N (µt; birth(µt−1), ·) if m = B
N (µt; death(µt−1), ·) if m = D
N (µt; split(µt−1), ·) if m = S
N (µt; merge(µt−1), ·) if m = M

P (αt|αt−1,Mt = m) =







N (αt;αt−1, δαI) if m = N
N (αt; grow(αt−1), ·) if m = B or m = S
N (αt; shrink(αt−1), ·) if m = D or m = M

P (log σt| log σt−1) = N (log σt; log σt−1, δσI)

P (yt|xt, αt, µt) = N (yt;D(µt, xt)αt, σt)

The function birth(µt−1) takes in the vector of RBF centers and adds a new one to the end, according to some

heuristic. In principle, this heuristic could depend on xt as well (not shown). Call the new center µbirth.

The confidence associated with µbirth is yet another free parameter; suppose it is Qbirth; then the full CPD

would be

P (µt|µt−1,Mt = B) = N
(

µt;
(
µ′

t−1 µ′
birth

)′
,

(
0 0
0 Qbirth

))

The 0 terms in the covariance matrix do not mean we are certain about the locations of the other centers, only

that we have not introduced any extra noise, i.e.,

Cov(µt|y1:t,Mt = B) =

(
Cov(µt−1|y1:t−1) 0

0 Qbirth

)

Of course, we could relax this assumption. If we were full-blooded Bayesians, we would now add priors to

all of our parameters (such as Qbirth, δα, etc.); these priors would in turn have their own (hyper-)parameters;

we would continue in this way until the resulting model is insenstive to the parameters we choose. This is

called hierarchical Bayesian modelling.

Despite the apparent complexity, it is actually quite easy to apply particle filtering to this model. [AdFD00]

suggest a more complex scheme, which combines particle filtering with reversible jump MCMC [Gre98].

(Regular MCMC can only be applied if the state-space has a fixed size.) We can use the simpler method of

particle filtering because we included Mt in the state-space.
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Appendix A

Graphical models: representation

A.1 Introduction

Probabilistic graphical models are graphs in which nodes represent random variables, and the (lack of) arcs

represent conditional independence assumptions. Hence they provide a compact representation of joint prob-

ability distributions. For example, if we have N binary random variables, an “atomic” representation of the

joint, P (X1, . . . ,XN ), needs O(2N ) parameters, whereas a graphical model may need exponentially fewer,

depending on which conditional assumptions we make. This can help both inference and learning, as we

explain below.

There are two main kinds of graphical models: undirected and directed. Undirected graphical models,

also known as Markov networks or Markov random fields (MRFs), are more popular with the physics and

vision communities. (Log-linear models are a special case of undirected graphical models, and are popular in

statistics.) Directed graphical models, also known as Bayesian networks (BNs)1, belief networks, generative

models, causal models, etc. are more popular with the AI and machine learning communities. It is also

possible to have a model with both directed and undirected arcs, which is called a chain graph.

Figures A.1 and A.2 give a summary of the relationship between various popular graphical models.

Please see [CDLS99, Jor99, Jen01, Jor02] for more information,

A.2 Undirected graphical models

The conditional independence statements encoded by an MRF are easy to state: XA⊥XB |XC iff all paths

between all nodes in A and all nodes in B are blocked by some node in C, i.e., there is some intervening

c ∈ C on every path between every a ∈ A to every b ∈ B. This is called the global Markov property. This

implies that a single node Xi is independent of all the other nodes in the graph given its neighbors (which are

called Xi’s Markov blanket); this is known as the local Markov property.

The joint distribution of an MRF is defined by

P (x) =
1

Z

∏

C∈C
ψC(xC)

where C is the set of maximal cliques2, ψC(xC) is a potential function (a positive, but otherwise arbitrary,

real-valued function) on the clique xC , and Z is the normalization factor

Z =
∑

x

∏

C∈C
ψC(xC).

1Note that, despite the name, Bayesian networks do not necessarily imply a commitment to Bayesian methods; rather, they are so

called because they use Bayes’ rule for inference: see Appendix B.
2A clique in a graph is a set of nodes all of which are interconnected. A maximal clique is one which is not a proper subset of any

other clique in the graph. Sometimes the term clique’is used to mean maximal clique , but we will find it useful to distinguish maximal

from non-maximal.
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Figure A.1: A partial hierarchy relating different kinds of graphical models. Abbreviations used: GM =

graphical model, BN = Bayes net, MRF = Markov Random field, DBN = dynamic Bayes net, HMM = hidden

Markov model, KFM = Kalman filter model, PCA = principal components analysis, ICA = independent

components analysis, maxent = maximum entropy (see Section A.2.2). Dependency nets are defined in

[HCM+00].

For example, the model in Figure A.3 represents

P (X1:5) =
1

Z
ψ(X1,X2,X3)ψ(X3,X4)ψ(X4,X5)

The potential functions may be defined in terms of subsets of their arguments, e.g.,

ψ(X1,X2,X3) = ψ(X1,X2)ψ(X2,X3)ψ(X1,X3)

If all potential functions are defined on pairs of nodes (i.e., edges), the model is called a pairwise MRF, or

MRF2. Another example is shown in Figure A.4. In this case, the joint distribution is

P (x, y) ∝ Ψ(x1, x2)Ψ(x1, x3)Ψ(x2, x4)Ψ(x3, x4)

4∏

i=1

Ψ(xi, yi)

In low-level vision problems (e.g., [GG84, FPC00]), the Xi’s are usually hidden, and each Xi node has

its own “private” observation node Yi, as in Figure A.4. The potential Ψ(xi, yi) = P (yi|xi) encodes the

local likelihood; this is often a conditional Gaussian, where Yi is the image intensity of pixel i, and Xi is the

underlying (discrete) scene “label”.

Lattice MRFs are identical to what physicists call “Potts models”. They define the probability distribution

over nodes using the Boltzman distribution:

P (x1:N ) =
1

Z
e−E(x1:N )/T

where T is the temperature and the energy is defined by

E(x1:N ) = −
∑

(ij)

Jij(xi, xj)−
∑

i

hi(xi)

The notation
∑

(ij) means summing over all pairs i, j s.t., i 6= j. If we set Jij(xi, xj) = ln Ψi,j(xi, xj) and

hi(xi) = ln Ψ(xi, yi), this becomes identical to a pairwise MRF. The Ising model is a special case of the

Potts model with binary random variables. The Boltzmann machine is also a binary pairwise MRF, although

the structure need not be a 2D lattice.
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Figure A.2: A generative model for generative models. Thanks to Sam Roweis and Zoubin Ghahramani for

providing this figure.
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X1 X2

X3

X4 X5

Figure A.3: A simple Markov random field.

Y3 Y4

Y1 Y2

X3 X4

X1 X2

Figure A.4: A pairwise MRF defined on a lattice. Each hidden variable Xi has its own “private” observed

child Yi. Technically, this is a chain graph since the arcs from Xi to Yi are directed.

A.2.1 Representing potential functions

For discrete random variables, we can represent the potential functions as tables. To keep the number of

parameters tractable, it is common to make factorization assumptions, e.g.,

ψ(X1,X2,X3) = ψ(X1,X2)ψ(X2,X3)ψ(X1,X3).

For continuous random variables, we can model the potential function as a Gaussian or mixture of Gaussians.

For mixed discrete-continuous, we can again use a mixture of Gaussians.

A.2.2 Maximum entropy models

When the discrete random variables can have a large number of values (e.g., if they represent words), it can

be useful to represent joint probability distributions in terms of features, fi:

P (X1, . . . ,XN ) =
1

Z(λ)
exp

(
F∑

i=1

λifi(X1:N )

)

where Z(λ) =
∑

x1:N
exp(

∑F
i=1 λifi(x1:N )). This is called a Gibbs distribution, or a log-linear model. We

can represent this as an MRF where we add connections between nodes which co-occur in the domain of the

same feature. However, the graph will not reflect the fact that the potentials may have a restricted form. For

example, consider the following log-linear model:

logP (X1,X2,X3) = λ1f1(X1,X2) + λ2f2(X1,X3) + λ3f1(X1,X3)− logZ(λ)

The corresponding graph is a triangle (clique) on X1,X2,X3, which does not reflect the fact the potential

does not have any three-way interaction terms. The factor graph representation discussed in Section A.4

makes such restrictions graphically explicit.

It turns out that maximum likelihood estimation of the above density is equivalent to maximum entropy

estimation of an arbitrary distribution p subject to the expectation constraints
∑

x p(x)fi(x) = αi, where
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C
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W

Figure A.5: A simple Bayes net. C=cloudy, S=Sprinkler, R=rain, W=wet grass. The wet grass can either be

caused by rain or by a water sprinkler. Clouds make it less likely the sprinkler will turn on, but more likely it

will rain.

(a) (b)

Figure A.6: Local Markov properties for Bayes nets. (a) A node X is conditionally independent of its non-

descendants (e.g., Z1j, . . . , Znj) given its parents U1, . . . , Um. (b) A node X is conditionally independent

of all other nodes in the network given its Markov blanket (shaded). From [RN02].

the αi are known constants (e.g., empirical counts). See [Ber] and [Jor02, ch.19] for details. Such models

are popular in the text processing community (see e.g., [PPL97, LMP01]). See also [Goo01] for a way to fit

maxent models by using EM training of HMMs.3

A.3 Directed graphical models

In a directed graphical model (i.e., a Bayesian network), an arc from A to B can be informally interpreted as

indicating that A “causes” B. Hence directed cycles are disallowed, i.e., the graph is a directed acyclic graph

(DAG). See Figure A.5 for an example.

We now define the semantics more formally. As in an MRF, a node in a BN is independent of all the

other nodes in the graph given its Markov blanket. However, in the case of a BN, the Markov blanket of a

node is the node’s parents, children and children’s parents (see Figure A.6).

The reason why we include the children’s parents can be explained by considering the example in Fig-

ure A.5 but without the C node, so what is left is just the “v-structure” S → W ← R. Let us suppose all

nodes are binary, i.e., have values in {0, 1}. Consider the Rain node, and suppose it is true (R = 1); if we

observe that the grass is wet (W = 1), then it is now less likely that the sprinkler is on than if we did not know

it was raining (i.e., P (S = 1|W = 1, R = 1) < P (S = 1|W = 1)), since the rain has “explained away”

the fact that the grass is wet [Pea88]. Hence R 6 ⊥S|W , i.e., R is correlated with its children’s parents given

its children. In an MRF, we would have R⊥S|W , since W separates S and R; however, in a BN, we must

take into account the directionality of the arcs; this gives rise to the notion of d-separation (d for directed):

see Section A.3.1. Hence when converting a BN to an MRF, we must connect together “unmarried” parents

(such as S and R) who share a common child; this is called “moralization”.

3Unfortunately, these HMMs contain silent loops, making it hard to represent them as DBNs.
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Dpa Cpa Name CPD

- - Multinomial P (Y = j) = π(j)
i - Cond. multinomial P (Y = j|X = i) = A(i, j)
- u Softmax P (Y = j|U = u) = σ(u,W, j)
i u Cond. softmax P (Y = j|U = u,X = i) = σ(u,Wi, j)

Table A.1: Some common CPDs for when we have 0 or 1 discrete parents (Dpa), 0 or 1 continuous par-

ents (Cpa), and the child is discrete. X represents the discrete parent, U represents the continuous parent,

and Y represents the discrete child. “cond” stands for conditional. σ(u,W, j) is is the softmax function:

see Section A.3.2. If we have more than one discrete parent, they can all be combined to make one dis-

crete “mega” parent with exponentially many values; more parsimonious representations will be discussed in

Section A.3.2.

Dpa Cpa Name CPD

- - Gaussian P (Y = y) = N (y;µ,Σ)
i - Cond. Gaussian P (Y = y|X = i) = N (y;µi,Σi)
- u Linear Gaussian P (Y = y|U = u) = N (y;Wu+ µ,Σ)
i u Cond. linear Gaussian P (Y = y|U = u,X = i) = N (y;Wiu+ µi,Σi)

Table A.2: Some common CPDs for when we have 0 or 1 discrete parents (Dpa), 0 or 1 continuous parents

(Cpa), and the child is continuous. X represents the discrete parent, U represents the continuous parent,

and Y represents the continuous child. “cond” stands for conditional. If we have more than one continuous

parent, they can all be combined into one large vector-valued parent.

An alternative definition of independence for BNs, known as the directed local Markov property, is the

following: a node is conditionally independent of its non-descendants given its parents. If we topologically

order the nodes (parents before children) as 1, . . . , N , this means we can write the joint distribution as follows:

P (X1, . . . ,XN ) = P (X1)P (X2|X1)P (X3|X1,X2) · · ·P (XN |X1, . . . ,XN−1)

=

N∏

i=1

P (Xi|X1:i−1)

=

N∏

i=1

P (Xi|Pa(Xi))

where X1:i−1 = (X1, . . . ,Xi−1) and Pa(Xi) are the parents of node Xi. (This is known as the directed

factorization property.) The first line follows from the chain rule of probability, the second line is the same

as the first, and the third line follows because node Xi is independent of all its ancestors, X1:i−1, given its

parents. For example, the joint implied by Figure A.5 is

P (C,S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)

The function P (Xi|Pa(Xi)) is called node i’s conditional probability distribution (CPD). This can be an

arbitrary distribution (see Tables A.1 and A.2 for some possibilities). In Section A.3.2, we discuss represen-

tations of CPDs which require fewer parameters; we will use these extensively in Chapter 2.

A.3.1 Bayes ball

We now discuss how to infer global indepenence relationships from a BN using the “Bayes ball” algorithm

[Sha98], which is equivalent to d-separation [Pea88]. XA⊥XB |XC iff an imaginary ball, starting at any node

in A, can not reach any node in B, by following the rules in Figure A.7, where shaded nodes correspond to

nodes in C. Curved dotted arrows mean that the ball is turned back (blocked) by a node; straight arrows

means the ball can pass through. For example, in Figure A.5, we have S⊥R|C, since the path via C is

blocked (since C is shaded) and the path via W is blocked (since W is not shaded). However, S 6 ⊥R|C,W ,

and S 6 ⊥R|W , since W will now be shaded (this is the explaining away phenomenon).
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Figure A.7: The rules of Bayes ball. Shaded nodes are conditioned on. See text for details.

A.3.2 Parsimonious representations of CPDs

If a node Y has many discrete parents, X1, . . . ,XN , the number of parameters needed to specify the CPD

is O(KN ), where we assume each Xi can have K values. In this section we consider more parsimonious

representations, i.e., ones which require fewer parameters. Such representations are always easier to learn4,

are often easier to intepret, and sometimes lead to faster inference (see Section B.6).

Mixtures of small multinomials

If Y is discrete, we can represent P (Y |X1:N ) as a mixture of smaller multinomials, as in a mixed-memory

Markov model (Section 2.3.5). In particular, we can define a (discrete) multiplexer CPD as follows, where S
is a switching parent:

P (Y = y|X1:N = x1:N , S = i)
def
=P (Y = y|Xi = xi)

def
=Ai(y, xi)

Since S is hidden, we can marginalize it out to get the final CPD

P (y|x1:N ) =
∑

i

P (S = i)Ai(y, xi)

If we assume Xi and Y can have K values, this CPD requires NK2 parameters to represent, whereas a full

multinomial would require KN+1.

Context-specific independence

If Y is discrete, we can define P (Y |X1:N ) using a classification tree, by storing a histogram over Y ’s values

in each leaf. If Y is continuous, we can define P (Y |X1:N ) using a regression tree, by storing the conditional

mean and variance in each leaf. In both cases, if the tree is not full, we will need less thanO(KN ) parameters.

Any tree can be “flattened” into a table. Parameter learning in this flattened table is equivalent to param-

eter learning in the tree, if we exploit the fact that some of the entries should be tied. If the tree structure

is unknown, it can be learned using standard decision tree methods. Tree-structured CPDs can also help

structure learning [FG96].

In a non-full tree, not all parents are always relevant in determining the output (child) distribution; this

property is called context-specific independence (CSI) [BFGK96]. (This just means a conditional indepen-

dence relationship which only holds under certain instantiations of some of the conditioning variables.) We

discuss how to exploit this for inference in Section B.6.2.
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X1 X2 X3

U1 U2 U3

Y

Figure A.8: A noisy-OR CPD, P (Y |X1,X2,X3), represented in terms of noisy hidden variables Ui and a

deterministic OR gate.

Causal independence

Causal independence arises when a CPD has the special property that the contribution of each parent on

the child can be computed in terms of an associative and commutative operator such as “or”, “sum” or

“max”. A standard example is the noisy-OR distribution [Pea88]. The noisy-OR is applicable if the child

Y and all its parents are binary (values in {0, 1}). A noisy-OR function is like a regular OR function,

except some “connections” between the inputs (parents) and the output (child) might “fail”. Failures are

assumed to be independent, and to map parents which have value 1 to value 0 (to “suppress” parents which

are on); qi is the probability that the i’th input fails in this way. This is illustrated in Figure A.8. We define

P (Ui = 0|Xi = 1) = qi, P (Ui = 0|Xi = 0) = 1 and P (y|u1, . . . , uN ) = δ(y, u1 ∨ · · ·uN ). The overall

CPD has the following distribution:

P (Y = 0|x1:N ) =
∏

i:xi=1

qi =
N∏

i=1

qxi

i (A.1)

It is common to add a “leak” term, which is a dummy parent which is always on; this represents “all other

causes”. Let q0 to be the probability that the leak is suppressed. Since P (Y = 1|X1:N ) = 1 − P (Y =
0|X1:N ), we may write

P (y|x1:N ) =

(

1− q0
N∏

i=1

qxi

i

)y (

q0

N∏

i=1

qxi

i

)1−y

It is easy to generalize noisy-OR to noisy-MAX, etc. [Die93, Hec93, HB94, Sri93, MH97, RD98]. Such

models have a number of parameters that is linear in the number of parents.

Log-concave CPDs

We define a log-concave CPD to be one which has the form

P (Y = y|x1:N ) = Gy(
∑

j

θjxj)

where logGy(·) is a concave function. Such CPDs can be exploited by approximate variational inference

[JJ96]. This class includes sigmoid CPDs [Nea92] and noisy-OR CPDs [Pea88], both defined for binary

nodes. To see this, note that a sigmoid CPD is defined as

P (Y = 1|x1:N ) = σ(
∑

j

θjxj)

4Parsimonious CPDs have lower sample complexity (require less data), but often have higher computational complexity (require

more time). Specifically, for many parsimonious CPDs, the M step of EM cannot be solved in closed form; hence it is necessary to use

iterative methods. For example, softmax CPDs can use IRLS (iteratively reweighted least squares), a kind of Newton method, and MLP

(multi-layer perceptron) CPDs can use backpropagation (gradient ascent). The resulting algorithm is called generalized EM, and is still

guaranteed to converge to a local maximum, but is usually much slower than regular EM. See Appendix C for details.
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where σ(x) = 1
1+e−x is the sigmoid (logistic) function [Jor95]. In other words,

P (Y = 1|x1:N ) =

(
1

1 + e−u

)y (
1

1 + eu

)1−y

where u = θ′x, since 1− σ(u) = 1
1+eu = σ(−u). To express a noisy-OR CPD in this form, note that

∏

j

q
xj

j = exp log
∏

j

q
xj

j = exp
∑

j

xk log qj = e−
∑

j θjxj

where we have defined θj = − log qj . Hence the noisy-OR CPD can be written as

P (Y = 1|x1:N ) = (1− e−u)y(e−u)1−y

Softmax

The softmax function [MN83] is a generalization of the sigmoid function to the case where the “output” has

K possible values, instead of just two. (In statistics, it is called a multi-logistic regression.) We define

P (Y = j|U = u) = σ(u,W, j)

where

σ(u,W, j) =
exp(u′W:j)

∑

k exp(u′W:k)

and W:k is the k’th column of W . When the output is binary, the softmax function reduces to the logistic

function:

σ(u,W, 1) =
exp(u′W:1)

exp(u′W:1) + exp(u′W:0)
=

1

1 + exp(u′(W:0 −W:1))
= σ(u′w̃)

where w̃ = W:1 −W:0.

The softmax function takes a continuous vector u as input. To use it in the case of discrete parents, we

must represent the values of the discrete parents as a vector. We therefore define X̂i to be a bit vector of

length K, with value 1 in the position corresponding to the value of Xi, and value 0 in all other positions (a

one-of-K distributed representation); X̂ is the concatentation of all the X̂i vectors. Given this representation,

we can represent P (Y |X1:N ) as a softmax even if some of the parents Xi are discrete [Pfl98].

Alternatively, we might want to use one or more of the discrete parents to specify what parameters to

use (a conditional softmax function), e.g., P (Y = j|X1 = i, X̃2 = x) = σ(x,Wi, j). In BNT, the optional

parameter dps as cts to the softmax CPD specifies which discrete parents should be treated as continuous

(converted to distributed form), and which should be used as indices.

Conditional linear Gaussian

We have already defined the conditional linear Gaussian (CLG) CPD to be

P (Y = y|U = u,X = i) = N (y;Wiu+ µi,Σi)

If we have many discrete parents, we can convert them to continuous vectors: P (Y = y|X1:N ) = N (y;WX̂,Σ).
For example, suppose N = 3, X1 and X3 are binary, X2 is ternary, and Y ∈ IR2. We can think of W as

the concatenation of N smaller weight matrices. If X1 = 1, X2 = 3, X3 = 2, then X̃1 =
(
1 0

)
,

X̃2 =
(
0 0 1

)
, and X̃3 =

(
0 1

)
, so the mean is given by

WX̂ =

(
W 1

11 W 1
12 W 2

11 W 2
12 W 2

13 W 3
11 W 3

12

W 1
21 W 1

22 W 2
21 W 2

22 W 2
23 W 3

21 W 3
22

)













1
0
0
0
1
0
1













=

(
W 1

11

W 1
21

)

+

(
W 2

13

W 2
23

)

+

(
W 3

12

W 3
22

)
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Another way of writing this is

WX̂ =
∑

i

W iX̂i =
∑

i

W i(:,Xi)

where W i(:,Xi) is the Xi’th column of W i. This representation was suggested for factorial HMMs in

[GJ97], and is commin in the neural network field.

Other representations

It is straightforward to use any function approximator to define a CPD, e.g., multi-layer perceptrons (feed-

forward neural networks) [Bis95], Gaussian processes [FN00], etc. However, it is not always easy to use

them for efficient inference or learning.

A.4 Factor graphs

Factor graphs (fgraphs) [KFL01] provide a convenient representation that unifies directed and undirected

graphical models. In a factor graph, there are two kinds of nodes, representing factors (local terms) and

variables. Variable node Xi is connected to all factor nodes Fi which contain Xi in their domain. Hence

factor graphs are bipartite. Variable nodes are represented by circles, and factor nodes by squares. See

Figure A.9 for an example.

X1 X2 X3 X4 X5

Ψ1,2 Ψ2,3 Ψ1,3 Ψ3,4 Ψ4,5

Figure A.9: Converting the MRF in Figure A.3 to a factor graph, where we have assumed ψ(X1,X2,X3) =
ψ(X1,X2)ψ(X2,X3)ψ(X1,X3).

A factor graph specifies how a function of many variables can be decomposed into a set of local functions.

For example, Figure A.9 specifies

P (X1:5) ∝ Ψ1,2(X1,X2)Ψ2,3(X2,X3)Ψ1,3(X1,X3)Ψ3,4(X3,X4)Ψ3,5(X3,X5)

We can convert an fgraph back to an MRF by adding a link between all nodes that share the same factor. See

Figure A.11 for an example. Applying this procedure to the fgraph in Figure A.9 recovers Figure A.3. Note

that the MRF representation cannot graphically represent the factorized form that we have assumed for the

potential on clique X1,X2,X3

ψ(X1,X2,X3) = ψ(X1,X2)ψ(X2,X3)ψ(X1,X3).

We can convert a Bayes net to an fgraph as shown in Figure A.10. This encodes the following factoriza-

tion:

P (C,S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)

This fgraph encodes the conditional independence statements corresponding to the moral graph of the Bayes

net, i.e., it does not graphically represent the fact that S⊥R|C.

Figure A.11 shows how to convert an fgraph back to a BN; this uses the following standard trick: to

represent (soft or hard) constraints or relations on a set of nodes, ψ(X1, . . . ,Xk), we simply make all of

them parents of a new dummy binary node Y whose CPD is P (Y = 1|X1:k) = ψ(X1:k); by clamping

Y = 1 (i.e., making it observed), we enforce the constraint. Note that convert a BN to an fgraph and back

again does not recover the original BN, because the fgraph only encodes conditional independencies that are

present in the moral (undirected) graph.5

5These transformations are discussed in [YFW01].
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S R

W
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C

FS FR

S R

FW

W

(a) (b)

Figure A.10: Converting a Bayes net (a) to a factor graph (b). The factors are FW = P (W |S,R), etc.

F1 F2

X1 F3 X2

X3

X1 X2

X3

F1 F2

X1 F3 X2

X3

(a) (b) (c)

Figure A.11: Converting a factor graph (a) to an MRF (b) or a Bayes net (c).

A.5 First-order probabilistic models

Graphical models assumed a fixed-size state-space, i.e., a fixed number of random variables. Such models

are called propositional, since they just assign probabilities to propositions of the form X1:N = x1:N . There

has been a lot of work in the AI community on what is called first-order probabilistic logic (FOPL). Below, I

will briefly review this work. (See [Pfe00, ch.9] for a more thorough review and list of references).

The three main components of a first-order language are objects, relations and quantifiers. Objects

are basically groups of attributes which “belong together”, c.f. a structure in a programming language,

or an AI “frame”. To specify the behavior of an object, it is convenient to use universal quantifiers, e.g.,

∀x.human(x) ⇒ mortal(x). This is usually modelled using classes: all objects that are instances of the

human class have the property that they are mortal. Hence classes are just a way of specifying parameter tying,

c.f., the way DBNs allow us to define probability distributions over semi-infinite sequences by parameter tying

(quantifying over time: ∀t.P (Xt = i|Xt−1 = j) = A(i, j)). Existential quantifiers (e.g., ∃x.enemy(x) ∧
nearby(x)) in FOPL are handled by checking whether the predicate is true for any object in the current world

state.

Finally, an n-ary relation can be thought of as a binary random variable R which has n objects as

parents, X1:n; R is true iff X1:n satisfies the relation, e.g., sibling-of(X1,X2) is true iff X1 is a sibling

of X2. Often it is very useful to find all X ′ s.t. R(X,X ′) is true; this is a multi-valued function, e.g.,

siblings-of(X1) = {X2 : sibling-of(X1,X2) = true}. If this is guaranteed to be a single-valued function,

we can write e.g., X1.mother to mean mother-of(X1), etc. This is sometimes called a reference slot, since its

value is a pointer to another object. Structural/ relational uncertainty means that we are uncertain of the value

of a reference slot. A simple example is data association ambiguity: we do not know which object caused the

observation. So we can write P (Y |Y.cause = Xi) = f(Xi) to denote that what we expect to see depends on

the properties of the object we are actually looking at (whose identity will generally be uncertain).
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c(Al,Pat,1) c(Pat,Jan,1) a(Al,Jan,1)

a(Al,1) a(Pat,1) a(Jan,1)

a(Al,2) a(Pat,2) a(Jan,2)

c(Al,Pat,2) c(Pat,Jan,2)

a(Pat,3)

Figure A.12: A Bayes net created from a temporal knowledge base. Some lines are shown dotted merely to

reduce clutter. a(X,T) is true if object X has aids at time T ; c(X,Y,T) is true if X and Y had sexual contact at

time T . Based on Figure 4 of [GK95].

A.5.1 Knowledge-based model construction (KBMC)

KBMC uses a knowledge base to specify set of rules which can be used to create BN structure on a case-by-

case basis (see [WBG92] for an early review). Probabilistic logic programming (PLP) [NH97] is an example

of KBMC.

Situation calculus (see e.g., [RBKK95]) extends first order logic to temporal reasoning by adding a time

argument to all predicates. A similar approach was used in [GK95] to extend PLP to the temporal case. For

example, consider the rule

∀X,T.aids(X,T )⇐ aids(X,T − 1) ∨ (∃Y.aids(Y, T − 1) ∧ contact(X,Y, T − 1))

In Prolog, this is usually written as

aids(X,T) :- aids(X,T-1)

aids(X,T) :- exists(Y), aids(Y,T-1), contact(X,Y,T-1)

Given a ground query (i.e., one which does not contain any free variables), such as aids(Pat,2), the sys-

tem performs backwards chaining, matching rules whose heads (left hand side) match the query. This gen-

erates two new “queries” or “proof obligations”, aids(Pat,1) and aids(Y,1) ∧ contact(X,Y,1);

the latter is then instantianted for each possible value of Y , and the corresponding nodes are added to

the network. If the input facts are aids(Al,1)=1, contact(Al,Pat,1)=1, aids(Jan,1)=0,

aids(Pat,1)=0, contact(Jan,Pat,1)=0, then we create the Bayes net shown below.

c(Al,Pat,1) c(Pat,Jan,1)

a(Al,1) a(Pat,1) a(Jan,1)

a(Pat,2)

The rules which have the same head are combined in using a mechanism like noisy-OR, which can

handle a variable number of parents. We can then apply any standard inference algorithm to the resulting BN.

If the query becomes aids(Pat,3), we create the more complicated network shown in Figure A.12.

It is clear that the models created in this way have an irregular structure, which is hard to exploit for

efficient inference, especially online inference. Also, KBMC does not allow one to express structural or

relational uncertainty, since the structure of the graph is automatically generated given the rules and the

background facts. We will address both of these problems in the following sections.

A.5.2 Object-oriented Bayes nets

Object oriented Bayes nets (OOBNs) were introduced in [KP97]. (Similar ideas have been proposed in

[LM97, BW00].) The basic idea is that each object has a set of input, output and internal (value) attributes;
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given the inputs and outputs (the object’s interface), the internal attributes are d-separated from the rest of

the graph. This, plus the hierarchical structure of the model, allows for more efficient inference than is

possible with KBMC-generated flat models c.f., [XPB93]. Furthermore, all instances of a class share the

same parameters, making learning easier [LB01, BLN01].

[FKP98] introduce the concept of a dynamic object oriented Bayes net (DOOBN). Each object can either

be transient or persistent; if it is persistent, it is allowed to refer to the “old” values of its internal attributes, i.e.,

the ones in the previous time slice. The objects can evolve at different time scales, simply by copying slowly

evolving ones less often. Objects can also interact intermittently; this can be modelled by adding switching

(guard condition) nodes, which effectively disable links until certain conditions are met c.f., [MP95].

The DOOBN can be flattened to a regular DBN in a straightforward way for inference purposes. Un-

fortunately, unlike the static case, the object oriented structure does not help speedup exact inference, since,

as we shall see in Section 3.5, essentially all objects become correlated. However, the structure may be ex-

ploitable by certain approximation algorithms such as BK (see Section 4.2.1). Note that, if objects evolve at

different time scales, the resulting structure will be irregular, as with KBMCs. For online inference, it will

often be necessary to copy all objects at every step.

A.5.3 Probabilistic relational models

Probabilistic relational models [FGKP99, Pfe00] extend object oriented Bayes nets by allowing general re-

lations between objects, not just “part of” relations. (In an OOBN, the inputs to an object are part of the

enclosing object; the model must be strictly hierarchical.) In a PRM, each object can have attributes and

reference slots, which are pointers to other objects. (A reference slot is just like a foreign key in a rela-

tional database.) An example might be course.instructor, where course is an instance of the Course class, and

instructor is a pointer to an instance of the Instructor class.

Reference uncertainty means the value of the pointer (reference slot) is unknown. This can easily be

modelled by add all possible objects as parents, and using a multiplexer, as in Section 2.4.6. Alternatively,

we can reify a relation into an object itself, e.g., a Registration object might have two pointers, one to a

Course and one to a Student. We can then define a joint probability distribution over the values of the Course

and Student fields, which might depend on attributes of the Course and Student (e.g., undergrads might be

less likely to take grad classes).

PRMs have not yet been applied to temporal reasoning, but it should be straightforward to do so, at least

if there is no structural uncertainty. Unfortunately, the flattened graphs may be less structured than in the

case of DOOBNs, potentially making inference harder. An MCMC-based approach to inference in PRMs is

described in [PR01].

132



Appendix B

Graphical models: inference

B.1 Introduction

In this appendix, I give a tutorial on how to do exact and approximate inference in Bayesian networks. (Nearly

all of the techniques are also applicable to undirected graphical models (MRFs) as well.) This tutorial brings

together a lot of material which cannot be found in any one place. I start with the variable elimination

algorithm, and then show how this implicitly creates a junction tree (jtree). The jtree can then be used as

the basis of a message passing procedure that computes the marginals on all the nodes in a single forwards-

backwards pass. I go on to discuss how to handle continuous variables and how to do approximate inference

using algorithms based on message passing, including belief propagation and expectation propagation.

B.2 Variable elimination

Probabilistic inference means computing P (XQ|XE = xE), where XQ is a set of query variables, and XE

is a set of evidence variables. (For instance, in medical diagnosis, XE might be the variables representing

the observed symptoms and XQ might be the variables representing causes of these symptoms.) This can be

computed from the joint distribution P (X1, . . . ,XN ) using Bayes rule:

P (XQ|XE) =
P (XQ,XE)

P (XE)
=

∑

h6⊂Q∪E P (XH = h,XQ,XE)
∑

h6⊂E P (XH = h,XE)

Hence inference boils down to marginalizing joint distributions.

If all variables are binary, then computing
∑

h P (X1, . . . ,XN ) takes O(2N ) time. We would like to do

this more efficiently. If the joint is represented by a Bayes net, the joint can be written in factored form:

P (X1, . . . ,XN ) =
N∏

i=1

P (Xi|Pa(Xi))

Marginalization can then be done efficiently by “pushing sums inside of products”, as we show in the example

below.

Consider the Bayes net in Figure B.1. The joint probability distribution can be written as

P (A,B,C,D, F,G) = P (A)P (B|A)P (C|A)P (D|B,A)P (F |B,C)P (G|F )

Suppose we want to marginalize out all the variables from this distribution. Obviously this will give the

answer 1.0; however, the same idea holds for cases where we only marginalize out a subset of the variables.

We can write this as follows:
∑

A,B,C,D,F,G

P (A,B,C,D, F,G) =

∑

A

P (A)
∑

B

P (B|A)
∑

C

P (C|A)
∑

D

P (D|B,A)
∑

F

P (F |B,C)
∑

G

P (G|F )
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A

B C

D G

F

Figure B.1: A Bayesian network from [KDLC01]. The node E is omitted to avoid confusion with the

evidence.

Working from right to left, we get

∑

A

P (A)
∑

B

P (B|A)
∑

C

P (C|A)
∑

D

P (D|B,A)
∑

F

P (F |B,C)λG→F (F )

where λG→F (F ) =
∑

G P (G|F ). Obviously in this case λG→F (F ) = 1 for all F , but this may not be true

in general. At the next step we get

∑

A

P (A)
∑

B

P (B|A)
∑

C

P (C|A)λF→C(B,C)
∑

D

P (D|B,A)

where λF→C(B,C) =
∑

F P (F |C,B)λG→F (F ).1 Notice how we put this term next to the summation over

C, “skipping” the summation over D.

In general, we try to move terms as far left as possible, so as to minimize the computational work;

the restriction is that all of the variables appearing in a term must be in the scope of the appropriate sum

operator. The notation λF→C(B,C) means this is a term arising from the summation over F and going

to the summation over C; it goes to C rather than B because C is higher in the elimination (summation)

ordering. It should be clear that the order in which we perform the summations determines the size of the

intermediate λ terms, which can affect the computational complexity substantially; we discuss this issue in

Section B.3.5. For future reference, we will call this elimination ordering π.

We can continue in this way until we have computed the desired marginal. The idea of distributing

sums over products has been independently invented several times, and has various names: peeling [CTS78],

symbolic probabilistic inference (SPI) [LD94], variable elimination [ZP96], bucket elimination [Dec98], etc.

The idea behind variable elimination can be generalized greatly to apply to any commutative semi-ring

[AM00]. For example, we can replace sum-product with max-product to get Viterbi’s algorithm for finding

the most probable assignment to the variables: x∗Q = arg maxxQ
P (xQ|xE). Or we can replace sum-product

with min-sum, and replace the local terms Fi = P (Xi|Pa(Xi)) with real-valued cost functions f(Xi,Pa(Xi))
to get a non-serial dynamic programming solution to combinatorial optimization [BB72].

We can also cast all of the following algorithms as instances of variable elimination, by using the ap-

propriate semi-ring: the Hadamard and fast Fourier transforms [KFL01], adaptive consistency for constraint

satisfaction problems (CSPs) [BMR97b], directional resolution (Davis-Putnam) for propositional satisfiabil-

ity [Dec98], various grammar parsing algorithms [Goo99], etc.

1For discrete variables, multiplication should be interpreted elementwise, with the domains of the functions being replicated where

necessary, e.g., g1(B, C, F ) ∗ g2(F ) means compute g1(b, c, f) ∗ g2(f) for each joint assignment to b, c, f . See [HD96] for some

of the implementation details on how to perform this efficiently. (Multiplying and marginalizing multi-dimensional arrays is the main

computational bottleneck in exact inference with discrete variables.) For continuous variables, see Section B.5.1.
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G P (G|F )

F P (F |B,C) λG→F (F )

D P (D|A,B)

C P (C|A) λF→C(B,C)

B P (B|A) λD→B(A,B) λC→B(A,B)

A P (A) λB→A(A)

Figure B.2: Variable elimination applied to Figure B.1 using the ordering A,B,C,D, F,G. The arrow from

F to C means we compute the “message” λF→C(B,C) =
∑

F P (F |C,B)λG→F (F ) and send it to C’s

“bucket”, etc.

B.3 From graph to junction tree

Suppose we want to compute P (Xi|XE) for all i 6∈ E.2 We could call variable eliminationO(N) times, once

for each i, but that would be unnecessarily inefficient, since we would repeat many of the same computations.

In particular, since variable elimination takes O(N) time, N calls to it would take O(N 2) time. We now

discuss a way to compute all N marginals in O(N) time.

The basic idea is to store the intermediate λ terms that we created while working right-to-left through the

summations, and then to reuse them as we work left-to-right. The λ terms will be stored in a tree structured

graph called a junction tree. In Section B.4, we discuss how to use this tree to compute all the marginals in

O(N) time by “message passing”. But first we must discuss how to create the junction tree. (The presentation

in this section is based in part on [KDLC01, Coz00].)

B.3.1 Elimination

The computations performed by variable elimination are depicted graphically in Figure B.2 and Figure B.3.

Let us call each intermediate λ term we create a “message”, and say that all the terms in the scope of the

summation operator
∑

Xi
belong to “bucket” Bi. Note that the contents of the buckets change over time.

However, when we eliminate bucket i (i.e., perform
∑

Xi
), Bi will be “full”; let us call all the variables in Bi

at this time Bi’s “domain”. For example the domain of bucket C is {A,B,C}, since it contains P (C|A) and

λF→C(B,C) when we sum out C.

In general, we can compute the domain of each bucket as follows.3 First we “moralize” the DAG by

connecting together unmarried parents (nodes which share a child), and then dropping the directionality on

all arcs. The result is an undirected graph with an edge between i and j if there is some term (e.g., CPD)

which involves both Xi and Xj ; see Figure B.4 for an example. We will call this graph G. (Moralization

is unnecessary if we start with an undirected graphical model.) Then we apply the algorithm in Figure B.5,

which takes as input G and an elimination ordering π, and returns a set of elimination sets, C1, . . . , CN . The

domain of the bucket for Xi is Cπ−1(i), where π−1(i) is the position of Xi in the ordering.

In Figure B.6, we show an example of eliminating with the ordering π = (A,B,C,D, F,G). In this

case, we do not need to add any fill-in arcs. However, in Figure B.7, we show an example of eliminating

with the ordering π = (A,F,D,C,B,G); when we eliminate B, we connect all its uneliminated (lower-

2This is useful for speech recognition, image reconstruction, decoding messages sent over noisy channels, etc., where we care about

all the hidden variables. For parameter learning, we need to compute the family marginals P (Xi, Pa(Xi)|E), which is straightforward

given P (Xi|E). For structure learning, and a few other tasks, we need to compute P (XS |E) for a potentially arbitrary subset of nodes

S. The optimal way to do this, using junction trees, is described in [EH01].
3Pre-computing the domains is useful for two reasons. Firstly, the computational complexity depends exponentially on the size of

the largest domain, so we will want to search over summation orderings to try to minimize this: see Section B.3.5. Secondly, but more

prosaically, it is very useful to pre-allocate space to the buckets.

135



P (G|F )

P (F |B,C) P (D|A,B)

P (C|A)

P (B|A)

P (A)

λG→F (F )

πF→G(F )

λF→C(B,C)

πC→F (B,C)

λC→B(A,B)

πB→C(A,B)

λD→B(A,B)

πB→D(A,B)

λB→A(A)
πA→B(A)

Figure B.3: The elimination tree derived from Figure B.2. Ovals represent “buckets”; the CPDs inside them

are the terms they contain after initialisation. Note that the “domain” of the C bucket is {A,B,C}, even

though it is initialized with P (C|A). The empty circles represent separators. λ messages flow from the

leaves to the root (the A node); then π messages flow from the root to the leaves.

A

B C

D G

F

Figure B.4: The moral graph of Figure B.1. Dotted edges are moralization arcs.
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• Start with all vertices unnumbered, set counter i := N .

• While there are still some unnumbered vertices:

– Let vi = π(i).

– Form the set Ci consisting of vi and its (unnumbered/ uneliminated) neighbors.

– Fill in edges between all pairs of vertices in Ci.

– Eliminate vi and decrement i by 1.

Figure B.5: Pseudo-code for elimination c.f., algorithm 4.13 of [CDLS99, p58]. π is the elimination ordering,

which we use in reverse order.

A

B C

D G

F

A

B C

D

F

A

B C

D

eliminate G eliminate F

1

2 3

4

5

6

Figure B.6: Eliminating the nodes in Figure B.4, with π = (A,B,C,D, F,G).

eliminate G

A

C

D

F

A

B C

D

F

eliminate B

A

B C

D G

F

1

2

45

63

Figure B.7: Eliminating the nodes in Figure B.4, with π = (A,F,D,C,B,G). Dotted edges are fill-in arcs.

When we eliminate B, all the remaining nodes are lower in the ordering, and hence all neighbors of B get

connected.
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G:F

F:BC

D:AB

C:AB

B:A

A:

Figure B.8: An elimination tree derived from Figure B.6. The notation C : A,B means, when C was

eliminated, {A,B} were the uneliminated neighbors.

numbered) neighbors, which results in the elimination set for B being {A,C,D, F}; this is easily seen from

the following decomposition:

∑

A,F,D,C,B,G

P (A,B,C,D, F,G) =

∑

A

P (A)
∑

F

∑

D

∑

C

P (C|A)
∑

B

P (D|B,A)P (F |B,C)P (B|A)
∑

G

P (G|F )

The size of the largest elimination set is called the induced width of the graph. In this case, the width induced

by π = (A,B,C,D, F,G) is 3, which is better than π = (A,F,D,C,B,G), which induces a width of 4.

In Section B.3.5, we discuss ways to search for a good elimination ordering (in the sense of minimizing the

induced width).

B.3.2 Triangulation

The extra edges we introduce in the elimination process (if any) are called “fill-in edges”. With the ordering

π = (A,B,C,D, F,G), there are no fill-in edges, but with the ordering π = (A,F,D,C,B,G), we added

fill-in edges A − F , D − F and C −D when we eliminated B. If we add these fill-in edges to the original

graph G, the result is a triangulated or chordal graph, GT . (A triangulated graph is one which does not

possess any cycles of length ≥ 4 without a chord which breaks the cycle.)

A graph is triangulated iff it possess a perfect elimination ordering. This is an ordering such that if we

eliminate in that ordering, we will not introduce any fill-in edges. An algorithm called maximum cardinality

search (MCS) [TY84] can be used to find a perfect elimination ordering given a triangulated graph. (Although

[Pea88, p112] suggests using MCS to triangulate a graph, [CDLS99, p58] claim that this often results in more

fill-in edges than necessary. We discuss better ways to find elimination orderings for non-chordal graphs in

Section B.3.5. Hence MCS is more suited to testing chordality than to ensuring it.)

In the current example, π = (A,B,C,D, F,G) is a perfect elimination ordering, which tells us that the

graph in Figure B.4 is already triangulated. If a graph is not triangulated, it can be made so by using the

procedure in Figure B.5.

B.3.3 Elimination trees

The elimination sets created during triangulation can be arranged into a tree, called a bucket tree [Dec98]

or an elimination tree (etree) [CDLS99, p.59]; see Figure B.8 for an example. We simply connect Ci to

Cj , where j is the largest index of a vertex in Ci \ {Vi}. Let us call this procedure etree-from-esets

(algorithm 4.14 of [CDLS99, p59]).

The nodes in the elimination tree are sets of nodes in the original graph G. In fact, they are cliques of the

triangulated graph, but not necessarily maximal cliques. In Figure B.8, the elimination sets are C1 = {A},
C2 = {A,B}, C3 = {A,B,C}, C4 = {A,B,D}, C5 = {B,C, F} and C6 = {F,G}, which are clearly

(non-maximal) cliques of the triangulated graph in Figure B.4.
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1 2

5

3 4

Figure B.9: The numbering of the vertices is perfect, but the cliques, numbered as ({1, 2}, {3, 4}, {2, 3, 5}),
do not satisfy RIP; hence this numbering could not have been generated by max cardinality search. From

Figure 4.9 of [CDLS99].

1 2:1 3:2 4:3

5:23

Figure B.10: Elimination tree obtained from the chordal graph of Figure B.9 using the numbering {1, . . . , 5},
i.e., we first eliminate 5, and ensure lower-numbered neighbors {2, 3} are connected, etc. From Figure 4.10

of [CDLS99].

B.3.4 Junction trees

The elimination sets satisfy the running intersection property (RIP), which is defined as follows. An or-

dered sequence of sets C1, . . . , Ck is said to satisfy RIP if, for all 1 < j ≤ k, there is an i < j s.t.

Cj∩(C1∪ · · · ∪Cj−1) ⊆ Ci, e.g., C4∩{C1, C2, C3} = {A,B,D}∩{A,B,C} ⊆ C2. Figure B.9 shows an

example of a sequence of sets that does not satisfy RIP.

Any sequence of sets C1, . . . , Ck that satisfies RIP can be converted into a junction or join tree (jtree),

whose nodes are the Ci’s. A tree is said to be a junction tree, or to have the junction tree property, if C1∩C2

is contained in every Ci (i 6= 1, 2) on the unique path between C1 and C2, for every pair C1, C2. In other

words, all the sets containing some Xj form a connected tree: along any path, Xj cannot disappear and then

reappear later.

We can construct a jtree from a sequence of sets which satisfy RIP by connecting Cj to any Ci, for

i ∈ {1, . . . , j − 1}, s.t. Cj∩(C1∪ · · · ∪Cj−1) ⊆ Ci. Let us call this procedure jtree-from-RIP-clqs

(algorithm 4.8 in [CDLS99, p55]; see also [Pea88, p113]). Note that this way of constructing a jtree is not

valid unless the order of the sets satisfies RIP.

The elimination tree is a jtree of sets, but is not a jtree of maximal cliques. It is conventional to remove

the redundant sets.4 We can do this by a simple pruning procedure: when we create Cj , we check if there

is any higher numbered (already created) clique, Cj ⊂ Ci for i > j, and if so, we simply omit Cj from the

output sequence. Unfortunately, the resulting sequence may no longer satisfy RIP. For example, consider the

elimination tree in Figure B.10, with sequence of elimination sets C1 = {1}, C2 = {1, 2}, C3 = {2, 3},
C4 = {3, 4} and C5 = {2, 3, 5}. If we delete C3, we violate RIP.

There is a way to remove redundant sets and keep RIP which we shall call RIP-prune: see Lemma 4.16

of [CDLS99, p60] for details. Alternatively, we can use max cardinality search to find a perfect elimination

ordering, and then use Algorithm 4.11 of [CDLS99, p56] (which we call RIP-max-clqs-from-MCS)

to find the maximal cliques of the chordal graph, in an order that satisfies RIP. Either way, once we have

a sequence of maximal cliques that satisfies RIP, we can use jtree-from-RIP-clqs to create a jtree

of maximal cliques. For example, see the jtree Figure B.12; compare this with the etree in Figure B.8. In

general, a jtree may be much smaller than an etree.

Fortunately, there is a much simpler way to construct a jtree from a set of maximal cliques, even if their

ordering does not satisfy RIP. We first create a junction graph, in which we add an edge between i and j if

4It is not always a good idea to only use maximal cliques. One advantage of an etree is that Cj \ Cij is always a singleton, where

Cij is the intersection between two neighboring cliques. This means that we only have to marginalize one variable at a time during

message passing (see Section B.4). When variables can be of mixed types, e.g., random variables and decision variables in an influence

diagram, this can result in simpler algorithms: see e.g., [CDLS99, ch.8]. [GLS99] also gives cases where it is better not to require that

the cliques be maximal, in the context of constraint satisfaction problems.
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moralize

prune

triangulate

clq−sizes

etree−from−esets

etree

DAG

G

greedy

jtree

RIP−prune

jgraph−from−max−clqs

jgraph

max−spanning−tree

max−cardinality−search

sim. annealing

elim−order

GT

perfect−elim−order

elim−sets

jtree−from−RIP−clqs

RIP−max−clqs−from−MCS

max−clqs

RIP−max−clqs

node−sizes

Figure B.11: Summary of the steps involved in converting a DAG to a junction tree. The cost of a node

is qi, the number of discrete values it can take on. GT is the triangulated version of G. We now specify

the correspondence between some of the square boxes and algorithms in [CDLS99]. Greedy is Algorithm

4.13. Simulated annealing is another way of trying to compute an optimal elimination ordering; see Sec-

tion B.3.5. max-cardinality-search is Algorithm 4.9. RIP-max-clqs-from-MCS is Algorithm

4.11. RIP-prune is Lemma 4.16. jtree-from-RIP-clqs is Algorithm 4.8. etree-from-esets

is Algorithm 4.14. See text for details.

BCF

ABC

ABD

FG

Figure B.12: A jtree for Figure B.1 constructed using the elimination ordering (A,B,C,D, F,G). Compare

with the etree in Figure B.8.
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Ci∩Cj 6= ∅. We set the weight of this edge to be |Ci∩Cj |, i.e., the number of variables they have in common.

Any maximal weight spanning tree (MST) of the jgraph is a junction tree (see [JJ94a] or [AM00] for a proof).

We can construct an MST using Kruskal’s algorithm in O(|E| log |E|) time, or using Prim’s algorithm in

O(N2) time [CLR90]. (BNT uses Prim’s algorithm, because Kruskal’s requires a priority queue, which is

inefficient in Matlab.) The best MST is the one which minimizes the sum of the costs on each edge, where

the cost of an edge e = (v, w) is defined as χ(e) = qv + qq− qv∩w. qv is the cost of node v in the jgraph, and

is defined as qv =
∏

i∈v qi, where qi is the number of discrete values Xi can take on. If we use χ(e) to break

ties when constructing the MST, the result will be an optimal junction tree (for a fixed elimination ordering)

[JJ94a].

The overall procedure for converting a DAG to a jtree is summarized in Figure B.11.

B.3.5 Finding a good elimination ordering

We have mentioned several times that the cost of inference is exponential in the size of the largest clique/

λ term/ bucket / elimination set. We would like to minimize the max clique size. However, this problem is

NP-complete [Yan81, ACP87]. A standard greedy approximation is the following: eliminate any node which

would not result in any fill-ins (i.e., all of whose uneliminated neighbors already form a clique); if there is

no such node, eliminate the node which would result in the minimum number of fill-in edges. This is called

the “min-fill” heuristic. An alternative that works better in practice is the “min-weight” heuristic, where we

try to minimize the weight of the created cliques, where the weight of a clique C is
∏

i∈C qi, where qi is the

cardinality of Xi. (If all nodes have the same weight, this is the same as min-fill.)

Of course, many other methods are possible. [Kja90, Kja92] compared simulated annealing with the

above greedy method, and found that it sometimes works better (although it is much slower). [MJ97] approx-

imate the discrete optimization problem by a continuous optimization problem. [BG96] present a randomized

approximation algorithm. See [Ami01] for various recent constant-factor appoximation algorithms.

B.3.6 Strong junction trees

When we consider graphical models with more than one type of node we sometimes have to use a constrained

elimination ordering. For example, in an influence diagram, we must max out a decision node before we

sum out the random (information) variables that it depends on [JJD94]. Also, in a conditionally Gaussian

(CG) Bayes net (see Section B.5), if we want to get exact answers we must integrate out a continuous node

before marginalizing out the discrete parents it depends on, i.e., we write
∑

i

∫

x
f(x, µ(i),Σ(i)), rather than

∫

x

∑

i f(x, µ(i),Σ(i)). In general, if we have a partial ordering, where i ≺ j means we must eliminate i
before j, we try to find the best elimination ordering consistent with the partial ordering. A valid elimination

ordering π will such that the reverse of π is a total ordering of ≺. (The reason why we consider the reverse

of π is that we work backwards: recall from Section B.2 that if π = (A,B,C,D, F,G), we first summed

over G.) In the case of CG networks, we ensure that all the continuous nodes are eliminated before any of

the discrete nodes. This results in a strongly triangulated graph, which can be converted to a junction tree of

(not necessarily maximal) cliques in the usual way (e.g., using max spanning tree).

In addition to using a restricted elimination ordering, we must choose the root R to be a clique which is

“strong”. A root R is strong if, for any pair C1, C2 of adjacent cliques with C1 closer to R than C2, there

exists an ordering of C2 that respects≺, and with C1∩C2 ≻ C2\C1 [JJD94]. In the case of CG networks, we

have ∆ ≻ Γ, where Γ is the set of Gaussian variables and ∆ is the set of discrete variables, so this definition

can be restated as follows [Lau92]:

(C2 \ C1) ⊆ Γ or (C1∩C2) ⊆ ∆

In other words, if the residual C2 \ C1 (novel variables further from the root) contains a discrete variable,

then the separator is purely discrete. Roughly speaking, the tree becomes more and more discrete as we move

towards the root.

It can be shown that any strongly triangulated graph has a jtree with a strong root. Furthermore, the

last clique (C1) created by the standard one-step look-ahead strong triangulation routine (see Figure B.5) is a

strong root, and this will obviously not get pruned out.

141



B.4 Message passing

We now explain how to compute all N marginals in O(N) time by using the junction tree. We will present

several different algorithms from the literature, all of which are essentially the same.

B.4.1 Initialization

Let clique i have domain Si, and let Sij = Si∩Sj be the separator between cliques i and j. Let us associate

a “potential” with each clique. A potential is a non-negative function of its arguments; if the arguments are

discrete, we can represent potentials as multi-dimensional arrays; if the arguments are continuous, we may

be able to use a parametric representation such as a Gaussian or other member of the exponentialy family; if

some arguments are discrete and some are continuous, we can use mixtures of Gaussians (see Section B.5.2).

We initialize potentials to be the identity element for the semi-ring we are considering, which is 1 in the case

of sum-product with discrete potentials.

Each term Fi in the original problem (the CPD for Xi in the case of Bayes nets) is associated with a

clique Sj that contains all of Fi’s domain. In an etree, we have one clique per term (see Figure B.3), but in

a jtree, we may have to associate multiple terms with the same clique, e.g., in Figure B.12, we can associate

P (A) and P (B|A) with cliques ABC or ABD. Hence the clique ABD may contain terms P (A), P (B|A)
and P (D|A,B). All the terms associated with a clique are multiplied together elementwise to get a single

initial clique potential, ψj .

B.4.2 Parallel protocol

Perhaps the simplest formulation of message passing, which is often called belief propagation, is as follows

[AM00]. At each step, every node in the jtree in parallel collects all the messages from its neighbors and

computes

φj =




∏

i∈nbr(j)

µi→j



ψj

where µi→j(Sij) is the message sent from node i to node j, and ψj(Sj) is the term assigned to node j (the

initial clique potential). Once a node has received messages from all its neighbors, it can then send a message

to each of them, as follows:

µj→k =








∏

i∈nbr(j),i6=k

µi→j



ψj



 ↓ Sjk =

(
φj

µk→j

)

↓ Sjk =
(φj) ↓ Sjk

µk→j

where the notation φ(S) ↓ T means
∑

S\T φ(S), i.e., marginalization (projection) onto set (domain) T . (For

discrete variables, division is element-wise, but we define 0/0 = 0; for division of continuous variables, see

Section B.5.1.) If we initialise all messages to the identity element (1’s), each node can apply the above rules

in parallel. After D steps, where D ≤ N is the diameter of the graph, the final φj values will be proportional

to P (Sj |e), where e is the evidence. (For a proof of this, see Section B.4.7.) Since the final φj values will be

normalized, we are free to scale the messages arbitrarily, since the scaling factors will cancel at the end; this

is very useful to prevent underflow in large networks and iterative algorithms.

B.4.3 Serial protocol

In the above parallel protocol, all nodes are performing a computation at every step, so on a serial machine,

it would take O(N2) time to get the exact answers for a tree. Other message passing schedules are possible

(see [AM00] for conditions). We now present a particularly simple serial protocol which can compute all

marginals in two passes over the tree, i.e., in O(N) time (see Figure B.13). The algorithm has two phases:

collect to root, and distribute from root. (The root node can be chosen arbitrarily.) Performing collect and

then distribute is sometimes called “calibrating” the jtree. In the collect phase, a node collects messages from

all its children, and then passes a message to its unique parent, i.e., nodes are processed in post-order. In the
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function [φ, µ] = collect(F )
for each j in post-order

φj =
∏

i∈ass(j) Fi ×
∏

i∈pred(j)
µi→j

k = parent(j)
µj→k = φj ↓ Sjk

function [φ, µ] = distribute(φ, µ)
for each j in pre-order

k = parent(j)
φj = normalize(φj × µk→j)
for each child i

µj→i =
φj↓Sij

µi→j

Figure B.13: Pseudo-code for the JLO/GDL algorithm using a serial updating protocol. (JLO = Jensen,

Lauritzen and Olesen [JLO90]; GDL = generalized distributive law [AM00].) Calibrating the jtree means

calling collect followed by distribute. We assume a product over an empty set returns 1. ass(j) are the

terms (CPDs) assigned to clique j. Post-order means children before parents, pre-order means parents be-

fore children; pred(j) means predecessors of j in the post-order. φj has domain Sj , and µj→k has domain

Sjk = Sj∩Sk. This code is designed to be as similar as possible to belief propagation on a factor graph

(see Figure B.20). See Figure B.14 for a slightly different implementation. Normalization is one way to

prevent numerical underflow. It also ensures that, upon termination, the clique potentials can be interpreted

as conditional probabilities: φj = P (Sj |e), where e is all the evidence.

• For each j in post-order

– φj =
∏

i∈ass(j) Fi

– Let k be the parent of j in the jtree.

– φjk = φj ↓ Sjk

– φk = φk ∗ φjk

• For each j in pre-order

– For each child i of j

∗ φi = φi

φij

∗ φij = φi ↓ Sij

∗ φi = φi ∗ φij

• Normalize each φj .

Figure B.14: An alternative implementation of the JLO algorithm. (This is how it is implemented in BNT.)

The disadvantage of this method is that node j does not update its local potential φj , but instead updates the

potentials of its parent φk or children φi. Also, the similarity to BP on a factor graph (see Figure B.20) is

obscured in this version.
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distribute phase, a node collects a message from its unique parent, and passes it to all its children, i.e., nodes

are processed in pre-order.

Consider a generic node j with children i and i′ and unique parent k. In the collect phase, µk→j = 1,

since all messages are initialized to 1’s. Hence we can skip the division by µk→j , so the update rules simplifies

as follows:

φj =




∏

i∈ch(j)

µi→j



ψj

µj→k = φj ↓ Sjk

This corresponds exactly to the variable elimination algorithm: computing φj is what happens when we

combine all the terms in bucket j, and computing µj→k corresponds to marginalizing out Sj \ Sjk, which,

for an etree, is always a single variable, namely Xj .

In the distribute phase, node j computes its new potential

φ∗j = φj × µk→j

where k is the parent of j. Then it sends the following message to its child i:

µj→i =








∏

i′∈ch(j),i′ 6=i

µi′→j



µk→jψj



 ↓ Sij =

(
φ∗j
µi→j

)

↓ Sij =

(
φ∗j
)
↓ Sij

µi→j

The overall algorithm is summarized in Figure B.13.

B.4.4 Absorption via separators

The most common presentation of message passing in junction trees (see Figure B.14) looks different from

what we have just seen, but we now show that it is equivalent. The basic operation is absorption: if node

(clique) i is connected to j via a separator s, then we say j absorbs from i if

φ∗j = φj
φ∗s
φs

where φ∗s = φi ↓ s. (The asterisk denotes updated potential.)

The potential on a separator is equivalent to what we have been calling a message. The potential on Sij

stores µi→j if it was just updated by i, or µj→i if it was just updated by j.
Suppose we want to update φj to reflect the new message arriving from i, µ∗

i→j . The new potential can

be computed as

φ∗j =




∏

i′∈nbr(j),i′ 6=i

µi→j



µ∗
i→jψj =

φj

µi→j
µ∗

i→j = φj

µ∗
i→j

µi→j

This is what is usually meant by the “junction tree algorithm”, also known as clustering, the Hugin algo-

rithm (the name of a famous commercial program that implements it), the JLO algorithm [JLO90], “clique

tree propagation”, etc. However, it is useful to distinguish the junction tree as a data structure from the kind

of message passing that is performed on it. Also, it is useful to distinguish between a jtree of maximal cliques

(as used by Hugin), a jtree of elimination sets (an etree), binary jtrees [She97], jtrees of maximal prime

subgraphs [OM99], etc.

B.4.5 Hugin vs Shafer-Shenoy

The version of message passing discussed in Section B.4.4 is often known as the “Hugin architecture”. It

stores the product of messages at each clique and uses division to implement the product of all-but-one of the

messages. An alternative is known as the “Shafer Shenoy architecture” (SS) [SS88, SS90a, SS90b, She92],

which does not does not store the product of messages at each clique and does not involve a division operator.
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X1 X1 X1,X2 X2 X2,X3 X3 X3,X4

Figure B.15: A junction tree for a Markov chain X1 → X2 → X3 → X4; square nodes represent separators,

ovals represent cliques. The X1 clique and separator is not strictly necesssary, but is included to ensure a

1:1 correspondence between separators and nodes in the original graph. The clique potentials are P (X1),
P (X2|X1), P (X3|X2), P (X4|X3), etc.

(It might seem that division for Gaussian distributions is not well-defined, but in fact it is: see Section B.5.1.

However, mixtures of Gaussians cause problems: see Section B.5.2.)

Hugin uses more space (because it must store clique and separator potentials), but less time (because it

does not need to repeatedly remultiply messages). The need to repeatedly multiply messages in SS can be

ameliorated using binary join trees [She97, SS98]. This supposedly makes SS about as fast as Hugin. See

[LS98] for a detailed comparison of the SS and Hugin architectures.

“Lazy” junction trees [MJ99] only multiply together those terms which are assigned to a clique on a

demand-basis, i.e., if the terms contain a variable which is about to be marginalized out. In other words, lazy

Hugin maintains clique potentials as a product of factors. Division is implemented by multiplying all-but-one

of the relevant factors, as in SS.

B.4.6 Message passing on a directed polytree

Belief propagation was first presented in [Pea88] for directed polytrees. (A polytree is a directed tree with

more than one root; hence a node can have several parents as well as several children, but the overall graph

has no cycles, directed or undirected.) We now show that this is equivalent to the message passing scheme we

have just presented, in the case that the original graph is a (directed) chain; the general polytree case follows

analogously.

If the DAG is a chain, the cliques of the corresponding jtree will be families (nodes plus parents), and the

separators will be nodes. See Figure B.15 for an example. In the JLO/GDL algorithm, cliques sent messages

to cliques via separators. Now we will let separators send messages to separators via cliques. Messages from

children to parents are called λ messages, and the messages from parents to children are called π messages

(see Figure B.3).

Consider a node j with unique child i and unique parent k. Since φj = P (j|k) and Sjk = {k}, the λ
message is

λj→k(k) =
∑

k

λi→j(j)P (j|k)

and the π message is

πj→i(j) =
∑

k

πk→j(k)P (j|k)

Note that this is equivalent to the forwards-backwards algorithm for HMMs, where α ≡ π and β ≡ λ
[SHJ97]. Also, note that the λ and π messages can be computed independently of each other. However,

this is only true for a chain: for a tree, the π’s depend on the λ’s (computed in a bottom up pass), and for a

polytree, the λ’s and π’s both depend on each other in the following way:

λj→k(k) =
∏

i

λi→j(j)
∏

k′ 6=k

πk′→j(k
′)P (j|k, k′) ↓ Sjk

=
∑

j,k′

λj(j)P (j|k, k′)
∏

k′ 6=k

πk′→j(k
′)

where λj(j) =
∏

i∈ch(j) λi→j(j), and

πj→i(j) =
∏

i′ 6=i

λi′→j(j)
∏

k

πk→j(k) P (j|k, k′) ↓ Si,j

= πj(j)
∏

i′ 6=i

λi′→j(j)
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Figure B.16: Conditioning onXj divides the tree into the two sets, one which contains evidence in the subtree

rooted at Xj , which we call E+
j , and the other which contains all the other evidence, which we call E−

j .

where πj(j) =
∑

k,k′ P (j|k, k′)∏k πk→j(k).
The final beliefs are given by P (Xj |e) ∝ λjπj . See [Pea88] for a proof.

Cutset conditioning

One of the earliest approaches to exact inference in DAGs with undirected cycles was cutset conditioning

[Pea88]. This works by finding a set of nodes, called a cutset, which, when removed, turns the remaining

graph into one or more polytrees. Exact inference can be performed by instantiating the cutset to each of its

possible values, and running message passing in each polytree, and combining the results [PS91]. Although

intuitively appealing (this algorithm is similar to reasoning by cases), it takes time exponential in the size of

the cutset, which is always at least as large as the tree width (max clique size). Hence cutset conditioning is

never any faster than message passing in a junction tree [SAS94], and is not widely used.

Applying Pearl’s algorithm to jtrees

To apply Pearl’s algorithm to a jtree, we root the tree, and treat the cliques as (mega-)nodes. To do this,

we must compute P (j|k) for neighboring cliques j and k. For discrete nodes, this can be done by ensuring

P (j|k) = 0 if j and k are inconsistent on shared values, and otherwise multiplying together the CPDs

assigned to clique j (see [Zwe98] for details). Note that this transformation may destroy any structure (apart

from 0s) in the local CPDs. Also, it is not clear how to do this for linear-Gaussians CPDs.

B.4.7 Correctness of message passing

We have already remarked that the collect-evidence procedure is identical to variable elimination, which is

“obviously” correct. The question remains of why message passing in general is correct.

If the original Bayes net is a polytree (i.e., has no undirected cycles), Pearl [Pea88] proved that mes-

sage passing is correct by using d-separation properties of the DAG. The basic idea is that by condition-

ing on a node Xj , we partition the tree into two sets, one of which contains the evidence in the subtree

rooted at Xj , call it E+
j , and the other which contains the remaining evidence, E−

j : see Figure B.16. Now

P (Xj |E+
j , E

−
j ) ∝ P (Xj |E+

j )P (E−
j |Xi), so we can compute πj = P (Xj |E+

j ) and λj = P (E−
j |Xj)

separately and then combine them.

For junction trees, things are trickier, because the nodes represent sets of random variables. However, the

fact that we only assign each term Fi to a unique clique means that we do not overcount information. Also,

the junction tree property ensures that when two or more subtrees send a message to a node, their information

can be fused consistently. See [AM00, app.A] for a simple inductive proof of correctness. Historically, the

first proof of correctness for general semi-rings was [SS88] for the SS architecure and [LJ97] for the Hugin

architecture.
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B.4.8 Handling evidence

The standard implementation of the junction tree algorithm (see e.g., [CDLS99]) is to compute the initial

clique potentials ψj by multiplying all the CPDs assigned to clique j, and then to calibrate the tree. The

clique potentials now represent unconditional joint distributions: φj = P (Sj) (marginals over the variables

in the clique).

Now suppose (hard) evidence arrives on node Xi, i.e., we observe Xi = xi. We find any clique that

contains Xi, and set the elements of the clique potential that are inconsistent with the evidence to 0, e.g., if

we have a clique containing two binary nodes,X1 andX2, and we observeX2 = 1, then we set φ(x1, x2) = 0
if x2 6= 1. Note that many of the potentials may end up being sparse. (If we have soft (virtual) evidence, we

simply reweight the terms.) We then perform another calibration to propagate the evidence.

When dealing with Gaussian distributions (see Section B.5.1), adding evidence to a node reduces the

size of the Gaussian potential, so we must add the evidence to every potential that contains an observed

node (since we can’t have 0s in the covariance matrix). (This can be done in the discrete case too, but is

unnecessary, since 0s will be propagated.)

The above scheme will fail if we have a model with conditional-only CPDs, e.g., a regression model with

two nodes, X and Y , where we specify P (Y |X) but not the prior P (X), since we cannot evaluate P (Y |X)
until we knowX . However, there is a simple solution (first proposed in [Mur99]): delay converting the CPDs

to potential form until after the evidence arrives. Hence we eliminate the initial calibration phase completely.

This has the additional advantage that we know that discrete observed variables effectively only have one

possible value, and continuous observed values are “zero-dimensional points” (i.e., just scale factors); this

means we can allocate potentials of just the right size: no need for zero compression or shrinking of Gaussian

potentials.

B.5 Message passing with continuous random variables

So far, we have assumed that potentials are represented as tables (multi-dimensional arrays); multiplication

and division are defined pointwise, and marginalization is just summation over the appropriate dimension(s).

We now discuss what to do if some of the variables are continuous. We start by assuming all CPDs are linear-

Gaussian, in which case the joint distribution is just a large, sparse multivariate Gaussian. In this case, exact

inference always takes at most O(N 3) time, since we can just create the corresponding Gaussian. However,

N might be very large, rendering this approach impractical.

Then we consider the case where some CPDs are conditional linear Gaussian (CLG), i.e., of the form

P (Y = y|U = u,X = i) = N (y;Wiu+µi,Σi). We also allow discrete CPDs (of any kind), but only if they

have no continuous parents. The result is just a a mixture of sparse Gaussians, where the mixture distribution

is factorized as in a discrete Bayes net, and the sparsity pattern can vary between mixture components. This

is called a conditional Gaussian (CG) distribution [LW89, Lau92, Ole93, CDLS99].

Finally we consider arbitrary combinations of CPDs, where exact inference is usually not possible.

B.5.1 Pure Gaussian case

Moment and canonical characteristics

We can represent a Gaussian distribution in moment form or in canonical (information) form. In moment

form we have

φ(x; p, µ,Σ) = p× exp
(
− 1

2 (x− µ)′Σ−1(x− µ)
)

where p = (2π)−n/2|Σ|−
1
2 is the normalizing constant that ensures

∫

x
φ(x; p, µ,Σ) = 1. (n is the dimen-

sionality of X .) Expanding out the quadratic form and collecting terms we get the canonical form:

φ(x; g, h,K) = exp
(
g + x′h− 1

2x
′Kx

)
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where

K = Σ−1

h = Σ−1µ

g = log p− 1
2µ

′Kµ

K is often called the precision matrix. We can write the above in scalar form:

φ(x; g, h,K) = exp

(

g +
∑

i

hixi − 1
2

∑

i

∑

k

Kijxixj

)

Now X⊥Y |Z iff the density factors as P (X,Y,Z) = g(X,Z)h(Y,Z) for some functions g and h. Hence

we see that Xi⊥Xj |rest iff Kij = 0.

Note that we can only convert from canonical to moment form if K is positive semi definite (psd), which

it need not be in general (see Section B.5.1). Similarly, we can only convert from moment to canonical form

if Σ is psd; but this will always be the case, unless we have deterministic linear CPDs (in which case Σ = 0).

Note that potentials need not be probability distributions, and need not be normalizable (integrate to 1). We

keep track of the constant terms (p or g) so we can compute the likelihood of the evidence.

Outline of algorithm

For each node Xi, we convert Xi’s CPD to a potential, Fi; if there is evidence on any of X’s family, we enter

it into Fi; we then multiply Fi onto a clique potential containing X’s family. Then we calibrate the jtree as

before, but using the new definitions of multiplication, division and marginalization.

We must represent the initial potentials in canonical form, because they may represent conditional likeli-

hoods, not probability distributions (c.f., the distinction between β and γ in an HMM). For example, consider

Figure B.15. The initial clique potential for 1, 2 will be P (X1)P (X2|X1) = P (X1,X2), which is a joint pdf,

but the initial potential for 2, 3 will be P (X3|X2), which is a conditional likelihood. Conditional likelihoods

can be represented in canonical form, but not in moment form, since the (unconditional) mean does not exist.

(We can only compute E[X3] from P (X3|X2) once P (X2) becomes available.) This will be explained in

more detail below.

Since the potentials are initially created in canonical form, we perform all the other operations (multipli-

cation, division and marginalization) in this form, too. However, at the end, we usually convert to moment

form, since that is easier for the user to understand, and is also a more convenient form for learning (we

simply sum the means and covariances). Note that when this algorithm is applied to a Kalman Filter Model,

the result is identical to the information form of the Kalman smoother.

Converting a linear-Gaussian CPD to a canonical potential

For a vector node, the conditional distribution has the form

f(x|z) = c exp
[
− 1

2

(
(x− µ−BT z)T Σ−1(x− µ−BT z)

)]

= exp

[

− 1
2

(
x z

)
(

Σ−1 −Σ−1BT

−BΣ−1T

BΣ−1BT

)(
x
z

)

+
(
x z

)
(

Σ−1µ
−BΣ−1µ

)

− 1
2µ

T Σ−1µ+ log c

]

where c = (2π)−n/2|Σ|−
1
2 . Hence we set the canonical characteristics to

g = − 1
2µ

T Σ−1µ− n

2
log(2π)− 1

2 log |Σ|

h =

(
Σ−1µ
−BΣ−1µ

)

K =

(
Σ−1 −Σ−1BT

−BΣ−T BΣ−1BT

)

. =

(
I
−B

)

Σ−1
(
I −B

)
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This generalizes the result in [Lau92] to the vector case. In the scalar case, Σ−1 = 1/σ (so σ represents the

variance, not the standard deviation), B = b and n = 1, so the above becomes

g =
−µ2

2σ
− 1

2 log(2πσ)

h =
µ

σ

(
1
−b

)

K =
1

σ

(
1 −bT
−b bbT

)

.

Once we have the canonical characteristics, we can compute the initial potentials for each clique by mul-

tiplying together the potentials associated with each variable which is assigned to this clique. Unfortunately,

we cannot convert these canonical characteristics to moment characteristics because K is not of full rank,

and hence is not invertible.

Entering evidence into a canonical potential

If we observe that a continuous variable y takes on a specific value y, we must modify the potentials of all the

cliques/separators that contain y, since their dimensionality will be reduced. Consider a clique with domain

(x, y). The new potential is

φ∗(x) = exp[g +
(
xT yT

)
(
hX

hY

)

− 1
2

(
xT yT

)
(
KXX KXY

KY X KY Y

)(
x
y

)

= exp[
(
g + hT

Y y − 1
2y

TKY Y y
)

+ xT (hX −KXY y)− 1
2x

TKXXx]

This generalizes the corresponding equation in [Lau92] to the vector case.

Multiplication and division of canonical potentials

In the discrete case, we use multiplication and division to update potentials when new evidence arrives:

Pr∗W = PrW
Pr∗S
PrS

, where S is a separator and W is a clique. Notice that PrW

PrS
= Pr(W |S), so we are really

computing a conditional distribution “on the fly” and multiplying in new information.

We can define multiplication and division in the Gaussian case in terms of canonical characteristics, as

follows. To multiply φ1(x1, . . . , xk; g1, h1,K1) by φ2(xk+1, . . . , xn; g2, h2,K2), we extend them both to

the same domain x1, . . . , xn by adding zeros to the appropriate dimensions, and compute

(g1, h1,K1) ∗ (g2, h2,K2) = (g1 + g2, h1 + h2,K1 +K2)

Division is defined as follows:

(g1, h1,K1)/(g2, h2,K2) = (g1 − g2, h1 − h2,K1 −K2)

Marginalization of a canonical potential

Let φW be a potential over a set W of variables. We can compute the potential over a subset V ⊂ W of

variables by marginalizing, denoted φV =
∑

W\V φW . Let

y =

(
y1
y2

)

, h =

(
h1

h2

)

, K =

(
K11 K12

K21 K22

)

,

with y1 having dimension p and y2 having dimension q. It can be shown that
∫

y1

φ(y1, y2; g, h,K) = φ(y2; ĝ, ĥ, K̂)

where

ĝ = g + 1
2

(
p log(2π)− log |K11|+ hT

1 K
−1
11 h1

)

ĥ = h2 −K21K
−1
11 h1

K̂ = K22 −K21K
−1
11 K12
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B.5.2 Conditional Gaussian case

In the CG case, potential functions can be represented as a list of canonical characteristics, one for each

possible combination of discrete values. In addition to g, h and K, we store χ(i), which is a multiplicative

constant outside of the exp operator; if χ(i) = 0, it means the i’th element has probability 0; otherwise we

set χ(i) = 1. All the operations go through as before, except for marginalization, which we discuss below.

Strong marginalization

If we marginalize out over some continuous nodes, we can proceed as in Section B.5.1 above, once for each

value of the discrete nodes, i.e.,
∫

y1

φ(i, y1, y2; g(i), h(i),K(i)) = φ(i, y2; ĝ(i), ĥ(i), K̂(i))

If we marginalize out over some discrete variables, say j, we distinguish two cases. First, if h and K do

not depend on j, i.e., h(i, j) = h(i) and K(i, j) = K(i), then we define

∑

j

φ(i, j, y) =
∑

j

χ(i, j) exp
(
g(i, j) + h(i)′y − 1

2y
′K(i)y

)

= exp
(
h(i)′y − 1

2y
′K(i)y

)
×
∑

j

χ(i, j) exp g(i, j)

Hence

ĝ(i) = log
∑

j:χ(i,j)=1

exp g(i, j), ĥ(i) = h(i), K̂(i) = K(i).

If h or K depends on j, we need to perform “weak marginalization”, which we discuss next.

Weak marginalization

CG potentials are not closed under addition. For example, suppose i and j have K possible values each, so

φ(y, i, j) is a mixture of K2 Gaussians. When we marginalize out j, we are still left with a mixture of K2

Gaussians: ∑

j

φ(x, i, j;µi,j ,Σi,j) ∝
∑

j

φ(x, i;µi,j ,Σi,j)

This cannot be simplified any further, and must be kept as a list of terms. If this is then multiplied by

another mixture of K Gaussians, we end up with K3 terms. One way to stop this exponential explosion is

to “collapse” the mixture of K2 Gaussians to a mixture of K Gaussians. We would like to do this in an

optimal way, i.e., minimize the KL distance between the true distribution,
∑

j φ(x, j, i), and the approximate

distribution, φ̃(x, i), on a case by case basis (i.e., for each i). We can do this by moment matching (for each

i). This requires that we convert φ to moment form, and hence requires that K(i, j) be psd. We then proceed

as follows.

p̂i =
∑

j

pij

p̂i|j = pij/p̂i

µ̂i =
∑

j

µij p̂i|j

Σ̂i =
∑

j

Σij p̂i|j +
∑

j

(µij − µ̂i) (µij − µ̂i)
T
p̂i|j

If we use a strong junction tree (see Section B.3.6), then all marginalizations on the collect phase are

strong, hence we do not “inherit” any errors. Hence the above operation will give the “correct” mean and

variance. However, even though the first two moments are correct (and hence this is the optimal single Gaus-

sian approximation), they may not be meaningful if the posterior is multimodal. An (expensive) alternative

150



S1 S2 S3

X1 X2 X3

Figure B.17: A switching Markov chain. Square nodes are discrete, round nodes are continuous.

is to use computer algebra to compute the exact posterior symbolically [CGH97, Cur97]. (The paper [CF95],

whose title is ”Symbolic Probabilistic Inference with both Discrete and Continuous Variables”, sounds like

it’s doing this, but in fact SPI is just another name for the variable elimination algorithm, which is numerical.)

Note also that a special case of these rules were derived for Pearl’s polytree algorithm in [DM95].

Computational complexity of exact CG inference

[LSK01] prove that inference in CG networks is NP-hard, even if the structure is a (poly)tree, such as the one

in Figure B.17. The proof is by reduction from subset sum, but the intuition is as follows: the prior P (X1) is

a mixture of K Gaussians, depending on S1; when we marginalize out S1, we are still left with a mixture of

K Gaussians; each one of these gets “passed through” K different matrices, depending on the value of S2,

resulting in a mixture of K2 Gaussians, etc; in general, the belief state at time t is a mixture of K t Gaussians.

The problem above arose because we used a strong jtree. This requires us to eliminate all the discrete

nodes before any of the continuous nodes; hence we are forced to form one clique which contains all the

discrete nodes.5 Unfortunately, in the case of hybrid DBNs, the need to eliminate all the continuous nodes

before their discrete ancestors clashes with our desire to eliminate all the nodes in slice t before we eliminate

any in slice t+1. Hence it is common to remove the strong triangulation requirement, resulting in the jtree in

Figure 4.13. In this case, both the collect (forwards) and the distribute (backwards) passes will involve weak

marginalization. This is equivalent to the standard moment-matching approximation for filtering in switching

Kalman filter models (see e.g., [TSM85, BSL93, Kim94, WH97]). We discuss how to improve on this using

expectation propagation in Section B.7.2.

Numerically stable CG inference

The scheme outlined above, whether exact (using a strong jtree) or approximate (using a regular jtree or even

an untriangulated graph), is subject to numerical errors because of the need to convert between canonical and

moment form. In addition, the fact that we represent initial clique potentials in canonical form means we

cannot use deterministic linear CPDs (with Σ = 0), which can be useful for some models. A solution to both

of these problems is proposed in [LJ01]. Unfortunately, the incorporation of evidence is quite different from

the above framework, and requires fairly significant changes to the architecture.

B.5.3 Arbitrary CPDs

Exact inference algorithms have (so far) only been derived for networks which satisfy the following restric-

tions: all hidden nodes must be discrete with discrete parents, or have conditionally linear Gaussian (CLG)

CPDs (which of course includes as special cases linear Gaussian and unconditional Gaussian distributions).

Observed nodes may have any distribution if all their parents are discrete or observed, but must have have

CLG CPDs if they have any hidden continuous parents.

These restrictions rule out many combinations, but a particularly useful one would be discrete nodes

with hidden continuous parents (e.g., using a softmax CPD); this can be used to model switching/threshold

behavior as well as for dimensionality reduction of discrete data [Tip98]. I proposed a variational approxima-

tion for this case in [Mur99], based on [JJ00]; [Wie00] extended this to a mixture variational approximation.

[LSK01] proposed a hybrid jtree/numerical integration algorithm for this problem.

5For example, consider Figure B.17. With the elimination ordering X1, . . . , XT , S1, . . . , ST , the cliques are

{S1, S2, X1, X2}, . . . , {S1:t, Xt−1, Xt}, . . . , {S1:T , XT−1, XT }.
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X1 X2 X3 X4

Y1 Y2 Y3 Y

X1 X2 X3 X4

Y1 Y2

Y

(a) (b)

Figure B.18: A noisy-OR CPD for P (Y |X1:4) represented in a more computationally revealing form. (a)

The temporal transformation. (b) Parent divorcing.

In general, the current state of the art for general continuous CPDs is to use sampling methods (see Sec-

tion B.7.4). (Of course, it is always possible to discretize all the continuous variables, or to apply numerical

integration, but such approaches usually suffer from the curse of dimensionality.)

B.6 Speeding up exact discrete inference

There are at least three kinds of indepencies we can exploit to speed up exact inference. The first is conditional

independence, which is reflected in the graph structure; we have already discussed how to exploit this. The

second is causal independence (e.g., noisy-OR), and the third is context specific independence (CSI). We

discuss these, and other tricks, below.

B.6.1 Exploiting causal independence

CPDs with causal independence were introduced in Section A.3.2. The canonical example is noisy-OR.

Pearl [Pea88] showed how to exploit the structure of the noisy-OR CPD to compute the λ and π messages

in time linear in the number of parents; [ZP96, RD98] showed how to exploit it in variable elimination, and

[Hec89] showed how to exploit in BN20 (binary node 2-level noisy-OR) networks such as QMR-DT using

the Quickscore algorithm.

To exploit causal independence in the jtree algorithm, we have to make graphically explicit the local

conditional independencies which are “hidden” inside the CPD. The two standard techniques for this are the

temporal transformation [Hec93, HB94] and parent divorcing [OKJ+89]: see Figure B.18. We introduce

extra hidden nodes Yi which accumulate a partial-OR of previous parents. In general, to benefit from such a

transformation, we must eliminate parents before children, otherwise we end up creating a clique out of the

original family. However, sometimes this is not the best ordering. See [RD98] for a discussion of this point;

see also [ZY97, MD99].

Interestingly, it is not always possible to exploit causal independence if we are doing max-product

(Viterbi), as opposed to sum-product, because we must always sum out the dummy hidden nodes; how-

ever, the max and sum operators do not commute, so this imposes a restriction on the possible orderings (c.f.,

Section B.3.6) which can eliminate any potential gains.

B.6.2 Exploiting context specific independence (CSI)

CPDs with CSI were introduced in Section A.3.2. The canonical example is a tree-CPD. Such CPDs can

be exploited for inference by the jtree algorithm using a network transformation [BFGK96], as illustrated

in Figure B.19. This is analogous to the transformations introduced to exploit causal independence (see

Section B.6.1). More aggressive optimizations are possible if we use the variable elimination algorithm

[Zha98b, ZP99]. A way of exploiting CSI in the jtree algorithm is discussed in [Pfe01].

Tree-CPDs have been widely used for many years and are especially popular in the decision making

community, e.g., see [BDG01] for a review of the work on factored Markov decision processes (MDPs).

[Kim01, ch5] discusses how to use trees to do “structured linear algebra”. Recently the MDP community

has started to investigate algebraic decision diagrams (ADDs) [BFG+93], which are very computationally
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X1 X2 X3 X4

Y1 X5 Y2

Y

Figure B.19: A tree-structured CPD for P (Y |X1:5) represented in a more computationally useful form. Let

all nodes be binary for simplicity. We assume Y is conditionally independent of X3:4 given that X5 = 1,

i.e., P (Y |X1:4,X5 = 1) = P (Y1|X1,X2) = f(Y,X1,X2). Similarly, assume P (Y |X1:4,X5 = 2) =
P (Y2|X3,X4) = g(Y,X3,X4). Hence X5 is a switching parent: P (Y |Y1, Y2,X5 = i) = δ(Y, Yi). This

tree requires 23 parameters, whereas a table would require 25; furthermore, the clique size is reduced from 6

to 4. Obviously the benefits are (potentially) greater for nodes with more parents and for nodes with bigger

domains.

efficient ways of representing and manipulating real-valued functions of binary variables. These are more

efficient than trees because they permit sharing of substructure; just as important, there is a fast, freely-

available program for manipulating them called CUDD.6 ADDs have also been used for speeding up exact

inference in discrete Bayes nets [NWJK00].

B.6.3 Exploiting deterministic CPDs

Deterministic discrete CPDs are quite common, as we saw in the HHMM models in Chapter 2. (Multiplexer

nodes are also deterministic.) This means the resulting CPD has lots of zeros. The technique of “zero

compression” removes 0s from the potentials so that multiplication and marginalization can be performed

more efficiently, without any loss in accuracy [JA90, HD96].

[Zwe98] develops a technique for exploiting deterministic CPDs in Pearl’s directed message passing

algorithm on a jtree. Specifically, he requires the jtree satisfy what he calls IRP (the immediate resolution

property), which says that, in a preorder traversal of the tree (root to leaves), the first time a deterministic

node appears in a clique, its parents must also be present. This can be ensured by eliminating parents before

children, i.e., in some total ordering of the DAG: see Section B.3.6. The advantage of this is that it is possible

to detect which elements of P (Cc|Cp) will be zero, where Cc is the child clique and Cp is its parent (one

or the other of these can be separators). It is not clear if this technique is relevant to the undirected form of

message passing, which does not require computation of terms like P (Cc|Cp). In particular, it seems that

using sparse potentials should achieve the same effect.

B.6.4 Exploiting the evidence

Sometimes, with deterministic CPDs, evidence on the child or one or more parents can render the remaining

family members “effectively observed”, e.g., in an OR-gate, if the child is off, all the parents must be off, or

if any of the parents is on, the child must be on. Such constraints can be exploited by running arc consistency

before probabilistic message passing, to reduce the effective domain size of each node. This technique is

widely used in genetic linkage analysis [FGL00].

B.6.5 Being lazy

In general there is a tradeoff between being lazy, i.e., waiting until the query, evidence, structure and param-

eters have all been specified, and being eager, i.e., precomputing stuff as soon as possible, so the cost can be

amortized across many future operations (e.g., we would not want to create a jtree from scratch every time

the evidence or query changed). Usually the jtree is constructed based only on the graph structure. However,

by constructing the jtree later in the pipeline, we can avail of the following kinds of information:

6http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html
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• If we know how many values each node can take on, we know how “heavy” the cliques will be; this

will affect the search for the elimination ordering.

• If we know what kinds of CPD each node has, we can perform network transformations if necessary.

Also, we know if we need to construct a strong jtree or not.

• If we know which nodes will be observed, it will affect how many values each node can have, the kinds

of CPDs it can support, whether we need to build a strong jtree, etc.

• If we know the parameter values, we might be able to perform optimizations such as zero compression.

• If we know which nodes will be queried and which nodes will be observed, we can figure which nodes

are relevant for answering the query.

• If we know the values of the evidence nodes, we might be able to do some pre-processing (e.g., con-

straint satisfaction) before running probabilistic inference.

Most inference routines choose an elimination ordering based on the first two or three pieces of in-

formation. Variable elimination can easily exploit the remaining information, as can lazy Hugin [MJ99].

Query-DAGs [DP97] are precompiled structures for answering specific queries, and can be highly optimized.

B.7 Approximate inference

Exact inference in discrete networks is exponential in the size of the largest clique. The techniques in Sec-

tion B.6 can help for certain networks, but are generally no use for large structured networks such as grids.

(The max clique for an N = n×n grid has size O(
√
N).) In the worsr case, exact inference is exponentially

hard (in fact exact inference is known to be #P-hard, i.e., strictly harder than NP-hard [DL93]). We therefore

need to resort to approximations.

Even if the graph is tree structured, exact inference in networks with hidden continuous variables is

only possible in very restricted circumstances, as mentioned in Section B.5.3. We therefore need to resort to

approximations in this case, too.

Approximate inference is a huge subject. In this section, I concentrate on methods that are very similar

(algorithmically speaking) to the exact message passing schemes we have just discussed; this makes them

efficient and easy to implement. For completeness, I briefly mention some other approaches at the end.

B.7.1 Loopy belief propagation (LBP)

Belief propagation is a way of computing exact marginal posterior probabilities in graphs with no undirected

cycles (loops); essentially it generalises the forwards-backwards algorithm to trees (see Section B.4). To be

sure of getting exact results, we must convert a graph with loops into a junction tree (jtree) (see Section B.3),

and run belief propagation on the resulting jtree. Unfortunately, the nodes in the jtree (which are cliques in

the original graph) may be exponentially large, making this procedure prohibitively slow.

One natural approximation, first suggested in [Pea88], is to apply belief propagation to the original

graph, even if it has loops; this is often called “loopy belief propagation” (LBP). In principle, this runs the

risk of double counting information, and of either not converging or of converging to the wrong answer.

However, in practice the method often works surprisingly well. The most important success story has been

decoding messages sent over noisy channels at rates near to the Shannon limit (see [MMC98] and references

therein), but the technique has also been succesfully applied to general Bayes nets [MWJ99], 2D lattice

MRFs [FPC00, Wei01], etc. Various improvements to the algorithm have been made, including versions that

always converge (e.g., [Yui00, WT01]) and versions that yield higher accuracy by considering embedded

trees [WJW01] or higher-order interactions (beyond pairwise) [YFW01] (the Kikuchi method).

A number of theoretical results have now been proved about LBP, explaining why it gives exact answers

for networks in which all nodes are Gaussian [WF99], for networks in which there is only a single loop

[Wei00], and for general networks but using the max-product (Viterbi) version instead of the sum-product

version of the algorithm [FW00]. Connections to variational methods have also been made [WT02, TJ02]. In
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general, however, all we can say is that, if the algorithm converges, it will reach a stationary point (in practice,

usually a local minimum) of the Bethe free energy [YFW00]. (This ensures things are locally, but perhaps

not globally, consistent.)

The LBP algorithm

To apply LBP to a Bayes net, we can use Pearl’s formulation in terms of λ and π messages. But how do

we apply LBP to an MRF? After all, the nodes do not have local terms associated with them. For pairwise

MRFs, it is simple to formulate the message passing rules in terms of matrix-vector multiplication [Wei00];

the pairwise Gaussian case is also easy [WF99]. Any MRF with potentials defined on larger sets of nodes can

be converted into a pairwise MRF by creating mega-nodes [WF99], but this is not always desirable, since the

state-space of the mega-nodes will be much larger, and hence computing the messages may be exponentially

slower. It is possible to derive the rules for arbitrary MRFs, but they are a bit messy. Besides, we would like

to use the same code for Bayes nets and MRFs. We therefore convert both BNs and MRFs to factor graphs

(see Section A.4). We now derive the LBP algorithm for factor graphs (fgraphs).

The basic “rules” for message passing in an fgraph are as follows. Each variable node x sends a message

to each neighboring factor node f of the form

µx→f (x) =
∏

g 6=f

µg→x(x)

and each factor node f sends a message to each neighboring variable node x of the form

µf→x(x) =
∑

u\x

f(u)
∏

y 6=x

µy→f (y)

where we have assumed u is the domain of f . Obviously we could update all nodes in parallel, but in

Figure B.20, I give a more efficient serial updating scheme. If the fgraph is tree structured, one forwards

and one backwards sweep suffices to compute the exact marginals at every node. The serial protocol uses

an arbitrary, but fixed, order. For chains, the “natural” ordering is left-to-right, for trees it is leaves-to-root

(pre-order), and for DAGs, it is a topological ordering. (Undirected graphs don’t have a natural ordering,

so we can pick any one.) Each factor node divides its neighboring variables into its predecessors (lower in

the ordering), and its successors (higher in the ordering). On the forwards sweep, a node combines all the

incoming messages from its predecessors, and puts a message on its out arcs to each of its successors. On the

backwards sweep, a node combines all its incoming messages from its successors, and puts a message on its

out arcs to each of its predecessors.

Damping

LBP can result in posterior “marginals” that oscillate. Previous experience [MWJ99] has shown that one

effective solution to this problem is to only update the messages “partially” towards their new value at each

iteration. That is, we use a convex combination

(1−m)µt +mµt−1

of the new message and its previous value, where 0 ≤ m ≤ 1 is a “momentum” term and µ represents a

message. m = 0 corresponds to the usual LBP algorithm; m = 1 corresponds to no updating at all. It is

easy to see that fixed points of this modified algorithm are also fixed points of the original system (since if

µt = µt−1 = µ, then (1−m)µt +mµt−1 = µ).

If (damped) LBP does not converge, we can use one of several alternative algorithms that directly min-

imizes the Bethe free energy and which always converge [WT01]. However, empirically it has been found

that in such cases, the accuracy of the answers is poor, i.e., oscillation seems to be a sign that the Bethe/LBP

approximation is a bad one [WT02].
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function [φ, µ] = BP-fgraph(F, order,max-iter, tol)
iter = 1

converged = false

initialize: φj =
∏

i∈ass(j) Fi, φx = 1, µf→x = 1, µx→x = 1

while (not converged) and (iter ≤ max-iter)

[φ, µ] = sweep(φ, µ, order)
[φ, µ] = sweep(φ, µ, reverse(order))
converged = test-convergence(φ, µ, tol)

iter = iter + 1

function [φ, µ] = sweep(φold, µold, order)
for each factor f in order

φf = φold
f

for each variable x in pred(f , order)

µx→f = (φold
x )/(µold

f→x)

φf = φf × (µx→f )/(µold
x→f )

for each variable x in succ(f ,order)

µf→x = (φf ↓ x)/(µold
x→f )

φx = φold
x × (µf→x)/(µold

f→x)

Figure B.20: Pseudo-code for belief propagation on a factor graph using a serial updating protocol.

Efficient computation of messages

Computing a message from a factor to a variable takes O(KFin) time, where K is the number of discrete

values a node can take on, and Fin is the fan-in of the factor (one plus the number of parents of a node in the

case of a BN, or the number of terms in the clique potential in the case of an MRF). It is sometimes claimed

(e.g., [Bar01]) that undirected message passing is therefore more efficient, but in fact it has exactly the same

time complexity: when we convert the Bayes net to an MRF, we need to moralize the parents, creating a

clique of size KFin+1. In general, message passing with tabular representations of CPDs/potentials always

takes time exponential in the clique size.

[Pea88] shows how to exploit the structure of the noisy-OR CPD to compute the λ and π messages in

time linear in the number of parents, instead of exponential. This method can be generalized to any CPD

that enjoys the property of “causal independence” [RD98], including multiplexer nodes. In the fgraph con-

text, this means that certain kinds of factor nodes will have specialized “methods” for computing messages;

furthermore, there will be an asymmetry between messages sent to children and message sent to parents.

[Bar01] shows how to compute the messages for any CPD which is a linear function of its parents using a

Fourier transform, which can sometimes be approximated using saddle point techniques.

If the factor is a mixture of Gaussians, we may have to use weak marginalization (see Section B.5.2)

when computing the message.

If the fgraph was derived from a jtree, the cost of computing a message is O(Kw∗

) in the worst case,

where w∗ is the induced width of the graph (i.e., maximal clique size). Furthermore, since potentials (factors)

may be products of many different types of CPDs, it is much harder to exploit local structure, unless it is

exposed graphically (see Section B.6.2).

LBP on a jtree

If the fgraph is a tree, LBP will give the exact answers. Any graph can be converted to a (junction) tree, as

we discussed in Section B.3. If we could convert this jtree to an fgraph and run LBP, we would get exact

answers. This would allow us to use a single inference algorithm (shown in Figure B.20) for both exact and

approximate inference. We can convert a jtree to an fgraph by making the following correspondence: the
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factors correspond to cliques and the variables correspond to separators.7

In the case of a jtree, a separator (variable) is always connected to exactly two cliques (factors). This

means we can simplify the algorithm. For example, suppose j is a variable node (separator) and i and k
are neighboring factors (cliques), The variable node (separator) computes its product of incoming messages,

φj = µi→j × µk→j , and then sends out a new message, µj→k = φj/µk→j = µi→j . Factor node (clique)

k then absorbs this message. This is clearly equivalent to factor node (clique) i sending µi→j to factor node

(clique) k directly. Hence it is sufficient for cliques to send messages to each other directly: separators do not

need to send messages; instead, they simply store the potentials (messages). This simplification results in the

JLO algorithm in Figure B.13.

B.7.2 Expectation propagation (EP)

Expectation propagation (EP) [Min01] is like belief propagation except it requires that the posteriors (beliefs)

on each variable have a restricted form. Specifically, the posterior must be in the exponential family, i.e., of

the form q(θ) ∝ exp(γ′f(θ)), where θ is a variable. This ensures that beliefs can be represented using a fixed

number of sufficient statistics. We choose the parameters of the beliefs s.t.

γ∗ = arg min
γ
D(p(θ)||qγ(θ))

where

p(θ) =
qprior(θ)× t(θ)

Z

is the exact posterior, Z =
∫

θ
qprior(θ) × t(θ) is the exact normalizing constant, t(θ) is the likelihood term

(message coming in from a factor) and qγ(θ) is the approximate posterior. This can be solved by moment

matching. When we combine sequential Bayesian updating with this approximation (projection) after every

update step, the result is called Assumed Density Filtering (ADF), or the probabilistic editor [SM80]. It is

clear that the BK algorithm (see Section 4.2.1) is an example of ADF, as is the standard GBP algorithm for

switching Kalman filters (see Section 4.3).

One drawback with ADF is its dependence on the order in which the updates are performed. EP, which

is a batch algorithm, reduces the sensitivity to ordering by iterating. Intuitively, this allows EP to go back and

reoptimize each belief in the revised context of all the other updated beliefs. This requires that we store the

messages so their effect can be later “undone” by division. In EP, rather than approximating the messages

directly (which is hard, since they represent conditional likelihoods), we approximate the posterior using

moment matching, and then infer the corresponding equivalent message. We explain this below.

To explain the difference between EP and BP procedurally, consider the simple factor graph shown in

Figure B.22. We send a message from f to x, and then update x’s belief, as follows:

φprior
x = φx/µ

old
f→x = µold

g→x

φprior
f = φf/µ

old
x→f = f(x, y)µold

y→f (y)

µf→x = φprior
f ↓ x =

∫

y

f(x, y)µold
y→f (y)

φx = φprior
x × µf→x = µold

g→x × µf→x

The terms after the second equality on each line are for this particular example.

In EP, we compute the approximate posterior φx first, and then derive the message µf→x, which, had it

been combined with the prior φprior
x , would result in the same approximate posterior:

φprior
x = φold

x /µold
f→x

φprior
f = φf/µ

old
x→f

(φx, Z) = ADF (φprior
x × φprior

f ↓ x)
µf→x = (Zφx)/(φprior

x )

7As far as I know, this is a novel observation.
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function [φ, µ] = sweep(φold, µold, order)
for each factor f in order

φf = φold
f

for each variable x in pred(f , order)

µx→f = (φold
x )/(µold

f→x)

φf = φf × (µx→f )/(µold
x→f )

for each variable x in succ(f ,order)

φprior
x = φold

x /µold
f→x

φprior
f = φf/µ

old
x→f

(φx, Z) = ADF (φprior
x × φprior

f ↓ x)

µf→x = (Zφx)/(φprior
x )

Figure B.21: Pseudo-code for expectation propagation on a factor graph using a serial updating protocol.

This sweep function is called iteratively, as in Figure B.20.

y x

h(y) f(x, y) g(x)

Figure B.22: A simple factor graph. Square nodes are factors, round nodes are variables.

where (q, Z) = ADF (p) produces the best approximation q to p within a specified family of distributions.

The code for EP is shown in Figure B.21.

For example, consider the switching Markov chain in Figure B.17. The factor graph for the first few

slices is shown in Figure B.22, where the variables are the separators, y = (S1,X1), x = (S2,X2), etc.,

and the factors are the clique potentials, h(y) = P (S1)P (X1|S1), f(x, y) = P (S2|S1)P (X2|X1, S1), etc.

When f sends a message to x, it needs to compute

φx(X2, S2) = ADF

(
∫

X1

∑

S1

φprior
x (X2, S2)× φprior

f (X2, S2,X1, S1)

)

which can be done by weak marginalization (moment matching for a Gaussian mixture).

In the special case in which we only have a single variable node (as Minka typically assumes), things

simplify, since the factor nodes do not contain any other variables, (e.g., φprior
f = f(x), as opposed to

φprior
f = f(x, y) × µy→f (y)), and hence the projection onto x is unnecessary. In this case, the ADF step

simplifies to

(φx, Z) = ADF (φprior
x × f(x))

To map this to Minka’s notation, use: x = θ, φx = q(θ), and f(x) = ti(θ).
We now discuss how to implement (q(θ), Z) = ADF (qprior(θ)×t(θ)) for different kinds of distribution

q(θ) and likelihood terms t(θ).

EP with a Gaussian posterior

We can compute the parameters of an approximate Gaussian posterior q(θ), as follows:

mpost = Ep[θ] = m+ V∇m

Vpost = Ep[θθ
′]− [Epθ][Epθ]

′ = V − V (∇m∇′
m − 2∇V )V

where m = mprior, V = Vprior, ∇m = ∇m logZ(m,V ), ∇V = ∇V logZ(m,V ) and Z(m,V ) =
∫

θ
t(θ)qprior(θ;m,V ) [Min01, p15,p45]. These equations are properties of the Gaussian distribution and
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hold for any ti(θ). Minka works the details out for the example of a likelihood term that is a mixture of

Gaussians (modelling a point buried in clutter):

ti(θ) = (1− w)N (xi; θ, I) + wN (xi; 0, 10I)

for a fixed, known w.

Once we have approximated the beliefs, we can compute the new message by division. In the case of

Gaussians, the easiest way to do this is to convert the beliefs to canonical form, and then divide. Note that this

division might result in a negative or infinite variance term (since division in canonical form is implemented

by subtracting precision matrices). A negative variance represents a function that curves upwards (like a

U), rather than the usual downward (bell-shaped) curve of a Gaussian; an infinite variance corresponds to

a flat (uniform) distribution; zero variance corresponds to a constant. It is okay if messages have negative

variance, but a belief with a negative variance is a problem. In this case, one crude approximation is to to

replace a negative variance with an infinite variance, which means the absorbing variable will ignore this

message (since it is completely uncertain). This will always result in convergence, but [Min01, p22] says that

“when EP does converge with negative vi’s, the result is always better than having forced vi > 0” (where the

variance is viI in the case of a spherical Gaussian).

EP with a Dirichlet posterior

It is possible to use EP to compute a Dirichlet approximation to P (θ|y) even when the likelihood functions

have the form of a mixture, P (yi|θ) =
∑

z P (z|θ)P (yi|z). This has been applied to a model in which the y’s

represent words, the z’s represent latent topics, and θ is a distribution over topics for a particular document

[ML02].

EP with mixed types of posterior

It is not clear how to use EP for arbitrary factor graphs, where the belief on each factor (and hence the

corresponding outgoing messages) might be a different member of the exponential family. This is a subject

for future research.

EP with a fully factorized posterior is LBP

Minka points out that LBP is a special case of EP when we make the approximation that the posterior is fully

factorized: q(x) =
∏N

i=1 qi(xi). To see this, consider combining this factored prior with a term ti(x) =
P (Xi|Pa(Xi)) to yield to posterior p(x). We now seek the distribution q s.t., D(p(x)||q(x)) is minimized,

subject to the constraint that q be fully factorized. This means

qi(xi) = p(xi) =
∑

x\xi

p(x)

i.e., the marginals must match. These are expectation constraints:

Eq[δ(xi − v)] = Ep[δ(xi, v)]

for all values v and all nodes i. This corresponds to running LBP on a factor graph with no need for the ADF

step to approximate messages.

B.7.3 Variational methods

The simplest example of a variational method is the mean-field approximation, which, roughly speaking,

exploits the law of large numbers to approximate large sums of random variables by their means. In particular,

we essentially decouple all the nodes, and introduce a new parameter, called a variational parameter, for each

node, and iteratively update these parameters so as to minimize the cross-entropy (KL distance) between the

approximate and true probability distributions, i.e., we seek to minimize D(q||p), where q is the approximate
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distribution. (EP, by contrast, (locally) minimizes D(p||q).) Updating the variational parameters becomes a

proxy for inference. The mean-field approximation produces a lower bound on the likelihood.

It is possible to combine variational and exact inference; this is called a structured variational approxi-

mation. See [JGJS98, Jaa01] for good general tutorials.

B.7.4 Sampling methods

Stochastic (sampling) algorithms for (static) Bayesian networks are usually based on importance sampling

(likelihood weighting) or Monte Carlo Markov Chain (MCMC) (see e.g., [Nea93, GRS96, Mac98] for good

introductions), which includes Gibbs sampling and simulated annealing as special cases.

Sampling algorithms have several advantages over deterministic approximation algorithms: they are

easy to implement, they work on almost any kind of model (all kinds of CPDs can be mixed together, the

state-space can have variable size, the model structure can change), they can convert heuristics into provably

correct algorithms by using them as proposal distributions, and, in the limit of an infinite number of samples,

they are guaranteed to give the exact answer.

The main disadvantage of sampling algorithms is speed: they are often significantly slower than de-

terministic methods, often making them unsuitable for large models and/or large data sets. However, it is

possible to combine exact and stochastic inference. The basic idea is to “integrate out” some of the variables

using exact inference, and apply sampling to the remaining ones; this is called Rao-Blackwellisation [CR96].

B.7.5 Other approaches

There are a variety of other approaches we have not mentioned, most of which are designed for discrete

state-spaces.8

• Truncating small numbers: simply force small numbers in the clique potentials to zero, and then use

zero-compression. If done carefully, the overall error introduced by this procedure can be bounded

(and computed) [JA90].

• Structural simplifications: make smaller cliques by removing some of the edges from the triangulated

graph [Kja94]; again the error can be bounded. A very similar technique is called “mini buckets”

[Dec98], but has no formal guarantees.

• Bounded cutset conditioning. Instead of instantiating exponentially many values of the cutset, sim-

ple instantiate a few of them [HSC88, Dar95]. The error introduced by this method can sometimes

be bounded. Alternatively, we can sample the cutsets jointly, a technique known as blocking Gibbs

sampling [JKK95].

8The following web page contains a list of approximate inference methods c. 1996.

camis.stanford.edu/people/pradhan/approx.html
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Appendix C

Graphical models: learning

C.1 Introduction

There are many different kinds of learning. We can distinguish between the following “axes”:

• Parameter learning or structure learning. For linear-Gaussian models, these are more or less the same

thing (see Section 2.4.2), since 0 weights in a regression matrix correspond to absent directed edges,

and 0 weights in a precision matrix correspond to absent undirected edges. For HMMs, “structure

learning” usually refers to learning the structure of the transition matrix, i.e., identifying the 0s in

the CPD for P (Xt|Xt−1). We consider this parameter learning with a sparseness prior, c.f., entropic

learning [Bra99a]. In general, structure learning refers to learning the graph topology no matter what

parameterization is used. Structure learning is often called model selection.

• Fully observed or partially observed. Partially observed refers to the case where the values of some of

the nodes in some of the cases are unknown. This may be because some data is missing, or because

some nodes are latent/ hidden. Learning in the partially observed case is much harder; the likelihood

surface is multimodal, so one usually has to settle for a locally optimal solution, obtained using EM or

gradient methods.

• Frequentist or Bayesian. A frequentist tries to learn a single best parameter/ model. In the case of

parameters, this can either be the maximum likelihood (ML) or the maximum a posteriori (MAP)

estimate. In the case of structure, it must be a MAP estimate, since the ML estimate would be the

fully connected graph. By contrast, a Bayesian tries to learn a distribution over parameters/ models.

This gives one some idea of confidence in one’s estimate, and allows for predictive techniques such as

Bayesian model averaging. Although more elegant, Bayesian solutions are usually more expensive to

obtain.

• Directed or undirected model. It is easy to do parameter learning in the fully observed case for directed

models (BNs), because the problem decomposes into a set of local problems, one per CPD; in particu-

lar, inference is not required. However, parameter learning for undirected models (MRFs), even in the

fully observed case, is hard, because the normalizing term Z couples all the parameters together; in

particular, inference is required. (Of course, parameter learning in the partially observed case is hard in

both models.) Conversely, structure learning in the directed case is harder than in the undirected case,

because one needs to worry about avoiding directed cycles, and the fact that many directed graphs may

be Markov equivalent, i.e., encode the same conditional independencies.

• Static or dynamic model. Most techniques designed for learning static graphical models also apply

to learning dynamic graphical models (DBNs and dynamic chain graphs), but not vice versa. In this

chapter, we only talk about general techniques; we reserve discussion of DBN-specific techniques to

Chapter 6.
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• Offline or online. Offline learning refers to estimating the parameters/ structure given a fixed batch of

data. Online learning refers to sequentially updating an estimate of the parameters/ structure as each

data point arrives. (Bayesian methods are naturally suited to online learning.) Note that one can learn

a static model online and a dynamic model offline; these are orthogonal issues. If the training set is

huge, online learning might be more efficient than offline learning. Often one uses a compromise, and

processes “mini batches”, i.e., sets of training cases at a time.

• Discriminative or not. Discriminative training is very useful when the model is going to be used for

classification purposes [NJ02]. In this case, it is not so important that each model be able to explain/

generate all of the data; it only matters that the “true” model gets higher likelihood than the rival models.

Hence it is more important to focus on the differences in the data from each class than to focus on all

of the characteristics of the data. Typically discriminative training requries that the models for each

class all be trained simultaneously (because of the sum-to-one constraint), which is often intractable.

Various approximate techniques have been developed. Note that discriminative training can be applied

to parameter and/or structure learning.

• Active or passive. In supervised learning, active learning means choosing which inputs you would like

to see output labels for, either by selecting from a pool of examples, or by asking arbitrary questions

from an “oracle” (teacher). In unsupervised learning, active learning means choosing where in the

sample space the training data is drawn from; usually the learner has some control over where it is in

state-space, e.g., in reinforcement learning. The control case is made harder because there is usually

some cost involved in moving to unexplored parts of the state space; this gives rise to the exploration-

exploitation tradeoff. (The optimal Bayesian solution to this problem, for the case of discrete MDPs, is

discussed in [Duf02].) In the context of causal models, active learning means choosing which “perfect

interventions” [Pea00, SGS00] to perform. (A perfect intervention corresponds to setting a node to a

specific value, and then cutting all incoming links to that node, to stop information flowing upwards.1

A real-world example would be knocking out a gene.)

In this chapter, we focus on the following subset of the above topics: passive, non-discriminative, offline,

static, and directed. That leaves three variables: parameters or structure, full or partial observability, and

frequentist or Bayesian. For the cases that we will not focus on here, here are some pointers to relevant

papers or sections of this thesis.

• Discriminative parameter learning: [Jeb01] discuss maximum entropy discrimination for the exponen-

tial family, and reverse Jensen/EM to handle latent variables; [EL01] discuss the TM algorithm for

maximizing a conditional likelihood function from fully observed data; [RR01] discuss deterministic

annealing applied to discriminative training of HMMs.

• Discriminative structure learning: [Bil98, Bil00] learns the interconnectivity between observed nodes

in a DBN for isolated word speech recognition.

• Online parameter learning: see Sections 4.4.2 and C.4.5.

• Online structure learning: [FG97] discuss keeping a pool of candidate BN models, and updating it

sequentially.

• Dynamic models: see Chapter 6.

• Undirected parameter learning (using IPF, IIS and GIS, etc.): see e.g., [JP95, Ber, Jor02].

• Undirected structure learning: see e.g., [Edw00, DGJ01].

• Active learning of BN parameters: [TK00].

1For example, consider the 2 node BN where smoking→ yellow-fingers; if we observe yellow fingers, we may assume it is due to

nicotine, and infer that the person is a smoker; but if we paint someone’s fingers yellow, we are not licensed to make that inference, and

hence must sever the incoming links to the yellow node, to reflect the fact that we forced yellow to true, rather than observed that it was

true.
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• Active learning of BN structure: [TK01, Mur01a, SJ02].

Note that the case most relevant to an autonomous life-long learning agent is also the hardest: online,

active, discriminative, Bayesian structure learning of a dynamic chain-graph model in a partially observed

environment. We leave this case to future work.

C.2 Known structure, full observability, frequentist

We assume that the goal of learning in this case is to find the maximum likelihood estimates (MLEs) of the

parameters of each CPD, i.e., the parameter values which maximize the likelihood of the training data, which

contains M cases (assumed to be independent). The log-likelihood of the training set D = {D1, . . . ,DM}
is a sum of terms, one for each node:

L = log

M∏

m=1

Pr(Dm|G) =

n∑

i=1

M∑

m=1

logP (Xi|Pa(Xi),Dm)

where Pa(Xi) are the parents of Xi. We see that the log-likelihood scoring function decomposes into a series

of terms, one per node. (It is simple to modify the above to handle tied (shared) parameters: we simply pool

the data from all the nodes whose parameters are tied.)

All that remains is to specify how to estimate the parameters of each type of CPD given its local data

{Dm(Xi,Pa(Xi))}. (If the CPD is in the exponential family, this set can be summarized in terms of finite

(i.e., independent of M ) sufficient statistics:
∑

mDm(Xi,Pa(Xi)).) A huge arsenal of techniques from

supervised learning can be applied at this point, since we are just estimating a function from inputs (parent

values) to outputs (child probability distribution).

When we consider the case of parameter learning with partial observability, we will replace the sufficient

statistics with their expectation. Hence we phrase the results below in this more general way, in preparation

for EM.

C.2.1 Multinomial distributions

In the case of tabular CPDs, where we define θijk
def
=P (Xi = k|Pa(Xi) = j), the log-likelihood becomes

L =
∑

i

∑

m

log
∏

j,k

θ
Iijkm

ijk

=
∑

i

∑

m

∑

j,k

Iijkm log θijk

=
∑

ijk

Nijk log θijk (C.1)

where Iijkm
def
= I(Xi = k,Pa(Xi) = j|Dm) is 1 if the event (Xi = k,Pa(Xi) = j) occurs in case Dm, and

hence Nijk
def
=
∑

m I(Xi = k,Pa(Xi) = j|Dm) is the number of times the event (Xi = k,Pa(Xi) = j) was

seen in the training set. (For a Markov chain, this corresponds to counting transitions.) It is easy to show

(taking derivatives and using a Lagrange multiplier to ensure
∑

k θijk = 1 for all i, j) that the MLE is

θ̂ijk =
Nijk

∑

k′ Nijk′

(C.2)

C.2.2 Conditional linear Gaussian distributions

Now consider a conditional linear Gaussian CPD for node Y with continuous parent X and discrete parent

Q, i.e.,

p(y|x,Q = i) = c|Σi|−
1
2 exp

(
− 1

2 (y −Bix)
′Σ−1

i (y −Bix)
)
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where c = (2π)−d/2 is a constant and |y| = d. The j’th row of Bi is the regression vector for the j’th
component of y given that Q = i. To allow for an offset, we shall assume the last component of x is fixed to

1, and the last column of Bi is µi.

Special cases of this CPD occur in the following common models:

• Mixture of Gaussians. X does not exist, Q is hidden, and Y is observed. (The temporal version of this

is an HMM with Gaussian outputs: Q = Qt is the discrete hidden state, and Y = Yt is the Gaussian

observation.)

• Factor analysis. Q does not exist, Σ is assumed diagonal, X is hidden and Y is observed. (The

temporal version of this is the Kalman filter model; for the observation CPD, X = Xt and Y = Yt; for

the transition CPD, X = Xt−1 and Y = Xt, so X and Y will be hidden.)

• Mixture of factor analyzers [GH96a]. Σi is diagonal, Q and X are hidden, Y is observed. (The

temporal version of this is a switching Kalman filter; for the observation CPD, X = Xt, Q = Qt and

Y = Yt; for the transition CPD,X = Xt−1,Q = Qt and Y = Xt, so the whole family will be hidden.)

Since we are interested in estimating time-invariant dynamic models (such as Kalman filters models

whose parameters are tied across all time slices), we express all the estimates in terms of expected sufficient

statistics, whose size is independent of the number of samples (time steps). This is different from the usual

presentation, which states the formulas in terms of the raw data matrix.

The log-likelihood is

log

M∏

m=1

K∏

i=1

[Pr(ym|xm, Qm = i,Dm)]
qi

m

where the indicator variable qi
m = 1 if Q has value i in the m’th data case, and 0 otherwise. Since Q, X and

Y may all be unobserved, we compute the expected complete-data log likelihood as follows

L = − 1
2

∑

m

E

[
∑

i

qi
m log |Σi|+ qi

m(ym −Bixm)′Σ−1
i (ym −Bixm) | Dm

]

We note that

E[qi
mxmx

′
m|Dm] = E[qi

m|Dm]E[xmx
′
m|Qm = i,Dm]

def
=wi

m〈xmx
′
m〉i

where the posterior probabilities wi
m = Pr(Q = i|Dm) are weights, and 〈xmx

′
m〉i is a conditional second

moment.

Since a full covariance matrix has
d(d+1)

2 parameters, we are often interested in placing restrictions on

the form of this matrix. We consider the following kinds of restrictions.

• Σi is tied across all states, i.e., Σi = Σ for all i.

• Σi is diagonal.

• Σi is spherical (isotropic), i.e., Σi = σ2
i I .

It turns out that the ML estimate of a diagonal covariance matrix is the same as the ML estimate of the

full matrix, with the off-diagonal entries set to 0; hence we will not consider this case further. This leaves

us with four combinations: full or spherical, tied or not. In addition, it is useful to consider the special

case where there is no parent except the constant X = 1, so Bi = µi; this gives 8 formulas. These are

summarized in Table C.1. (These formulae are derived in Section C.11.) Although they look hairy, we would

like to emphasize the generality of these results: it subsumes the derivation of the M step for a large class of

popular models, including HMMs with (mixtures of) Gaussian outputs, (mixtures of) factor analysis models,

(switching) Kalman filter models, etc.

We can see from the table that we need the following expected sufficient statistics:

• ∑m wi
m,
∑

m wi
m〈ymy

′
m〉i

• If X exists:
∑

m wi
m〈xmy

′
m〉i,

∑

m wi
m〈xmx

′
m〉i.
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Eqn Cov. B/µ Tied Formula

1 Full B U Σi =
∑

m wi
m〈ymy′

m〉i∑
m wi

m
− Bi

∑
m wi

m〈xmy′
m〉i∑

m wi
m

2 Full B T Σ = 1
M

(∑

i

∑

m wi
m〈ymy

′
m〉i
)
− 1

M

(∑

iBi

∑

m wi
m〈xmy

′
m〉i
)

3 Full µ U Σi =
∑

m wi
m〈ymy′

m〉i∑
m wi

m
− µiµ

′
i

4 Full µ T Σ = 1
M

(∑

i

∑

m wi
m〈ymy

′
m〉i
)
− 1

M

(∑

i(
∑

m wi
m)µiµ

′
i

)

5 Sph. B U σ2
i = 1/d∑

m wi
m

Tr
[∑

m wi
m〈ymy

′
m〉i +

∑

m wi
mB

′
iBi〈xmx

′
m〉i

−2
∑

m wi
mBi〈xmy

′
m〉i
]

6 Sph. B T σ2 = 1
MdTr

[∑

i(
∑

m wi
m〈ymy

′
m〉i) +

∑

i(
∑

m wi
mB

′
iBi〈xmx

′
m〉i)

−2
∑

i(
∑

m wi
mBi〈xmy

′
m〉i)

]

7 Sph. µ U σ2
i = 1

d

(∑
m wi

m〈y′
mym〉i∑

m wi
m

− µ′
iµi

)

8 Sph. µ T σ2 = 1
Md

(∑

m wi
m〈y′mym〉i − (

∑

m wi
m)µ′

iµi

)

9 - B - Bi =
(∑

m wi
m〈ymx

′
m〉i
) (∑

m wi
m〈xmx

′
m〉i
)−1

10 - µ - µi =
∑

m wi
m〈ym〉i∑

m wi
m

Table C.1: Parameter estimation for a CLG CPD P (Y |X,Q = i) = N (Y ;BiX,Σi). The covariance matrix

can be full or spherical (sph.), tied (T) or untied (U), and the regression matrix can be a full matrix (B), or

just a mean column vector (µ) (if X = 1). M is the number of training cases, d is the dimensionality of Y .

• If X does not exist:
∑

m wi
m〈ym〉i.

• If X exists and Σi = σ2
i I:

∑

m wi
m(B′

iBi)〈xmx
′
m〉i,

∑

m wi
mBii〈xmy

′
m〉i.

Note that, if, as is commonly the case, Y is observed, we can make the following simplifications: 〈xmy
′
m〉i →

〈xm〉iy′m, 〈ymy
′
m〉i → ymy

′
m, and 〈y′mym〉i → y′mym.

C.2.3 Other CPDs

Noisy-OR One way to estimate these is to represent the CPDs as mini Bayes nets, as in Figure A.8. The

deterministic link from Ui to Y is of course fixed; the link from Xi to Ui is just a binomial (binary

multinomial) distribution, representing the “reliability” of the link; its parameters can be estimated

using EM [MH97] (we need EM since the Ui are hidden).

Trees MLEs of trees can be computed using the standard greedy tree-growing methods such as CART and

C4.5.

Softmax Parameter estimating for softmax CPDs can be done using the iteratively reweighted least squares

(IRLS) algorithm (see e.g., [JJ94b, App.A]), or gradient descent.

Feedforward neural networks Multilayer perceptrons can be fit using gradient descent (often called “back-

propagation” in this context; see e.g., [Bis95]).
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C.3 Known structure, full observability, Bayesian

If there are a small number of training cases compared to the number of parameters, we should use a prior to

regularize the problem. In this case, we call the estimates maximum a posterori (MAP) estimates, as opposed

to maximum likelihood estimates. Since the model is fully observable, the posterior over parameters will be

unimodal. If we use a conjugate prior, we can compute this posterior in closed form.

C.3.1 Multinomial distributions

For discrete nodes, it is very common to assume the local CPDs are multinomial, i.e., represented as a table

of the form Pr(Xi = k|Πi = j) = θijk, for k = 1, . . . , ri and j = 1, . . . , qi, where ri is the number of

values node i can take on, and qi =
∏

l∈Πi
rl is the number of values node i’s parents, Πi, can take on. These

parameters satisfy the constraints 0 ≤ θijk ≤ 1 and
∑

k θijk = 1.

Following common practice, we will make two assumptions. First, global parameter independence:

P (θ) =
∏n

i=1 P (θi), where θi = {θijk, j = 1, . . . , qi, k = 1, . . . , ri} are the parameters for node i. Second,

local parameter independence: P (θi) =
∏qi

j=1 θij , where θij = {θijk, k = 1, . . . , ri} are the parameters

for the j’th row of Xi’s table (i.e., parameters for the j’th instantiation of Xi’s parents). Given a factored

prior and complete data, the posterior over parameters will also be factored [SL90]. We will give the form of

this posterior below. (Note that, if we have missing data, the parameter posterior will no longer be factored.

Hence assuming parameter independence is equivalent to assuming that one’s prior knowledge was derived

from a fully observed “virtual database”.)

[GH97, RG01] prove that the assumptions of global and local parameter independence, plus an additional

assumption called likelihood equivalence2, imply that the prior must be Dirichlet. Fortunately, the Dirichlet

prior is the conjugate prior for the multinomial [Ber85], which makes analysis easier, as we will see below.

(For this reason, the Dirichlet is often used even if the assumption of likelihood equivalence is violated.)

Note that, in the case of binary nodes, the multinomial becomes the Bernoulli distribution, and the Dirichlet

becomes the Beta.

Given global and local independence, each CPD P (Xi|Ui = j) = θij is a multinomial random variable

with ri possible values. The Dirichlet prior, θij ∼ D(αij1, . . . , αi,j,ri
), is defined as

P (θij |αij) =

ri∏

k=1

θ
αijk−1
ijk × 1

B(αij1, . . . , αi,j,ri
)

The normalizing constant is the ri-dimensional Beta function

B(α1, . . . , αr) =
Γ(
∑

k αk)
∏r

k=1 Γ(αk)

where Γ(·) is the gamma function; for positive integers, Γ(n) = (n− 1)!.
The hyperparameters, αijk > 0, have a simple interpretation as pseudo counts. The quantity αijk − 1

represents the number of imaginary cases in which event (Xi = k,Πi = j) has already occured (in some

virtual prior database). Upon seeing a database D in which the event (Xi = k,Πi = j) occurs Nijk times,

the parameter posterior becomes

θij |D ∼ D(αij1 +Nij1, . . . , αi,j,ri
+Ni,j,ri

)

The posterior mean is

E[θijk|D] =
αijk +Nijk

∑ri

l=1 αijl +Nijl
(C.3)

and the posterior mode (MAP estimate) is

arg maxP [θijk|D] =
αijk +Nijk − 1

∑ri

l=1 αijl +Nijl − ri
(C.4)

2Two graph structures are likelihood equivalent if they assign the same marginal likelihood to data, i.e., P (D|G1) = P (D|G2).

This is weaker than the assumption of Markov (hypothesis) equivalence, which says two graphs are equivalent if they encode the same

set of conditional independence assumptions. Hypothesis equivalence is clearly violated if we adopt a causal interpretation of BNs. In

addition, likelihood equivalence is violated if we have interventional data. See [Hec95] for a discussion.
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and the predictive distribution is

P (x|θ) =

n∏

i=1

qi∏

j=1

∫ ri∏

k=1

θ
1ijk(x)
ijk P (θijk)dθijk

=

n∏

i=1

qi∏

j=1

ri∏

k=1

E(θijk)1ijk(x) (C.5)

where 1ijk(x) is an indicator function that is 1 if the event (Xi = k,Πi = j) occurs in case x, and is 0

otherwise.

To compute the marginal likelihood for a database ofM cases,D = (x1, . . . , xM ), we can use sequential

Bayesian updating [SL90]:

P (D|G) = P (x1|θ0)P (x2|θ0, x1) . . . P (xM |θ0, x1:M−1)

= P (x1|θ0)P (x2|θ1) . . . P (xM |θM−1)

where θ0 = α is our prior, and θt is the result of updating θt−1 with xt. ([HGC95] call P (D|G)P (G) the

Bayesian Dirichlet (BD) score for a model.)

Assessing Dirichlet priors

It is clearly impossible for the user to specify parametric priors for O(2n2

) graph structures. [HGC95] show

that, under some assumptions3, it is possible to derive the Dirichlet parameters for an arbitrary graph from a

single prior network, plus a confidence factor, α. Specifically, αijk = αP (Xi = k,Πi = j|Gc), where Gc is

the complete graph. When priors are derived in this manner, the BD score is called BDe (BD with likelihood

equivalence). Unfortunately, it might be difficult to parameterize the prior network (especially because of the

counterintuitive conditioning on Gc: see [HGC95] for a discussion). In addition, computing the parameter

priors for an arbitrary graph structure from such a prior network requires running an inference algorithm,

which can be slow. [SDLC93] suggest a similar way of computing Dirichlet priors from a prior network.

A much simpler alternative is to use a non-informative prior. A natural choice is αijk = 0, which

corresponds to maximum likelihood. (In the binary case, this is called Haldane’s prior.) However, this is an

improper prior. More importantly, this will cause the log-likelihood to explode if a future case contains an

event that was not seen in the training data.

If we set 0 < αijk < 1, we encourage the parameter values θijk to be near 0 or 1, thus encoding near-

deterministic distributions. This might be desirable in some domains. [Bra99a] explicitely encodes this bias

using an “entropic prior” of the form

P (θij) ∝ e−H(θij) =
∏

k

θ
θijk

ijk .

Unfortunately, the entropic prior is not a conjugate prior, which means we must use iterative techniques to

find the MAP estimate.

[CH92] suggest the uniform prior, αijk = 1. This is a non-informative prior since it does not affect the

posterior (although it does affect the marginal likelihood). Unfortunately, it is not entirely uninformative,

because it is not transformation invariant. The fully non-informative prior is called a Jeffrey’s prior. For the

special case of a binary root node (i.e., a node with no parents and a beta distribution), the Jeffrey’s prior is

just αijk = 1
2 . Computing a Jeffrey’s prior for an arbitrary BN is hard: see [KMS+98].

[Bun91] suggests the prior αijk = α/(riqi), where α is an equivalent sample size. This induces the

following distribution

P (Xi = k|Πi = j) = E[θijk] =
α/(riqi)

α/qi
=

1

ri

3The assumptions are global and local parameter independence, likelihood equivalence, parameter modularity and structural possibil-

ity. Parameter modularity says that P (θij) is the same for any two graph structures in which Xi has the same set of parents. Structural

possibility says that all complete (fully connected) graph structures are possible a priori.
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This is a special case of the BDe metric where the prior network assigns a uniform distribution to the joint

distribution; hence [HGC95] call this the BDeu metric. (Not surprisingly, experiments reported in [HGC95]

suggest that, for small databases, it is better to use the uninformative prior (BDeu metric) that an informative,

but incorrect, prior (BDe metric).)

A more sophisticated approach is to use a hierarchical prior, where we place a prior on the hyperparam-

eters themselves. For example, let αijk = αij0/ri for each i, j, where αij0 is the prior precision for αij .

αij0 is itself an r.v., and can be given e.g., a gamma distribution. Unfortunately, we can no longer compute

the marginal likelihood in closed form using such hierarchical priors, and must resort to sampling, as in

[GGT00, DF99]. A more efficient method, known as empirical Bayes or maximum likelihood type II, is to

estimate the hyperparameters from data: see [Min00b] for details.

C.3.2 Gaussian distributions

If P (Y ) is a Gaussian, then the ML estimates of µ and Σ are the sample mean and covariance of the obser-

vations:

Σ̂ML = E[Y Y ′] =
1

M

∑

m

ymy
′
m

A suitable prior is the Normal-Wishart [DeG70, Min00c]. In the special case of a zero-mean, diagonal

Wishart, this amounts to adding λi to the diagonal elements of the empirical covariance matrix:

Σ̂MAP =
1

M

(

M Σ̂ML + Λ
)

where Λ = diag(λ1, . . . , λd).

C.3.3 Conditional linear Gaussian distributions

See [Min00a] for an up-to-date treatment of multivariate Bayesian linear regression, which uses the matrix-

normal distribution.

C.3.4 Other CPDs

Noisy-OR For noisy-OR, we can simply put an independent Dirichlet prior on the suppression probabilities

of each parent.

Trees Bayesian approaches to decision trees are discussed in [Bun89].

Softmax There is no conjugate prior for the softmax function, so one must resort to approximations, e.g.,

[JJ00].

Feedforward neural networks Bayesian estimation of the parameters of MLPs is discussed in e.g., [Bis95].

C.4 Known structure, partial observability, frequentist

In the partially observable case, the log-likelihood is

L =
∑

m

logP (Dm)

=
∑

m

log
∑

h

P (H = h, V = Dm) (C.6)

where the innermost sum is over all the assignments to the hidden nodes H , and V = Dm means the

visible nodes take on the values specificied by case Dm. Unlike the fully observed case, this does not

decompose into a sum of local terms, one per node (although it does decompose across training cases). We

will see two different solutions to this below, based on gradient ascent and EM, which we will then compare

experimentally in terms of speed.
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C.4.1 Gradient ascent

The obvious way to maximize likelihood is to do gradient ascent. Following [BKRK97], we show below that

the gradient is a sum of family marginals, which can be computed using an inference engine (since a node

and its parents will always be in the same clique due to moralization). This turns out to be very similar to EM

(see Section C.4.2). (This similarity was also noted in [BC94] for the case of gradient ascent HMM training.)

Consider first the case of tabular CPDs. Let wijk = P (Xi = j|Pa(Xi) = k) (so
∑

j wijk = 1).

∂L

∂wijk
=

M∑

m=1

∂ logPw(Dm)

∂wijk

=
M∑

m=1

∂Pw(Dm)/∂wijk

Pw(Dm)

which at least decomposes into a sum of terms, one per data case (because we assumed they were indepen-

dent). The key trick is that we can simplify the numerator of the term inside the sum by conditioning on the

parents:

∂Pw(Dm)

∂wijk
=

∂

∂wijk

∑

j′,k′

Pw(Dm|Xi = j′,Pa(Xi) = k′)Pw(Xi = j′|Pa(Xi) = k′)Pw(Pa(Xi) = k)

= Pw(Dm|Xi = j,Pa(Xi) = k)Pw(Pa(Xi) = k)

since the derivative “plucks out” the term involving j = j ′ and k = k′, and since Pw(Xi = j|Pa(Xi) = k) =
wijk. Hence

∂Pw(Dm)/∂wijk

Pw(Dm)
=

Pw(Dm|Xi = j,Pa(Xi) = k)Pw(Pa(Xi) = k)

Pw(Dm)

=
Pw(Xi = j,Pa(Xi) = k|Dm)Pw(Dm)Pw(Pa(Xi) = k)

Pw(Xi = j,Pa(Xi) = k)Pw(Dm)

=
Pw(Xi = j,Pa(Xi) = k|Dm)

wijk

where the second line follow from Bayes’ rule. The numerator, Pw(Xi = j,Pa(Xi) = k|Dm), can be

computed using inference with the evidence set to Dm.

The extension of the above to non-tabular CPDs follows by using the chain rule:

∂ logPw(D)

∂λp
=
∑

i,j,k

∂ logPw(D)

∂wijk
× ∂wijk

∂λp

where λp are the parameters of the CPD.

Handling constraints on parameters

Generally we have constraints on the parameters. For example, for an HMM transition matrix, we require

0 ≤ A(i, j) ≤ 1 for all i, j and
∑

j A(i, j) = 1 for all i. Hence we must work inside the unit cube to ensure

0 ≤ A(i, j) ≤ 1 and project onto the constraint surface to ensure
∑

j A(i, j). It is possible to reparameterize

this problem using a softmax transform, Ã(i, j) = exp(A(i,j))
exp(

∑
k A(i,k)) , to eliminate both of these requirements.

However, reparameterization is generally not recommended for constrained optimization problems, because

it changes the nature of the surface [GMW81].

Sometimes the constraints are more complicated. For example, when estimating Gaussian distributions,

we must ensure the covariance matrix is positive semi-definite. In this case, we can reparameterize and do

unconstrained optimization of Σ
1
2 .
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C.4.2 EM algorithm

The basic idea behind EM is to apply Jensen’s inequality [CT91] to Equation C.6 to get a lower bound on

the log-likelihood, and then to iteratively maximize this lower bound. Jensen’s inequality says that, for any

concave function f ,

f




∑

j

λjyj



 ≥
∑

j

λjf(yj)

where
∑

j λj = 1. Informally, this says that f of the average is bigger than the average of the f ’s, which is

easily seen by drawing f . Since the log function is concave, we can apply Jensen’s to Equation C.6 to get

L =
∑

m

log
∑

h

Pθ(H = h, Vm)

=
∑

m

log
∑

h

q(h|Vm)
Pθ(H = h, Vm)

q(h|Vm)

≥
∑

m

∑

h

q(h|Vm) log
Pθ(H = h, Vm)

q(h|Vm)

=
∑

m

∑

h

q(h|Vm) logPθ(H = h, Vm)−
∑

m

∑

h

q(h|Vm) log q(h|Vm)

where q is a function s.t.
∑

h q(h|Vm) = 1 and 0 ≤ q(h|Vm) ≤ 1, but is otherwise arbitrary.4 Maximizing

the lower bound with respect to q gives

q(h|Vm) = Pθ(h|Vm)

This is called the E (expectation) step, and makes the bound tight. Approximate inference increases this

bound, but may not maximize it [NH98].

Maximizing the lower bound with respect to the free parameters θ′ is equivalent to maximizing the

expected complete-data log-likelihood

〈lc(θ′)〉q =
∑

m

∑

h

q(h|Vm) logPθ′(H = h, Vm)

This is called the M (maximization) step. This is efficient if the corresponding complete-data problem is

tractable, and q has a tractable form.

If we use q(h|Vm) = Pθ(h|Vm), as in exact EM, then the above is often written as

Q(θ′|θ) =
∑

m

∑

h

P (h|Vm, θ) logP (h, Vm|θ′)

Dempster et al. [DLR77] proved that choosing θ′ s.t. Q(θ′|θ) > Q(θ|θ) is guaranteed to ensure P (D|θ′) >
P (D|θ), i.e., increasing the expected complete-data log-likelihood will increase the actual (partial) data log-

likeliood. This is because using q(h|Vm) = Pθ(h|Vm) in the E step makes the lower bound touch the actual

log-likelihood curve, so raising the lower bound at this point will also raise the actual log-likelihood curve.

If we do an approximate E step, we do not have such a guarantee.

In the case of multinomial CPDs, the expected complete-data log-likelihood becomes (based on Equa-

tion C.1)

Q(θ′|θ) =
∑

ijk

E[Nijk] log θ′ijk

where ENijk =
∑

m P (Xi = k,Pa(Xi) = j|Dm, θ), so the M-step, θ := arg maxθ′ Q(θ′|θ), becomes

(based on Equation C.2)

θ̂ijk =
ENijk

∑

k′ ENijk′

4In physics, −L(q, θ) is called the variational free energy, and consists of the expected energy, 〈− log Pθ(H = h, Vm)〉q , and

the entropy, H(q). Loopy belief propagation (see Section B.7.1) approximates H(q) by considering only single and pairwise terms,

resulting in the Bethe approximation to the free energy.
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This is a generalization of the EM algorithm for HMMs (often called Baum-Welch), which was already

described in Section 1.2.3. This idea can be applied to any Bayes net [Lau95]: compute the expected sufficient

statistics (ESS),
∑

m P (Xi,Pa(Xi)|Dm, θold), using an inference algorithm, and use these in the M step

(Section C.2) as if they were actually sufficient statistics computed from the data, and then repeat.

Much has been written about EM. Please see [MvD97, MK97, UN98, NH98, Mar01] for details. For

articles specifically about EM for Bayes nets, see [Lau95, BKS97, Zha96].

C.4.3 EM vs gradient methods

The title of this section is a little misleading, since EM is implicitly a gradient method, as we show below.

However, it is still an interesting question whether one should explicitely try to minimize the gradient, or just

use EM.5

We shall restrict our attention to deterministic algorithms with the following form of additive update

rule6:

Θ(t+1) = Θ(t) + λtdt, (C.7)

where dt is the direction in which to move at iteration t, and λt is the step size. Even within the confines of

this form, many variations are possible. For example, how do we choose the direction? How do we choose the

step size? How do we maintain the parameter constraints? Are λt and dt just functions of the t’th training

case (i.e., an online algorithm), or can they depend on all the training data (i.e., a batch algorithm)? We

discuss these and other issues below.

The performance of the algorithms can be measured in two ways: the quality of the local optimum which

is reached, and the speed with which it is reached. Clearly, both answers will depend on the topology of the

space, the starting point, and the direction of the walk. The topology of the space may depend on the network

structure, the amount of missing data, and the number of training cases. In our experimental setup, we vary

all three of these factors to see how robust our conclusions are. For any fixed space, we start all algorithms

off at the same point, and use the same stopping criterion. An algorithm which converges faster is always

better, since, in any fixed amount of time, we can afford to try restarting from many different points; the final

“answer” can then be the best point visited, or some combination of all of them. We vary the starting point to

test the robustness of our conclusions.

The direction

The most obvious choice for the direction vector is the gradient of the log-likelihood function

gt = (
∂l

∂θ1
, · · · , ∂l

∂θn
)|Θ=Θ(t) .

As we saw in Section C.4.1, for tabular CPDs with parameters θijk
def
=P (Xi = k|Pa(Xi) = j) = wikj , this

is given by

∂ log Pr(V |Θ)

∂θijk
=

M∑

m=1

Pr(Xi = k,Πi = j|Vm)

θijk
(C.8)

Another choice is the generalized gradient g̃t = Π(Θ(t))gt, where Π is some negative definite projection

matrix. It can be shown [JJ93] that this is essentially what EM is doing, where Π(Θ(t)) ≈ −Q̈(Θ̂, Θ̂)−1, and

[Q̈(Θ̂, Θ̂)]i,j =
∂2Q(Θ′, Θ̂)

∂θ′i∂θ
′
j

|Θ′=Θ̂

5This subsection is based on my class project for Stats 200B in 1997.
6Multiplicative update rules (exponentiated gradient methods) are also possible, but [BKS97] has shown them to be inefficient in this

context.
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is the Hessian of Q evaluated at Θ̂, some interior point of the space, and Q is the expected complete-data

log-likelihood

Q(Θ′|Θ) =
∑

h

Pr(h|V,Θ) log Pr(V, h|Θ′)

= Eh [log Pr(V,H|Θ′)|V,Θ]

with H being the hidden variables and V the visibles. Thus EM is a quasi-Newton (variable metric) opti-

mization method.

In [XJ96] and [JX95] they give exact formulas for Π for a mixture of Gaussians model and a mixture of

experts model, but in general Π will be unknown. However, we can still compute the generalized gradient as

follows

g̃t = U(Θ(t))−Θ(t) (C.9)

where the EM update operator is

Θ(t+1) = U(Θ(t)) = arg max
Θ

Q(Θ|Θ(t)).

Conjugate directions

It is well known that making the search directions conjugate can dramatically speed up gradient descent

algorithms. The Fletcher-Reeves-Polak-Ribiere formula [PVTF88] is

d0 = g0

dt+1 = gt+1 + γtdt

γt =
gT

t+1gt+1

gT
t gt

It is also possible to compute conjugate generalized gradients. Jamshidian and Jennrich [JJ93] propose the

following update rule:

d0 = g̃0

dt+1 = g̃t+1 + γtdt

γt =
g̃T

t+1(gt − gt+1)

dT
t (gt+1 − gt)

They show that this method is faster than EM for a variety of non-belief net problems. Thiesson [Thi95] has

applied this method to belief nets, but does not report any experimental results.

The step size

By substituting equation C.9 into equation C.7, we can rewrite the EM update rule as

Θ(t+1) = Θ(t) + λtU(Θ(t))− λtΘ
(t) = (1− λt)Θ

(t) + λtU(Θ(t)). (C.10)

We shall call this the EM(λ) rule. (In [BKS97], they derive this rule from an on-line learning perspective.)

The line minimization method suggests choosing a step size of λt = arg maxλ l(Θ
(t) + λdt). Since

this can be quite slow, a simplification is to use a constant step size λt = λ. For λ = 1, this corresponds

to the standard EM rule, and is guaranteed to converge to a local maximum, and to satisfy the positivity

and summation constraints. Bauer et al. [BKS97] show that sometimes the optimal learning rate is given

by λ > 1; however, if λ > 1, the algorithm is only guaranteed to converge to a local maxmimum if it

starts close enough to that maximum; and if λ > 2, there are no convergence guarantees at all. In the

experiments of [JX95] on mixtures of experts, they found that using λ > 1 often led to divergence, whereas

in the experiments of [BKS97], on relatively large belief nets (the Alarm network and the Insurance network),

they found that using λ = 1.8 always led convergence, presumably because of the greater number of local

maxima. This rule is also studied in [RW84] and elsewhere.
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Figure C.1: A simple model of the car insurance domain, from [RN95]. Shaded nodes are hidden.

Experimental comparison

We generated 25 training cases from a small Bayes net (Figure C.1) with random tabular CPDs; we then

randomly hid 20% and 50% of the nodes, and timed how long it took each algorithm to find a MLE.7 Some

results are shown in Tables C.2 and C.2. It can be seen that all methods reach similar quality local minima, but

that conjugate generalized gradient without linesearch is the fastest, and non conjugate generalized gradient

without linesearch (which is equivalent to EM) is the second fastest. Conjugate methods are always faster,

but, perhaps surprisingly, linesearching never seems to pay off, at least in this experiment.

Note that a direct implementation of EM (i.e., one which does not incur the overhead of explicitly com-

puting the generalized gradient) is about 1.6× faster than the results shown in the tables, which eliminates

much of the performance advantage of the conjugate method. ([JJ93, Thi95] suggest starting with EM, and

then only switching over to a conjugate gradient method when near a local optimum.)

On balance, it seems that EM has several advantages over gradient ascent.

• There is no step-size parameter.

• It automatically takes care of parameter constraints.

• It can handle (conjugate) priors easily.

• It can handle deterministic constraints (e.g., wijk = 0).

• It is simple to implement.

7The gradient descent code is closely based on the implementation given in [PVTF88]. Constraints were ensured by reparameterizing

as follows: θijk =
β

ijk2
∑

k′ βijk′
; gradients were computed wrt βijk using the chain rule. The stopping criterion was when the percentage

change in the negative log likelihood dropped below 0.1%. The belief net inference package was written by Geoff Zweig in C++. All

experiments were performed on a Sun Ultra Sparc, where 1 CPU second corresponds to roughly 1 real (wall clock) second (this was

1997!).
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Linemin.? Gen. grad.? Conj.? final NLL #iter CPU/s #fn.

× × × 300.0 105 74.5 210

× × √
300.4 115 88.2 230

× √ × 294.8 70 29.6 70

× √ √
297.9 33 14.0 66√ × × 297.1 62 229.6 677√ × √
296.3 26 50.0 301√ √ × 294.0 60 83.6 547√ √ √
296.4 28 41.3 129

Table C.2: Performance of the various algorithms for a single trial with 20% hidden data and 25 training

cases. Remember, the goal is to minimize the negative log-likelihood (NLL). “#iter” counts the number of

iterations of the outer loop. “#fn” counts the number of times the likelihood function was called. The step

size is fixed at 1.0. EM corresponds to the third line.

Linemin.? Gen. grad.? Conj.? final NLL #iter CPU/s #fn.

× × × 210.5 129 121.8 258

× × √
210.4 122 112.6 244

× √ × 202.5 80 44.3 160

× √ √
215.3 23 12.6 46√ × × 215.4 53 215.3 580√ × √
210.3 46 100.3 524√ √ × 201.4 79 143.0 737√ √ √
204.1 55 102.4 528

Table C.3: Performance of the various algorithms with 50% hidden data. The starting point is the same as the

previous experiment. Surprisingly, the best NLL is lower in this case. EM corresponds to the third line.

On the other hand, if the CPD does not have a closed form MLE, it is necessary to use gradient methods

in the M step (this is called generalized EM). In this case, the argument in favor of EM is somewhat less

compelling. Unfortunately, we did not compare the algorithms in this case.

C.4.4 Local minima

The posterior over parameters in the partially observable case is heavily multi-modal. This means that local

search algorithms, like gradient ascent and EM, are prone to get stuck in local optima. A simple solution is

multiple restarts. Another popular solution is simulated annealing [KJV94]; unfortunately, this can be slow,

because of the wasteful “propose, evaluate, reject” cycle.

Deterministic annealing (DA) [Ros98] is a faster alternative to simulated annealing, and works by en-

forcing a certain level of entropy (noise) in the system, which is gradually reduced. Recall from Section C.4.2

that the variational free energy is the expected energy, 〈− logPθ(H = h, Vm)〉q, plus the entropy, H(q). The

idea behind DA is to multiply the entropy by a temperature term T ; initially the temperature is high, which

“smooths out” the energy surface, so it is easy to find the maximum; then the temperature is gradually re-

duced to T = 1, which corresponds to the original problem. If the temperature is reduced slowly enough, it

is possible to “track” the global optimum; this is called a “continuation method”.

In an EM context [UN98], pre-multiplying H(q) by T changes the E step: high temperatures essentially

make assignments to discrete variables “softer”. (The M step is unchanged.) For clustering problems, there

is a single discrete hidden variable, so we can change the E step in the following straightforward way: the

posterior P (H|v) = P (H, v)/
∑

h P (h, v) becomes

f(H|v) =
P (H, v)β

∑

h P (h, v)β
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while not converged

for each case m
for each node i

oldESS(i,m) := ESS(i,m)

ESS(i,m) := computeESS(Dm(Xi, Pa(Xi)), θi)

ESS(i) += ESS(i,m) - oldESS(i,m)

θi := maximizeParams(ESS(i), θi)

Figure C.2: Pseudo-code for online EM for a Bayes net where all CPDs are in the exponential family, and

hence have finite expected sufficient statistics (ESS), based on [NH98].

where β = 1/T is an inverse temperature. In the case of more complex graphical models, the posterior is over

joint assignments; controlling the entropy of this distribution requires modifying the inference algorithm. For

example, [RR01] explains how to apply DA to discriminatively train a bank of HMMs; in addition to the α
and β, two new quantities need to be computed in the forwards and backwards passes.

A very simple and recent approach is presented in [ENFS02]. This exploits the fact that in many machine

learning problems, the score of the hypothesis decomposes into a sum of terms, one per training case. By

randomly reweighting the training cases, the search algorithm can be encouraged to explore new parts of

space. This is different from boosting, which generates an ensemble of models which are then averaged

together. The reweighting method is simple to implement and demonstrated big performance increases on

BN structure and parameter learning problems.

C.4.5 Online parameter learning algorithms

The formula for computing the gradient of the log-likelihood and the formula for computing the ESS needed

for the EM update both involve summing over all training cases. It is a simple modification to consider a

single training example at a time, and thus to derive an online algorithm: see Figure C.2. This makes sense

since initially the parameters will be unreliable, so the ESS will be inaccurate; hence it is best to update the

parameters as soon as possible. This is sometimes called online or incremental EM [NH98].

The algorithm in Figure C.2 requires storing ESS for each CPD (which might be less than the number

of nodes, if there is parameter tying) and for each data-case. An approximation is to use an exponentially

decaying average of recently visited data points:

ESS(i) := γESS(i) + computeESS(Dm(Xi,Pa(Xi)), θi),

where 0 < γ < 1. This will not converge to the right answer, at least not if γ is held fixed, but using γ ≈ 1
often gives a good approximation, and uses constant space (essential if the data is streaming in).

Instead of updating the parameters after every case, which can be slow, we can update after every B
cases, where B is the batch size. B ∼ 10 if often much faster than B = 1 and B = M (which is batch EM)

[Sto94, p40]. A way to compute the optimal batch size is given in [TMH01]. For large data sets, it is often

unnecessary to use all the data [MTH01, HD02], which can result in huge time savings.

An alternative online learning algorithm for Bayes nets is presented in [BKS97] (see also [SW96] for

the HMM case), based on the online learning framework of [KW97]. In this framework the new set of

parameters Θ(t+1) is chosen so that it maximises the normalized log-likelihood, but is not too different from

the old parameters Θ(t). More precisely, we choose Θ(t+1) to maximise

F (Θ) = λl(Θ)− d(Θ,Θ(t)).

To make the problem more tractable, l(Θ) is replaced by a linear approximation. They show that by choosing

the distance function d to be the L2 norm, they get the projected gradient ascent rule of [BKRK97]; by

choosing d to be χ2, they get the EM(λ) rule; and by choosing d to be KL-distance, they get a generalized

exponentiated gradient rule EG(λ). Their experimental results show that EM(λ) is much better than EG(λ),

and that EM(λ) for λ > 1 converges much faster than for standard EM, which corresponds to λ = 1, as
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discussed. They also suggest using small batches to compute the expected sufficient statistics in the EM

update step, but do not test the performance of this experimentally. That is, the rule becomes

θ
(t+1)
ijk = λ

EΘ(t)(Xi = k,Pa(Xi) = j|D)

EΘ(t)(Pa(Xi) = j|D)
+ (1− λ)θ

(t)
ijk

where

EΘ(t)(xk
i , π

j
i |D) =

1

B

B∑

m=1

PΘ(t)(Xi = k,Pa(Xi) = j|Dm)

is a sample-based average. This has the advantage over the Neal and Hinton method of not needing to store

many tables ESS[m], since we are adding the (normalized) ESS for the current case to the old parameter

values.

It is folk wisdom in the neural network community that online (i.e., stochastic) gradient descent8 is not

only faster than batch gradient descent, but also works better, perhaps because by following an approximation

to the total gradient, the algorithm is less likely to get stuck in local minima. Hence even in an offline setting,

it can pay to do online updates.

For a Bayesian approach to online parameter learning, see Section 4.4.2.

C.5 Known structure, partial observability, Bayesian

EM and gradient ascent return a point estimate of the parameters. For many purposes, it is useful to re-

turn a distribution over the parameters. The most common method for achieving this is to use Gibbs sam-

pling [GG84, GRS96], which can be thought of as a stochastic version of EM. One can also use varia-

tional Bayes [JJ00, Att00, GB00], which is based on assuming a factorized variational posterior of the form

P (θ,H|V ) ≈ q(θ|V )q(H|V ). An alternative is expectation propagation [Min01], which is an iterative

version of the classical moment matching approach which is common in online Bayesian inference (see Sec-

tion B.7.2). See also [RS98], which uses a moment matching technique, where the weights correspond to

possible completions of the dataset (hence this technique is only applicable to discrete data). The determinis-

tic approximations usually assume unimodal posteriors; hence they are essentially MAP estimates with error

bars.

C.6 Unknown structure, full observability, frequentist

When learning structure, we must consider the following issues:

• What is the hypothesis space? We can imagine searching the space of DAGs, equivalence classes of

DAGs (PDAGs), undirected graphs, trees, node orderings, etc.

• What is the evaluation (scoring) function? i.e., how do we decide which model we prefer?

• What is the search algorithm? We can imagine local search (e.g., greedy hill climbing, possibly with

multiple restarts) or global search (e.g., simulated annealing or genetic algorithms).

We discuss these issues in more detail below.

C.6.1 Search space

Trees

If we are willing to restrict our hypothesis space to trees, we can find the optimal ML tree in O(MN 2) time

(where N is the number of nodes and M is the number of data cases) using the famous Chow-Liu algorithm

[CL68, Pea88]. We can use EM to extend this to mixtures of trees [MJ00]. Interestingly, learning the optimal

ML path (a spanning tree in which no vertex has degree higher than two) is NP-hard [Mee01].

8The term stochastic EM usually refers to using a sampling algorithm in the E step [Mar01].
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DAGs

The most common approach is to search through the space of DAGs. Unfortunately, the number of DAGs on

N variables is 2O(N2 log N) [Rob73, FK00]. (A more obvious upper bound is O(2n2

), which is the number of

N ×N adjacency matrices.) For example, there are 543 DAGs on 4 nodes, and O(1018) DAGs on 10 nodes.

This means that attempts to find the “true” DAG, or even just to explore the posterior modes, are doomed

to failure, although one might be able to find a good local maximum, which should be sufficient for density

estimation purposes.

PDAGs

A PDAG (partially directed acyclic graph), also called a pattern or essential graph, represents a whole class

of Markov equivalent DAGs. Two DAGs are Markov equivalent if they imply the same set of (conditional)

independencies. For example, X → Y → Z, X ← Y → Z and X ← Y ← Z are Markov equivalent, since

they all represent X ⊥ Z|Y . In general, two graphs are Markov equivalent iff they have the same structure

ignoring arc directions, and the same v-structures [VP90]. (A v-structure consists of converging directed

edges into the same node, such as X → Y ← Z.) Since we cannot distinguish members of the same Markov

equivalence class if we only have observational data [CY99, Pea00], it makes sense to search in the space of

PDAGs, which is smaller than the space of all DAGs (about 3.7–14 times smaller [GP01, Ste00]). We discuss

methods to do this in Section C.6.2. Of course, using PDAGs is not appropriate if we have experimental

(interventional) as well as observational data. (An intervention means setting/ forcing a node to a specific

value, as opposed to observing that it has some value [Pea00].)

Variable orderings

Given a total ordering≺, the likelihood decomposes into a product of terms, one per family, since the parents

for each node can be chosen independently (there is no global acyclicity constraint). The following equation

was first noted in [Bun91]:

P (D| ≺) =
∑

G∈G≺

n∏

i=1

score(Xi,PaG(Xi)|D)

=
∏

i

∑

U∈U≺,i

score(Xi, U |D) (C.11)

G≺ is the set of graphs consistent with the ordering≺, and U≺,i is the set of legal parents for node i consistent

with ≺. If we bound the fan-in (number of parents) by k, each summation in Equation C.11 takes
(
n
k

)
≤ nk

time to compute, so the whole equation takes O(nk+1) time.

Given an ordering, we can the find the best DAG consistent with that ordering using greedy selection, as

in the K2 algorithm [CH92], or more sophisticated variable selection methods (see Section 6.1.2).

If the ordering is unknown, we can search for it, e.g, using MCMC [FK00] (this is an example of Rao-

Blackwellisation). Not surprisingly, they claim this mixes much faster than MCMC over DAGs (see Sec-

tion C.7). However, the space of orderings has size N !, which is still huge.

Interestingly, interventions give us some hints about the ordering. For example, in a biological setting,

if we knockout gene X1, and notice that genes X2 and X3 change from their “wildtype” state, but genes

X4 and X5 do not, it suggests that X1 is the ancestor of X2 and X3. This heuristic, together with a set

covering algorithm, was used to learn acyclic boolean networks (i.e., binary, deterministic Bayes nets) from

interventional data [ITK00].

Undirected graphs

When searching for undirected graphs, it is common to restrict attention to decomposable undirected graphs,

so that the parameters of the resulting model can be estimated efficiently. See [DGJ01] for a stepwise selection

approach, and [GGT00] for an MCMC approach.
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Choose G somehow

While not converged

For each G′ in nbd(G)
Compute score(G′)

G∗ := arg maxG′ score(G′)
If score(G∗) > score(G)

then G := G∗

else converged := true

Figure C.3: Pseudo-code for hill-climbing. nbd(G) is the neighborhood of G, i.e., the models that can be

reached by applying a single local change operator.

C.6.2 Search algorithm

For local search (whether deterministic or stochastic), the operators that move through space are usually

adding, deleting or reversing a single arc; this defines the neighborhood of a graph, nbd(G). ([KC01] consider

a richer set of local DAG transformations that gives better results.) In addition, we must specify a starting

point (initial graph); this could be chosen using the PC algorithm (see below). As an example of a local

search algorithm, the code for hill climbing is shown in Figure C.3.

When we make a local change to a model, we would like the change in its score to be local (see Sec-

tion C.6.3); that way, evaluating the cost of many neighbors is fast. Similarly, if the current graph has a

certain required property (e.g., acyclicity), we would like the cost of checking if each of the neighbors has

this property to be constant time (i.e., independent of the model size). [GC01] present a method for checking

acyclicity in constant time by using an auxiliary data structure called the ancestor matrix, and [GGT00] give

efficient ways to check for decomposability of undirected graphs.

Global search comes in two flavors: stochastic local search, where we allow “downhill” moves (e.g.,

MCMC, which includes simulated annealing as a special case), and search algorithms that make non-local

changes such as genetic algorithms.

The PC algorithm

We can find the globally optimal PDAG inO(Nk+1Ntrain) time, where there areN nodes, Ntrain data cases,

and each node has at most k neighbors, using the PC algorithm [SGS00, p84]. (This is an extension of the

IC algorithm [PV91, Pea00], which takes O(NNNtrain) time). This algorithm, an instance of the “constraint

based approach”, works as follows: start with a fully connected undirected graph, and remove an arc between

X and Y if there is some set of nodes S s.t., X⊥Y |S (we search for such separating subsets in increasing

order of size); at the end, we can orient some of the undirected edges, so that we recover all the v-structures

in the PDAG.

The PC algorithm will provably recover the generating PDAG if the conditional independency (CI) tests

are all correct. For continuous data, we can implement the CI test using Fisher’s z test; for discrete data, we

can use a χ2 test [SGS00, p95]. Testing if X⊥Y |S for discrete random variables requires creating a table

with O(K |S|+2) entries, which requires a lot of time and samples. This is one of the main drawback of the

PC algorithm. [CGK+02] contains a more efficient algorithm. The other difficulty with the PC algorithm is

how to implement CI tests on non-Gaussian data (e.g., mixed discrete-continuous). (The analogous problem

for the the search & score methods is how to define the scoring function for complex CPDs.) One approach

is discussed in [MT01]. A way of converting a Bayesian scoring metric into a CI test is given in the appendix

of [Coo97].

A more sophisticated version of the PC algorithm, called FCI (fast causal inference), can handle the case

where there is confounding due to latent common causes. However, FCI cannot handle models such as the

one in Figure C.7, where there is a non-root latent variable. (The ability to handle arbitrary latent-variable

models is one of the main strengths of the search and score techniques.)
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C.6.3 Scoring function

If the search space is restricted (e.g., to trees), maximum likelihood is an adequate criterion. However, if the

search space is any possible graph, then maximum likelihood would choose the fully connected (complete)

graph, since this has the greatest number of parameters, and hence can achieve the highest likelihood. In such

a case we will need to use other scoring metrics, which we discuss below.

A well-principled way to avoid this kind of over-fitting is to put a prior on models. By Bayes’ rule, the

MAP model is the one that maximizes

Pr(G|D) =
Pr(D|G) Pr(G)

Pr(D)

where P (D) is a constant independent of the model. If the prior probability is higher for simpler models

(e.g., ones which are “sparser” in some sense), the P (G) term has the effect of penalizing complex models.

Interestingly, it is not necessary to explicitly penalize complex structures through the structural prior.

The marginal likelihood (sometimes called the evidence),

P (D|G) =

∫

θ

P (D|G, θ)P (θ|G)

automatically penalizes more complex structures, because they have more parameters, and hence cannot give

as much probability mass to the region of space where the data actually lies, because of the sum-to-one

constraint. In other words, a complex model is more likely to be “right” by chance, and is therefore less

believable. This phenomenon is called Ockham’s razor (see e.g., [Mac95]). Of course, we can combine the

marginal likelihood with a structural prior to get

score(G)
def
=P (D|G)P (G)

If we assume all the parameters are independent, the marginal likelihood decomposes into a product of

local terms, one per node:

P (D|G) =
n∏

i=1

∫

θi

P (Xi|Pa(Xi), θi)P (θi)

def
=

n∏

i=1

score(Pa(Xi),Xi)

Under certain assumptions (global and local parameter independence (see Section C.3.1) plus conjugate pri-

ors), each of these integrals can be performed in closed form, so the marginal likelihood can be computed

very efficiently. For example, in Section C.6.3, we discuss the case of multinomial CPDs with Dirichlet pri-

ors. See [GH94] for the case of linear-Gaussian CPDs with Normal-Wishart priors, and [BS94, Bun94] for a

discussion of the general case.

If the priors are not conjugate, one can try to approximate the marginal likelihood. For example, [Hec98]

shows that a Laplace approximation to the parameter posterior has the form

log Pr(D|G) ≈ log Pr(D|G, θ̂G)− d

2
logM

where M is the number of samples, θ̂G is the ML estimate of the parameters and d is the dimension (number

of free parameters) of the model. This is called the Bayesian Information Criterion (BIC), and is equivalent

to the Minimum Description Length (MDL) approach. The first term is just the likelihood and the second

term is a penalty for model complexity. (Note that the BIC score is independent of the parameter prior.) The

BIC score also decomposes into a product of local terms, one per node. For example, for multinomials, we

have (following Equation C.1)

BIC-score(G) =
∑

i

∑

m

logP (Xi|Pa(Xi), θ̂i,Dm)− di

2
logM

=
∑

i

∑

jk

Nijk log θijk −
di

2
logM (C.12)
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where di = qi(ri − 1) is the number of parameters in Xi’s CPT.

A major advantage of the fact that the score decomposes is that graphs that only differ by a single

link have marginal likelihoods that differ by at most two terms, since all the others cancel. For example,

let G1 be the chain X1 → X2 → X3 → X4, and G2 be the same but with the middle arc reversed:

X1 → X2 ← X3 → X4. Then

P (D|G2)

P (D|G1)
=

score(X1) score(X1,X2,X3) score(X3) score(X3,X4)

score(X1) score(X1,X2) score(X2,X3) score(X3,X4)

=
score(X1,X2,X3) score(X3)

score(X1,X2) score(X2,X3)

In general, if an arc to Xi is added or deleted, only score(Xi|Πi) needs to be evaluated; if an arc between

Xi and Xj is reversed, only score(Xi|Πi) and score(Xj |Πj) need to be evaluated. This is important since,

in greedy search, we need to know the score of O(n2) neighbors at each step, but only O(n) of these scores

change if the steps change one edge at a time.

The traditional limitation to local search in PDAG space has been the fact that the scoring function does

not decompose into a set of local terms. This problem has recently been solved [Chi02].

Computing the marginal likelihood for the multinomial-Dirichlet

For the case of multinomial CPDs with Dirichlet priors, we discussed how to compute the marginal likelihood

sequentially in Section C.3.1. To compute this in batch form, we simply compute the posterior means of the

parameters (Equation C.3), and plug these expected values into the sample likelihood equation:

P (D|G) = P (D|θ,G) =

n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk

ijk (C.13)

Alternatively, this can be written as follows [CH92]:

P (D|G) =

n∏

i=1

qi∏

j=1

B(αij1 +Nij1, . . . , αi,j,ri
+Ni,j,ri

)

B(αij1, . . . , αi,j,ri
)

=

n∏

i=1

qi∏

j=1

Γ(αij)

Γ(αij +Nij)
·

ri∏

k=1

Γ(αijk +Nijk)

Γ(αijk)
(C.14)

([HGC95] call this the Bayesian Dirichlet (BD) score.)

For interventional data, Equation C.14 is modified by defining Nijk to be the number of times Xi = k
is passively observed in the context Πi = j, as shown by [CY99]. (The intuition is that setting Xi = k does

not tell us anything about how likely this event is to occur “by chance”, and hence should not be counted).

Hence, in addition to D, we need to keep a record of which variables were clamped (if any) in each data case.

C.7 Unknown structure, full observability, Bayesian

Since we cannot hope to return the posterior over all models (there are way too many of them), we try to

evaluate the probability that certain features exist:

P (f |D) =
∑

G∈G
P (G|D)f(G)

for some indicator function f of interest (e.g., f(G) = 1 if graph G contains a certain edge). This is called

Bayesian model averaging [HMRV99]. For example, we can summarize the posterior by creating a graph

where the weight of an edge is proportional to the marginal probability that it exists.

Rather than trying to sum over all legal graphs, we can restrict our attention to those graphs that are

relatively likely (relative to the most probable model found so far); this is called “Occam’s window” [MR94].
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Choose G somehow

While not converged

Pick a G′ u.a.r. from nbd(G)

Compute R = P (G′|D)q(G|G′)
P (G|D)q(G′|G)

Sample u ∼ Unif(0, 1)
If u < min{1, R}

then G := G′

Figure C.4: Pseudo-code for the MC3 algorithm. u.a.r. means uniformly at random.

In both cases, we need to compute

P (G|D) =
P (D|G)P (G)

∑

G′ P (D|G′)P (G′)

The normalizing constant P (D) =
∑

G′ P (D|G′)P (G′) is intractable to compute, because there a super-

exponential number of graphs. To avoid this intractability, we can use the Metropolis-Hastings (MH) al-

gorithm, which only requires that we be able to compute the posterior odds between the current candidate

model, G1, and the proposed new model, G2:

P (G2|D)

P (G1|D)
=
P (G2)

P (G1)
× P (D|G2)

P (D|G1)
(C.15)

The ratio of the evidences,
P (D|G2)
P (D|G1)

, is called the Bayes factor, and is the Bayesian equivalent of the likelihood

ratio test.

The idea of applying the MH algorithm to graphical models was first proposed in [MY95], who called

the technique MC3, for MCMC Model Composition. The basic idea is to construct a Markov Chain whose

state space is the set of all DAGs and whose stationary distribution is P (G|D). We achieve this as follows.

Define a transition matrix or kernel, q(G′|G). (The only constraints on q are that the resulting chain should

be irreducible and aperiodic.) We sample a new state G′ from this proposal distribution, G′ ∼ q(·|G), and

accept this new state with probability min{1, R}, where R is the acceptance rate:

R =
P (G′|D)

P (G|D)
× q(G|G′)

q(G′|G)

(If the kernel is symmetric, so q(G|G′) = q(G′|G), the last term cancels, and the algorithm is called the

Metropolis algorithm.) The idea is to sample from this chain for “long enough” to ensure it has converged to

its stationary distribution (this is called the burn-in time) and throw these samples away; any further samples

are then (non-independent) samples from the true posterior, P (G|D), and can be used to estimate many

quantities of interest, such as P (f |D). This algorithm is given in pseudo-code in Figure C.4.

The issue of diagnosing convergence of MCMC algorithms is discussed in [GRS96]. The number of

samples needed after reaching convergence depends on how rapidly the chain “mixes” (i.e., moves around

the posterior distribution). To get a ballbark figure, [GC01] useMC3 to find a distribution over the 3,781,503

DAGs with 6 binary nodes (of course, many of these are Markov equivalent), using a fully observed dataset

with 1,841 cases. They used T = 100, 000 iterations with no burn-in, but it seemed to converge after “only”

10,000 iterations. To scale up to larger problems, it will obviously be necessary to use Rao-Blackwellisation,

such as searching over orderings instead of graphs (see Section C.6.1).

C.7.1 The proposal distribution

[MY95] suggested the following kernel. Define the neighborhood of the current state, nbd(G), to be the

set of DAGs which differ by 1 edge from G, i.e., we can generate nbd(G) by considering all single edge
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additions, deletions and reversals, subject to the acyclicity constraint. Then let q(G′|G) = 1/|nbd(G)|, for

G′ ∈ nbd(G), and q(G′|G) = 0 for G′ 6∈ nbd(G), so

R =
|nbd(G)|P (G′)P (D|G′)

|nbd(G′)|P (G)P (D|G))

The main advantage of this proposal distribution is that it is efficient to compute R when G and G′ only

differ by a single edge (assuming complete data): see Section C.6.3.

The single-edge-change proposal can lead to high acceptance rates, but slow mixing, because it takes

such small steps through the space. An alternative would be to propose large changes, such as swapping

whole substructures, as in genetic programming. If one is not sure which proposal to use, one can always

create a mixture distribution. The weights of this mixture are parameters that have to be tuned by hand.

[GRG96] suggest that the kernel should be designed so that the average acceptance rate is 0.25.

A natural way to speed up mixing is to reduce the size of the search space. Suppose that, for each node,

we restrict the maximum number of parents to be k, instead of n. (This is reasonable, since we expect the

fan-in to be small). This reduces the number of parent sets we need to evaluate from O(2n) to
(
n
k

)
≤ nk.

Some heuristics for choosing the set of k potential parents are given in [FNP99]. As long as we give non-zero

probability to all possible edge changes in our proposal, we are guaranteed to get the correct answer (since

we can get from any graph to any other by single edge changes, and hence the chain is irreducible); heuristics

merely help us reach the right answer faster. The heuristics in [FNP99] change with time, since they look for

observed dependencies that cannot be explained by the current model. Such adaptive proposal distributions

cause no theoretical problems for convergence.

C.8 Unknown structure, partial observability, frequentist

In the partially observable case, computing the marginal likelihood is intractable, requiring that we sum out

all the latent variables Z as well as integrate out all the parameters θ:

P (X|G) =
∑

Z

∫

θ

P (X,Z|G, θ)P (θ|G)

This score is hard to compute, and does not decompose into a product of local terms.

There are two approaches to this problem: try to approximate the marginal likelihood, and embed the

approximation into any of the search spaces/algorithms discussed above, or use a different scoring function

(the expected complete-data marginal likelihood) which does decompose. We will discuss each in turn.

C.8.1 Approximating the marginal likeihood

One accurate way of approximating the marginal likelihood, known as the Candidate’s method [Chi95,

Raf96], is as follows. We pick an arbitrary value θ∗G (e.g., the MAP value), and compute

P (D|G) =
P (D|θ∗G, G)P (θ∗G|G)

P (θ∗G|D,G)

Computing P (θ∗G|G) is trivial, and computing P (D|θ∗G, G) can be done using any BN inference algorithm.

The denominator can be approximated using Gibbs sampling: see [CH97] for details. (See also [SNR00] for

a related approach, based on the harmonic mean estimator.)

Various large sample approximations to the marginal likelihood, which are computationally cheaper, are

compared in [CH97]. The conclusion is that the Cheeseman-Stutz (CS) approximation, which is a variation of

BIC (see Section C.6.3), is the most accurate, at least in the case of naive-Bayes (mixture) models. However,

the accuracy of these techniques for small samples is suspect. Even for large samples, these approximations

are inaccurate at estimating P (D|G1)/P (D|G2), where G1 is the most probable model, and G2 is the sec-

ond most probable. That is, these approximations can be useful for model selection, but less so for model

averaging.

Although the BIC and C-S scores decompose, local search algorithms are still expensive, because we

need to run EM at each step to compute θ̂. Instead of doing EM inside of search, we can do search inside of

EM; this turns out to be much faster: see Section C.8.2.
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Choose G somehow

Choose θ somehow

While not converged

Improve θ using parametric EM

For each G′ in nbd(G)
Compute ESS(G′) using G, θ [E step]

Compute θ̂(G′) using ESS(G′)

Compute Escore(G′) using ESS(G′), θ̂(G′)
G∗ := arg maxG′ Escore(G′)
If Escore(G∗) > Escore(G)

then G := G∗ [structural M step]

θ := θ(G∗) [parametric M step]

else converged := true

Figure C.5: Pseudo-code for Structural EM. Compare with Figure C.3.

C.8.2 Structural EM

The key insight behind structural EM [Fri97] is that the expected complete-data log-likelihood, and hence the

BIC score, does decompose. The algorithm works as follows: use the current model and parameters, (G, θ),
to compute the expected sufficient statistics (ESS) for all models in the neighborhood of G; use ESS(G′) to

evaluate the expected BIC score of each neighbor G′; pick the best neighbor; iterate until convergence. See

Figure C.5. (The algorithm can also be extended to use an (approximate) BDe score instead of BIC [Fri98].)

The analysis of the algorithm relies on the auxiliary Q function, just as in parametric EM (see Sec-

tion C.4.2). In particular, define

Q(θ′, G′|θ,G) =
∑

h

P (h|V, θ,G) logP (V, h|θ′, G′) + penalty(θ′, G′)

The penalty depends on the dimensionality ofG′. (The dimensionality of a model with latent variables is less

than the number of its free parameters [GHM96].) [Fri97] proves the following theorem, by analogy with

parametric EM:

Theorem [Friedman]. If Q(G′, θ′|G, θ) > Q(G, θ|G, θ), then S(G′, θ′) > S(G, θ), where S(G, θ) =
logP (D|G, θ) + penalty(G, θ).

In other words, increasing the expected BIC score is guaranteed to increase the actual BIC score. In the

case of multinomials, we define the expected BIC score by analogy with Equation C.12 to be

EBIC-score(G′) =
∑

i

∑

jk

〈Nijk〉 log θ̂ijk −
di

2
logM (C.16)

where di = qi(ri − 1) is the number of parameters in Xi’s CPT in G′, θ̂ are the MLE parameters for G′

derived from 〈Nijk〉, and

〈Nijk〉 =
∑

m

P (Xi = k,PaG′(Xi) = j|Dm, θ,G)

This expected BIC score decomposes just like the regular BIC score.

Since we may add extra edges, G′ might have families that are not in G. This means we may have to

compute joint probability distributions on sets of nodes that are not in any clique: [EH01] describes efficient

ways to do this using the jtree algorithm.

It is difficult to choose the initial graph structure. We cannot use the PC algorithm because we have (non-

root) latent variables. On the other hand, we cannot choose, say, the empty graph, because our initial estimate

of θ will be poor. We therefore assume we have some good initial guess based on domain knowledge.

183



Choose G1 somehow

Compute θ̂ using EM

Sample H1 ∼ P (H|G1, θ̂)
for t = 1, 2, . . .

Pick a G′ u.a.r. from nbd(Gt)

Compute B̂ = P (D,Ht|G′)
P (D,Ht|Gt)

Compute R = |nbd(Gt)|P (G′)

|nbd(G′)|P (Gt)
B̂

Sample u ∼ Unif(0, 1)
If u < min{1, R}

then Gt+1 = G′

Compute P (θt+1|D,Ht, Gt+1) using Bayesian updating

Compute θt+1 from P (θt+1|D,Ht, Gt+1)

Sample Ht+1 ∼ P (H|D,Gt+1, θt+1) using Gibbs sampling

Figure C.6: Pseudo-code for the MC3 algorithm modified to handle missing data. Choosing the initial graph

structure is hard, as discussed in Section C.8.2.

C.9 Unknown structure, partial observability, Bayesian

Since we are already using MCMC to do Bayesian model averaging, it is natural to extend the state-space of

the Markov chain so that it not only searches over models, but also over the values of the unobserved nodes

[YMHL95]. The idea is to use Gibbs sampling, where we alternate between sampling a new model given the

current completed data set, and sampling a completed data set given the current model. (This is basically an

extension of the IP algorithm for data augmentation [TW87], and is similar to structural EM.)

At a high level, the algorithm cycles through the following steps (where V is the observed data and H is

the hidden data):

1. Sample Gt+1 ∼ P (G|D,Ht) ∝ P (G)P (D,Ht|G)

2. Compute P (θt+1|D,Ht, Gt+1)

3. Sample Zt+1 ∼ P (H|D,Gt+1, θt+1)

To avoid computing the normalizing constant implicit in the first step, we use the MH algorithm, and

approximate the Bayes factor by using the current completed dataset. This is an approximation to the expected

complete-data Bayes factor [Bun94, Raf96]:

P (D|G′)

P (D|Gt)
= E

[
P (D,H|G′)

P (D,H|Gt)
| D,Gt

]

≈ P (D,Ht|G′)

P (D,Ht|Gt)
(C.17)

The second step can be performed in closed form for conjugate distributions (see Section C.3.1 for the

multinomial-Dirichlet case). Finally, we sample from the predictive distribution, P (H|D,Gt+1), by using

the mean parameter values, θt+1 (see Section C.3.1), with Gibbs sampling. The overall algorithm is sketched

in Figure C.6. As far as I know, this has never been tried, probably because this algorithm is not only trying

to search the space of all DAGs, but also the space of all assignments to the hidden variables.

C.10 Inventing new hidden nodes

So far, structure learning has meant finding the right connectivity between pre-existing nodes. A more chal-

lenging problem is inventing hidden nodes on demand. Hidden nodes can make a model much more compact,

as we see in Figure C.7.

The standard approach is to keep adding hidden nodes one at a time, performing structure learning at

each step, until the score drops. There has been some recent work on more intelligent heuristics. For example,
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(a) (b)

Figure C.7: (a) A BN with a hidden variable H. (b) The simplest network that can capture the same distribution

without using a hidden variable (created using arc reversal and node elimination). If H is binary and the other

nodes are trinary, and we assume full CPTs, the first network has 45 independent parameters, and the second

has 708.

dense clique-like graphs (such as that in Figure C.7(b)) suggest that a hidden node should be added [ELFK00].

When learning DBNs, one can use violations of the Markov condition to suggest that a hidden node should

be added [BFK99].

C.11 Derivation of the CLG parameter estimation formulas

In this section, we derive the equations in Table C.1, since I have not seen a published derivation at this level

of generality before (although some of these details appear in [Bil99].) Recall that the expected complete-data

log-likelihood is as follows:

L = − 1
2

∑

m

E

[
∑

i

qi
m log |Σi|+ qi

m(ym −Bixm)′Σ−1
i (ym −Bixm) | Dm

]

C.11.1 Estimating the regression matrix

To find the ML estimates, we take derivatives of L w.r.t. Bi and Σi, set to 0, and solve. Using the identity

∂ ((Xa+ b)′C(Xa+ b))

∂X
= (C + C ′)(Xa+ b)a′

we have

∂

∂Bi
L = 1

2

∑

l

wi
mE

[
2Σ−1

i (yl −Bixl)x
′
l

]

=
∑

l

wi
mΣ−1

i 〈ymx
′
m〉i −

∑

l

wi
mΣ−1

i Bi〈xmx
′
m〉i = 0

Hence

Bi =

(
∑

l

wi
m〈ymx

′
m〉i
)(

∑

l

wi
m〈xmx

′
m〉i
)−1

In the special case that X is absent, so Bi = µi and xl = 1, this formula becomes

µi =

∑

l w
i
m〈ym〉i

∑

l w
i
m
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C.11.2 Estimating a full covariance matrix

Using the identities

∂(a′Xb)

∂X
= ab′,

∂ ln |X|
∂X

= (X ′)−1 and ln |X| = − ln |X−1|

we have

∂

∂Σ−1
i

L = − 1
2

∑

l

wi
m〈(yl −Bixl)(yl −Bixl)

′〉i + 1
2

∑

l

wi
mΣi

= − 1
2

∑

l

wi
m (〈ymy

′
m〉i −Bi〈xmy

′
m〉i − 〈ymx

′
m〉iB′

i +Bi〈xmx
′
m〉iB′

i) + 1
2

∑

l

wi
mΣi = 0

Using the new value of Bi and the fact that Σi is symmetric, we find

Bi

(
∑

l

wi
m〈xmx

′
m〉i
)

B′
i =

(
∑

l

wi
m〈ymx

′
m〉i
)(

∑

l

wi
m〈xmx

′
m〉i
)−1(

∑

l

wi
m〈xmy

′
m〉i
)

= Bi

(
∑

l

wi
m〈xmy

′
m〉i
)

=

(
∑

l

wi
m〈ymx

′
m〉i
)′

B′
i

Hence

Σi =

∑

l w
i
m〈ymy

′
m〉i

∑

l w
i
m

−Bi

∑

l w
i
m〈xmy

′
m〉i

∑

l w
i
m

(C.18)

If the covariance matrix is tied across states, we get

∂

∂Σ−1
L = − 1

2

∑

l

∑

i

wi
m(〈ymy

′
m〉i −Bi〈xmy

′
m〉i) + 1

2Σ
∑

l

∑

i

wi
m = 0

Since
∑

l

∑

i w
i
m = N we have

Σ =

∑

i

(∑

l w
i
m〈ymy

′
m〉i
)

N
−
∑

i

(∑

l w
i
mBi〈xmy

′
m〉i
)

N
(C.19)

If X is absent, so Ai = µi and xl = 1, Equation C.18 becomes (using the new estimate for µi)

Σi =

∑

l w
i
m〈ymy

′
m〉i

∑

l w
i
m

− µiµ
′
i (C.20)

In the tied case, we get

Σ =

∑

i

(∑

l w
i
m〈ymy

′
m〉i
)

N
−
∑

i

(∑

l w
i
mµi〈ym〉′i

)

N
=

∑

i

(∑

l w
i
m〈ymy

′
m〉i
)

N
−
∑

i(
∑

l w
i
m)µiµ

′
i

N
(C.21)

C.11.3 Estimating a spherical covariance matrix

If we have the constraint that Σi = σ2
i I is isotropic, the conditional density of Y becomes

p(y|x,Q = i) = cσ−d
i exp

(
− 1

2σ
−2
i ||y −Bix||2

)

Hence

L =
∑

l

∑

i

wi
m〈−d log σi − 1

2σ
−2
i ||y −Bix||2〉i

so
∂

∂σi
L = −d

∑

l

wi
mσ

−1
i + σ−3

i wi
m〈||yl −Bixl||2〉i = 0
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and

σ2
i =

1/d
∑

l w
i
m

(
∑

l

wi
m〈||yl −Bixl||2〉i

)

Now

||yl −Bixl||2 = (yl −Bixl)
′(yl −Bixl) = y′lyl + x′lB

′
iBixl − 2y′lBixl

To compute the expected value of this distance, we use the fact that x′Ay = Tr(x′Ay) = Tr(Ayx′), so

E[x′Ay] = Tr(AE[yx′]). Hence

∑
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(Notice that, if Y is observed, this becomes
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We will see later that, if Ai = µi and X = 1, we can eliminate all the trace operators.)

Now Tr(A) + Tr(B) = Tr(A+B), so
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If σ2
i is tied, we get
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In the special case that X is absent, so Bi = µi and xl = 1, this formula becomes much simpler, since

∑

l

wi
m〈(yl −Bixl)

′(yl −Bixl)〉i =
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l
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so, using the new estimate for µi,
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For the tied case, we get
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(C.25)

187



Appendix D

Notation and abbreviations

A summary of the most frequently used notation and abbreviations appears in the tables below. We also adopt

the standard convention that random variables are denoted as capital letters, and instantiations of random

variables (values) are denoted as lower-case letters. We do not explicitely distinguish between scalars and

vectors. When working with linear algebra, we denote vectors (which may be random variables) as lower-

case, to distinguish them from matrices, which are always upper case.

Symbol Meaning

Ut Control (intput) at time t
Xt Hidden state variable at time t
Yt Observation (output) at time t
J Size of input state space

K Size of hidden state space

L Size of output state space

T Length of sequence

l Lag

h Prediction horizon

Ntrain Num. training sequences

ym
1:T Training sequence m

Table D.1: Notation for general state-space models.
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Symbol Meaning

Zi
t i’th variable in timeslice t

Nh Num. hidden variables per timeslice

N Num. variables per timeslice

S Num. hidden states, KNh

Table D.2: Notation for DBNs.

Symbol Meaning

π(j) Initial state probability: P (X1 = j)
A(i, j) Transition probability: P (Xt = j|Xt−1 = i)
B(i, j) Discrete observation probability: P (Yt = j|Xt = i)
Ot(i, i) Observation likelihood at time t P (yt|Xt = i)
αt(i) P (Xt = i|y1:t)
βt(i) P (yt+1:T |Xt = i
γt(i) P (Xt = i|y1:T )
ξt−1,t(i, j) P (Xt−1 = i,Xt = j|y1:T )

Table D.3: Notation for HMMs.

Symbol Meaning

Xi
t i’th sample of hidden variable Xt

Xi
t(j) i’th sample of j’th component of hidden variable Xt

Ns Num. samples

NL Num. landmarks

Table D.4: Notation for particle filtering.

P (Xt = xt|Xt−1 = xt−1, Ut = u) = N (xt;Axt−1 +Bu+ µX , Q)

P (Yt = y|Xt = x,Ut = u) = N (y;Cx+Du+ µY , R)

N (y;µ,Σ) =
1

(2π)L/2|Σ|
1
2

exp
(
− 1

2 (y − µ)′Σ−1(y − µ)
)

Table D.5: Notation for a Kalman filter model.
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Abbreviation Meaning

BK Boyen-Koller

CLG Conditional linear Gaussian

CPD Conditional probability distribution

DBN Dynamic Bayesian network

EM Expectation maximization

ESS Expected sufficient statistics

FF Factored frontier

Fgraph factor graph

HMM Hidden Markov model

HHMM Hierarchical HMM

iid independent, identically distributed

Jtree Junction tree

KFM Kalman filter model

LBP Loopy belief propagation

MAP Maximum a posteriori

MLE Maximum likelihood estimate

PF Particle filtering

RBPF Rao-Blackwellised particle filtering

SLAM Simultaneous localization and mapping

Table D.6: List of abbrevations.
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