Dynamic Bayesian Networks with
Deterministic Latent Tables

David Barber
Institute for Adaptive and Neural Computation
Edinburgh University
5 Forrest Hill, Edinburgh, EH1 2QL, U.K.
dbarber@anc.ed.ac.uk

Abstract

The application of latent/hidden variable Dynamic Bayesian Net-
works is constrained by the complexity of marginalising over latent
variables. For this reason either small latent dimensions or Gaus-
sian latent conditional tables linearly dependent on past states are
typically considered in order that inference is tractable. We suggest
an alternative approach in which the latent variables are modelled
using deterministic conditional probability tables. This specialisa-
tion has the advantage of tractable inference even for highly com-
plex non-linear /non-Gaussian visible conditional probability tables.
This approach enables the consideration of highly complex latent
dynamics whilst retaining the benefits of a tractable probabilistic
model.

1 Introduction

Dynamic Bayesian Networks are a powerful framework for temporal data models
with widespread application in time series analysis[10, 2, 5]. A time series of length
T is a sequence of observation vectors V = {v(1),v(2),...,v(T)}, where v;(¢) repre-
sents the state of visible variable 7 at time ¢t. For example, in a speech application V
may represent a vector of cepstral coeflicients through time, the aim being to classify
the sequence as belonging to a particular phonene[2, 9]. The power in the Dynamic
Bayesian Network is the assumption that the observations may be generated by
some latent (hidden) process that cannot be directly experimentally observed. The
basic structure of these models is shown in fig(1)[a] where network states are only
dependent on a short time history of previous states (the Markov assumption).
Representing the hidden variable sequence by H = {h(1),h(2),...,h(T)}, the joint
distribution of a first order Dynamic Bayesian Network is

T—1
p(V,H) = p(v(1)p(h(1)[v(1))] | p(v(E+1)|v(t), h(®))p(h(t+1)[v(t), v(t+1), h(t))

t=1

This is a Hidden Markov Model (HMM), with additional connections from visible
to hidden units[9]. The usage of such models is varied, but here we shall concen-
trate on unsupervised sequence learning. That is, given a set of training sequences

DIDGD
DD D R T ST

(a) Bayesian Network (b) Hidden Inference

Figure 1: (a) A first order Dynamic Bayesian Network containing a sequence of
hidden (latent) variables h(1),h(2),...,h(T) and a sequence of visible (observ-
able) variables v(1),v(2),...,v(T). In general, all conditional probability tables
are stochastic — that is, more than one state can be realised. (b) Conditioning on
the visible units forms an undirected chain in the hidden space. Hidden unit infer-
ence is achieved by propagating information along both directions of the chain to
ensure normalisation.

V..., VP we aim to capture the essential features of the underlying dynamical
process that generated the data. Denoting the parameters of the model by ©,
learning can be achieved using the EM algorithm which maximises a lower bound
on the likelihood of a set of observed sequences by the procedure[5]:

P
O™ = argmax > p(H*|V*, @°4) log p(H*, V", ©). 1
gma ;;1 (H*|) log p() (1)

This procedure contains expectations with respect to the distribution p(H|V) — that
is, to do learning, we need to infer the hidden unit distribution conditional on the
visible variables. p(H|V) is represented by the undirected clique graph, fig(1)[b], in
which each node represents a function (dependent on the clamped visible units) of
the hidden variables it contains, with p(H|V) being the product of these clique po-
tentials. In order to do inference on such a graph, in general, it is necessary to carry
out a message passing type procedure in which messages are first passed one way
along the undirected graph, and then back, such as in the forward-backward algo-
rithm in HMMs [5]. Only when messages have been passed along both directions of
all links can the normalised conditional hidden unit distribution be numerically de-
termined. The complexity of calculating messages is dominated by marginalisation
of the clique functions over a hidden vector h(t). In the case of discrete hidden units
with S states, this complexity is of the order S?, and the total complexity of infer-
ence is then O(T'S?). For continuous hidden units, the analogous marginalisation
requires integration of a clique function over a hidden vector. If the clique function
is very low dimensional, this may be feasible. However, in high dimensions, this
is typically intractable unless the clique functions are of a very specific form, such
as Gaussians. This motivates the Kalman filter model[5] in which all conditional
probability tables are Gaussian with means determined by a linear combination of
previous states. There have been several attempts to generalise the Kalman filter
to include non-linear /non-Gaussian conditional probability tables, but most rely on
using approximate integration methods based on either sampling[3], perturbation
or variational type methods[5].

In this paper we take a different approach. We consider specially constrained net-
works which, when conditioned on the visible variables, render the hidden unit

(a) Deterministic Hiddens (b) Input-Output HMM

DO O RDIDEDED

(c) Hidden Tnference (d) Visible Representation

Figure 2: (a) A first order Dynamic Bayesian Network with deterministic hidden
CPTs (represented by diamonds) — that is, the hidden node is certainly in a single
state, determined by its parents. (b) An input-output HMM with deterministic
hidden variables. (c) Conditioning on the visible variables forms a directed chain
in the hidden space which is deterministic. Hidden unit inference can be achieved
by forward propagation alone. (d) Integrating out hidden variables gives a cascade
style directed visible graph, shown here for only four time steps.

distribution trivial. The aim is then to be able to consider non-Gaussian and non-
linear conditional probability tables (CPTs), and hence richer dynamics in the hid-
den space.

2 Deterministic Latent Variables

The deterministic latent CPT case, fig(2)[a] defines conditional probabilities
p(h(t + Dfv(t+1),v(t),h(t)) = 6 (bt + 1) — £ (v(t + 1), v(t),h(t),0n)) (2)

where §(z) represents the Dirac delta function for continuous hidden variables, and
the Kronecker delta for discrete hidden variables. The vector function f parame-
terises the CPT, itself having parameters 8y,. Whilst the restriction to deterministic
CPTs appears severe, the model retains some attractive features : The marginal
p(V) is non-Markovian, coupling all the variables in the sequence, see fig(2)[d]. The
marginal p(H) is stochastic, whilst hidden unit inference is deterministic, as illus-
trated in fig(2)[c]. Although not considered explicitly here, input-output HMMs|7],
see fig(2)[b], are easily dealt with by a trivial modification of this framework.

For learning, we can dispense with the EM algorithm and calculate the log likelihood
of a single training sequence V directly,

T-1
L(B,0n|V) = logp(v(1)[0y) + D logp(v(t + 1)|v(t), h(t), 0) 3)

where the hidden unit values are calculated recursively using
h(t+1) =f(v(t+1),v(t),h(t),0n) (4)

The adjustable parameters of the hidden and visible CPTs are represented by 6y,
and 6, respectively. The case of training multiple independently generated se-
quences V*, i =1,... P is straightforward and has likelihood 3_ , L(6y, On|V*). To
maximise the log-likelihood, it is useful to evaluate the derivatives with respect to
the model parameters. These can be calculated as follows :

T-1
% - W * Z 32 logp(v(t +1)[v(t),h(t),0v) (5)
C%Lh = ; ahi(t)logp(v(t + 1)|v(t),h(t),0v)%(i) (6)
dh(t) 0f(t) of(t) dh(t—1) :
d6n, ~ 06, ' Oh(t—1) dby (7)

where f(t) = f(v(t),v(t —1),h(t — 1),0y). Hence the derivatives can be calculated
by deterministic forward propagation of errors and highly complex functions f and
CPTs p(v(t + 1)|v(t),h(t)) may be used. Whilst the training of such networks
resembles back-propagation in neural networks [1, 6], the models have a stochastic
interpretation and retain the benefits inherited from probability theory, including
the possibility of a Bayesian treatment.

3 A Discrete Visible Illustration

To make the above framework more explicit, we consider the case of continuous
hidden units and discrete, binary visible units, v;(t) € {0,1}. In particular, we
restrict attention to the model:

14

p(v(t+1)v(t),h(t) =[] o (zvi(t+1)—1)zwij¢j(t) hi(t+1) Zuw%

i=1

where o(z) = 1/(1 + e %) and ¢;(t) and 1;(t) represent fixed functions of the
network state (h(t),v(t)). Normalisation is ensured since 1 — o(z) = o(—=z). This
model generalises a recurrent stochastic heteroassociative Hopfield network[4] to
include deterministic hidden units dependent on past network states.

The derivatives of the log likelihood are given by :

dL
dwij

dh; (t)
duij

=Y (1= 0u(t)) ui(t+1)=1)¢; (1), =D (1= 0ok(t) Que(t+1)—1wiei(t)

du;;
t v t,k,l

where 0;(t) = o((20;(t +1) — 1), wi;0;(¢)), ¢;(t) = deu(t)/dt and the hidden unit
derivatives are found from the recursions

dhy(t +1) = dl/)k()

dui j

dr(t) < OYk(t) dhim(t)

+ dat;(t), du; - - Ohm(t) duyj

k

We considered a network with the simple linear type influences, ¥(t) = ®(t) =

(552 >, and restricted connectivity W = <13]%)7 U = (g B>7 where the

DD - -

<

(a) Network (b) original (c) recalled

Figure 3: (a) A temporal slice of the network. (b) The training sequence consists
of a random set vectors (V' = 3) over T' = 10 time steps. (c) The reconstruction
using H = 7 hidden units. The initial state v(¢ = 1) for the recalled sequence was
set to the correct initial training value albeit with one of the values flipped. Note
how the dynamics learned is an attractor for the original sequence.

parameters to learn are the matrices A, B, C,D. A slice of the network is illustrated
in fig(3)[a]. We can easily iterate the hidden states in this case to give

h(t+ 1) = Ah(t) + Bv(t) = A'h(1) + z_: A'Bv(t—t)
t'=0

which demonstrates how the hidden state depends on the full past history of the
observations. We trained the network using 3 visible units and 7 hidden units to
maximise the likelihood of the binary sequence in fig(3)[b]. Note that this sequence
contains repeated patterns and therefore could not be recalled perfectly with a
model which does not contain hidden units. We tested if the learned model had
captured the dynamics of the training sequence by initialising the network in the
first visible state in the training sequence, but with one of the values flipped. The
network then generated the following hidden and visible states recursively, as plotted
in fig(3)[c]. The learned network is an attractor with the training sequence as
a stable point, demonstrating that such models are capable of learning attractor
recurrent networks more powerful than those without hidden units. Learning is
very fast in such networks, and we have successfully applied these models to cases
of several hundred hidden and visible unit dimensions.

3.1 Recall Capacity

What effect have the hidden units on the ability of Hopfield networks to recall
sequences? By recall, we mean that a training sequence is correctly generated by
the network given that only the initial state of the training sequence is presented to
the trained network. For the analysis here, we will consider the retrieval dynamics
to be completely deterministic, thus if we concatenate both hidden h(t) and visible
variables v(t) into the vector x(t) and consider the deterministic hidden function
f(y) = thresh(y) which is 1 if y > 0 and zero otherwise, then

zi(t+1) = threshz M;;x;(t). (8)

Here M;; are the elements of the weight matrix representing the transitions from
time ¢ to time ¢ + 1. A desired sequence X(1),...,%(T) can be recalled correctly if
we can find a matrix M and real numbers ¢;(¢) such that

M [x(1),...,x(T —1)] = [e(2),...,e(T)]

where the ¢;(t) are arbitrary real numbers for which thresh(e;(t)) = Z;(¢). This
system of linear equations can be solved if the matrix [x(1),...,%(T — 1)] has rank
T — 1. The use of hidden units therefore increases the length of temporal sequences
that we can store by forming, during learning, appropriate hidden representations

h(t) such that the vectors (Sg%) b (Eg%) form a linearly independent set.
Such vectors are clearly possible to generate if the matrix U is full rank. Thus recall
can be achieved if (V + H) >T —1.

The reader might consider forming from a set of linearly dependent patterns
v(1),...,v(T) a linearly independent is by injecting the patterns into a higher
dimensional space, v(t) — V(t) using a non-linear mapping. This would appear
to dispense with the need to use hidden units. However, if the same pattern in
the training set is repeated at different times in the sequence (as in fig(3)[b]), no
matter how complex this non-linear mapping, the resulting vectors v(1),...,v(T)
will be linearly dependent. This demonstrates that hidden units not only solve the
linear dependence problem for non-repeated patterns, they also solve it for repeated
patterns. They are therefore capable of sequence disambiguation since the hidden
unit representations formed are dependent on the full history of the visible units.

4 A Continuous Visible Illustration

To illustrate the use of the framework to continuous visible variables, we consider
the simple Gaussian visible CPT model

p(v(t+1[v(t), h(t)) = exp (— [v(t+1) —g(Ah(t) - BV(t))]2) /(2mo®)"/2

202
h(t+ 1) =f (Ch(t) + Dv(t)) (9)
where the functions f and g are in general non-linear functions of their arguments.
In the case that f(x) = x, and g(x) = z this model is a special case of the

Kalman filter[5]. Training of these models by learning A,B,C,D (02 was set to
0.02 throughout) is straightforward using the forward error propagation techniques
outlined earlier in section (2).

4.1 Classifying Japanese vowels

This UCI machine learning test problem consists of a set of multi-dimensional times
series. Nine speakers uttered two Japanese vowels /ae/ successively to form discrete
time series with 12 LPC cepstral coefficients. Each utterance forms a time series
V whose length is in the range T' = 7 to T' = 29 and each vector v(¢) of the time
series contains 12 cepstral coefficients. The training data consists of 30 training
utterances for each of the 9 speakers. The test data contains 370 time series, each
uttered by one of the nine speakers. The task is to assign each of the test utterances
to the correct speaker.

We used the special settings f(x) = z and g(x) = z to see if such a simple network
would be able to perform well. We split the training data into a 2/3 train and
a 1/3 validation part, training then a set of 10 models for each of the 9 speakers,
with hidden unit dimensions taking the values H = 1,2, ..., 10 and using 20 training
iterations of conjugate gradient learning[1]. For simplicity, we used the same number
of hidden units for each of the nine speaker models. To classify a test utterance,
we chose the speaker model which had the highest likelihood of generating the test
utterance, using an error of 0 if the utterance was assigned to the correct speaker
and an error of 1 otherwise. The errors on the validation set for these 10 models

u}» Vol WA VAV VA VAW NIAN M\/\{ u}»
o PR w2 o o o
“}’ AV A SEVAVEA Vol VIR NN /+ u}»
2 s P T S S S S o
u}» \/\/\A o~ ANV /+ u}»
o s P T S S S S 3
% SN A AT\ ,,/\,,/\M +
3 s W W ww o
“% AN AN SN AL * “%
o s T R E— W wm W o

Figure 4: (Left)Five sequences from the model v(¢) = sin(2(t — 1) +€1(¢)) +0.1ex(t).
(Right) Five sequences from the model v(t) = sin(5(t — 1) + €3(t)) + 0.1e4(t), where
€;(t) are zero mean unit variance Gaussian noise samples. These were combined
to form a training set of 10 unlabelled sequences. We performed unsupervised
learning by fitting a two component mixture model. The posterior probability
p(i = 1|V*) of the 5 sequences on the left belonging to class 1 are (from above)
0.99,0.99,0.83,0.99,0.96 and for the 5 sequences on the right belonging to class
2 are (from above) 0.95,0.99,0.97,0.97,0.95, in accord with the data generating
process.

were 6,6,3,5,5,5,4,5,6,3. Based on these validation results, we retrained a model
with H = 3 hidden units on all available training data. On the final independent
test set, the model achieved an accuracy of 97.3%. This compares favourably with
the 96.2% reported for training using a continuous-output HMM with 5 (discrete)
hidden states[8]. Although our model is not powerful in being able to reconstruct
the training data, it does learn sufficient information in the data to be able to make
reliable classification. This problem serves to illustrate that such simple models can
perform well. An interesting alternative training method not explored here would
be to use discriminative learning[7]. Also, not explored here, is the possibility of
using Bayesian methods to set the number of hidden dimensions.

5 Mixture Models

Since our models are probabilistic, we can apply standard statistical generalisations
to them, including using them as part of a M component mixture model

M
p(V|©) = Zp(Vl@i,i)p(i) (10)

where p(i) denotes the prior mixing coefficients for model i, and each time se-
ries component model is represented by p(V|0;,7). Training mixture models by
maximum likelihood on a set of sequences V', ..., VI is straightforward using the
standard EM recursions [1]:

Sy p(VAi, ©g1d)petd (i)

pmer(i) = :) (11)
S Yy p(Veli, ©gd)pela (i)
P
new __ . old -
o; —argr%glep(wll, 07') log p(V"|i, ©;) (12)
IJ/=

To illustrate this on a simple example, we trained a mixture model with component
models of the form described in section (4). The data is a series of 10 one dimen-
sional (V' = 1) time series each of length T" = 40. Two distinct models were used

to generate 10 training sequences, see fig(4). We fitted a two component mixture
model using mixture components of the form (9) (with linear functions f and g)
each model having H = 3 hidden units. After training, the model priors were found
to be roughly equal 0.49,0.51 and it was satisfying to find that the separation of the
unlabelled training sequences is entirely consistent with the data generation pro-
cess, see fig(4). An interesting observation is that, whilst the true data generating
process is governed by effectively stochastic hidden transitions, the deterministic
hidden model still performs admirably.

6 Discussion

We have considered a class of models for temporal sequence processing which are
a specially constrained version of Dynamic Bayesian Networks. The constraint was
chosen to ensure that inference would be trivial even in high dimensional continu-
ous hidden/latent spaces. Highly complex dynamics may therefore be postulated
for the hidden space transitions, and also for the hidden to the visible transitions.
However, unlike traditional neural networks the models remain probabilistic (gen-
erative models), and hence the full machinery of Bayesian inference is applicable to
this class of models. Indeed, whilst not explored here, model selection issues, such
as assessing the relevant hidden unit dimension, are greatly facilitated in this class
of models. The potential use of this class of such models is therefore widespread.
An area we are currently investigating is using these models for fast inference and
learning in Independent Component Analysis and related areas. In the case that
the hidden unit dynamics is known to be highly stochastic, this class of models is
arguably less appropriate. However, stochastic hidden dynamics is often used in
cases where one believes that the true hidden dynamics is too complex to model
effectively (or, rather, deal with computationally) and one uses noise to ‘cover’ for
the lack of complexity in the assumed hidden dynamics. The models outlined here
provide an alternative in the case that a potentially complex hidden dynamics form
can be assumed, and may also still provide a reasonable solution even in cases where
the underlying hidden dynamics is stochastic. This class of models is therefore a
potential route to computationally tractable, yet powerful time series models.

References

[1] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[2] H.A. Bourlard and N. Morgan, Connectionist Speech Recognition. A Hybrid Ap-
proach., Kluwer, 1994.

[3] A. Doucet, N. de Freitas, and N. J. Gordon, Sequential Monte Carlo Methods in
Practice, Springer, 2001.

[4] J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory of neural computation.,
Addison-Wesley, 1991.

[6] M. I. Jordan, Learning in Graphical Models, MIT Press, 1998.
[6] J.F. Kolen and S.C. Kramer, Dynamic Recurrent Networks, IEEE Press, 2001.

[7] A. Krogh and S.K. Riis, Hidden Neural Networks, Neural Computation 11 (1999),
541-563.

[8] M. Kudo, J. Toyama, and M. Shimbo, Multidimensional Curve Classification Using
Passing-Through Regions, Pattern Recognition Letters 20 (1999), no. 11-13, 1103—
1111.

[9] L.R. Rabiner and B.H. Juang, An introduction to hidden Markov models, IEEE Trans-
actions on Acoustics Speech, Signal Processing 3 (1986), no. 1, 4-16.

[10] M. West and J. Harrison, Bayesian forecasting and dynamic models, Springer, 1999.

