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ABSTRACT 
 
 The dynamic behavior of a cracked flexible rotor passing through critical speed under 
the presence of a constant driving torque is analyzed. By incorporating the nonlinear 
coupling between the bending and torsional degrees of freedom, the model more 
accurately describes the behavior of the accelerated cracked rotor, especially near the 
resonance. The breathing types of cracks are considered using simple hinge model for 
small cracks and cosine function for deep ones. The applied strategy enables to study the 
cracked rotor dynamic response with and without weight dominance, taking into account 
also nonsynchronous whirl. The local cross-flexibility for deep cracks is taken into 
account. The effect of crack on “stalling” of the rotor is investigated. Under the constant 
driving torque, the vibration amplitude increases and the stalling angular velocity 
decreases with the depth of the crack.  
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1. INTRODUCTION 
 

 In many cases the rotors of modern machines are rapidly accelerated from rest to 
operating speed to reduce the excessive vibrations at the critical speeds. Also, the 
vibration monitoring during startup or shutdown has been receiving growing attention, 
especially for machines such as aircraft engines, which are subjected to frequent starts 
and stops as well as high speeds and acceleration rates [1]. It has been recognized that the 
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presence of angular acceleration strongly affects the rotor’s maximum response to 
unbalance and the speed at which it occurs.  
 The topic of transient cracked rotor response has been treated by number of published 
works [2-4]. They have been focused on the study of dynamic behavior of rotor with the 
so-called breathing type of crack during the passage through a critical speed at constant 
angular acceleration or deceleration. Sekhar [2-3] investigated the transient vibration 
response of a cracked rotor passing its critical speed, utilizing a simple hinge model for 
small cracks. He followed an assumption that the vibrations remain small in comparison 
to the rotor’s sag. If a cracked shaft rotates under the load of its weight, then the crack 
will open and close once per revolution, in a case of synchronous whirl. Sawicki et al. [4] 
studied accelerating cracked rotor response using the angle between the crack centerline 
and the rotor whirl vector to determine the closing and opening of the crack, which 
allows to study the rotor dynamic response with and without the rotor weight dominance 
by taking into account also nonsynchronous whirl. 
 Few authors [5-7] studied the dynamic response of the uncracked rotors subjected to 
constant driving torque. Markert et al. [5] determined the maximum deflection of a 
Jeffcot rotor during the acceleration through the critical speed or during stalling in 
resonance as function of the three nondimensional system parameters, i.e., damping ratio, 
eccentricity ratio and driving torque. Later, Gasch et al. [6] applied these strategies to a 
practical flexible rotor with a continuous mass distribution passing through its critical 
speeds under a constant driving torque. Genta and Delprete [7] developed a mathematical 
finite element–based model to study the nonlinear behavior of complex anisotropic rotors 
with non-constant angular speed. 
 There is a wealth of published research results on cracked rotors. Wauer [8] and 
Dimarogonas [9] provided a comprehensive literature reviews and state-of-the-art of 
vibration of cracked structures. Gasch [10] provided a comprehensive investigation of the 
stability behavior of a cracked Jeffcott rotor and the forced vibration due to unbalance 
and crack with a constant spinning speed. Penny and Friswell [11] demonstrated the 
influence of the crack model on the response of Jeffcott rotor.  
 In this paper the effect of breathing crack on the unbalance response of the 
accelerating rotor subjected to constant driving torque is studied. The equations for lateral 
rotor’s motion are supplemented by additional equation rela ting the angular displacement 
and the driving torque. Torsional elasticity of the shaft is neglected due to the assumption 
that the torque is applied to torsionally stiff rotor. The effect of crack on stalled rotor’s 
angular velocity and maximum amplitude of unbalance response is presented.  

 
 

2. CRACK MODELS AND STIFFNESS MATRIX 
 

 The theoretical model, called the Jeffcott rotor, employs a flexible rotor composed of 
a centrally located unbalanced disk attached to a massless elastic shaft which is, in turn,  
mounted symmetrically on rigid bearings (see Fig. 1(a). The shaft does have a transverse 
crack running across its section and located close to the disk. The stiffness of the 
uncracked rotor system is symmetric (isotropic) and the damping due to the air resistance 
effect is assumed to be viscous. The rotor is driven by a constant external drive torque. 
The angle between the crack centerline and the line connecting the bearings and shaft 
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center (Fig. 1(b)), ( )arctan y zψ = Φ − , is used to determine the closing and opening of 
the crack. At any instant of time, the ξ-axis remains perpendicular to the face of the 
crack, causing that the body-fixed rotating coordinate frame (ζ,η,ξ) rotates with the same 
velocity as the rotor. The weight dominance assumed in almost all previous analyses of 
horizontal cracked rotors is not required, and the influence of the whirl speed on the 
closing and opening of crack is included. This nonlinear system with time-varying 
stiffness coefficients is studied numerically, with particular focus on the effect of 
different crack depths on the rotor stalling. 
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Fig. 1  Model of Jeffcott rotor with crack and constant driving torque (a),  crack section in inertial 
and rotating coordinates (b). 

 
 The stiffness matrix for a Jeffcott rotor with a cracked shaft in rotating coordinates 
can be written as: 

( )
00

00R

kK
f

kK
ξ
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ψ
∆  

= −    ∆   
K                                       (1) 

 
where the first matrix refers to the stiffness of the uncracked shaft, and the second defines 
the changes in stiffness kξ∆  and kη∆  in ξ and η directions, respectively. The function 

( )f ψ  is a crack steering function which depends on the angular position of the crack ψ  
and the selected crack model. 
 
 The simplest model of crack is a hinge model, where the crack is assumed to change 
from its closed to open state suddenly as the shaft rotates. The steering function for this 
model is defined as 
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 or, using Fourier expansion is 
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 While the hinge model might be proper representation for very small cracks Mayes 
and Davies [12-13] proposed a model with a smooth transition between the opening and 
closing of the crack, which is more adequate for bigger cracks. In this case the crack 
steering function or the Mayes modified function takes the following form: 
 

       
1 cos( )

( )
2

f
ψ

ψ
+

=                                                    (3) 

 
 Now, the stiffness matrix for a Jeffcott rotor with a cracked shaft in inertial 
coordinates, IK  is given by 

1
I R

−=K TK T                                                        (4) 
 

where the transformation matrix T  is 
 

cos sin
sin cos

Φ − Φ 
=  Φ Φ 

T                                                 (5) 

 
Thus 
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where 1

k k
k

K
ξ η∆ + ∆

∆ =  and 2

k k
k

K
ξ η∆ − ∆

∆ = . 

 
 
3.  EQUATIONS OF MOTION OF CRACKED ROTOR UNDER CONSTANT 
 DRIVING TORQUE 
 
 The nonlinear coupled equations of motion for the accelerating Jeffcott rotor with a 
cracked shaft, subjected to constant driving torque, Ta, unbalance force, and gravitational 
force due to its weight, can be written in inertial coordinate frame as: 
 

( )
( )
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2

cos sin

0sin cos
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ε θ θ

ε θ θ

 Φ + Φ   + + = +   Φ − Φ   
Mq Cq K q

& &&
&& & & &&                           (7.1) 

( ) ( )2 sin cosp aJ M M z y Tε θ ε θ θ+ + − + =&& &&&&                                   (7.2) 
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where 
0

0
M

M
 

=  
 

M  and 
0

0
C

C
 

=  
 

C  is the rotor mass and damping matrix, 

respectively,  ( )  
T

z y=q  is the vector of the disk’s displacements, and Φ  is the rotor spin 
angle (see Fig. 1(b)). 
 
 Using Eq. (7.1) one can eliminate lateral acceleration terms z&&  and y&&  from Eq. (7.2) 
to obtain the following form of the equation relating torque and the angular displacement: 
 

( ) ( )

( )( ) ( ) ( )2 1 2 1 2
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p a
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where θ β= Φ − , arctan
y
z

ψ  = Φ −  
 

, ,  θ θ= Φ = Φ& &&& && , and 2
pJ Mr= . 

 
 Normalizing displacements with respect to unbalance eccentricity, introducing 
nondimensional time, damping, and torque, the equations (7.1) and (7.3) take the 
following nondimensional form: 
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(8.2) 
where the following definitions for nondimensional variables were employed: 
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4.  RESULTS AND DISCUSSION 
  
 Five nondimensional parameters have been used in the numerical study of accelerated 

cracked rotor, i.e., T, ( )2
rε  , K∆ , ς , and 2

n

g
εω

. All following results were generated for 

the case where unbalance is in the direction of crack, i.e., 0β = . Also, the cross-stiffness 

for deep cracks has been accounted for as 
6

k
k ξ

η

∆
∆ =  [13]. 
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                                 (a)                                        (b) 

Fig. 2.  Normalized vibration amplitude (a) and normalized spin speed (b) as a function of time; 

0.01T = , 0.02ς =  , ( ) 2 30.85 10rε −= × , and ( )2 5ng εω = . 

 
 
 Figure 2 illustrates the behavior of the rotor passing through the critical speed for the 
uncracked and cracked rotor under the constant driving torque 0.01T = . The normalized 
rotor vibration amplitude and normalized spin speed are shown as a function of 
nondimensional time. It can be noticed that the appearance of the crack makes the zone of 
critical speed wider. Next, the slight increase of the depth of the crack, here by 0.001, 
causes that the rotor falls into the stalled condition, i.e., it fails to accelerate beyond the 
critical speed. In other words, all the power delivered by the given torque is dissipated by 
nonrotating damping [7] and the rotor acceleration is no longer possible. 
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                                               (a)                                                                               (b)  
Fig. 3. Normalized shaft deflection and spin speed as a function of time for 0.02ς =  (a), 0.04ς =  (b); 

( ) ( )2 3 20.1, 0.01, r 0.85 10 ,  g 5nK Tξ ε εω−∆ = = = × = . 

 
 
 The effect of damping is illustrated in Fig. 3. The increased damping suppresses the 
stalling mechanism and the rotor can traverse through the critical speed.    
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Fig. 4.  Time history of normalized vibration amplitude  for uncracked rotor (a) and with crack 

0.25K∆ =  (b) at the stalled condition; ( ) ( )2 20.03, 0.001, r 0.001, g 5nTς ε εω= = = = . 
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 Figure 4 illustrates that the appearance of crack causes 1/3 and ½ subharmonic peaks 
to show up and also significantly increases the amplitude of vibration of the “stalling” 
rotor. In this case the large vibration amplitudes of the stalling cracked rotor might well 
exceed the rotor static deflection and therefore violate the common weight dominance 
assumption made in the study of rotors with breathing cracks. 
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Fig. 5.  Normalized spin speed (a) and maximum vibration amplitude (b) as a function of crack depth 

at the rotor stalling; ( ) ( )2 3 20.01, r 0.85 10 ,  g 5, 0.02nT ε εω ς−= = × = = . 

 
 For the rotor in stall and under the constant driving torque, its normalized spin speed 
and vibration amplitude as a function of crack depth is presented in Fig. 5. It can be seen 
that while the rotor vibration amplitude increases parabolically (Fig. 5(a)) the stalling 
speed almost linearly decreases with the depth of the crack (Fig. 5(b)).  
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Fig. 6.  Maximum normalized vibration amplitude (a) and the corresponding maximum normalized 
spin speed (b) of the rotor as a function of constant torque for various crack depths; 0.03ς = , 

( )2r 0.001ε = , ( )2g 5nεω = . 

 
 The effect of the applied constant torque and various crack depths on the maximum 
rotor resonant vibration amplitude and the spin speed for various crack depths is shown in 
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Fig. 6. The peak of each curve in Fig. 6(a) denotes the threshold value of the constant 
driving torque below which the rotor is locked in the resonance and above which the 
rotor is capable to overcome the resonance.  
 For the range of torques below the threshold value (i.e., in the stalling zone), the rotor 
maximum vibration amplitude increases for increasing value of torque (Fig. 6(a)) and the 
corresponding stalling spin speed remains almost constant (Fig. 6(b)), indicating lack of 
rotor acceleration. Also, in the stalling zone while the maximum vibration amplitude 
grows with the increased depth of the crack the corresponding rotor stalling speed 
decreases. Increase of the drive torque accelerates the cracked rotor locked in the 
resonance zone and at the same time reduces its resonance maximum vibration amplitude 
and move the resonance peak to higher spin speeds.  
 
 
5. CONCLUSIONS 
 
 The following conclusions can be drawn based on the results presented in this paper: 
 
1. The developed model enables to study the cracked rotor dynamic response with and 

without weight dominance in the presence of nonsynchronous whirl. The model 
includes small and deep cracks, as well as cross stiffness effect (for deep cracks). 

2. The stalling effect of the rotor is crack sensitive, i.e., even minute increase of crack 
depth can cause rotor to stall. This is accompanied by the presence of subcritical (1/3, 
½) response peaks and large increase of fundamental vibration response. 

3. For rotor in stalling zone its maximum vibration amplitude increases for increasing 
value of torque and the corresponding stalling spin speed remains almost constant.  

4. For the stalled rotor the maximum vibration amplitude grows parabollically with the 
increased depth of the crack and the corresponding rotor stalling speed decreases 
almost linearly. 
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NOMENCLATURE 
 
C            external damping coefficient 

( )f ψ        crack steering function  

pJ           moment of inertia of the disk 
K             stiffness of uncracked shaft 
M           mass of the disk 
r             radius of gyration 
t,τ             time; ntτ ω=   

Ta, T  driving torque; 2
a p nT T J ω=  

z, y, Z, Y     inertial coordinates; ,  Z z Y yε ε= =  
α              acceleration ratio 
β             angle between crack and unbalance eccentricity 

kξ∆          the largest stiffness change ratio in ξ -direction caused by crack 

kη∆          the largest stiffness change ratio in η -direction caused by crack 

K∆           stiffness change ratio ( )Kk /ξ∆=  
ε              eccentricity of the disk 
ς              external damping ratio 
θ             angular position of the eccentricity ε  in the inertial system 

,ξ η       body fixed rotating coordinates, ξ  is in the crack direction 

nω           undamped critical speed of uncracked rotor 


