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Dynamic Behavior of Tubes 

Subjected to Internal and 

External Cross Flows 

This article presents a method for thoroughly examining the dynamic characteristics of 
a tube under the influence of either the internal flow or the external cross flow. The tube 
is modeled as a thin cylindrical shell whose governing equations are derived from an 
energy method. The effects due to internal flow are introduced into the system through 
initial stress. Galerkin's method in conjunction with the method of multiple scales is 
employed for obtaining the stability of the tube vibration. According to the results, 
instability can occur under certain conditions of resonance. Regarding the effects of 
the external cross flow, a numerical approach is initially employed to interpolate the 
experimental data of the pressure distributions due to the flow. The dynamic characteristics 
of the tube under steady flows and flows with small time variation are then investigated. 
Stability of the solution is also discussed. © 1997 John Wiley & Sons, Inc. 

INTRODUCTION 

Shell-type structures have been extensively used 

in constructional, mechanical, and many other ap

plications, e.g., pressure vessels, heat exchanger 

tubes, etc. Hence the dynamic effects arising from 

the interactions of internal flows and external cross 

flows are of interest. Most literature concentrated 

on identifying critical flow velocity (Blevins, 1977; 

Chen, 1987). The flow effects on dynamic behav

iors of tubes, although important, are not discussed 

intensively. This article examines the shell's vibra

tion and its stability and serves as a preliminary 

study of the dynamic behavior of a tube under the 

influence of internal/external cross flows. 

This study employs thin shell theory for the 

tube. Huang and Hsu (1990) once derived the spin-
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ning thin shell equations, in which the initial 

stresses caused by rotation was included. Weaver 

and Dnny (1973) used the Flugge-Kempner cylin

drical shell equations and the potential flow theory 

to describe the dynamic pressure of internal flows, 

and they also discussed the stability phenomena. 

Yao (1963) employed the Donell-Vlasov equa

tions and more thoroughly examined the instabil

ity under the action of radial and longitudinal 

loadings. The current research adopts the theory 

of Huang and Hsu (1990), modifying it such that 

the pressure due to the flow is included as the 

initial stress. The variance of the natural frequen

cies of the shell with system parameters is then 

discussed. Moreover, instability resulting from 

small time variation of the flow is also investi

gated. 
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FIGURE 1 The cylindrical shell model for a tube subjected to internal and external cross 

flows. 

EQUATIONS OF MOTION 

Figure 1 depicts a cylindrical tube excited by an 

internal flow or an external cross flow. This article 

attempts to develop a relatively simple technique 

of analyzing the dynamics of the tube without in

volving complicated fluid dynamics. We consider 

the initial circumferential stress caused by the flow. 

The initial stress (Ti is of the form 

- a 
(Tl = h' P, (1) 

[K a2 K(1 - v) a2 

[2 ae + 2a2 ae2 

a2 
] - ph at2 

where p represents the pressure generated by 

the internal or the external cross flow and a 

and h denote the mean radius and thickness of 

the tube, respectively. By employing Hamilton's 

principle, the equations of motion of the cylin

drical shell subjected to the flow are then de

rived as 

{[Ld + [Lp]}u = 0, (2) 

where 

K(1 + v) a2 vK a 
--

2al agae al ag 

[1 -v ( D) a2 

-----uz K + a2 a e 
[Da3 Ka 

- a4 ae3 + a2 ae 

[Ld = (D K) a2 
-I- -+- -
. a4 a2 ae2 

D a3
] 

a2[2 aeae 
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a2 
] -ph--

at2 

[D V'4 + K 
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is the differential operator based on Love

Timoshenko theory (Soedel, 1981), and 

o o 

[p a2 pJ 
a ae2 a 

(4) 

sym. [p P a2 J 
a a ae2 

is the differential operator resulting from the flow. 

Notably, both operators are symmetric, thereby 

ensuring that the eigenvalues of the system are 

real (Leissa, 1973). In the above equations, g = 

xl I is a dimensionless axial coordinate, v is the 

Poisson's ratio, and u = {uo Uo, uzY denotes the 

displacement vector. Notation V4 = V2V2 is the 

biharmonic operator, and V2 = a21ae2 + (all)2a21 

[ K £ + K(l - v) £ 
agz 2a2 ae2 

-h~J at2 

ag2• The membrane stiffness and bending stiffness 

of the shell are denoted as K = hl(l - VZ) and 

D = h3/[12(1 - v2)], respectively. In deriving the 

matrix equation of motion (1), the energy storing 

mechanism resulting from the initial stress is re

tained to include the effects due to internal or 

external pressures. 

To avoid dimension dependence, the equations 

of motion are initially normalized by defining 

the following dimensionless parameters (White, 

1986): a* = all, h* = hll, u* = ull, p*IE, and 

t* = v7fiP. til where E and p denote the Young's 

modulus and the density of the tube, respectively. 

Consequently, the equations are rewritten as 

([Lt] + [Lj\']}u* = O. (5) 

To neatly express the equations, the asterisks are 

removed hereafter. The two differential operators 

are of the forms 

K(l + v) aZ vK a 
--

2a agae a ag 

[1- v(K+D) a2 

2 a2 agz 
[ D a3 Ka 
- a4 ae3 + aZ ae 

[Lf] = 

sym. 

and 

l!.£ 0 0 
a aez 

[Lt] = [~aa;z -~J 2l!.~ 
a ae . (7) 

sym. [p p a2 J 
a a aez 

(D K) aZ 
+ -+- -

a4 a2 ae2 
D a3 J 
a2 agzae 

(6) 

-h~J at2 

[DV4 +K 
a4 a2 

+h-a2 J at2 

EFFECTS OF INTERNAL FLOWS 

Constant Internal Pressure 

The simplest case of constant internal pressure 

is first discussed. The shell is further assumed 

to be simply supported at both ends, i.e., at g 
= 0, or 1, 

Uz(g, e, t) = 0, 

ue(g, e, t) = 0, 
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Mx(g, e, t) = 0, 

NxCg, 0, t) = O. 
(8) 

Here Mx and Nx denote the bending moment resul

tant and membrane force resultant, respectively. 

They are of the forms 

(9) 

N =K -+- -+u, . [aux v(auo )] 
x ag a ao ' 

(10) 

Notably, in reality the tube may not be simply 

supported at the ends. However, Saito and Endo 

(1986) proved that the boundaries do not signifi

cantly change the dynamic characteristics of the 

shell as long as the tube is sufficiently slender. 

The tubes in the heat exchanger are in general 

relatively long; therefore, the assumption of simple 

supports is reasonable in this study. 

The mode shapes of the cylindrical shell are 

shown to be of the forms (Huang and Hsu, 1990) 

where the dimensionless frequency is defined as 

w;n = VPiE lwmn ; Wrnn denotes the natural fre

quency associated with the (m, n) mode; m and n 

represent the longitudinal half-wave and the cir

cumferential wave numbers, respectively; and Ax, 

Ao, and A z are undetermined amplitudes. 

By substituting the expressions (11) into the 

equations of motion, a set of linear algebraic equa

tions, in terms of the variables A = {Ax, Ao, AzY, 

can be obtained as follows: 

aA=o, (12) 

where 

[

hew;;' - a) b 

a = hew;;' - d) 

sym. 

e 1 
h(w~€-l) . (13) 

Table 1. 

Shell 

Geometric and Material Parameters of the 

Density 

Length 

p = 8.75 X 10-9 N s2/mm4 

1= 300 mm 

Thickness h = 2mm 

a = 100 mm 

v = 0.34 

Mean radius 

Poisson's ratio 

Young's modulus E = 11.5 X 104 N/mm2 

Here the defined parameters Ii, . . . ,f are given 

in the Appendix. To yield nontrivial solutions, the 

determinant of a should vanish. This yields the 

frequency equation of the cylindrical tube with 

internal constant pressure flow as 

where 

a4 = -(Ii + d + f), 

a2 = (af+ lid + df- b2 - c2 - e2), 

ao = (lie2 + de2 + fb 2 - lidf- 2bee). 

(14) 

(15) 

Consequently, the amplitude ratios of the (m, n) 

mode can be obtained as 

1
_& -e 1 

-c w;;;-f 
and 

1

,··*2. - d 
'Ulmm 

-e 
(16) 

I 

W;;i - d -~ 1 

-e -c 

Note that the third subscript i = 1,2,3 in Eq. (16) 

is designated for three different modes corre

sponding to the same (m, n) number. Usually, one 

assigns Wmn! ::::; Wmn2 ::::; W rnn3. Physically, Wrnn! is the 

frequency associated with the mode where the 

bending vibration predominates. The other two 

frequencies are respectively associated with the 

modes where the torsional (circumferential) or the 

longitudinal vibration predominates. For develop

able surfaces like cylindrical tubes, the bending 

modes (i = 1) are generally of the lowest frequency 

and of the most significance. 

Table 1 lists the material and geometric param-
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FIGURE 2 Natural frequencies, with m = 1, of the tube subjected to internal flow for (a) 

bending modes and (b) torsional and longitudinal modes. 

eters of the illustrated shell for numerical exam

ples shown hereafter. Figure 2 presents the natural 

frequencies of m = 1 for three different values of 

internal pressure. Figure 2(a) depicts the bending 

frequencies and Fig. 2(b) shows the higher two 

sets of frequencies. According to these figures, 

increasing internal pressure causes increasing 

bending frequencies of n > 2 modes. However, 

the pressure change does not influence the tor

sional and longitudinal natural frequencies, as 

shown in Fig. 2(b). 

Figure 3 illustrates the variance of shell bending 

frequencies with the internal pressure for m = 1 

and n = 1, 4, 7, and 10 modes. As this figure 

reveals, except for the n = 1 mode, the frequencies 

increase linearly with the internal pressure. The 

natural frequencies of n = 1 modes barely vary 

with the internal pressure. At these modes, such 

a slight variance is due to the tube's cross section 

remaining circular, similar to the situation at a 

rigid body mode. Consequently, the internal pres

sure becomes insignificant to these frequencies. 

Periodic Internal Pressure 

The internal flow can periodically fluctuate with 

respect to a constant pressure. The pulsation may 

originate from the pumping effect or others in 
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FIGURE 3 Bending natural frequencies, with m = 1, of the tube subjected to internal flow 
for variance of pressure values. 

practice. This variation is, however, of smaller am

plitude and lower frequency compared to the shell 

stress wave. Hence, it is reasonable to assume 

P = po(l + 8 cos fit), (17) 

where Po is a constant pressure, the small parame

ter 8 denotes the perturbation of flow pressure, 

and fi is the pulsation frequency of the flow. Sub

stituting (17) into the shell equations, one can ob

tain a relatively complicated parametric system. 

Exact solution is infeasible; hence, Galerkin's 

method is employed. We then select the trial set 

of comparison functions as 

(M~, e) = cosm1T~cosne, 

<Po(~, e) = sinm1T~sinne, (18) 

<Pz(~, e) = sin m1T~ cos ne, 

and assume 

u{} 
2: 2: AmnCt)<Pl~, e) 
m~l n~l 

2: 2: Bmn(t)<Po(t, e) , (19) 
m~l n~l 

2: 2: Cmn(t)<pzC~, e) 
m~l n~l 

in whichAmn , Bmn , and Cmn are referred to as gener

alized coordinates. 

Substituting the displacement functions into the 

equations of motion yields a set of Mathieu's equa

tions for each (m, n) combination expressed as 

i + {[KA] + 28[KB]COS fit}x = 0, (20) 

with 

(21) 

r 
a -6 

[KA ] = -~ ~ 
-c e 

and 

r
g 0 0] 

[KB] = 0 ~ ~ , 

o i h 

(22) 

in which parameters g, ft, and l are listed in the Ap

pendix. 

To simplify the solution process, a linear trans

form is introduced, i.e., x = [P]v where 

[P]-l[KA][P] forms a Jordan canonical form. After 

transformation, Mathieu's equation, Eq. (20) be

comes 

~ ] v + 28 cos fit [G]v = 0, (23) 

wJ 
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where [G] = [P]-l[KB][P] and Wi is the natural 

frequency of the tube at P = Po. The above equa

tion can be further expanded into a component 

form as 

3 

Vi + WTVi + 2e cos Ot 2: gijDj = 0, (24) 
j=l 

with i = 1, 2, 3 for each set of (m, n). 

Equation (24) presents a coupled parametri

cally excited system, and the method of multiple 

scales can be applied for the solution. The method 

involves expressing the system response in terms 

of a series of the small perturbation e (N ayfeh and 

Mook, 1979) with 

Vi(e, t) = vio(To, Tb T2, . .. ) 

+ eVil(To, Tb T2, . .. ) (25) 

+e2VizCTO' Tb T2, . .. ) + ... 

in which Tn = ent denotes different time scales. 

The time derivatives are then expressed as 

(26) 

by denoting Dn = iJ1iJTn. Treating each time scale 

as an independent variable, substituting Eq. (25) 

to (27) into Eq. (24), and rearranging it in an 

ascending order of e, produces 

D5ViO + WTViO = 0, 

3 

- 2: gijDjo(eifiTo + CC), 
j=l 

D5Vi2 + WTV,L. = - 2DoDlVil - 2DoD2ViO - DIviO 

(28) 

(29) 

3 (30) 
- 2: gijDiI(eifITo + CC) 

j=l 

where i = 1, 2, 3, and CC represents the complex 

conjugate of the preceding terms. The solution of 

Eq. (28) appears to be in the form of 

(31) 

By substituting (31) into Eq. (29), one can obtain 

3 
(32) 

- 2: gijAj[ei(w,+fI)To + ei(w,-fl)To] + CC 
j=l 

with i = 1,2,3. Note that the undetermined com-

- plex constant Ai in Eq. (31) can be found by elimi

nating the secular terms in Eq. (32). Eliminating 

these divergent terms, however, depends on the 

value of 0 and cases are discussed in the following: 

1. 0 far away wp ± wq, p, q = 1, 2, 3: For this 

case, we can obtain 

(33) 

The above equation implies that Ai can be 

treated as a constant and no instability is 

found. 

2. 0 close to Wp + Wq: This is called the combina

tion resonance of the summed type. A detun

ing parameter u is introduced as 

(34) 

Consequently, we have 

(36) 

in which gpq and gqp are complicated functions 

of all systems parameters (Hsu, 1992). Sub

stituting the above two equations into Eq. 

(32) and rearranging the terms, produces the 

following equations: 

2iwpDIAp + gpqA.qeiuTt = 0, 

2iwqD 1A q + gqpA.peiuTt = 0, 

(37) 

(38) 

by eliminating the secular terms in the right

hand side of Eq. (32). In the above equations 

the tilde notation represents the complex 

conjugate of the complex variable, and gpq 

and ggp are complicated functions of all sys

tem parameters (Hsu, 1992). The solution to 

Eqs. (37) and (38) appears to be 

Ap = ape-iATt , 

Aq = aqei(X+u)\ 

(39) 

(40) 
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where ap and aq are complex functions in T2 , 

A = -(1/2)[0- ± (0-2 - Apq)1I2] , and Apq = 
gpqgpqlwpWq. Thus, Ap and Aq are bounded if 

and only if 

(41) 

This situation is automatically satisfied if gpq 

and gqp are of opposite signs. The response 

is hence bounded. If gpq and gqp are of the 

same sign, one can determine the stability 

boundaries in the following form: 

This equation is actually two curves on the 

e-fi plane and the area enclosed by these 

curves is the unstable region. The e-fi plane 

is then divided into several stable regions 

and unstable regions. In the unstable region, 

the response is divergent and subsequently 

causes instability. 

3. fi close to wp - Wq: This case is referred 

to as combination resonance of a difference 

type. The equations of the stability bound

aries can be derived in the same manner as 

described previously except changing the 

sign of Wq (Hsu, 1992). Instability occurs only 

if gpq and gqp are of opposite signs. However, 

instability does not exist for the illustrated 

system because [G] is symmetric. 

In the following, the stability of different (m, 

n) modes is discussed from the expression of Eq. 

(42). Figures 4 and 5 show the stability boundaries 

associated with m = 1 and different n for Po = 
10-4 and Po = 10-3, respectively. Six resonant fre

quencies, with respect to each combination of (m, 

n), need to be taken into account. They are fi 

close to 2W1, W1 + Wz, W1 + W3, 2W2, W2 + W3, 

or 2W3 from left to right in these figures. Each 

combination consists of two curves that enclose 

an unstable region. The regions with the marked 

sign S are the stable ones and those in between 

are unstable regions. These figures show that all 

stability boundaries are actually straight lines. This 

fact is attributed to merely the solution of order 

131 being solved in the method of multiple scales. 

Figure 4 for Po = 10-4 indicates that the unstable 

regions near 2Wz and W1 + W3 are too close to 

distinguish. The unstable region for n = 7 becomes 

wider at 2W1, compared to that for n = 1. For a 

higher internal pressure and n = 1, the unstable 

regions corresponding to higher resonant frequen

cies are larger than those due to smaller internal 

pressure [Fig. 5(a)]. Regarding the unstable re

gions for higher modes (n = 7), the areas of the 

unstable regions near lower resonant frequencies, 

particularly 2W1, also apparently increase. We can 

thus conclude that the instability motion of the 

tube is more likely to occur at higher modes. 

EFFECTS OF EXTERNAL CROSS FLOWS 

Under the action of the external flows, the pres

sure distribution on the tube is generally not uni

form but is a function of O. Hence, the pressure is 

expressed as p = p(O). However, this function is 

difficult to solve analytically. Instead, it was deter

mined from the interpolation of experimental 

measurements or numerical calculations (Dhaub

hadel et aI., 1987; Zukauskas et aI., 1988). In the 

present research, the existing data in the available 

literature (Zukauskas et al., 1988) was adopted 

directly. To analytically examine the dynamic be

havior of tubes, the numerical data curves were 

fitted and transformed to Fourier series. Analyti

cal expressions of pressure functions were hence 

obtained. 

Steady External Cross Flows 

For this case, the pressure distribution is assumed 

to vary with 0 but not time. The displacement 

functions, for some specific m, can be expressed as 

Ux = cos m1Tg<l>xC O)e iOJt, 

Uo = sin m1T g<l> oC O)e iOJt , 

u, = sin m1Tg<l>zC O)e iOJl , 

(43) 

where <1>/0), j = x, 0, z are shape functions in o. 
These shape functions can be further expressed in 

the form of the Fourier series as 

<l>x = L:~l ancos nO, 

<1>0 = L~~l bnsin nO, 

<1>, = L:~l Cncos nO. 

(44) 

This assumption is based on the periodicity, in 

circumferential direction, of the pressures and the 

resulting displacements due to the external cross 

flow. In the above expression, an, bn, and Cn are 

the undetermined constants for the specific m. By 



0.3 

0.2 

E 

s s 

0.1 

0.0 

o 2 4 

0.3 

0.2 -

E 
S S 

0.1 

0.0 I 

o 4 

Dynamic Behavior of Tubes Subjected to Cross Flows 85 

s s 

S 

6 

f!/Wl 

(a) n = 1 

S 

I 

8 

(b) n = 7 

s s 

8 10 12 

S S 

12 16 
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FIGURE 6 Distribution of pressure coefficient with 

tube angles for a staggered tube bundle. 

employing Galerkin's method, the equations of 

motion of (5) can be written as the following eigen

value problem: 

w2[M]a = [K]a, (45) 

with a = {aI, a2, ... , ak, b j , b2, . , bb Cj, 

C2, ..• , CkY, and [M] and [K] are the inertia 

matrix and the stiffness matrix, respectively 

(Hsu, 1992). 

Equation (45) is an eigenvalue problem of order 

3k, provided an m value is given. Hence, 3k natural 

frequencies correspond to the external pressure 

p( e). The eigenvectors can also be solved corre

spondingly. 

Figure 6 illustrates the pressure coefficient Cp 

as a function of e for a staggered tube bundle 

system with a Reynold's number (Re) = 106• The 

pitch to diameter ratio of the shown system is 1.25. 

The data used in this article were digested directly 

from the reference (Zukauskas et ai., 1988). Nota

bly, the above data were selected from tubes in 

the deep rows, and the e = 0 point was marked 

as the point where the flow was first acted upon. 

Moreover, the figure merely shows the pressure 

coefficient from 0 to 1T. The pressure coefficient in 

1T to 21T is assumed to be symmetric. One can then 

use the curve fitting technique to express the curve 

in an analytical Fourier series form of 

5 

cp(e) = ao + 2: (aFosje + (3jsinje), (46) 
j~l 

where a total of 11 terms are selected according to 

the numerical calculation (Hsu, 1992). In addition, 

the dimensionless pressure coefficient cre e) is re

lated to the dimensionless pressure function p( e) 

by the following (Zukauskas et ai., 1988): 

in which Pi is fluid density, U is flow velocity, U is 

the average flow velocity between two neighboring 

tubes, and usually we have U < V. The pressure 

function is then solved from Eq. (47) and is substi

tuted into the equations of motion (5). After per-

Table 2. Natural Frequencies of Staggered Tube Bundle 

Bending Frequency, WI 

n p = 0, m = 1 p = p( 8), m = 1 p = 0, m = 2 P = p(8), m = 2 

1 1.1669 1.1668 2.2329 2.2317 

2 0.5743 0.5754 1.4495 1.4483 

3 0.3454 0.3509 0.9565 0.9560 

4 0.3418 0.3576 0.7132 0.7167 

5 0.4690 0.4880 0.6731 0.6819 

Torsional Frequency, W2 

1 3.1602 3.1602 4.5509 4.5510 

2 4.3587 4.3587 5.6134 5.6136 

3 5.9214 5.9215 6.9123 6.9125 

4 7.6265 7.6265 8.4044 8.4047 

5 9.3890 9.3890 10.0168 10.0170 

Longitudinal Frequency, W3 

1 5.2160 5.2162 7.5759 7.5759 

2 7.7356 7.7360 9.4920 9.4921 

3 10.5681 10.5686 11.9469 11.9472 

4 13.5424 13.5430 14.6664 14.6669 

5 16.5906 16.5914 17.5335 17.5341 
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FIGURE 7 Distribution of pressure coefficient with 

tube angles for an in-line tube bundle. 

forming Galerkin's method, the eigenvalue prob

lem (45) is resolved. 

The fluid encountered in this study is water. 

Table 2 lists the solved natural frequencies for 

m = 1, 2 in which the frequencies associated with 

no external pressure are also listed for comparison. 

As this table reveals, the external cross flows 

barely change the higher set of frequencies, i.e., 

W2, W3, because these frequencies correspond to 

the torsional and longitudinal modes. On the other 

hand, the external cross flow can alter the bending 

frequencies. Some frequencies are lifted up, but 

some drift slightly down. Such an occurrence is 

caused by irregularity of pressure function. 

Figure 7 displays the pressure coefficients of an 

in-line tube bundle system (1.25 X 1.25). The data 

are again obtained from the book by Zukauskas 

et al. (1988). A similar process is performed and 

the results are listed in Table 3 for the first set 

of natural frequencies. Although not given in the 

table, we can conclude that the external steady 

flow merely affects the values of bending frequen

cies of the in-line tube bundle. 

Periodically Varying Flows 

Tube dynamics, particularly instability conditions, 

due to slightly perturbed flows is investigated. As

sume that the real external pressure p is a slight 

perturbation about the pressure p( (}) as the fol

lowing: 

p( (), t) = p( ())(1 + e cos Ot), (48) 

in which e is a small disturbance and 0 is the 

perturbed frequency. 

Similar to the process of analyzing the internal 

flow, Galerkin's method is employed herein. Con

sequently, a Mathieu's equation in the matrix form 

for each (m, n) combination is obtained as 

x + UKa] + 2s[Kb]cos Ot}x = 0, (49) 

with 

x = {Amn' Bmn , CmnY, (50) 

[K.] ~ r ~6 
-6 

il d and 

-c e2 

[K.] ~ r ~ ° n hI 

i2 (51) 

The defined parameters are given in the Appendix. 

The similar process in internal flow analysis is next 

performed, and stability boundaries in the e-O 

plane are obtained accordingly. It seems that the 

instabilities occur more easily for the tube sub

jected to the internal flow than for the external 

cross flow. From the previous results for the inter

nal flow, more instabilities were found at higher 

modes than at lower modes. Our results thus con

centrate on the stability at vibrating modes with 

higher natural frequencies. Figure 8 depicts the 

stability diagram for m = 5 and n = 7 of a staggered 

tube bundle system. The plane is again divided 

into stable and six unstable regions. As this figure 

demonstrates, the unstable regions are very nar

row and become single lines. Instability can occur 

Table 3. Bending Natural Frequencies ofIn-Line Tube Bundle 

Bending Frequency, WI 

n p = 0, m = 1 p=p(fJ),m=1 p = 0, m = 2 P = p(fJ), m = 2 

1 1.1669 1.1668 2.2329 2.2318 

2 0.5743 0.5741 1.4495 1.4477 

3 0.3454 0.3455 0.9565 0.9536 

4 0.3418 0.3426 0.7132 0.7096 

5 0.4690 0.4702 0.6731 0.6695 
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FIGURE 8 Stability diagram of the tube subjected to periodic external flow for m = 5 

and n = 7. 

only when the perturbed frequency n is exactly 

equal to one of the six unstable resonant frequen

cies. The presented method can be used to analyze 

the tube's dynamic response and its stability, pro

vided that the pressure distribution function p( e) is 
obtained by analytical, numerical, or experimental 

techniques. Notably, the stability of the tube vibra

tion depends heavily on the type of tube bundle 

system. 

CONCLUDING REMARKS 

This study presents a method for examining the 

free vibration and the dynamic instability of cylin

drical tubes subjected to internal flows or external 

cross flows. From the numerical results presented 

herein, we can conclude the following: 

1. For the case of the internal flow with a con

stant pressure, increasing the pressure 

caused initial stress in the tube, and subse

quently raised the bending natural frequen

cies of the n > 1 modes. However, the vibra

tion at n = 1 modes, which are similar to a 

rigid body mode in the circumferential direc

tion, seemed unaffected by the internal pres

sure. The internal pressure was also found 

to be insignificant with respect to the tor

sional and longitudinal modes of the tubes. 

2. For the periodic internal flow, the governing 

equations became parametric ones. The sta

bility diagrams were established using the 

method of multiple scales. The unstable re

gions became wider by increasing perturbing 

magnitude. In addition, instability would 

most likely occur at higher n numbers. 

3. If the tube is subjected to an external cross 

flow, this study provides an analytical ap

proach for this type of problem. The pressure 

distribution from experiment data was writ

ten analytically as Fourier series. Numerical 

simulation demonstrates that external cross 

flows did not cause severe stability problems 

based on the current model. 
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Institute of Nuclear Energy Research, ROC. Their sup

port is gratefully acknowledged. 

APPENDIX 

Defined shell parameters: 
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A 1 + v 
b = 2ah Kmmr 

A vK 
c=-m1T 

ah 

A (n2 + 1)po 
h = 2ah 

'" npo 
l=-

ah 

- [ K (n)2 PI ] / a = K(m1T)2 + 2" (1 - v) -;; + --;; n2 h 

d= w -+-+-- [0 (D K. P2) 
a4 a2 a 

1 - v( D) P2]/ + -2- K + a2 (m1T)2 + --;; h 

4- D(m1T)4 + ~]/ h 

_ (n2 + 1)P2 
h, = 2ah 

where 

P1 = ~ J: f: cos2m1T~cos2n8p( 8)d~d8 

pz = ¥ f: f~ sinzm1T~ sin2n8p( ())d~d() 

II fTo f1 . 0 0 () P3 ="4 0 0 Sm"m1T~COS"n()p () d~d() 
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