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Abstract: A Lotka-Volterra type predator-prey system with Allee effect on the predator species and density

dependent birth rate on the prey species is proposed and studied. For non-delay case, such topics as the

persistent of the system, the local stability property of the equilibria, the global stability of the positive equi-

librium are investigated. For the system with infinite delay, by using the iterative method, a set of sufficient

conditions which ensure the global attractivity of the positive equilibrium is obtained. By introducing the

density dependent birth rate, the dynamic behaviors of the system becomes complicated. The systemmaybe

collapse in the sense that both the species will be driven to extinction, or the two species could be coexist in

a stable state. Numeric simulations are carried out to show the feasibility of the main results.
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1 Introduction

As was pointed out by Berryman [1], the dynamic relationship between predators and their prey has long

been and will continue to be one of the dominant themes in both ecology and mathematical ecology due to

its universal existence and importance. Already, the influence of the Allee effect [2-6], the influence of the

mutual interferences [7-8], the influence of the stage structure [9-13], the stability of the positive equilibrium

[12-17], the existence and stability of the almost periodic solution [18], the existence of the positive periodic

solution [19, 20], the persistent of the system [21] have been extensively studied, and many excellent results

were obtained.

Allee effect, which reflects the fact that the population growth rate is reduced at low population size,

due to its importance, the ecosystem subject to Allee effect has recently been extensively studied by many

scholars, see [2-6, 22-26] and the references cited therein.
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Hüseyin Merdan [2] investigated the influence of the Allee effect on the Lotka-Volterra type predator-prey

system. To do so, the author proposed the following predator-prey with Allee effect system

dx

dt
=

rx

β + x
x(1 − x) − axy,

dy

dt
= ay(x − y). (1.1)

HüseyinMerdan showed that if r−aβ > 0hold, themodel (1.1) has three steady-state solutions:A(0, 0), B(1, 0)

and C
(

x*, y*). the first two are locally unstable, while the third one is locally asymptotically stable. By

carrying out a series of numeric simulations, the author found the following two phenomenon. (1) The system

subject to an Allee effect takes a longer time to reach its steady-state solution; (2) The Allee effect reduces the

population densities of both predator and prey at the steady-state.

In [17], Guan, Liu and Xie argued that "It seems interesting to consider the influence of the Allee effect on

the predator species, since generally speaking, the higher the hierarchy in the food chain, the more likely it

is to become extinct" and they proposed the following model with the Allee effect on the predator species:

dx

dt
= rx(1 − x) − axy,

dy

dt
=

ay

β + y
y(x − y), (1.2)

where r, a are positive constants. They showed that if r > a holds, then system (1.2) admits a unique positive

equilibrium, and the Allee effect has no influence on the final density of the species.

It bring to our attention that in system (1.1) and (1.2), without consider the influence of the predator

species and the Allee effect, the prey species satisfies the traditional Logistic equation

dx

dt
= rx(1 − x), (1.3)

where r is the intrinsic growth rate, which is equal to the birth rateminus death rate. Hence system (1.3) could

be revised as
dx

dt
= x
(

a1 − d1 − e1x
)

. (1.4)

where a1 is the birth rate of the species and d1 is the death rate of the species. Already, Brauer and Castillo-

Chavez [26], Tang and Chen [27] and Berezansky, Braverman, et al. [28] had showed that in some case, the

density dependent birth rate of the species is more suitable. If we take the famous Beverton-Holt function

[28] as the birth rate, then system (1.4) should be revised to

dx

dt
= x
( a1
b1 + c1x

− d1 − e1x
)

. (1.5)

System (1.5) combineswith the idea ofMerdan [2] andGuan et al. [17], will lead to the following Lotka-Volterra

type predator-prey system with Allee effect on the predator species and density dependent birth rate on the

prey species
dx

dt
= x
( a1
b1 + c1x

− d1 − e1x
)

− axy,

dy

dt
=

ay

β + y
y
(

x − y
)

.

(1.6)

It is well known that in amore realisticmodel the delay effect should be an average over past populations.

This results in an equation with a distributed delay or an infinite delay [29-41]. Here, if we incorporate the

infinite delay to system (1.6), then we will have the following system

dx

dt
= x
( a1
b1 + c1x

− d1 − e1x
)

− ax

t
∫

−∞

K1(t − s)y(s)ds,

dy

dt
=

ay

β + y
y
(

t
∫

−∞

K2(t − s)x(s)ds − y
)

.

(1.7)

The delay kernels Ki : [0, +∞) → (0, +∞), i = 1, 2 are continuous functions such that

+∞
∫

0

Ki(s)ds = 1. (1.8)



1188 | Fengde Chen, Xinyu Guan, Xiaoyan Huang, and Hang Deng

We shall consider (1.7) together with the initial conditions

x(s) = ϕ(s), s ∈ (−∞, 0], y(s) = ψ(s), s ∈ (−∞, 0], (1.9)

where ϕ, ψ ∈ BC+. It is well known that by the fundamental theory of functional differential equations

[37], system (1.7) has a unique solution (x(t), y(t)) satisfying the initial condition (1.9). We easily prove

x(t) > 0, y(t) > 0 in maximal interval of existence of the solution. In this paper, the solution of system (1.7)

satisfying the initial conditions (1.9) is said to be positive.

We mention here that to this day, though there are many scholars investigated the dynamic behaviors of

the ecosystem with Allee effect [1-6, 22-26], none of them considered the density dependent birth rate of the

species. Also, to the best of the authors knowledge, to this day, still no scholars propose a ecosystem with

infinite delay and Allee effect at the same time. It seems that this is the first time such kind of model are

proposed and studied.

The paper is arranged as follows. In section 2 we investigate the persistent and extinct property of the

system, based on this, we are able to investigate the locally stability property of the equilibrium solutions of

system (1.6). In section 3, by applying the Dulac criterion, we are able to show that under some assumption,

the positive equilibrium is globally asymptotically stable. Section 4 presents some numerical simulations

concerning the stability of our model. We end this paper by a briefly discussion.

2 Persistence and local stability of the equilibria

We need several Lemmas to prove the persistent property of the system.

Lemma 2.1 [40] Consider the following equation

dy

dt
= y
( a

b + cy
− d − ey

)

. (2.1)

Assume that a > bd, then the unique positive equilibrium y* of system (2.1) is globally asymptotically stable,

where

y* =
−(eb + dc) +

√

(eb + dc)2 − 4ec(db − a)

2ec
.

Lemma 2.2 [22] Consider the following equation

dy

dt
=

ay

β + y
y(b − y). (2.2)

The unique positive equilibrium y* = b is global stability.

Theorem 2.1. Assume that
a1
b1

> d1 + au
* (2.3)

holds, where u* is defined by (2.6), then system (1.6) is permanent.

Proof. It follows from (2.3) that there exists a ε > 0 enough small such that

a1
b1

> d1 + a(u
* + ε). (2.4)

Let (x(t), y(t)) be any positive solution of system (1.6). From system (1.6) it follows that

dx

dt
≤ x
( a1
b1 + c1x

− d1 − e1x
)

.

Consider the equation
du1
dt

= u1

( a1
b1 + c1u1

− d1 − e1u1

)

. (2.5)
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It follows from Lemma 2.1 that (2.5) admits a unique globally stable positive equilibrium u*, where

u* =
−(e1b1 + d1c1) +

√

(e1b1 + d1c1)2 − 4e1c1(d1b1 − a1)

2e1c1
. (2.6)

By using the differential inequality theory, any solution of (2.5) satisfies

lim sup
t→+∞

x(t) ≤ lim
t→+∞

u(t) = u*. (2.7)

Hence, there exists a T1 > 0 such that

x(t) < u* + ε
2 . (2.8)

For t > T1, it follows from the second equation of system (1.6) that

dy

dt
≤
ay

β + y
y
(

u* +
ε

2
− y
)

. (2.9)

Consider the equation
du2
dt

=
au2
β + u2

u2

(

u* +
ε

2
− u2

)

. (2.10)

It follows from Lemma 2.2 that (2.10) admits a unique globally stable positive equilibrium

u*2 = u
* +

ε

2
. (2.11)

By differential inequality theory, any solution of (2.9) satisfies

lim sup
t→+∞

y(t) ≤ u* +
ε

2
. (2.12)

Hence, there exists a T2 > T1 such that

y(t) < u* + ε. (2.13)

For t > T2, it follows from the first equation of system (1.6) that

dx

dt
≥ x
( a1
b1 + c1x

− d1 − e1x − a(u
* + ε)

)

. (2.14)

Now let’s consider the equation

dv1
dt

= v1

( a1
b1 + c1v1

− d1 − e1v1 − a(u
* + ε)

)

. (2.15)

Since

a1 > b1

(

d1 + a(u
* + ε)

)

,

it follows from Lemma 2.1 that system (2.15) admits a unique positive equilibrium v*1, which is globally

asymptotically stable. Applying the differential inequality theory to (2.14) leads to

lim inf
t→+∞

x(t) ≥ lim
t→+∞

v(t) = v*1.

It follows from above inequality that there exists an enough large T3 > T2 such that

x(t) > v*1 −
ε

4
for all t ≥ T3,

and so, from the second equation of system (1.6), we have

dy

dt
≥
ay

β + y
y
(

v*1 −
ε

4
− y
)

. (2.16)

Consider the equation
dv2
dt

=
av2
β + v2

v2

(

v*1 −
ε

4
− v2

)

. (2.17)
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It follows from Lemma 2.2 that (2.17) admits a unique globally stable positive equilibrium

v*2 = v
*
1 −

ε

4
. (2.18)

By using the differential inequality theory, any solution of (2.16) satisfies

lim inf
t→+∞

y(t) ≥ lim
t→+∞

v2(t) = v
*
1 −

ε

4
. (2.19)

(2.7), (2.12), (2.15) and (2.19) show that system (1.6) is permanent. This ends the proof of Theorem 2.1.

Remark 2.1. By using the software Maple, for the fixed coefficients, one could always compute u* easily,

however, condition (2.3) could be replaced by some more restricted but easily verified condition, indeed, we

could have the following results.

Corollary 2.1. Assume that

a1
b1

> d1 + a

a1
b1

− d1

e1
(2.20)

holds, then system (1.6) is permanent.

One interesting problem is to investigate the extinction property of system (1.6), for this, we have the

following result.

Theorem 2.2. Assume that
a1
b1

< d1

holds, then

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0.

Proof. From the first equation of system (1.6) we have

dx

dt
= x
( a1
b1 + c1x

− d1 − e1x
)

− axy

≤ x
( a1
b1 + c1x

− d1 − e1x
)

≤ x
(a1
b1

− d1

)

.

Hence

x(t) ≤ x(0) exp
{(a1

b1
− d1

)

t
}

→ 0 as t → +∞.

For any positive constant ε > 0 enough small, there exists a T > 0 such that

x(t) < ε for all t ≥ T .

Hence, from the second equation of system (1.6), we have

dy

dt
≤
ay

β + y
y
(

ε − y
)

.

Consider the equation
du

dt
=

au

β + u
u
(

ε − u
)

.

It follows from Lemma 2.2 that above equation admits a unique globally stable positive equilibrium u* = ε.

By using the differential inequality theory, we have

lim sup
t→+∞

y(t) ≤ ε.
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Hence

0 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ ε.

Since ε is any small positive constant, setting ε → 0 in above inequality leads to

lim
t→+∞

y(t) = 0.

This ends the proof of Theorem 2.2.

Nowwe are in the position of investigate the stability property of steady-state solutions of themodel (1.6).

Defining

f (x, y) := x
( a1
b1 + c1x

− d1 − e1x
)

− axy,

g(x, y) :=
ay

β + y
y(x − y).

The steady-state solutions of (1.6) are obtained by solving the equations f (x, y) = 0 and g(x, y) = 0. Themodel

has three steady-state solutions: A(0, 0), B(u*, 0) and C(x*, y*).

Theorem 2.3. If a1 > b1d1 holds, then C(x
*, y*) is non-negative equilibrium and it is locally asymptotically

stable. If inequality (2.3) holds, then A(0, 0) and B(u*, 0) is unstable.

Proof. The variation matrix of the continuous-time system (1.6) at an equilibrium solution (x, y) is

J(x, y) =

(

fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

)

=





K1 −ax

ay2

β + y
K2



 ,

where

K1 =
a1

c1 x + b1
− d1 − e1 x + x

(

−
a1 c1

(c1 x + b1)
2
− e1

)

− ay,

K2 = 2
ay (x − y)
β + y

−
ay2

β + y
−
ay2 (x − y)

(β + y)
2

.

Noting that (x*, y*) satisfies the equation

( a1
b1 + c1x*

− d1 − e1x
*

)

− ay* = 0,

ay*

β + y*
y*(x* − y*) = 0.

Hence, at C(x*, y*)

J(x*, y*) =







−x*
( a1c1
(c1x* + b1)2

+ e1

)

−ax*

a(y*)2

β + y*
−
a(y*)2

β + y*






.

Noting that

tr(J(x*, y*)) = −x*
( a1c1
(c1x* + b1)2

+ e1

)

−
a(y*)2

β + y*
< 0,

and

det(J(x*, y*)) =
( a1c1
(c1x* + b1)2

+ e1

)ax*(y*)2

β + y*
+
a2x*(y*)2

β + y*
> 0.

So that both eigenvalues of J(x*, y*) have negative real parts, and hence this steady-state solution is locally

asymptotically stable.
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From Theorem 2.1 we know that under the assumption (2.3) holds, system (1.6) is permanent, hence no

solution could approach to A(0, 0) and B(u*, 0), which means that A(0, 0) and B(u*, 0) are locally unstable.

This ends the proof of Theorem 2.3.

3 Global stability

We had showed that the positive equilibrium is locally stable, in this section, we further give sufficient

conditions to ensure the global stability of the positive equilibrium.

Theorem 3.1. Assume that (2.3) holds, then the unique positive equilibrium is globally asymptotically stable.

Proof. Set

P1 = x
( a1
b1 + c1x

− d1 − e1x
)

− axy,

Q1 =
ay

β + y
y(x − y).

(3.1)

From Theorem 2.2 system (1.6) admits an unique local stable positive equilibrium C(x*, y*). Also, from The-

orem 2.3, A(0, 0) and B(u*, 0) is unstable. To ensure C(x*, y*) is globally asymptotically stable, we consider

the Dulac function u1(x, y) = x
−1y−2, then

∂(u1P1)

∂x
+
∂(u1Q1)

∂y
=

1

xy2

(

a1
c1 x + b1

− d1 − e1 x + x

(

−
a1 c1

(c1 x + b1)
2
− e1

)

− ay

)

−
a

(β + y) x
−
a (x − y)

(β + y)
2 x

−
1

x2y2

(

x

(

a1
c1 x + b1

− d1 − e1 x

)

− axy

)

= −
1

x(c1x + b1)2y2(β + y)2
K(x, y),

where

K(x, y) = aβ c1
2x2y2 + ac1

2x3y2 + β2c1
2e1 x

3 + 2 β c1
2e1 x

3y + c1
2e1 x

3y2 + 2 ab1 β c1 xy
2

+2 ab1 c1 x
2y2 + 2 b1 β

2c1 e1 x
2 + 4 b1 β c1 e1 x

2y + 2 b1 c1 e1 x
2y2

+ab1
2β y2 + ab1

2xy2 + b1
2β2e1 x + 2 b1

2β e1 xy + b1
2e1 xy

2 + a1 β
2c1 x

+2 a1 β c1 xy + a1 c1 xy
2.

Hence
∂(u1P1)

∂x
+
∂(u1Q1)

∂y
< 0 for all x > 0, y > 0.

By Dulac Theorem [41], there is no closed orbit in area R+2. So C(x
*, y*) is globally asymptotically stable. This

completes the proof of Theorem 3.1.

4 Global attractivity of system (1.7)

As far as system (1.7) is concerned, one of the most important topics is to obtain a set of sufficient conditions

to ensure the global attractivity of the positive equilibrium, since which means the stale coexistence of the

two species. Before we state and prove the main result of this section, we need to introduce two lemmas.

Lemma 4.1. [35] Let x : R → R be a bounded nonnegative continuous function, and let k : [0, +∞) → (0, +∞)

be a continuous kernel such that
∫∞

0
k(s)ds = 1. Then

lim inf
t→+∞

x(t) ≤ lim inf
t→+∞

t
∫

−∞

k(t − s)x(s)ds ≤ lim sup
t→+∞

t
∫

−∞

k(t − s)x(s)ds ≤ lim sup
t→+∞

x(t).
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Lemma 4.2. [35] If a > 0, b > 0 and ẋ ≥ x(b − ax), when t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥
b

a
.

If a > 0, b > 0 and ẋ ≤ x(b − ax), when t ≥ 0 and x(0) > 0, we have

lim sup
t→+∞

x(t) ≤
b

a
.

Lemma 4.3. Assume that a1
b1

> d1, then equation F(x) =
a1

b1 + c1x
− d1 − e1x = 0 admits unique positive

solution x*, also, x* is the decreasing function of d1.

Proof. One could easily see that the equation F(x) = 0 admits a unique positive solution

x* =
1

2

−b1 e1 − c1 d1 +
√
∆

c1 e1
,

where

∆ = b1
2e1

2
− 2 b1 c1 d1 e1 + c1

2d1
2 + 4 a1 c1 e1.

It immediately follows from the fact

dx*

dd1
= −

1

2

b1 e1 − c1 d1 +
√
∆

√
∆e1

< 0

that x* is the decreasing function of d1. This ends the proof of Lemma 4.3.

Concerned with the global attractivity of the positive equilibrium of system (1.7), we have the following

result.

Theorem 4.1. Assume that
a1
b1

> d1 + au
*

holds, where u* is defined by (2.6), then system (1.7) admits a unique positive equilibrium which is globally

attractive.

Proof. The positive solution of system (1.7) satisfies the equation

a1
b1+c1x

− d1 − e1x = ay = 0,

x = y.
(4.1)

Obviously, under the assumption of Theorem 4.1, system (4.1) admits a unique positive solution C(x*, y*).

To end the proof of Theorem 4.1, it is enough to show that C(x*, y*) is globally attractive.

It follows from (4.1) that there exists a ε > 0 enough small such that

a1
b1

> d1 + a(u
* + ε). (4.2)

Let (x(t), y(t)) be any positive solution of system (1.7). From system (1.7) it follows that

dx

dt
≤ x
( a1
b1 + c1x

− d1 − e1x
)

.

Consider the equation
du1
dt

= u1

( a1
b1 + c1u1

− d1 − e1u1

)

. (4.3)

It follows from Lemma 2.1 that (4.3) admits a unique globally stable positive equilibrium u*, where u* is

defined by (2.6). By using the differential inequality theory, any positive solution of (1.7) satisfies

lim sup
t→+∞

x(t) ≤ lim
t→+∞

u(t) = u*, (4.4)
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and so, from Lemma 4.1 we have

lim sup
t→+∞

∫ t

−∞
K2(t − s)x(s)ds ≤ u

*. (4.5)

Hence, there exists a T11 > 0 such that

x(t) < u* + ε
2

def
= M(1)

1 , (4.6)

and
t
∫

−∞

K2(t − s)x(s)ds < u
* +

ε

2

def
= M(1)

1 . (4.7)

For t > T11, it follows from the second equation of system (1.7) and (4.7) that

dy

dt
≤
ay

β + y
y
(

M(1)
1 − y

)

. (4.8)

Consider the equation
du2
dt

=
au2
β + u2

u2

(

M(1)
1 − u2

)

. (4.9)

It follows from Lemma 2.2 that (4.9) admits a unique globally stable positive equilibrium

u*2 = u
* +

ε

2
. (4.10)

By differential inequality theory, any positive solution of (1.7) satisfies

lim sup
t→+∞

y(t) ≤ M(1)
1 , (4.11)

and so, from Lemma 4.1 we have

lim sup
t→+∞

∫ t

−∞
K1(t − s)y(s)ds ≤ M

(1)
1 . (4.12)

Hence, there exists a T12 > T11 such that

y(t) < M(1)
1 + ε

2

def
= M(1)

2 , (4.13)

and
t
∫

−∞

K1(t − s)y(s)ds < M
(1)
1 +

ε

2

def
= M(1)

2 . (4.14)

For t > T12, it follows from the first equation of system (1.7) and (4.14) that

dx

dt
≥ x
( a1
b1 + c1x

− d1 − e1x − aM
(1)
2

)

. (4.15)

Now let’s consider the equation

dv1
dt

= v1

( a1
b1 + c1v1

− d1 − e1v1 − aM
(1)
2

)

. (4.16)

Since

a1 > b1

(

d1 + a(u
* + ε)

)

= b1

(

d1 + aM
(1)
2

)

,

it follows from Lemma 2.1 that system (4.16) admits a unique positive equilibrium v*1, which is globally

asymptotically stable. Applying the differential inequality theory to (4.15) leads to

lim inf
t→+∞

x(t) ≥ lim
t→+∞

v(t) = v*1,
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and so, from Lemma 4.1 we have

lim inf
t→+∞

t
∫

−∞

K2(t − s)x(s)ds ≥ v
*
1.

It follows from above inequality that there exists an enough large T13 > T12 such that for all t ≥ T13, the

following inequalities hold.

x(t) > v*1 −
ε

4

def
= m(1)

1 , (4.17)

t
∫

−∞

K2(t − s)x(s)ds > v
*
1 −

ε

4

def
= m(1)

1 . (4.18)

From the second equation of system (1.7), for t ≥ T13, we have

dy

dt
≥
ay

β + y
y
(

m(1)
1 − y

)

. (4.19)

Consider the equation
dv2
dt

=
av2
β + v2

v2

(

m(1)
1 − v2

)

. (4.20)

It follows from Lemma 2.2 that (4.20) admits a unique globally stable positive equilibrium

v*2 = m
(1)
1 . (4.21)

By using the differential inequality theory, any solution of (4.19) satisfies

lim inf
t→+∞

y(t) ≥ lim
t→+∞

v2(t) = m
(1)
1 ,

and so, from Lemma 4.1 we have

lim inf
t→+∞

t
∫

−∞

K1(t − s)y(s)ds ≥ m
(1)
1 .

It follows from above inequality that there exists an enough large T14 > T13 such that for all t ≥ T14, the

following inequalities hold

y(t) > m(1)
1 −

ε

2

def
= m(1)

2 , (4.22)

t
∫

−∞

K1(t − s)y(s)ds > m
(1)
1 −

ε

2

def
= m(1)

2 . (4.23)

For t > T14, it follows from (4.23) and the first equation of system (1.7) that

dx

dt
≤ x
( a1
b1 + c1x

− d1 − e1x
)

− axm(1)
2 .

Consider the equation
du1
dt

= u1

( a1
b1 + c1u1

− d1 − am
(1)
2 − e1u1

)

. (4.24)

It follows from Lemma 2.1 that (4.24) admits a unique globally stable positive equilibrium u*
m(1)

2

, from Lemma

4.3, one could see that u*
m(1)

2

< u*. By using the differential inequality theory, any positive solution of (1.7)

satisfies

lim sup
t→+∞

x(t) ≤ lim
t→+∞

u(t) = u*
m(1)

2

, (4.25)

and so, from Lemma 4.1 we have

lim sup
t→+∞

∫ t

−∞
K2(t − s)x(s)ds ≤ u

*

m(1)
2

. (4.26)
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Hence, there exists a T21 > 0 such that

x(t) < u*
m(1)

2

+ ε
4

def
= M(2)

1 , (4.27)

and
t
∫

−∞

K2(t − s)x(s)ds < u
*

m(1)
2

+
ε

4

def
= M(2)

1 . (4.28)

For t > T21, it follows from the second equation of system (1.7) and (4.28) that

dy

dt
≤
ay

β + y
y
(

M(2)
1 − y

)

. (4.29)

Consider the equation
du2
dt

=
au2
β + u2

u2

(

M(2)
1 − u2

)

. (4.30)

It follows from Lemma 2.2 that (4.30) admits a unique globally stable positive equilibriumM(2)
1 . By using the

differential inequality theory, any positive solution of (1.7) satisfies

lim sup
t→+∞

y(t) < M(2)
1 , (4.31)

and so, from Lemma 4.1 we have

lim sup
t→+∞

∫ t

−∞
K1(t − s)y(s)ds ≤ M

(2)
1 . (4.32)

Hence, there exists a T22 > T21 such that

y(t) < M(2)
1 + ε

def
= M(2)

2 , (4.33)

and
t
∫

−∞

K1(t − s)y(s)ds < M
(2)
1 + ε

def
= M(2)

2 . (4.34)

For t > T22, it follows from the first equation of system (1.7) and (4.34) that

dx

dt
≥ x
( a1
b1 + c1x

− d1 − e1x − aM
(2)
2

)

. (4.35)

Now let’s consider the equation

dv1
dt

= v1

( a1
b1 + c1v1

− d1 − e1v1 − aM
(2)
2

)

. (4.36)

Since

M(2)
2 < M(1)

2 ,

it follows from (4.1) that

a1 > b1

(

d1 + aM
(2)
2

)

.

Hence, applying Lemma 2.1 to system (4.36), one could see that (4.36) admits a unique positive equilibrium

v*
M(2)

2

, which is globally asymptotically stable. Also, from Lemma 4.3, we have

v*
M(2)

2

> v*1.

Applying the differential inequality theory to (4.35) leads to

lim inf
t→+∞

x(t) ≥ lim
t→+∞

v(t) = v*
M(2)

2

,
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and so, from Lemma 4.1 we have

lim inf
t→+∞

t
∫

−∞

K2(t − s)x(s)ds ≥ v
*

M(2)
2

.

It follows from above inequality that there exists an enough large T13 > T12 such that for all t ≥ T13, the

following inequalities hold.

x(t) > v*
M(2)

2

−
ε

4

def
= m(2)

1 , (4.37)

t
∫

−∞

K2(t − s)x(s)ds > v
*

M(2)
2

−
ε

4

def
= m(2)

1 . (4.38)

From the second equation of system (1.7), we have

dy

dt
≥
ay

β + y
y
(

m(2)
1 − y

)

. (4.39)

Consider the equation
dv2
dt

=
av2
β + v2

v2

(

m(2)
1 − v2

)

. (4.40)

It follows from Lemma 2.2 that (4.40) admits a unique globally stable positive equilibrium m(2)
1 . By using the

differential inequality theory, any solution of (4.39) satisfies

lim inf
t→+∞

y(t) ≥ lim
t→+∞

v2(t) = m
(2)
1 , (4.41)

and so, from Lemma 4.1 we have

lim inf
t→+∞

t
∫

−∞

K1(t − s)y(s)ds ≥ m
(2)
1 .

It follows from above inequality that there exists an enough large T24 > T23 such that for all t ≥ T24, the

following inequalities hold.

y(t) > m(2)
1 −

ε

2

def
= m(2)

2 , (4.42)

t
∫

−∞

K1(t − s)y(s)ds > m
(2)
1 −

ε

2

def
= m(2)

2 . (4.43)

One could easily see that

M(2)
1 = u*

m(1)
2

+ ε
4 < u* + ε

2 = M(1)
1 ;

M(2)
2 = M(2)

1 + ε < u* + ε = M(1)
2 ;

m(2)
1 = v*

M(2)
2

−
ε
4 > v*1 −

ε
4 = m(1)

1 ;

m(2)
2 = m(2)

1 −
ε
2 > m(1)

1 −
ε
2 = m(1)

2 .

(4.44)

Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1, 2, n = 1, 2, · · · , such that for n ≥ 2

a1

b1 + c1

(

M(n)
1 −

ε
2n

) − d1 − e1

(

M(n)
1 −

ε

2n

)

− am(n−1)
2 = 0;

M(n)
2 = M(n)

1 + ε;

a1

b1 + c1

(

m(n)
1 + ε

2n

) − d1 − e1

(

m(n)
1 +

ε

2n

)

− aM(n)
2 = 0;

m(n)
2 = m(n)

1 −
ε
2 .

(4.45)

Obviously

m(n)
i < Ni(t) < M

(n)
i , for t ≥ T2n , i = 1, 2.
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We claim that sequences M(n)
i , i = 1, 2 are non-increasing, and sequences m(n)

i , i = 1, 2 are non-decreasing.

To prove this claim, we will carry out by induction. Firstly, from (4.44) we have

M(2)
i < M(1)

i , m(2)
i > m(1)

i , i = 1, 2.

Let us assume now that our claim is true for n, that is,

M(n)
i < M(n−1)

i , m(n)
i > m(n−1)

i , i = 1, 2.

Then, by Lemma 4.3, we immediately obtain

M(n+1)
1 < M(n)

1 ; M(n+1)
2 < M(n)

2 ;

m(n+1)
1 > m(n)

1 ; m(n+1)
2 > m(n)

2 .

Therefore
lim
t→+∞

M(n)
1 = x, lim

t→+∞
M(n)

2 = y,

lim
t→+∞

m(n)
1 = x, lim

t→+∞
m(n)

2 = y.

Letting n → +∞ in (4.45), we obtain

a1
b1 + c1x

− d1 − e1x − ay = 0;

y = x;

a1
b1 + c1x

− d1 − e1x − ay = 0;

y = x.

(4.46)

(4.46) shows that (x, y) and (x, y) are solutions of (4.1), which (4.1) has a unique positive solution C(x*, y*).

Hence, we conclude that

x = x = x*, y = y = y*,

that is

lim
t→+∞

x(t) = x* lim
t→+∞

y(t) = y*.

Thus, the unique interior equilibrium C(x*, y*) is globally attractive. This completes the proof of Theorem 4.1.

5 Numeric simulations

Now let’s consider the following four examples.

Example 5.1
dx

dt
= x
( 1

2 + x
− 1 − x

)

− xy,

dy

dt
= y

y

1 + y

(

x − y
)

.

(5.1)

In this system, corresponding to system (1.6), we take a1 = c1 = d1 = e1 = a = β = 1, b1 = 2, since a1 < b1d1,

it follows from Theorem 2.2 that the boundary equilibrium A(0, 0) is globally asymptotically stable. Figure 1

supports this assertion.
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Figure 1: Dynamic behavior of system (5.1), here the initial condition (x(0), y(0)) = (1, 1), (1, 0.3), (1, 0.1) and (1, 0.6),

respectively.

Example 5.2
dx

dt
= x
( 5

2 + x
− 1 − 6x

)

− xy,

dy

dt
= y

y

1 + y

(

x − y
)

.

(5.2)

In this system, corresponding to system (1.6), we take a1 = c1 = d1 = e1 = a = β = 1, b1 = 2, e1 = 6, since

a1
b1

= 5
2 > 1+ 5

12 = d1+a

a1
b1

− d1

e1
, it follows from corollary 2.1 that system (4.2) is permanent. Figure 2 supports

this assertion.

Example 5.3
dx

dt
= x
( 2

1 + x
− 1 − x

)

− 4xy,

dy

dt
= 4y

y

1 + y

(

x − y
)

.

(5.3)

In this system, corresponding to system (1.6), we take b1 = c1 = d1 = e1 = β = 1, a1 = 2, a = 4, by

computation, u* =
√
2 − 1, and so, a1

b1
= 2 < 1 + 4(

√
2 − 1) = d1 + au

*, Hence, the conditions of Theorem

2.1 could not satisfied, however, numeric simulation (Figure 3) shows that the system also admits a unique

positive equilibrium which is globally asymptotically stable.

6 Discussion

During the last decades, many scholars [2-6, 22-25] investigated the influence of Allee effect on the dynamic

behaviors of ecosystem. Also, there are several scholars [32-38] investigated the almost periodic solution of

the ecosystem. However, all of those studies are based on the traditional Logistic model.

In this paper, we argued that the nonlinear birth rate of the prey species is more suitable, and take

Beverton-Holt function [28] as the birth rate, this leads to system (1.6).

We showed that depending on the range of the birth rate parameter, the systemmaybe collapse or the two

species could be coexist in a stable state. That is, the birth rate plays essential role on the dynamic behaviors

of system (1.6).



1200 | Fengde Chen, Xinyu Guan, Xiaoyan Huang, and Hang Deng

Figure 2: Dynamic behavior of system (5.2), here the initial condition (x(0), y(0)) = (0.05, 0.5), (0.05, 0.3), (0.05, 0.5),

(0.3, 0.1), (0.3, 0.3), (0.3, 0.5) and (0.3, 0.2), respectively.

Figure 3: Dynamic behavior of system (5.3), here the initial condition (x(0), y(0)) = (0.3, 0.5), (0.3, 0.1), (0.3, 0.3), (0.3, 0.4),

(0.3, 0.2), (0.1, 0.3), (0.1, 0.1) and (0.1, 0.5), respectively.

For the system with infinite delay, by using the iterative method, we could able to show that inequality

(2.3) is enough to ensure the globally attractive of the positive equilibrium. We mentioned here that with the

nonlinear birth rate, the method used in the paper [34] and [36] could not be applied to our system directly,

to overcome this difficulty, we developing some new analysis technique.

At the end of the paper, wewould like to point out that the results obtained in this paper are the sufficient

ones, as was shown in Example 4.3, there are still have room to improve our results, we leave this for future

study. Also, it seems interesting to investigate the dynamic behaviors of the non-autonomous case of system

(1.6), specially focus on the permanence, extinction and almost periodic solution, we also leave this for future

investigation.
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