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Abstract

The transmission of infectious diseases has been studied by mathematical methods since

1760s, among which SIR model shows its advantage in its epidemiological description of

spread mechanisms. Here we established a modified SIR model with nonlinear incidence

and recovery rates, to understand the influence by any government intervention and hospi-

talization condition variation in the spread of diseases. By analyzing the existence and sta-

bility of the equilibria, we found that the basic reproduction number R
0
is not a threshold

parameter, and our model undergoes backward bifurcation when there is limited number of

hospital beds. When the saturated coefficient a is set to zero, it is discovered that the model

undergoes the Saddle-Node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation

of codimension 2. The bifurcation diagram can further be drawn near the cusp type of the

Bogdanov-Takens bifurcation of codimension 3 by numerical simulation. We also found a

critical value of the hospital beds bc at R0
< 1 and sufficiently small a, which suggests that

the disease can be eliminated at the hospitals where the number of beds is larger than bc.

The same dynamic behaviors exist even when a 6¼ 0. Therefore, it can be concluded that a

sufficient number of the beds is critical to control the epidemic.

Introduction

Since the development of the first dynamic model of smallpox by Bernoulli in 1760, various

mathematical models have been employed to study infectious diseases [1] in order to reveal

the underlying spread mechanisms that influence the transmission and control of these dis-

eases. Among them, Kermack andMckendrick [2] initiated a famous SIR type of compartmen-

tal model in 1927 for the plague studies in Mumbai, and succeed in unveiling its

epidemiological transition. Since then, mathematical modeling has become an important tool

to study the transmission and spread of epidemic diseases.

In the modeling of infectious diseases, the incidence function is one of the important factors

to decide the dynamics of epidemic models. Bilinear and standard incidence rates, both mono-

tonically increasing functions of the total of infected class, have been frequently used in early
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epidemic models [3]. In those models, the dynamics of models are relatively simple and almost

determined by the basic reproduction numberR
0
: the disease will be eliminated ifR

0
< 1, oth-

erwise, the disease will persist. However, intervention strategies, such as isolation, quarantine,

mask-wearing and medical report about emerging infectious diseases, play an vital role in con-

trolling the spread, sometimes contributing to the eradication of diseases. For instance, the

SARS in 2003 and novel influenza pandemic in 2009 have been well controlled by taking these

intervention actions [4–15]. Hence, it is essential to expand the modeling studies to the investi-

gation of the combined effects of these major intervention strategies. The generalized models

will provide further understanding of the transmission mechanisms, and modify guidelines for

public health in control of the spread of infectious diseases.

In recent years, a number of compartmental models have been formulated to explore the

impact of intervention strategies on the transmission dynamics of infectious diseases. If denote

the total number of hospital individuals, exposed and infectious as N, E and I respectively, Liu

et al [16], Cui et al [17, 18] used βe−mI, be�a1E�a2I�a3H and c1 − c2 f(I) to study the impact of

media coverage on the dynamics of epidemic models, respectively. However, people may

adjust their behaviors according to these government intervention. Therefore, Ruan and Xiao

[19] set incidence function in the form of f
1
ðIÞS ¼ KIS

1þaI2
(a special case of kIpS

1þaIq
[20, 21]) to

include the above “psychological” effect: when the number of infectious individuals increases

and is reported through social media, the susceptible individuals will stay alert spontaneously

to reduce any unnecessary contact with others, thus lowering the contact and transmission

incidence.

On the other hand, medical treatments, determining how well the diseases are controlled,

are normally expressed as constant recovery rates in the current models. These recovery rates

depend on various health systems and hospitalization conditions, such as the capacity of the

hospitals and effectiveness of the treatments. Advanced models (see [22–24]) started to corpo-

rate the limited medical resources into the spread dynamics of infectious diseases. In the litera-

ture [22], Wang and Ruan first introduced a piece-wise treatment function in an SIR model,

TðIÞ ¼
r I > 0;

0 I ¼ 0:

(

where the maximal treatment capacity was used to cure infectives so that the epidemic of dis-

ease can be controlled. This situation occurs only if the infectious disease needs to be elimi-

nated due to its threats to public. They discovered that the model undergoes Saddle-Node

bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation, standing for the collision of

two equilibria, the existance of periodic diseases, and two varying parameters in system,

respectively. Wang [23] further modified the treatment rate to be proportinal to the number of

infectives before the capacity of hospital was reached, by

TðIÞ ¼
rI 0 � I � I

0
;

rI
0

I > I
0
:

(

ð1Þ

The model was then found to perform backward bifurcation [23], indicating that the basic

reproduction number was no longer a threshold.

In common hospital settings, the number of beds is an indicator of health resources, partic-

ularly the medical treatments of the infectives. Under this consideration, Shan and Zhu [24]

defined the recovery rate as a function of b, the number of hospital beds, and I, the number of
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infectives.

m ¼ mðb; IÞ ¼ m
0
þ ðm

1
� m

0
Þ b

I þ b
ð2Þ

where μ0 is the minimum per capita recovery rate, and μ1 the maximum per capita recovery rate.

They chose the standard incidence rate and discovered the complicated dynamics including Sad-

dle-Node bifurcation, Backward bifurcation and Bogdanov-Takens bifurcation of codimension

3, which means that the recovery rate contributes to the rich dynamics of epidemic models.

Our strategy thus becomes, both government intervention and hospitalization condition

need to be incorporated to achieve a better control of the emerging infectious. Therefore, the

incidence rate is expressed as

bðIÞ ¼ bI

aI2 þ cI þ 1
;

where a is positive constant and c > �2
ffiffiffi

a
p

(so that aI2 + cI + 1> 0 for all I> 0 and hence

β(I)> 0 for all I> 0). When the threshold of the number of infected individuals I� is reached,

the contact transmission rate starts to decrease as the number of infected individuals grows. As

shown in Fig 1, the incidence β(I) increases to its maximum and then decreases to zero as I

tends to infinity, which explains the phenomenon where the rate of contacting between infected

I and susceptible S decreases after government intervention. We use the same expression of hos-

pitalization conditions as the literature [24], and the following model is then established,

dS

dt
¼ A� dS� bSI

1þ cI þ aI2
;

dI

dt
¼ bSI

1þ cI þ aI2
� dI � aI � mðb; IÞI;

dR

dt
¼ mðb; IÞI � dR;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð3Þ

Fig 1. Graphs of incidence rate function. (a) c� 0; (b)�2
ffiffiffi

a
p

< c < 0.

https://doi.org/10.1371/journal.pone.0175789.g001
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where A is the recruitment rate of the susceptible population, d the natural death of the popula-

tion, and α the per capita disease-induced death rate, respectively.

For system (3), the cone R3+ is a positive invariant. The C1 smoothness of the right side of

system (3) implies the local existence and uniqueness of the solution with initial values in R3+.

Adding up the three equations of system (3), we get N0(t) = A − dN − αI. Therefore, all solu-
tions in the first octant approach, entering or staying inside the set, are defined by

D ¼ fðS; I;RÞjS � 0; I � 0;R � 0; Sþ I þ R � A

d
g:

This paper will be organized as follows. In section 2, we study the existence of the equilibria

of our model. In section 3, we study the stability of the equilibria. In section 4, we examine the

dynamics of the model by first looking at the backward bifurcation of system, then the much

complicated Hopf bifurcation and Bogdanov-Takens bifurcation of codimension 2 and 3. We

summarize our results and discuss the epidemiological significance of the number of hospital

beds and intervention strategies in section 5.

Existence of equilibria

For simplicity we will focus on the case when c = 0. If c 6¼ 0, but c is in small neighborhood of

zero, the behaviors of model still exist. Our model thus becomes,

dS

dt
¼ A� dS� bSI

1þ aI2
;

dI

dt
¼ bSI

1þ aI2
� dI � aI � m

0
þ ðm

1
� m

0
Þ b

bþ I

� �

I;

dR

dt
¼ m

0
þ ðm

1
� m

0
Þ b

bþ I

� �

I � dR:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð4Þ

Since the first two equations are independent of the third, it suffices to consider the first two

equations. Thus, we will focus on the reduced model in the following discussions.

dS

dt
¼ A� dS� b

SI

1þ aI2

dI

dt
¼ b

SI

1þ aI2
� dI � aI � m

0
þ ðm

1
� m

0
Þ b

bþ I

� �

I:

8

>

>

>

<

>

>

>

:

ð5Þ

We find equilibria by setting the right hand of system (5) equal to zero:

A� dS� b
SI

1þ aI2
¼ 0;

b
SI

1þ aI2
� dI � aI � mðb; IÞI ¼ 0:

8

>

>

>

<

>

>

>

:

ð6Þ

Obviously, a trivial solution of Eq (6) is E
0
ðS; IÞ ¼ A

d
; 0

� �

, a disease free equilibrium(DFE). For

E0, by using the formula in [25], one can calculate the reproduction number

R
0
¼ bA

dðaþ d þ m
1
Þ : ð7Þ

For any positive equilibrium E(S, I), also called endemic equilibrium, when exists, its S and I
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coordinates satisfy

SðIÞ ¼ A� ðd þ aþ mðb; IÞÞI
d

; ð8Þ

where the I coordinate will be the positive root of the following cubic equation

f ðIÞ ¼ A I3 þBI2 þ C I þ D ¼ 0; ð9Þ

where

A ¼ add
0
; B ¼ badd

1
þ bd

0
;

C ¼ bbd
1
þ dd

0
� bA; D ¼ bdd

1
ð1� R

0
Þ;

di ¼ d þ aþ mi; i ¼ 0; 1:

Let

A
1
¼ B2 � 3AC ;B ¼ BC � 9AD;C ¼ C 2 � 3BD

Denote Δ0 the discriminant of f(I) with respect to I, then

D
0
¼ B2 � 4A

1
C:

Note that f ð0Þ ¼ bdd
1
ð1� R

0
Þ and f 0ð0Þ ¼ C . As shown in Fig 2, we have the following cases

about the positive roots of f(I):

Case 1: R0 > 1. In this case,D < 0. It is found that there is a unique positive root of f(I) = 0,

regardless of the sign of C from Fig 1(c) and 1(d).

Case 2: R0 < 1. In this case,D > 0. If C > 0, equation f(I) = 0 has no positive solution (see

Fig 1(a)). If C < 0, similar to Lemma 2.1 described by Huang and Ruan [26], the following

conclusions can be drawn as shown by Fig 1(b).

(a) Δ0 < 0, there are two positive solutions of the equation.

(b) Δ0 = 0, there is unique positive solution of the equation.

(c) Δ0 > 0, we find that Eq (9) has no positive solution.

Case 3: R0 ¼ 1, Eq (9) becomes

f ðIÞ ¼ A I3 þBI2 þ C I ¼ 0 ð10Þ

If C < 0, Eq (9) has a unique positive root. If C > 0, Eq (9) has no positive root. Note that

C > 0means b > dðm1�m0Þ
bd1

. Thus, we get the following theorem about the equilibrium of the

model.

Theorem 0.1. For system (5) with positive parameters,

(1) the disease-free equilibrium E0 always exists,

(2) when R0 > 1, system has a unique endemic equilibrium,

(3) when R0 < 1, and

(a) C > 0, system (5) does not have endemic equilibrium.
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(b) C < 0, Δ0 < 0, there exist two endemic equilibria E1ð�I 1; �S1Þ and E2ð�I 2; �S2Þ, and
when Δ0 = 0 these two endemic equilibria coalesce into the same endemic equilibrium E�;
otherwise system (5) has no endemic equilibrium.

(4) when R0 ¼ 1, there exists a unique endemic equilibrium if and only if C < 0 i.e.

b < dðm1�m0Þ
bd1

; otherwise there is no endemic equilibrium.

Fig 2. The positive roots of f(I). (a)R
0
< 1;C > 0; (b)R

0
< 1;C < 0; (c)R

0
> 1;C > 0; (d)R

0
> 1;C < 0.

https://doi.org/10.1371/journal.pone.0175789.g002
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Remark 0.2. By calculation, we get that

D
0
ðaÞ ¼ �3b

2
d
0
Dþ OðaÞ;

D ¼ b
2
d
2

1
b2 þ 2bð2bAd

0
� dd

0
d
1
� bAd

1
Þbþ ðdd

0
� bAÞ2:

ð11Þ

When a is sufficiently small and tends to zero, the sign of Δ0 will be determined by the zero power

of a. Therefore, Δ0(a)! Δ0(0) = −3β2δ0Δ as a! 0. In addition, Δ = 0 if and only if R
0
¼ Rc

0
.

Here

Rc
0
¼ 1� C 2

4Bbdðd þ aþ m
1
Þ :

Stability analysis of equilibria

In order to discuss the stability of equilibrium, we need the Jacobian matrix of system (5) at

any equilibrium E(S, I). If we denote the Jacobian as J(E) = (jij)2×2, i, j = 1, 2, then a straightfor-

ward calculation gives

j
11
¼ �d � bI

1þ aI2
; j

12
¼ � bS

1þ aI2
þ 2abSI2

ð1þ aI2Þ2
;

j
21
¼ bI

1þ aI2
; j

22
¼ �d

0
þ bS

1þ aI2
� 2abSI2

ð1þ aI2Þ2
þ ðm

1
� m

0
ÞbI

ðbþ IÞ2
� ðm

1
� m

0
Þb

bþ I
:

ð12Þ

Firstly, we present a theorem about the disease-free equilibrium E0(A/d, 0).

Theorem 0.3. E0 is an attracting node if R
0
< 1, and hyperbolic saddle if R

0
> 1.When

R
0
¼ 1, E0 is a saddle-node of codimension 1 if b 6¼ d2ðm1�m0Þ

b2A
and attracting semi-hyperbolic node

of codimension 2 if b ¼ d2ðm1�m0Þ
b2A

.

Proof. For system (5), −d and d
1
ðR

0
� 1Þ are two eigenvalues of J(E0). So, E0 is an attracting

node ifR
0
< 1, and unstable if R

0
> 1. When R

0
¼ 1, the second eigenvalue becomes zero. In

order to analyze the behavior of E0, we linearize system (5) and use the transformation of

X ¼ Sþ bA

d2
I, Y = I,

dX

dt
¼ �dX þ PðX;YÞ;

dY

dt
¼ � m

0
� m

1

b
þ b

2A

d2

� �

Y2 þ QðX;YÞ;

8

>

>

>

<

>

>

>

:

ð13Þ

where P(X, Y) and Q(X, Y) represent the higher order terms. Obviously, E0 is a saddle-node if

b 6¼ d2ðm1�m0Þ
b2A

. Otherwise, i.e., b ¼ d2ðm1�m0Þ
b2A

, applying the center manifold theorem, system (5)

becomes

dX

dt
¼ �dX þ PðX;YÞ;

dY

dt
¼ � bAa

d
þ b

3Ad
0

d3

� �

Y3 þ Q
1
ðX;YÞ;

8

>

>

>

<

>

>

>

:

ð14Þ

where Q1(X, Y) represents the higher order term. Thus, E0 is an attracting semi-hyperbolic

node of codimension 2.
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Theorem 0.4. If dδ0> βA, E0 is globally asymptotically stable.

Proof. If dδ0> βA, it is obvious that R
0
< 1 and C > 0. From Theorem 0.1 and 0.3, E0 is

the unique attracting node of system (5). In order to prove that the disease free equilibrium E0
is globally and asymptotically stable, we construct the following Liapunov function:

VðS; IÞ ¼ A

d

dS

A
� ln

dS

A

� �

þ I: ð15Þ

It is easy to discover that E
0

A
d
; 0

� �

attains the global minimum of the function V(S, I), so

V(S, I)> 0. Along system (5), it turns out:

_V jð5Þ ¼ 2A� dS� A2

dS
þ bAI

dð1þ aI2Þ � ðd þ aþ mðb; IÞÞI: ð16Þ

Since μ(b, I)> μ0 for all I� 0, we have

_V jð5Þ � 2A� dS� A2

dS
þ ðbA� dd

0
ÞI � dad

0
I3

dð1þ aI2Þ � 0: ð17Þ

The equality _V ðS; IÞ ¼ 0 if and only if at E
0

A
d
; 0

� �

. By Poincare-Bendixson theorem, theorem

0.4 is obvious.

Let Eð�S;�IÞ be any endemic equilibrium, one can verify that its characteristic equation can

be written as

l
2 � trðJEÞlþ det ðJEÞ ¼ 0; ð18Þ

where

trðJEÞ ¼ �d þ m
1
� m

0

ðbþ �IÞ2
b�I � ðd þ aþ mðb;�IÞÞ 2a�I 2

1þ a�I 2
� b�I

1þ a�I 2
;

det ðJEÞ ¼
�I

ðbþ �IÞ2ð1þ a�I 2Þ
ðbþ �IÞf 0ð�IÞ:

ð19Þ

Obviously, the signs of the eigenvalues are determined by f 0ð�IÞ and tr(JE). From Fig 2, we

know that f 0ð�I
1
Þ < 0; f 0ð�I

2
Þ > 0, so E1 is a hyperbolic saddle and E2 is an anti-saddle. E2 is an

attracting node or focus, if tr(JE)< 0; E2 is a weak focus or a center, if tr(JE) = 0; E2 is a repelling

node or focus, if tr(JE)> 0. So we obtain the following theorem.

Theorem 0.5. For system (5), there are two endemic equilibria E1, E2 when R0
< 1 and

Δ0< 0. Then the low endemic equilibrium E1 is a hyperbolic saddle, and the higher endemic equi-

librium E2 is an anti-saddle. When R
0
> 1 there is a unique endemic equilibrium, which is an

anti-saddle.

Bifurcation analysis

Backward bifurcation

Theorem 0.6.When R
0
¼ 1, system (5) undergoes backward bifurcation if b < dðm1�m0Þ

bd1
; and sys-

tem (5) undergoes forward bifurcation if b > dðm1�m0Þ
bd1

.
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Proof. For convenience of the proof, we suppose that the total number of the population is

N(t). System (4) becomes the following system

dI

dt
¼ bðN � I � RÞI

1þ aI2
� dI � aI � m

0
þ ðm

1
� m

0
Þ b

bþ I

� �

I;

dR

dt
¼ m

0
þ ðm

1
� m

0
Þ b

bþ I

� �

I � dR;

dN

dt
¼ A� dN � aI:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð20Þ

Let V = (I, R, N)T, then the disease-free equilibrium is V
0
¼ 0; 0; A

d

� �T
and we can write Eq (20)

in vector forms as:

_V ¼ HðVÞðV � V
0
Þ; ð21Þ

where

HðVÞ ¼

bðN � I � RÞ
1þ aI2

� d � a� mðb; IÞ 0 0

mðb; IÞ �d 0

�a 0 �d

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: ð22Þ

Then,

HðV
0
Þ ¼

d
1
ðR

0
� 1Þ 0 0

m1 �d 0

�a 0 �d

0

B

B

B

@

1

C

C

C

A

: ð23Þ

We know that the dominant eigenvalue ofH(V0) is zero, ifR0
¼ 1. It is well known that we

can decompose a neighborhood of the disease-free state into stable manifoldWs and a center

manifoldWc. Thus, the dynamic behavior of system (20) can be determined by the flow on the

center manifold. We know that zero is a simple eigenvalue and theWc is tangential to the

eigenvector V0 at V0. Thus, we can assume thatWc has the following form:

Wc ¼ fV
0
þ aV0 þ ZðaÞ : V� � ZðaÞ ¼ 0;�a

0
� a � a

0
g; ð24Þ

where V� is the dominant left eigenvector ofH(V0), α0> 0 is a constant, and Z: [−α0, α0]!
Ran(H(V0)) satisfies:

Zð0Þ ¼ d

da
Zð0Þ ¼ 0: ð25Þ

In other words,Wc can be decomposed into two components. The α gives the component of

the center manifold that lies along the dominant eigenvector; the component that does not lay

along the dominant eigenvector can be given by Z(α). So, V� � Z(α) = 0. In order to determine

the dynamic behavior of system (20), we just need to see how α depends on time t.

Let

VðtÞ ¼ V
0
þ aðtÞV0 þ ZðaðtÞÞ; ð26Þ
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sinceWc is an invariant, from Eq (21) we have

_aðtÞV0 þ d

dt
ZðaðtÞÞ ¼ _V ðtÞ

¼ HðVðtÞÞ½VðtÞ � V
0
�

¼ HðV
0
þ aðtÞV0 þ ZðaðtÞÞÞ½aðtÞV0 þ ZðaðtÞÞ�;

Multiplying both sides of the above equation by V� and using the following equations:

V� � d
dt

ZðaðtÞÞ ¼ 0;V�HðV
0
Þ ¼ 0;V� � V0 ¼ 1; ð27Þ

and Z(α) = O(α2) we can get that

_a ¼ V� � HðV
0
þ aV0 þ ZðaÞÞ½aV0 þ ZðaÞ�

¼ V� � HðV
0
þ aV0Þ½aV0 þ ZðaÞ� þ Oða3Þ

¼ V� � ðHðV
0
þ aV0Þ � HðV

0
ÞÞ½aV0 þ ZðaÞ� þ Oða3Þ:

Note that [H(V0 + αV0) −H(V0)] is of order α, then [H(V0 + αV0) −H(V0)]Z(α) is O(α
3) and

we get that

_a ¼ aV� � ½HðV
0
þ aV0Þ �HðV

0
Þ�V0 þ Oða3Þ: ð28Þ

The sign of this expression for small α is what determines whether the disease can invade at

the bifurcation point. In the limit, as α goes to zero, Eq (28) becomes:

_a ¼ V� � H 0
V0a2 þ Oða3Þ; ð29Þ

where

H
0 ¼ dHðV

0
þ aV0Þ

da
ja¼0

¼
X

i

V0

i

@H

@Vi

jV¼V0
; ð30Þ

which gives the rate of change of the vector field as the disease invades. Hence, the number

h ¼ V�H
0
V0 ð31Þ

determines whether the disease can invade when R
0
¼ 1, and hence gives the sign of the bifur-

cation. For our system, by computation we can get the V� and V0 as follows:

V0 ¼ I0;
m
1

d
I0;� a

d
I0

� �T

; V� ¼ 1

I0
; 0; 0

� �

;

and

H
0 ¼ H

0
1
I0 þH

0
2

m1

d
I0 �H

0
3

a

d
I0;

where

H
0
1
¼

�bþ m
1
� m

0

b
0 0

�m
1
� m

0

b
0 0

0 0 0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

;H
0
2
¼

�b 0 0

0 0 0

0 0 0

0

B

B

B

@

1

C

C

C

A

;H
0
3
¼

b 0 0

0 0 0

0 0 0

0

B

B

B

@

1

C

C

C

A

: ð32Þ
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Then we can get that

h ¼ V�H
0
V0

¼ m
1
� m

0

b
� bðd þ aþ m

1
Þ

d

� �

I0: ð33Þ

According to [27], we know that system (5) undergoes backward bifurcation, when h> 0, i.e.,

b < dðm1�m0Þ
bd1

; and system (5) undergoes forward bifurcation, when h< 0, i.e., b > dðm1�m0Þ
bd1

.

Proposition 0.7.When R
0
passes through Rc

0
and tr(I�) 6¼ 0, system (5) with a! 0 under-

goes a saddle-node bifurcation. When R
0
¼ Rc

0
, E� is a saddle-node if tr(I�) 6¼ 0, and E� is a cusp

if tr(I�) = 0.

Proof. As a! 0, Δ0(a)! Δ0(0). Δ0(0) = 0 means thatR
0
¼ Rc

0
and the two endemic equilib-

ria E1 and E2 coalesce at E
�. Two eigenvalues of Jacobian matrix J(E�) are 0 and tr(I�) for system

(5).

If tr(I�) 6¼ 0, we can linearize system (5) at the E� and diagonalize the linear part. Then we

can get the following form

_X ¼ b
2ðm

0
� m

1
Þðbb� dÞ

ðbþ I�Þ3jTj
X2 þ XOðjY jÞ þ OðjYj2; jX;Yj3Þ

_Y ¼ trðI�ÞY þ OðjX;Yj2Þ

8

>

>

<

>

>

:

ð34Þ

Where T is the non-singular transformation to diagonalize the linear part. Since b < d
b
, E� is a

saddle-node if tr(I�) 6¼ 0. Combined with Theorem 0.1, system (5) undergoes saddle-node

bifurcation when R
0
passes through the critical value Rc

0
, as a! 0. If tr(I�) = 0, E� is a cusp and

we will prove it in the next section.

Based on the above analysis, we know that system (5) undergoes some bifurcation. In order

to consider the impact of hospital bed number and the incidence rate on the dynamics of the

model, we will chose b and β as bifurcation parameters to describe these bifurcations. The

basic production number R
0
¼ 1 defines a straight line C0 in the (β, b) plane,

C
0
: b ¼ dd

1

A
:

C ¼ 0 also defines one branch of the hyperbolic CB (see Fig 3),

C
B
: b ¼ fC ðbÞ ¼

bA� dd
0

bd
1

:

The branch of CB intersects with C0 at the point K
dd1
A
; Aðm1�m0Þ

d2
1

� �

and with β—axis at the

point K
0 dd0

A
; 0

� �

. It is easily found that fC is an increasing convex function of β in the first quad-

rant. Let

Cþ
0
¼ fðb; bÞjb ¼ dd

1

A
; b >

Aðm
1
� m

0
Þ

d
2

1

g;

C�
0
¼ fðb; bÞjb ¼ dd

1

A
; b <

Aðm
1
� m

0
Þ

d
2

1

g;

then C
0
¼ Cþ

0
[ C�

0
[ K. Here Cþ

0
and C�

0
are two branches of C0 joint at point K.
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Define the curve Δ0(β, b) = 0 as C
D0
, one can verify that

D
0
ðK 0Þ ¼ 0; D

0
ðKÞ ¼ 0;

@b

@b
jK0 ¼ 0;

@b

@b
jK ¼ �1:

Hence, the curve C
D0
is tangent to the curve C0 at the point K and the β—axis at the point K0

when dd0
A
< b < dd1

A
.

If b ¼ dd1
A
,

D
0
ðb; bÞ ¼ D

0
ðbÞ ¼ � 3d4ðbd2

1
þ Aðd

0
� d

1
ÞÞ2gðbÞ

A4
;

where

gðbÞ ¼ A2a2d
2

1
b2 � 2Aad

0
d
2

1
b� d

0
ð4A2aðd

0
� d

1
Þ � d

0
d
2

1
Þ:

Denote the discrimination of g(b) = 0 as D
2
¼ 16A4a3d

2

1
d
0
ðd

0
� d

1
Þ < 0. Hence the equation

Δ0(b) = 0 has a unique real solution, b ¼ Aðm1�m0Þ
d2
1

, which means that K is the only point at which

the curve C
D0
is tangent to the curve C0.

If b = 0,

D
0
ðb; 0Þ ¼ D

0
ðbÞ ¼ �3d

0
ðdd

0
� bAÞ2g

1
ðbÞ;

Fig 3. The bifurcation curves in (β, b) for system (5) when a 6¼ 0.

https://doi.org/10.1371/journal.pone.0175789.g003
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where

g
1
ðbÞ ¼ d

0
b
2 þ 4Aadb� 4ad

0
d2:

Through computing, we find that equation Δ0(β, 0) = 0 has three real solutions

b
0
¼ dd

0

A
; b

1;2 ¼
�2adA� 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2a2 þ ad2
0

q

d
0

:

It is easy to verify β0> β1, so the curve CD0
will not intersect with the abscissa axis when

b 2 dd0
A
; dd1

A

� �

.

For the curve CB, note

D
0

b;
bA� dd

0

bd
1

� �

¼ 12ðadðbA� dd
0
Þ=bþ bd

0
Þ3ðbA� dd

0
Þðdd

1
� bAÞ

bd
1

þ 81a2d2d
2

0
ðbA� dd

0
Þ2ðdd

1
� bAÞ2

b
2
d
2

1

:

ð35Þ

Obviously, if b 2 dd0
A
; dd1

A

� �

, then D
0
b; bA�dd0

bd1

� �

> 0. Hence, the curve CB is located above the

curve C
D0
for b 2 dd0

A
; dd1

A

� �

.

Based on the above the discussion and Theorem 0.1, if we define

D
1
¼ fðb; bÞjb >

dd
1

A
; b > 0g;

D
2
¼ fðb; bÞj dd0

A
< b <

dd
1

A
; 0 < b <

Aðm
1
� m

0
Þ

d
2

1

;D
0
ðb; bÞ < 0g;

then there is one endemic equilibria in the region D1 and two endemic equilibria in the region

D2. System (5) undergoes saddle-node bifurcation on the cure C
D0
when b 2 dd0

A
; dd1

A

� �

. The

backward bifurcation occurs on the C�
0
and forward bifurcation occurs on the Cþ

0
. The pitch-

fork bifurcation occurs when transversally passing through the curve C0 at the point K. Espe-

cially, if a = 0, system (5) has a semi-hyperbolic node of codimension 2 at the point K and we

can solve b in term of β from Δ0(β, b) = 0,

b ¼ f �
D
ðbÞ ¼ bAðd

1
� d

0
Þ þ d

0
ðdd

1
� bAÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bAd
0
ðd

1
� d

0
Þðdd

1
� bAÞ

p

bd
2

1

: ð36Þ

Now, we discuss the Hopf bifurcation of system (5). It follows from Eq (18) that if Hopf

bifurcation occurs at one endimic equilibrium Eð�S;�IÞ, we have tr(JE) = 0. Note that from Eq

(19) we can rewrite tr(JE) as

trðJEÞ ¼ � h
1
ð�IÞ

ðbþ �IÞ2ð1þ a�I 2Þ2
;

where

h
1
ð�IÞ ¼ b

4
�I 4 þ b

3
�I 3 þ b

2
�I 2 þ b

1
�I þ b2d; ð37Þ
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with

b
4
¼ að3d þ 2m

0
þ 2aÞ;

b
3
¼ að6bd þ 3bm

0
þ bm

1
þ 4baÞ þ b;

b
2
¼ að3b2d þ 2b2m

1
þ 2b2aÞ þ 2bbþ d;

b
1
¼ bðbbþ 2d þ m

0
� m

1
Þ:

Here, h
1
ð�IÞ is a quartic equation. Since b2, b3 and b4 are non-negative, if b > m1�m0�2d

b
,

h1(I)> 0, in order to make sure that h1(I) = 0 has a positive root, we must have b < m1�m0�2d

b
.

This means sufficient number of hospital beds excludes the possibility of the disease oscilla-

tion. From the expression of h
1
ð�IÞ in Eq (37), it is not an easy task to study the Hopf bifurca-

tion from the polynomial Eq (37), we will study a simple case when a = 0, and give the

simulations to explore the case when a is small.

When a = 0, the polynomial Eq (37) is reduced to

h
1
ð�IÞ ¼ b�I 3 þ ðd þ 2bbÞ�I 2 þ b

1
�I þ b2d:

One can verify the following lemma

Lemma 0.8. For any positive equilibrium, if b � m1�m0�2d

b
, we alway have tr(JE)<0.

In order to study Hopf bifurcation and Bogdanov-Takens bifurcation, we will assume that

b < m1�m0�2d

b
. Denote the discrimination of h

1
ð�IÞ as Δ1. Since b1 < 0, function h

1
ð�IÞmust have

one negative real root. As shown in Fig 4, It is not difficult to verify function h
1
ð�IÞ has two

Fig 4. Graph of h(I) with different signs ofΔ1when b1 < 0.When I2 =Hm, I2 = HM or I2 = HM =Hm, Hopf bifurcation occurs. BT bifurcation
of codimension 2 occurs when I* =Hm or I* = HM and BT bifurcation of codimension 3 occurs when I* = Hm =HM.

https://doi.org/10.1371/journal.pone.0175789.g004
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humps which locate on the different sides of vertical axis, and the maximum is obtained on the

left hump, while the minimum is obtained on the right hump.

The number of roots of function h
1
ð�IÞ is determined by the sign of the Δ1. When exist, we

denote the roots asHm andHM withHM �Hm.

Lemma 0.9. @I2
@b

> 0; 8b > 0 and @I2
@b

< 0; 8b > 0.

Proof. From the Eq (9) and the expression of I2, direct calculation leads to

@I
2

@b
¼ � @f

@b
=
@f

@I
2

¼ dd
0
I þ bdd

1

b
ffiffiffiffi

D
p > 0;

@I
2

@b
¼ 1

2B
� @C

@b
þ 1

ffiffiffiffi

D
p C

@C
@b

� 2B
@D
@b

� �� �

:

One can find that @C
@b

¼ bd
1
> 0. We will prove @I2

@b
< 0 in two cases. If R

0
< 1, then

@D
@b
¼ dd

1
� bA > 0. Recall the analysis of the existence of the equilibria we know that the

C < 0, so the @I2
@b

< 0. IfR
0
> 1, then lim b!þ1

@I2
@b

¼ 0 and

@I2
2

@2b
¼ �D

�3=2

0

8B
@D

0

@b

� �2

� 2D
0

@2
D

0

@2b

" #

¼ 2b
2Aðm

1
� m

0
ÞðbA� dd

1
Þ > 0;

so the @I2ðbÞ
@b

is an increasing function of b with supremum 0 in the (0, +1), so for 8b> 0
@I2ðbÞ
@b

< 0.

Theorem 0.10. For system (5) with a = 0, generic Hopf bifurcation could occur if I2 =Hm,

I2 =HM or I2 =Hm =HM.

Proof. We only need to verify the transversality condition. Let γ = tr(I2)/2 be the real part of

the two solutions of Eq (18), when a = 0.

If I2 =HM or I2 =HM =Hm, we consider β as the bifurcation parameter and fix all other

parameters. Then

dg

db

�

�

�

�

b¼b̂

¼ 1

2

@trðI
2
ðbÞ; bÞ
@I

2

@I
2
ðbÞ

@b
þ @trðI

2
ðbÞ; bÞ
@b

� ��

�

�

�

b¼b̂

;

@trðI
2
ðbÞ; bÞ
@I

2

�

�

�

�

b¼b̂

¼ � 2h
0ðHMÞ

ðbþ HMÞ
2
< 0;

@trðI
2
ðbÞ; bÞ
@b

�

�

�

�

b¼b̂

¼ �H3

M þ 2bH2

M þ b2HM

ðbþHMÞ
2

< 0:

From Lemma 0.9, we have @I2
@b
jb¼b̂ > 0, so dg

db
< 0.

If I2 =Hm or I2 =HM =Hm, we consider b as the bifurcation parameter and fix all the other

parameters. Then

dg

db

�

�

�

�

b¼b̂

¼ 1

2

@trðI
2
ðbÞ; bÞ

@I
2

@I
2
ðbÞ

@b
þ @trðI

2
ðbÞ; bÞ
@b

� ��

�

�

�

b¼b̂

;

@trðI
2
ðbÞ; bÞ
@b

�

�

�

�

b¼b̂

¼ � 2h
0ðHmÞ

ðbþHmÞ
2
> 0;

@trðI
2
ðbÞ; bÞ
@b

�

�

�

�

b¼b̂

¼ ðb�HmÞðm0
� m

1
Þ

ðbþHmÞ
2

< 0:
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From Lemma 0.9, we have @I2
@b
jb¼b̂ < 0, so dg

dm1
< 0 (one can verify thatHm < b). Then the proof

of theorem is completed.

The reason why we choose different parameters to unfold Hopf bifurcation in Theorem

0.10 is that the transversality condition may fail at some point if we focus on one parameter.

In order to verify that Hopf bifurcation occurs in the system, we need to know the type of

E2. If E2 is a weak focus, Hopf bifurcation can happen, otherwise system does not undergo

Hopf bifurcation. Because system (5) is analytic when a = 0, E2 can only be weak focus or cen-

ter. We can distinguish these two types of singularities by calculating Lyapunov coefficients

and verifying it through numerical simulation.

Taking the resultant of f(I) and h
1
ð�IÞ with respect to I, we can get the curve q(β, b) in the

space (β, b), and plot the algebraic curve q(β, b) = 0 by fixing other parameters A, d, μ1, α and

μ0. Choose A = 3, d = 0.3, α = 0.5, μ0 = 1.5, μ1 = 3 and plot q(β, b) = 0 in the plane (β, b) as
shown in Fig 5(a). The green curve (δ1< 0) represents supercritical Hopf bifurcation; the red

curve corresponding to δ1 > 0 represents subcritical Hopf bifurcation.

We choose a point(β, b) = (0.3683, 0.1587) in Fig 5(a) to plot the phase portrait at the point.

In Fig 5(b), as t! +1, the trajectory starting at (9, 0.1) spirals outward to the stable limit

cycle (red curve) and E2(8.0794, 0.19363) is stable. Because system (5) is a plane system, there

must exist a unstable limit cycle between the stable endemic equilibria and stable limit cycle

(black curve). The blue curve in the Fig 5(b) is the unstable manifold of E1.

Bogdanov-Takens bifurcation

From Theorem 0.1 we know that the two equilibria E1 and E2 coalesce at the equilibria

E�(S�, I�) when R
0
¼ Rc

0
, if a = 0, where

S� ¼ A

d þ bI�
;

I� ¼ � dðd þ aþ m
0
Þ � bAþ bbðd þ aþ m

1
Þ

2bðd þ aþ m
0
Þ :

We can find that det(I�) = 0 in Eq (18) if R
0
¼ Rc

0
. From Proposition 0.7, we know that E� is a

saddle-node point if tr(I�) 6¼ 0. If tr(I�) = 0, Eq (18) has a zero eigenvalue with multiplicity 2,

Fig 5. Graphs of Bifurcation curve in parameters plane (β, b) and the phase trajectory for system (5). (a) Curve q(β, b) = 0. The green
curve is supercritical Hopf bifurcation; The red curve is subcritical Hopf bifurcation. σ1 becomes 0 at the DH point. (b) Two limit cycles
bifurcation from the weak focus E2.

https://doi.org/10.1371/journal.pone.0175789.g005
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which suggests that system (5) may admit a Bogdanov-Takens bifurcation. Then, we give the

following theorem.

Theorem 0.11. For system (5) with a = 0, suppose that Δ = 0, h(I�) = 0 and h0(I�) 6¼ 0, then

E� is a Bogdanov-Takens point of codimension 2, and system (5) localized at E� is topologically
equivalent to

_X ¼ Y;

_Y ¼ X2 þ Signðh0ðI�ÞÞXY þ OðjX;Yj3Þ:

8

<

:

ð38Þ

Proof. Changing the variables as x = S − S�, y = I − I�, then system (5) becomes

dx

dt
¼ �ðd þ bI�Þx � bS�y � bxy;

dy

dt
¼ bI�x þ ðm

1
� m

0
ÞbI�

ðbþ I�Þ2
y þ Cy2 þ bxy þ Oðjx; yj3Þ;

8

>

>

>

<

>

>

>

:

ð39Þ

where

C ¼ ðm
1
� m

0
Þb

ðbþ I�Þ2
� ðm

1
� m

0
ÞbI�

ðbþ I�Þ3
: ð40Þ

tr(I�) = 0 and det(I�) = 0 imply that

b
2S�I� � ðd þ bI�Þ2 ¼ 0; d þ bI� ¼ ðm

1
� m

0
ÞbI�

ðbþ I�Þ2
; ð41Þ

so the generalized eigenvectors corresponding to λ = 0 of Jacobian matrix in system (5) at the

point E� are

V
1
¼ ð�d � bI�; bI�Þ0 ; V

2
¼ ð1; 0Þ0 : ð42Þ

Let T = (Tij)2×2 = (V1, V2), then under the non-singular linear transformation

x

y

 !

¼ T
X

Y

 !

;

where |T| = −βI� < 0. System (39) becomes

_X ¼ Y þ a
11
X2 þ bXY ;

_Y ¼ a
21
X2 þ dbXY þ OðjX;Yj3Þ;

8

<

:

ð43Þ

here

a
11
¼ �

ðd þ bI�Þb2I� � ðm
1
� m

0
Þb

ðbþ I�Þ2
� ðm

1
� m

0
ÞbI�

ðbþ I�Þ3

 !

b
2I�

2

bI�
;

a
21
¼ bI�ðbI� þ dÞðbb� dÞ

bþ I�
:
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Using the near-identity transformation

u ¼ X � a
12
X2

2
; v ¼ Y þ a

11
X2; ð44Þ

and rewrite u, v into X, Y, we obtain

_X ¼ Y þ OðjX;Yj3Þ;

_Y ¼ M
21
X2 þM

22
XY þ OðjX;Yj3Þ:

8

<

:

ð45Þ

To consider the sign ofM21, note that

M
21
¼ a

21
¼ bI�ðbI� þ dÞðbb� dÞ

bþ I�
:

For system (5), the condition of the existence of endemic equilibrium is b < dðm1�m0Þ
bd1

, hence,

M21< 0. Then we will determine the sign ofM22 by

M
22

¼ a
22
þ 2a

11

¼ db� 2

ðd þ bI�Þb2I� � ðm1�m0Þb
ðbþI�Þ2 � ðm1�m0ÞbI�

ðbþI�Þ3

� �

b
2I�

2

bI�

¼ � bh
0ðI�Þ

ðbþ I�Þ2
:

If h0(I�) 6¼ 0, we make a change of coordinates and time and preserve the orientation by time

X ! M
21

a2

22

X; Y ! M2

21

a3

22

Y; t ! j a22

M
21

jt ð46Þ

then system (5) is topologically equivalent to the normal form Eq (38).

From Theorem 0.11, we know that if a = 0, endemic equilibrium E� is a Bogdanov-Takens
point of codimension 2 when Δ = 0, h(I�) = 0 and h0(I�) 6¼ 0. If h0(I�) = 0, E� may be a cusp of

codimension 3.

In [28], a generic unfolding with the parameters ε = (ε1, ε2, ε3) of the codimension 3 cusp

singularity is C1 equivalent to

_X ¼ Y;

_Y ¼ ε
1
þ ε

2
Y þ ε

3
XY þ X2 � X3Y þ OðjX;Yj4Þ:

8

<

:

ð47Þ

About system (47), we can find that the system has no equilibrium if ε1> 0. The plane ε1 =
0 excluding the origin in the parameter space is saddle-node bifurcation surface. When ε1
decrease from this surface, the saddle-node point of Eq (47) becomes a saddle and a node.

Then the other bifurcation surfaces are situated in the half space ε1 < 0. They can be visualized

by drawing their trace on the half-sphere

S ¼ fðε
1
; ε

2
; ε

3
Þjε

1
< 0; ε2

1
þ ε2

2
þ ε2

3
¼ s2g; ð48Þ

when σ> 0 sufficiently small (see Fig 6(a)). We recall that the bifurcation set is a ‘cone’ based

on its trace with S.

In Fig 6(b), trace on the S which consists of 3 curves: a curveHom of homoclinic bifurcation,

aH of Hopf bifurcation and SNlc of double limit cycle bifurcation. The curve SNlc include two
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pointsH2 andHom2 and the curve SNlc tangent to the curvesH andHom. The curvesH and

Hom touch the @S ¼ fðε
1
; ε

2
; ε

3
Þjε

1
¼ 0; ε2

2
þ ε2

3
¼ s2g with a first-order tangency at the

points BT+ and BT−. In the neighbourhood of the BT+ and BT−, one can find the unfolding of

the cusp-singularity of codimension 2. For system (47), there exists an unstable limit cycle

betweenH andHom near the BT+ and an unique stable limit cycle betweenH andHom near the

BT−. In the curved triangle CH2Hom2 the system has two limit cycles, the inner one unstable

and the outer one stable. These two limit cycles coalesce when the ε crosses over the curve

SNlc. On the SNlc there exists a unique semistable limit cycle. The more interpretation can be

found in literature [24, 28].

Bifurcation diagram and simulation

According to analysis and Theorem 0.11, we know that system (5) undergoes Bogdanov-

Takens bifurcation of codimension 2. In this section we will choose the parameters β and b as

bifurcation parameters to present the bifurcation diagram by simulations. In the proof of The-

orem 0.11, we make a series of changes of variables and time, so there will be different situa-

tions with different signs of h0(I). According to the positive and negative coefficients of XY
term in the normal form Eq (47), we denote the Bogdanov-Takens bifurcation of codimension

2 as BT+ and BT− respectively.

Taking A = 3, d = 0.3, α = 0.5, μ0 = 1.5, μ1 = 3, a = 0, we find that (β, b) = (0.367004,

0.183323) satisfying the conditions in Theorem 0.11, then we use (β, b) to unfold the Bogda-

nov-Takens bifurcation of codimension 2. By simulation, we obtain the bifurcation diagram in

plane (β, b) shown as Fig 7, the blue dash (solid) curve represents saddle-node bifurcation

(neutral saddle), the green (blue solid) curve represents supercritical (subcritical) Hopf

Fig 6. The bifurcation diagram of BT of codimension 3. (a) The parameter space and the trace of the bifurcation diagram on the
S(�1� 0); (b) The sign of the BT is positive if the coefficient of the term XY in the norm form is positive, otherwise it is negative [24].

https://doi.org/10.1371/journal.pone.0175789.g006
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bifurcation and the parameter space (β, b) is divided into differen areas by these bifurcation

curves. There are two Bogdanov-Takens bifurcation points, BT−(0.367004, 0.183323) and

BT+(0.321298, 0.069049). In order to distinguish these two points, we get some phase diagrams

of system when β and b located in different area of (β, b) shown as Fig 8.

In Fig 8(a), β, b are located in the area between saddle-node bifurcation and subcritical Hopf

bifurcation curve and the epidemic equilibrium E2 is a unstable focus. In the IV, the phase dia-

gram of system is one of the cases shown as (b), (c) and (h). There is an unstable limit cycle

(black curve) near the epidemic equilibrium E2 in Fig 8(b) and two limit cycles in Fig 8(h) with

the inner one unstable and the other one stable. When β and b are located in II, the phase dia-

gram of system is one of the cases as shown in (d) and (e) and there is a stable limit cycle in Fig 8

(e). When β and b are located in I or III, the phase portraits are similar to the cases of (f) and (g),

respectively. In the case (f), system (5) has a unique epidemic equilibrium and a stable limit cycle.

In the small neighborhood of BT+, we know that the unstable limit cycle bifurcating from

Hopf bifurcation curve disappears from the homoclinic loop, and from Fig 8(b) and 8(c), we

can observe that the homoclinic loops are located in IV. Otherwise, from Fig 8(d) and 8(e), we

can obtain that the homoclinic loops are located in II which is in the small neighborhood of

BT−. Hence, the Hopf bifurcation curve and homoclinic loops switch their positions at some

point C. In order to figure out the relative positions of C,H2 andHom2, as shown in Fig 9 we

change the value of β and plot the bifurcation diagram on (β, b) with different b.

Fig 7. The bifurcation diagram in plane (β, b). There are two types of Bogdanov-Takens bifurcation, BT+ and BT−. The green curve
represents supercritical Hopf bifurcation, the red curve represents subcritical Hopf bifurcation. The blue dash (solid) curve represents
saddle-node bifurcation (neutral saddle curve).

https://doi.org/10.1371/journal.pone.0175789.g007
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Fig 8. The phase diagram of system (5). The blue curve represents unstable manifold, green curve represents
stable manifold. (a) b = 0.1, β = 0.339; (b) b = 0.1, β = 0.340; (c) b = 0.1, β = 0.3415; (d) b = 0.18, β = 0.367; (e)
b = 0.18, β = 0.3737; (f) b = 0.21, β = 0.3815; (g) b = 0.21, β = 0.4; (h) b = 0.1587, β = 0.3683. In the (b), there is
an unstable limit cycle marked black curve near the epidemic equilibrium E2. In the (e) and (f), there is a stable
limit cycle marked red curve. In the (h), we find that there are two limit cycle, the small one is unstable, the
another one is stable.

https://doi.org/10.1371/journal.pone.0175789.g008
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By simulations, we get the case (a) and (b) in Fig 9, we now know that two limit cycles bifur-

cating from the semi-stable cycle with one disappearing from the Homoclinic loop and the

another disappearing from the Hopf bifurcation curve. We therefore obtain bH2
> bC > bHom2

by the order these two limit cycle vanishing with different values of b.

Then we obtain the bifurcation diagrams of system (5) near the Bogdanov-Takens bifurca-

tion and the phase portraits in some regions of parameters shown as Figs 10 and 11

respectively.

From the above dynamical analysis, we know that system (5) has complex dynamic behav-

ior even though a = 0. For system (5), we also find the same phenomenon by the simulation as

shown in the Fig 12 for the case a 6¼ 0. In the simulation, the parameters excluding a are the

same as the simulation setting. From Fig 12, we find that the region D2 and the distance

between BT+ and BT− becomes small when a becomes lager, which means that choosing a as

one other bifurcation parameter can unfold the system (5) and system (5) may undergo the

Bogdanov-Takens bifurcation of codimension 3.

Discussion and application

In this paper we consider the SIR model with the nonmonotone incidence rate due to the

intervention strategies and nonlinear recovery rate considering the hospitalization conditions.

From Theorem 0.1, we know that system (4) undergoes backward bifurcation. In Theorem

0.3, we get the necessary and sufficient condition of backward bifurcation is b < Aðm1�m0Þ
d2
1

when

R
0
¼ 1, which means that we can eliminate the disease if b > Aðm1�m0Þ

d2
1

and b < dd1
A
i.e we need

enough number of hospital beds. From the Lemma 0.8, we know that if b > m1�m0�2d

b
, system (5)

will not have periodic solution, and the endemic equilibrium E2 is stable. We then discuss

Hopf bifurcation and BT bifurcation for system (5) and present in details about these bifurca-

tions in the case a = 0 and present the bifurcation diagrams in Figs 8 and 10.

From the discussion we get Lemma 0.9, which implies that I2(b) is a monotone decreasing

function of b. Hence, increasing the number of beds can only reduce the number of the total

infected individuals, but can not eliminate the diseases as shown in Fig 13(a) if R
0
> 1. If

R
0
< 1, from Fig 3 and Eq (36), we know that if b > bc ¼ f �

D
we can eliminate the disease, and

Fig 9. Bifurcation diagram in (β, I) with different b. The red dash(solid) represents unstable epidemic equilibrium(limit cycle). The blue
curve represents stable epidemic equilibrium or limit cycle. (a) b = 0.145; (b) b = 0.14.

https://doi.org/10.1371/journal.pone.0175789.g009
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Fig 10. Bifurcation digram near the Bogdanov-Takens.

https://doi.org/10.1371/journal.pone.0175789.g010

Fig 11. Phase portraits for parameters in different regions of Fig 10.

https://doi.org/10.1371/journal.pone.0175789.g011
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these rich dynamics finally disappear through the saddle-node bifurcation when b = bc as

shown in Figs 7 and 13(b) and 13(c).

For system (3) with a 6¼ 0, taking A = 3, d = 0.3, β = 0.5, a = 0.2, μ1 = 3.1728627 and μ0 = 1.5

we get the bifurcation diagram with different values for c as shown as Figs 14 and 15. In Fig 14,

the types of BT-bifurcation are the same, however, there are two types of BT bifurcations in

the Fig 15.

Fig 12. The curve q(β, b) = 0 with different values of a. The blue curve, yellow curve, red curve and green curve are drawn according to
a = 0, a = 0.5, a = 1 and a = 2 respectively.

https://doi.org/10.1371/journal.pone.0175789.g012

Fig 13. Bifurcation in the plane (b, I) with different μ1. β = 0.39, a = 0. (a)R
0
¼ 1:02; (b)R

0
¼ 0:98; (c)R

0
¼ 0:95.

https://doi.org/10.1371/journal.pone.0175789.g013
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Fig 14. The bifurcation diagram of system (3) in parameters plane (β, b). A = 3, d = 0.3, β = 0.5, c = 0.185, a = 0.2, μ1 = 3.1728627, μ0 =
1.5, BTþ

1
ð0:353073; 0:0925301Þ; BTþ

2
ð0:375; 0:137406Þ.

https://doi.org/10.1371/journal.pone.0175789.g014

Fig 15. The bifurcation diagram of system (3) in parameters plane (β, b). A = 3, d = 0.3, β = 0.5, c = 0.1, a = 0.2, μ1 = 3.1728627, μ0 =
1.5, BT+(0.337066, 0.072821), BT−(0.382572, 0.172627).

https://doi.org/10.1371/journal.pone.0175789.g015
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In Fig 16, A = 3, β = 0.375, α = 0.5, μ0 = 0.5 we plot the phase portraits in plane (S, I) with

different d, in these cases bA

dðdþaþm0Þ
< 1, and find that there is an unstable limit cycle near the E2

when d = 1.483783. From the above stimulation, we know that Therorem 0.4 is not ture when

�2
ffiffiffi

a
p

< c < 0.

According to an early SIR model with nonmonotone incidence rate in the literature [19],

the dynamics of the system are completely determined by R
0
, which means that the disease

will be eliminated ifR
0
< 1, otherwise the disease persist. Contrasting to their work and the

other results for classic epidemic models, we find that the nonlinear recovery rate is also an

important factor which leads to very complicated dynamics. Moreover, we find thatR
0
is not

enough to determine the dynamic behavior in system (5). By simulations, we predict that there

would exist b1c in system (3)? which has the same role as bc. Hopefully we can explore more

relationships between the intervention actions, hospitalization conditions and spread of dis-

eases, to provide the guidelines for public and desicion makers.
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