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Introduction. In this paper a formal two-time perturbation expansion (see, e.g.,
[1, 2]) is used to study the dynamic response and buckling of a model imperfection-
sensitive structure. We consider a finite imperfect column resting on nonlinear elastic
foundation subject to step loading. A simple expression is obtained for the dynamic
buckling load for small imperfections and small initial conditions. It is found that the
effect of one Fourier coefficient in the expansion of the imperfection dominates in the
asymptotic expression for the deflection and the dynamic buckling load. The static
buckling of this structure has been studied extensively [3, 4, 5].

A number of related dynamic response and buckling analyses are noteworthy.
Budiansky and Hutchinson [6, 7, 8] formulated a general approximate theory of dynamic
buckling by an extension of Koiter's static theory of post-buckling behavior [9]. In
these theories the imperfections are assumed to be in the shape of the classical buckling
mode. With such a restriction this problem can be handled by the theory of Budiansky
and Hutchinson. In this analysis this restriction on the imperfection need not be made.
The formal two-time procedure shows that imperfections in the shape of the classical
buckling mode produce the greatest degradation in the dynamic buckling strength of
the structure.

The multi-time method had been used by Danielson [10]. This study, however, was
for a two-degree-of-freedom system with application to spherical shells. In a more recent
paper [11] asymptotic methods are used to study the time evolution of the response
of an imperfection-insensitive structure.

Differential equation. The nondimensional form of the relevant equations for
the lateral displacement iv(x, t) of a column supported laterally by continuous elastic
foundations is

wlt + wxxxx + 2\wxt + w — aw3 = —2\ew„ , 0 < x < it, t > 0, (1)

w = wxx =0 for x = 0, x, t > 0, (2)

w(x, 0) = e/(x), w,(x, 0) = tg(x), 0 < x < ir, (3)
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where ( )x = (d/dx){ ),(),= (d/dt)( ), |a| = 1. The nondimensional axial coordinate
x, additional lateral displacement w, axial load parameter X, imperfection (stress-free
initial displacement) w, and time t are relat ed to the corresponding physical quantities by

x = (kJEiy^X, w = (kJk^W, X = P/2(EIk1)1/'>,

ew = (h/kJ^W, t = (jfc1/m)1/25P.

We have neglected nonlinear geometric effects and axial inertia, e is a small parameter.
We choose to consider only nondimensional displacements and velocities of the same
order as the imperfection; hence the form of Eq. (3). EI is the bending stiffness of the
column. P is the magnitude of the axial step-loading applied at time T = 0. The lateral
deflection W of the column is restrained by a continuous elastic foundation that produces
a nonlinear restraining force per unit length of kJV — k3W3, with > 0. a — 1 (k3 > 0)
corresponds to a softening foundation, m is the mass per unit length of the column.
w, /, and g are 0(1).

The lowest eigenvalue (classical buckling load) for the perfect (w = 0) time-inde-
pendent problem is X = 1 and the corresponding eigenfunction is w = sin x. The length
of the column is taken to be half the wavelength of the classical buckling mode.

The problem consists of determining the deflection of the column for small im-
perfections and 11 — X) small. We also seek the dynamic buckling load \D and its de-
pendence on the imperfection and initial conditions.

Static theory. For the time-independent problem Eqs. (1) — (3) with ( )' = d( )/dx
become

w"" + 2\w" + w — aw3 = —2\eid", 0 < x < tt, (4)

w = w" = 0 at x = 0, 7r. (5)

As shown in [4], a perturbation in a load parameter is appropriate for this problem.
For convenience we reiterate the salient points. We let X = 1 — 52/2 and expand w
and Xe in power series in 5; thus

w(x) = X) 5"wn(x),
(6)

CO

Xe = 2 '5"m„ •
n = 1

We note that although 6 and d are in general independent parameters they are, however,
related on the stability boundaries (see, e.g., [12]) which we seek. The imperfection
■w(x) can be expanded in a Fourier sine series, namely

eo

w(x) = ^ an sin nx. (7)
n»l

Substituting the expansions (6) into (4) and equating corresponding powers of 8 gives
the following sequence of equations:

Lwx ' w['" + 2w" + w1 — — 2juiw",

Lw2 = —2h2w

Lw3 = —2n3w" + w[' + aw] ,
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etc. The boundary conditions (5) become w, — w'/ = 0 at x = 0, ir, j = 1, 2, ■ ■ • . Since
for w = 0 the solution for Wi is Wi = sin x, the existence of solution for requires that
Hi&i = 0. Now the imperfection in the shape of the classical buckling mode produces
the greatest reduction in the strength of the column [4], We retain this term in the
Fourier expansion of w. Thus % ^ 0; hence

Hi == 0 and Wi = ax sin x.

Similarly fi2 = 0, w2 = a2 sin x and

Lw3 = 2ix3 ^ rian sin nx — sin x + \aa\ sin x — \a(i[ sin 3x.
»=» 1

For the existence of a solution for w3 ,

— faaf = 2/xsd, .

Substituting these results for /j.,- in the expansion (6) gives

Xed, = 21/2(1 - X)3/2(a, - faa\) + 0(54).

For a = — 1, the column is imperfection-insensitive and can support loads in excess
of the classical buckling load X = 1. For a = 1 the column is imperfection-sensitive
and an expression for the static buckling load X„ is obtained by maximizing X with
respect to . Thus

(1"X.)3/, = 4^X. \«h\ (8)

where

2 /"dj = - / w(x) sin x dx. (9)
TT J0

For a > 0, the right-hand side of Eq. (8) is multiplied by a*'2. The formula gives
the same value, = 0.81, obtained numerically in [3] for a = 0.1 and ed„ = 0.2 for
all n.

Dynamic theory. As for the static theory we use 8 as the perturbation parameter.
We assume that the dynamic problem depends on two time scales, t and r = St, which
describe the short- and long-time behavior of the solution respectively.

We write w(x, t) = u(x, t, r; 5) and note that w, = u, + SuT . Now expand u and e
in power series in 5, namely

CO 00

u(x, t, r; 5) = ^ u(n)(x, t, t) 5", X« = XI 6<n> (10)
n=l n-1

Substituting these into Eqs. (l)-(3) and assuming termwise differentiation of the series
gives the following equations:

Mum s uW + ulll + 2u™ + uw = -2emwxx , (11)

Mu(2) = -2emwxx - 2u\\\ (12)

Muw = -2ewivxx - 2u\V ~ + a(um)3, (13)
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= ui'J =0 at x = 0,7r,

uu\x, 0, 0) = b(ni(x),

uiv(x, 0, 0) = bwg(x),

u\i+1\x, 0, 0) + uli}(x, 0, 0) = bu+1)g(x), j = 1, 2,

bw = + (—1)'""']2<m_'_2>/2.

(14)

We now seek necessary conditions for the existence of bounded solutions to Eqs.
(10)—(14). Consider the following problem:

MV = h(x, t), 0 < x < tt, t > 0,

V = Vxx = 0 at x = 0, tt, t > 0,

V = Vt = 0 at t = 0, 0 < x < tt.
A solution exists in the form

V(x, t) = Y. Vn(t)s'mnx
n= 1

if

V" + (n2 — 1)2F„ = - f h(x, t) sin nx dx.
7T J o

For a bounded solution to this problem the inhomogeneous term must be orthogonal
to the solutions of the corresponding homogeneous problem h. = 0. That is,

lim — f f h(x, t) sin nx sin (n2 — 1 )t dx dt = 0,
T-*co J- J0 Jq (15)

lim ^ f f h(x, t) sin nx cos (n2 — 1)^ dx dt = 0.
T-+ co ■*- J 0 " 0

Thus the use of the Fourier series (7) and the conditions (15) in Eq. (11) gives the
condition

= 0.

As noted before, we want un ^ 0; thus e(1) = 0 and Eqs. (11) and (14) for ull) become

Mu(1) =0, 0 < x < tt, t > 0,

w(1) = =0 at x = 0, w, t > 0,

u"\x, 0, 0) = u[l\x, 0, 0) = 0.

Let

uw(x, t, t) = X) MnU(^, r) sin nx; (16)
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then
t£i, + (n2 - lK" = 0,
WI°(0,0) = ?4u,(o, 0) = 0.

For n — 1, the bounded solution is

u[» = B'»(r) (17)
with

Z?;u(0) = 0. (18)

For n 9^ 1.

sin (n2 — 1)£ + 5"'(r) cos (n2 — 1)/

with Bin(0) = 0, Ai"(0) = 0. Thus, by (16),

n)(x, t, t) = ^{"(r) sin x + X) sin (n2 — 1)/ + B^ir) cos (n2 — 1)/] sinm;.
n=2

Substituting for u(1) in (12) and using (7) and the boundedness conditions leads to

6(2) = 0, Ai]l(r) = 0, B?Xt) = 0, n > 2.
Use of the initial conditions for and B(nl) gives

X1' = B(nv = 0, uw(x, t, t) = B[1\t) sin x. (19)

The resulting equations for u<2> are

Mum =0, 0 < x < tt, t > 0,

um = ulV =0 at x = 0, t, t > 0,

u\2\x, 0, 0) = 0,

u?\x, 0, 0) + u^ix, 0, 0) = 0.

Let

then

u \x, t, r) = J^uln2\t, t) sin nx; (20)

+ (n2 - Vfu™ = 0,

ul2\0, 0) = «i!i(0, 0) = 0.
For n = 1, the bounded solution is

m<2> =

The initial conditions reduce to

£J2)(0) = 0, B[]l(0) = 0. (21)
For n 1,

ul2) = A?\t) sin (n2 - 1 )t + B[2\r) cos (n2 - 1)/
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with yl"'(0) = 5<2>(0) = 0. Thus
CO

ui2)(x, t, t) = B[2\t) sin x + IA„\t) sin (n2 — 1)/ + Bi2)(r) cos ('n2 — 1)2] sinna:.
n = 2

We substitute these results for um and u<2) into (13) and use the boundedness
condition to obtain

A«l(r) = 0, B™(r) = 0 for » > 2,

- M^"')8 = 26<3,a1 . (22)

It is seen that A{2) = = 0. This procedure may be continued to obtain w<3>. Our
primary interest is in the analysis of the amplitude equation (22) to determine the
dynamic buckling load. For convenience we let

B(t) = 5{u(r), B' = dB/dr, c = 2ewa1 .

The amplitude equation (22) becomes

B" + B - laB3 = c, t > 0, (23)

and from Eqs. (18) and (21)

B( 0) = B'( 0) = 0. (24)

Exact solutions to Eqs. (23) and (24) can be obtained in terms of elliptic functions
(see [13]). It is, however, more convenient and adequate for this investigation to seek
qualitative features of the solution by phase plane analysis.

We multiply Eq. (23) by B' and integrate to obtain the equation for the integral
curve:

(B')2 + B2 - |= 2cB. (25)

We note from Eq. (10) and the fact that ell) = e<2) = 0 that Xt = t<3)53 + 0(54); thus

c ~ [2(1 - X)]-3/22Xe<5i for X 1". (26)

A study of the phase plane (see Figs. 1 and 2) reveals that for a = — 1 the solutions
to (23) and (24) are bounded and periodic. For a = 1 and |c| < 2 \/2/9 Eqs. (23) and
(24) have bounded solutions for all r, the solution being periodic for |c| < 2 V2/9 and
(B, B') —» (2 V2/3, 0) as x —* for |c| = 2 V2/9. On the other hand, for a = 1 and
|c| > 2 V2/9, the solutions are unbounded as r —» c°. Since c is a monotone increasing
function of X for 0 < X < 1 there exists a value of X, say XD , which possesses the following
property. For 0 < X < \D there exist bounded periodic solutions to (23) and (24) and
hence to the nonlinear dynamic problem, while for \D < X < 1 the deflection of the
column is unbounded. We call XD the dynamic buckling load. This criterion of un-
boundedness which has to be modified if damping is introduced is equivalent to the
definition and criterion of dynamic stability formulated and discussed extensively
in [14] by Hsu.

The use of the critical value of c for a = 1 in Eq. (26) gives a simple asymptotic
expression for XD , namely

(1 - Xd)3/2 = fXfl lea.|, (27)
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-0.4
Fig. 1. Phase plane for imperfection-sensitive case, a = 1 (Eq. (25)).

where ax is defined in Eq. (9). As noted in [6-8], a simple relation between \D and X,
may be obtained by eliminating edl from Eqs. (8) and (27), namely

((1 - XD)/(1 - X,))3/2 = V2\d/K • (28)

We note that Eq. (27) and hence (28) will have to be modified if nondimensional initial
conditions of order lower than that of the imperfection are imposed.

For X = XB , the amplitude equation can be solved to obtain

B(t) = 4V2/(3[3 coth2 (9r/4\/2) - 1]).
The dominant term for the deflection as e —> 0, (XD —> 1~) is

w(x a =  8(1 — XD) sinx  /oq\
( ' ' 3[3 coth2 (9(1 - X/i)1/2^/4) - 1] ( 9)

We note that the initial displacement and velocity, if restricted to the same order
of magnitude as the imperfection, do not affect the dominant term in the deflection
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Flo. 2. Phase plane for imperfection-insensitive case, a = —1.

or the first significant term in the asymptotic expansion of the dynamic buckling load
XD . Asymptotically the dynamic buckling load and deflection depend only on one
Fourier coefficient d, of w(x) corresponding to imperfection in the shape of the classical
buckling mode.
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