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 
Abstract—This paper explores the problem of joint mode 

selection, spectrum management, power control and interference 

mitigation for device-to-device (D2D) communication underlaying 

a Long Term Evolution Advanced (LTE-A) network. We consider 

a dynamic mode selection scenario, in which the modes (D2D or 

cellular) of the devices depend on optimal allocations. To improve 

the quality of service (QoS) for the users, the optimization 

objective in a corresponding problem is formulated in terms of 

buffer size of user equipments (UEs), which is estimated based on 

buffer status information collected by the UEs. The realizations of 

a resource allocation approach presented in the paper include its 

real-time and non-real-time implementations, as well as two 

modifications applicable to a standard LTE-Direct (LTE-D) 

network. Performance of the proposed algorithms has been 

evaluated using the OPNET-based simulations. All algorithms 

show improved performance in terms of mean packet end-to-end 

delay when compared to most relevant schemes proposed earlier. 
 

Index Terms—Device-to-Device communication, LTE, 

LTE-Advanced, LTE-Direct, resource allocation.  

 

I. INTRODUCTION 

2D communication has been proposed to increase 

spectral efficiency of the network by allowing direct 

communication between two mobile users without traversing 

the Base Station (BS) or core network [1], [2]. In underlay D2D 

communication, the D2D users can reuse cellular spectrum, and 

communicate directly while remaining controlled by the BS. 

Note that both cellular users (CUs) and D2D users (DUs) share 

the same radio resources, and therefore it is essential to control 

the interference caused by CUs to DUs, and vice versa [2].  

Adequate interference management for D2D communication 

can significantly improve performance of cellular networks (in 

terms of spectrum efficiency, cellular coverage, overall 

network throughput, user experience, etc.). Although the 

objectives here could be different, to achieve the optimal 

system performance such problems as D2D/cellular mode 

selection, spectrum assignment, power control, and 

interference mitigation should be considered jointly when 

designing the algorithm. Related references in this area are [3] – 

[8], studying the problem of interference mitigation for 

underlaying D2D communication. It should be noted, however, 

that the majority of the proposed formulations do not deal with 

the issues of D2D/cellular mode selection, spectrum 

assignment and interference management in a joint fashion, but 

 
 

rather by splitting the original problem into smaller 

sub-problems (see, e.g., [7]), or by separating the time scales of 

these sub-problems ([6]). Hence, although the complexity of 

such methods is less than the complexity of an algorithm with 

joint resource allocation, their efficiency in terms of 

maximizing some certain optimality criteria is clearly 

downscaled.  

In addition, many of the existing resource allocation 

techniques focus on supporting the physical (PHY) layer 

service quality (measured in terms of the number of PHY 

connections, signal-to-interference and noise ratio (SINR), 

PHY-layer throughput, spectrum and power efficiency, etc.). 

However, the designs optimized for PHY throughput are not 

automatically good for providing the higher-layer QoS. 

Therefore, it is impossible to evaluate the actual performance of 

these methods for end-to-end applications.  

The main contributions of this work are the following. We 

consider a dynamic mode selection scenario, in which the 

modes (D2D or cellular) of the devices are adjusted according 

to optimal allocations. The corresponding problem is 

formulated as the joint mode, spectrum and power allocation 

problem with the objective to minimize the maximal buffer size 

of UEs subject to target interference constraints. It should be 

noted that the size of UE’s buffer is directly related to the 

packet end-to-end delay and loss (which determine the 

user-perceived QoS) and can be readily estimated based on 

buffer status information collected by user devices and sent to 

the evolved NodeB (eNB) within the LTE packet scheduling 

procedure [11].  

According to the conveyed literature review, there are no 

prior works on delay-aware D2D networking. However, many 

research contributions have been presented in a more general 

area of delay-aware wireless networks (e.g., [12] - [14]). 

Existing approaches to reduce the end-to-end latency in 

wireless networks are [12]: 

- large derivation: a simple channel state information (CSI) 

based policy which results in good delay performance only 

for a large delay regime; 

- Lyapunov drift: a simple throughput optimal policy that 

provides a weak form of delay performance based on 

stability; 

- stochastic majorization: the longest-queue-highest-possible 

rate policy, which is delay-optimal only for the cases with 

symmetric and homogeneous users; 

- Markov decision process (MDP): a brute-force value 

iteration which is complex with the curse of dimensionality. 

Dynamic Buffer Status based Control for LTE-A 
Network with Underlay D2D Communication 
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Clearly, all of the above methods have both the strong points 

and disadvantages. The approach used in this paper can be 

regarded as a form of stochastic majorization, which is not as 

complex as MDP, but shows much better results (in terms of 

achieved delay performance) than large derivation and 

Lyapunov drift methods. 

To reduce the complexity of the proposed resource allocation 

schemes, a modification of the Alternating Direction Method of 

Multipliers (ADMM) [15] is used in this paper. This method 

decomposes a large problem into a number of small easily 

solvable sub-problems, and therefore can be run on parallel 

computers to reduce the solution time. The ADMM algorithm 

was originally introduced in early 1970s [16], and has since 

been studied extensively (e.g., [17] – [22]). Recently, it has 

become popular in various engineering fields involving 

large-scale data, mainly due to its decomposition ability and its 

convergence guarantees on a wide range of problems [15].  

The rest of the paper is organized as follows. A general 

network model (including mode selection, spectrum usage and 

channel model) is described in Section II. Resource allocation 

problem is formulated in Section III. The algorithm for 

resource allocation is presented in Section IV. The algorithm 

implementation in LTE-A network is discussed in Section V. 

Simulation model and performance evaluation of the 

algorithms is given in Section VI. Results of this work are 

summarized in Conclusion. 

II. NETWORK MODEL 

In this paper, the problem of resource allocation for D2D 

communication is investigated for both the uplink (UL) and the 

downlink (DL) directions. Similarly, the discussion through the 

rest of the paper is applicable (if not stated otherwise) to either 

direction. Consider a basic LTE-A network which consists of 

one eNBs and N UEs numbered U1, …, UN. Let N = {1, …, N} 

be the set of the all users’ indices in the network. Note, that in 
LTE system, the unique users’ identification numbers (IDs) can 
be found from the standard random access channel (RACH) 

procedure, which is used for initial access to the network (i.e., 

for originating, terminating or registration call) [23], [24]. 

Described network operates on a slotted-time basis with the 

time axis partitioned into equal non-overlapping time intervals 

(slots) of the length Ts, with t denoting an integer-valued slot 

index.  

A. Mode Selection 

The user devices in the considered model operate either in a 

traditional cellular mode or in D2D mode. The DUs access the 

network resources using an underlay D2D model, where each 

CU may share its frequency band with one or more DUs. In 

LTE-A, the respective IDs of CUs/DUs can be determined from 

a standard session initiation protocol (SIP) procedure which is 

used to setup user sessions. A detailed description of the SIP 

procedure and its use for D2D access is given in [25]. 

Correspondingly, it is possible to form two sets: set C 

containing the indices of the users which can operate only in 

cellular mode, and set D containing the indices of potential 

D2D users. Clearly, CD = Ø and CD = N. Note, that the 

sets C and D can be specified based on, e.g., the proximity
1
 of 

the users to each other and/or type of user application (e.g., 

video sharing, gaming, proximity-aware social networking). 

Such information can be acquired from the standard session 

initiation protocol (SIP) procedure which is used to setup user 

sessions (detailed description of the SIP and its use for D2D 

access can be found in [24]) or upon user arrival to the network 

(i.e., within the RACH procedure [24]).  

In this work, a dynamic mode selection scenario is 

considered, where all potential D2D users (i.e., the users in set 

D) can be allocated either cellular or D2D mode based on 

results of resource allocation. Consequently, let us define the 

N-dimensional binary mode allocation vector c = [c1(t), …, 
cN(t)]

T
 with the components cn(t), nN, equaling 1 if Un selects 

to operate in cellular mode at slot t, and 0 otherwise. Then, the 

set of all admissible values that the vector c can take is defined 

by 

 . , ,1)( },1 ,0{)(   CDcC  mntctc mn
 (1) 

An example of a network with N = {1, …, 12} and C = {4, 12}, 

the users U3, U4, U6, U9, U12 operating in cellular mode, and the 

rest of the users communicating in D2D mode, is shown in 

Figure 1.  

 
Fig. 1.  Example of a network with N = {1, …, 12}, C = {4, 12}, where UE3, 

UE4, UE6, UE9, UE12 operate in cellular mode. 

B. Spectrum Usage 

In LTE/LTE-A networks, the spectrum resources are 

allocated in terms of resource blocks (RBs). Each RB occupies 

180 kHz in frequency domain, and has a slot-long duration in 

time domain. The RBs are assigned to cellular users by the eNB 

using a standard packet scheduling procedure [24]. The use of 

packet scheduling in a D2D-enabled LTE-A network is 

described in detail in [11].  

In short, a packet scheduling process can be explained as 

follows. In the UL direction, each user is required to collect and 

transmit its buffer status information (i.e., the number of bits 

arrived to the buffer denoted an(t), and the instantaneous buffer 

size in bits denoted qn(t)) at every slot t. After collecting this 

data, each user transmits a scheduling request (SR) with its 

buffer status information to the eNB via a dedicated physical 

uplink control channel (PUCCH). After receiving all the SRs, 

the eNB allocates RBs to the users (according to a certain 

 
1 In this work, the term “proximity” means both the physical distance of the 

users to each other, and the channels conditions (such as pass loss). 

D2D link 

Cellular link 
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scheduling algorithm), and responds to all the SRs by sending 

the scheduling grants (SGs) together with the allocation 

information to the corresponding users via physical downlink 

control channels (PDCCHs) [11]. In the DL, the eNB readily 

finds out the DL buffer status for each user, allocates RBs and 

sends the SGs together with the allocation information to the 

corresponding users via PDCCHs [11]. In the framework used 

in this paper, a described packet scheduling process is applied 

for cellular users. Resource allocation approach for D2D users 

is presented in Section V. 

In our model, the total available bandwidth is assumed to be 

equal K RBs, numbered RB1, ..., RBK. Let K = {1, …, K} be the 

set of RBs’ indices comprising the bandwidth. 
Correspondingly, we define the N×K-dimensional binary RB 

allocation matrix as 
















)(..)(
:::

)(..)(

1

1
1
1

tbtb

tbtb

K
NN

K

b   

with the components b
k
n(t), nN, kB, equaling 1 if Un is 

allocated RBk at slot t, and 0 otherwise. Note that each RB can 

be allocated to at most one CU. Hence, 

. ,1)()( K
N




ktbtc
n

k
nn

 (2a) 

The number of D2D users operating on the same RB is 

unlimited. Additionally, to maximize the network utilization, 

we enforce each RB to be allocated to at least one user, i.e. 

. ,1)( K
N




ktb
n

k
n

 (2b) 

Accordingly, the set of all admissible values that the matrix b 

can take is defined as 

., ,1)( ,1)()( },1 ,0{)(  








 


KNbΒ
NN

kntbtbtctb
m

k
m

m

k
mmn

 (2c) 

C. Channel Model  

In LTE system, both single carrier frequency division 

multiple access (SC-FDMA) applied in the UL direction, and 

orthogonal frequency division multiple access (OFDMA) 

applied in the DL direction, provide orthogonality of RB 

allocation to different cellular users. This allows to attain a 

minimal level of co-channel interference for CUs located 

within one cell [23]. In a considered network, the UL and DL 

transmissions of CU may be distorted by DUs operating on the 

same RBs as this CU. On the other hand, the transmissions of 

DU may be distorted not only by the CUs, but also by other 

DUs operating on the same RBs as this DU.  

Let G
k
nm, nN, mN, kK denote the channel gain 

coefficient between the transmitter-receiver pair of Un and Um 

operating on RBk. Note, that in LTE the instantaneous values of 

G
k
nm for UL and DL directions can be obtained from the CSI 

through the use of the reference signals (RSs) [11]. Let us also 

define the N-dimensional non-negative power allocation vector 

p = [p1(t), …, pN(t)]
T
 with the components pn(t), nN, mN 

being the transmission power (in Watts) allocated to Un at slot t.  

Note, that if user Un is allocated a cellular mode (i.e., cn(t) = 

1) then at any slot t, the SINR for Un operating on RBk equals 

.,,
)()()())(1(

)()(
)(

}\{

KN

N








kn
NGtbtbtptc

Gtbtp
tSINR

n

nm

k
mn

k
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k
nmm

k
nn

k
nnk

n

 (4a) 

The denominator of (4a) is a sum of the following two 

components: the thermal noise power in the channel of Un 

given by Nn, and the interference from the DUs operating on 

RBk, given by 

.,,)()()())(1()()(
}\{

KN
N
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

knGtbtbtptctctI
nm

k
mn

k
m

k
nmmn

k
n

 (4b) 

On the other hand, if Un is allocated a D2D mode (cn(t) = 0), 

then the SINR at slot t for Un operating on RBk equals 

KN

N








kn
NGtbtbtp

Gtbtp
tSINR

n

nm
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mn

k
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k
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n ,,
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}\{

 (5a) 

with the interference from the CUs and DUs operating on RBk, 

given by: 

.,,)()()())(1()(
}\{

KN
N

 


knGtbtbtptctI
nm

k
mn

k
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k
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k
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 (5b) 

Combining (4a) and (5a), we get the following general SINR 

expression for Un operating on RBk at any slot t in either mode: 
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 (6) 

In (4) and (5), the transmission power of the users cannot 

exceed some predefined limits. Let Pn and PeNB be the maximal 

possible transmission power levels (in Watts) of Un and the 

eNB, respectively. Then, for cellular users: 

N nPtptc nnn  ,)()(0  (7a) 

for the UL direction, and 

.)()(0 eNB

n

nn Ptptc 
N

 (7b) 

for the DL direction. For D2D users, we have 

N nPtptc nnn  ,)())(1(0  (7c) 

in the UL and DL directions.  

Accordingly, the set of all admissible values that the matrix p 

can take is defined as 

 NpP  nPtp nn  ,)(0   :  (8a) 

for the UL direction, and 









 


NpP
N

nPtptcPtptc nnneNB

n

nn  ,)())(1(0 ,)()(0    (8b) 

for the DL direction. 

III. RESOURCE ALLOCATION PROBLEM 

A. Problem Statement 

The key advantage of D2D communication is the possibility 

of QoS provisioning within the cellular spectrum [27]. The key 

challenge here is the interference caused by DUs to CUs, and 

vice versa [27]. In many previous works (e.g., [7], [8]) the 

interference has been mitigated by introducing the algorithms 

of high computational complexity, and thus the application of 
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these methods to large-scale networks is unlikely. Hence, an 

efficient algorithm should (i) maximize QoS for both the DUs 

and CUs; (ii) guarantee interference protection of the users; (iii) 

have a low to moderate complexity. 

To fulfil the first requirement of resource allocation, it is 

important to choose an appropriate and easily obtainable 

system parameter as a QoS measure. Traditionally, D2D 

communication has been viewed as a prominent tool for 

increasing the spectral efficiency of the network [27]. 

However, D2D communication can also be used to reduce 

delay and loss (which is very important for such real-time 

applications, as live streaming, video sharing, gaming, etc.). 

Unfortunately, in LTE system the direct estimation of delay and 

loss is rather complex. For instance, the packet end-to-end 

delay consists of various components, including transmission 

and queuing delays, propagation and processing delays, as well 

as delays due to scheduling and hybrid automatic repeat request 

(HARQ) [23]. The accurate analysis of these delay components 

requires knowledge of many system parameters which may be 

not available during resource allocation.  

In this paper, the buffer size of UEs is used as a service 

performance measure, mainly because (i) it is directly related to 

the delay and loss, and (ii) at any slot t, it can be easily 

estimated using the well-known Lindley’s equation [28] 
  N 

ntrtatqtq nnnn  ,)()()()1(  (9) 

where  x  = max(0, x); rn(t) is the number of bits served at the 

buffer of Un at slot t. Note, that at any t the parameters qn(t) and 

an(t) (representing buffer status information) are readily 

available at the corresponding Un. The parameter rn(t) depends 

on the number of RBs and the transmission power allocated to 

Un. In LTE/LTE-A, rn(t) can be found using the modified 

Shannon expression [29], given by 

  . ,)())((1 log)()( N
K

 


ntSINRtSINRgtbψtr
k

n

k

n

k

k

nn   (10) 

In (10), SINR
k
n(t) is calculated using (6) for all nN; ω is 

the bandwidth of one RB (ω = 180 kHz); ψ is the system 

bandwidth efficiency; a function g(∙) determines the SINR 
efficiency of the transmission channel of Un [33]. More detailed 

description of ψ and g(∙) will be provided in the next 
subsection. An example of a described system model for the 

network depicted in Figure 1 is shown in Figure 2.  

With buffer size as a QoS measure, at each slot t the 

resources can be allocated to minimize the maximal buffer size 

of the users at the next slot t+1. This will help to reduce the 

possibility of the network congestion, decrease delay and loss 

for the users.  

To meet the second requirement of resource allocation, for 

each user in the network we specify some target interference 

level In
tar2

 and constrain the inference to each user to stay below 

In
tar

 for all nN, i.e.: 

.,)( N
K




nItI
tar

n

k

k

n
 

Note that the values of In
tar

 can be set by the eNB (based on, 

e.g., QoS requirements of the users), and then sent to the 

 
2
 Possible In

tar settings will be discussed in Section V. 

corresponding users within a standard LTE SIP [25]. 

Alternatively, the users can specify their target interference 

levels themselves, and send this information to the eNB.  

 
Fig. 2.  A system model of the network illustrated in Figure 1 (i{1, 2, 5, 6, 7, 

8, 9, 10, 11} for D2D channels). 

We are now ready to formulate the problem. For simplicity, 

the index t is skipped below and further in the paper. The 

considered problem is 

 


 ) , ,( max   minimize pcb
N

nnn
n

raq  (11a) 

PpCcBb    ,  ,   :subject to  (11b) 
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 (11c) 

N
N K

  
 

nIGbbpc
tar

n

nm

k

mn

k

k

m

k

nmn ,)1(
}\{

 (11d) 

where rn(∙) is expressed explicitly as a function of b, c and p; 

the feasibility sets B, C and P are defined in (2c), (1) and (8), 

respectively. 

Note that in (11), the values of an and qn are known to Un 

(and the eNB in case if a standard LTE packet scheduling 

procedure [24] is applied); the values of Gnm are known to Un, 

Um and the eNB (from the CSI through the use of LTE RSs 

[11]); the values of In
tar

 are known by Un and the eNB. The 

information on the sets C and D is acquired by the eNB during 

session setups (from the SIP [24]) or upon user arrival to the 

network (within a RACH procedure [24]). A solution 

methodology for (11) is presented in Section IV. 

B. Bandwidth and SINR Efficiency 

In a real LTE/LTE-A system, the bandwidth efficiency and 

the SINR efficiency are strictly less than 1 due to numerous 

reasons [29]. The system bandwidth efficiency ψ is reduced due 

to several overheads on link and system levels. Therefore, it is 

fully determined by the design and internal settings of LTE 
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system, and do not depend on the PHY characteristics of 

wireless channels.  

The system SINR efficiency is mainly limited by the 

maximum efficiency of the supported modulation and coding 

scheme (MCS) [29]. In LTE, the appropriate MCS is selected 

according to the adaptive modulation and coding (AMC) 

algorithm to maximize the service rate by adjusting the 

transmission parameters to the current channel conditions. 

AMC is one of the realizations of dynamic link adaptation. In 

AMC algorithm, MCS parameter is adapted based on channel 

quality indicator (CQI) at every CQI Feedback Cycle (CFC), 

which can last one or several time slots. The higher MCS values 

are assigned to the channels with good channel quality (to 

achieve higher transmission rates). The lower MCS values are 

assigned to the channels with poor channel quality to decrease 

the transmission rates and, consequently, ensure the 

transmission quality [30], [31].  

The basic MCS selection scheme is described as follows. 

The LTE standard allows 15 MCS indices. Based on 

instantaneous channel conditions and power allocations, the 

SINR of the wireless channels vary. Depending on SINR, the 

corresponding MCS index is chosen as [31] 


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where the values γ1 < γ2 < … < γ15 are the SINR thresholds for 

selecting the MCS index. Table I shows the MCS indexes k, the 

corresponding values of SINR threshold γk and the SINR 

efficiencies ζD
k and ζC

k for DUs and CUs, respectively.  

Hence, the function g(∙) is calculated using 
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for CUs and DUs, respectively. A general expression for g(∙) is 
given by 

., ),()1()()( KN  knSINRgySINRgySINRg
k

n

D

n

k

n

C

n

k

n

 (14) 

It should be mentioned that it is possible to combine the 

allocation of transmission power with MCS selection (for 

enhancing the algorithm performance). This, however, will 

increase the algorithm complexity (since more parameters 

should be considered in problem formulation). Hence, we 

assume that the power allocations are conducted independently 

of the MCS adaptation (i.e., the results of resource allocation 

will have no effect on selected MCS values).  

 

 

TABLE I 

CQI-MCS MAPPING FOR D2D AND CELLULAR LINKS [30], [31] 
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0 No transmission      

1 QPSK -3.1 0.1667 28.00 0.1523 25.59 

2 QPSK -1.2 0.2222 37.33 0.2344 39.38 

3 QPSK 1.5 0.3333 56.00 0.3770 63.34 

4 QPSK 4 0.6667 112.00 0.6016 101.07 

5 QPSK 6 1.0000 168.00 0.8770 147.34 

6 QPSK 8.9 1.2000 201.60 1.1758 197.53 

7 16-QAM 12.7 1.3333 224.00 1.4766 248.07 

8 16-QAM 14.9 2.0000 336.00 1.9141 321.57 

9 16-QAM 17.5 2.4000 403.20 2.4063 404.26 

10 64-QAM 20.5 3.0000 504.00 2.7305 458.72 

11 64-QAM 22.5 3.0000 504.00 3.3223 558.72 

12 64-QAM 23.2 3.6000 604.80 3.9023 655.59 

13 64-QAM 24.9 4.5000 756.00 4.5234 759.93 

14 64-QAM 27 5.0000 840.00 5.1152 859.35 

15 64-QAM 29.1 5.5000 924.00 5.5547 933.19 

IV. RESOURCE ALLOCATION ALGORITHM 

Note, that the problem (11) is equivalent to 

max   minimize q  (15a) 

PpCcBb   , ,  :subject to  (15b) 

N
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 (15d) 

. ,) , ,(max Npcb  naqrqaq nnnnn
 (15e) 

In above formulation, some of the optimization variables 

(particularly, the components of b and c) can take only binary 

values, whereas the other variables (the components of p) are 

real-valued. In addition, the constraints in (15e) depend on the 

non-smooth non-convex functions rn(b, c, p), nN. Hence, 

(15) is a non-convex mixed integer non-linear programming 

problem (MINLP) problem, which is Nondeterministic 

Polynomial-time (NP) hard. For immediate proof of 

NP-hardness, note that MINLP includes mixed integer linear 

programming (MILP) problem, which is NP-hard [41].  

A. Smooth Approximation 

Before applying any MINLP method for solving (15), a 

non-smooth function g(∙) in (14), included in the expression of 
rn(b, c, p) (given by (10)), should be replaced by its smooth 

approximation. To construct a smooth approximation of g(x), 

note that this function is equivalent to the sum of the shifted and 

scaled versions of a well-known Heaviside step function H(x) 

[38]. That is, 
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where ζ0 = 0. 

Recall, that a smooth approximation for a step function H(x) 

is given by a logistic sigmoid function [39]: 

qxq
e

xH
21

1
)(ˆ 
  

where q > 0, x is in range of real numbers from - ∞ to + ∞. If we 

take H(0) = ½, then a larger q corresponds to a closer transition 

to H(x), i.e.  

).()(ˆlim xHxHq
q


  
Above holds, because for x < 0, we have 

;0)()(ˆ  ,2  xHxHe q

qx  

for x > 0,  

;1)()(ˆ  ,02  xHxHe q

qx  

for x = 0,  

.
2

1
)()(ˆ  ,12 

xHxHe q

qx  

Consequently, an approximation for a shifted Heaviside 

function is represented by a shifted logistic function  

)(2
1

1
)(ˆ

kγxqkq
e

γxH 
  (17) 

defined for q > 0, with real x in range from - ∞ to + ∞. Based on 

(17), we can construct a smooth approximation for g(x) as 

.
1

)(ˆ)()(ˆ
15

1

15

1
)(2

1
1 

 



 
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Then, it is rather straightforward to verify that  

).()(ˆlim xgxgq
q




 

With approximation given by (18), rn(b, c, p) appearing in 

the constraints (15e) will take the form 

  . , )(ˆ1 log) ,,(ˆ Npcb
K

 


nSINRSINRgbψr
k

n

k

n

k

k

nn   (19) 

B. ADMM-Based Method for Solving Continuous Relaxation 

Note, that in any MINLP method, the solution process 

involves solving a smooth continuous relaxation of the problem 

(the problem without integer restrictions). In our case, such 

relaxation is given by 

max   minimize q  (20a) 

PpCcBb   ,
~

 ,
~

  :subject to  (20b) 
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 (20d) 

Npcb  naqrqaq nnnnn  ,) , ,(ˆmax
 (20e) 

where 

 , , ,1 ,10   
~

CDcC  mncc mn
 (20f) 
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 (20g) 

The above problem is cast as a non-convex non-linear 

programming (NLP) problem, which is NP-hard (see [32] for a 

proof). In general, the non-convex NLP problems can be solved 

using either exact (deterministic) or heuristic algorithms. 

Example of an exact method is a standard interior-point method 

[33] modified for non-convex problems (as it has been done, for 

instance, in [34]). Examples of heuristic techniques are the 

alternate minimization (e.g., [35]) and various search methods 

(such as genetic algorithm [36]).  

Additionally, a number of parallelization techniques (e.g., 

particle swarm optimization [10] or evolutionary algorithms 

[37]) can be deployed to speed up a solution process of the 

exact methods. In these techniques, a large problem is divided 

into a number of smaller, easy to solve sub-problems [16]. One 

of the approaches to decompose the original problem has been 

proposed in ADMM [15]. ADMM provides a robust convex 

optimization approach with guaranteed global convergence at 

O(1/ε) rate (where ε is an error) even when the functions are 

non-smooth [17]. At first, the modifications of ADMM have 

been successfully applied for solving linear programming (LP) 

relaxations of the large-scale MILP problems. Examples of 

such methods include AD3 [18] and Bethe-ADMM [19].  

More recently, the variety of ADMM techniques have been 

used to solve the continuous relaxations of large-scale 

non-convex MINLP problems in application to optimal power 

flow in microgrids [20], discrete labeling in random fields [21], 

and gas transportation problems [22]. Although without 

guaranteed convergence to the global optimum, results reported 

in [20] – [22] have demonstrated that the memory and 

computation complexities of these techniques are only of the 

orders of the size of sub-problems. Hence, these techniques are 

applicable to our problem. In the following, it will be shown 

how a common approach presented in [20] – [22] can be used to 

solve (20).  

Note that the formulation (20) (and also (15)) involves the 

so-called global optimization variables b, c and p. A common 

technique to decouple the problem (20) is to create N local 

“copies” b(1), …, b(N), c(1), …, c(N) and p(1), …, p(N) of the global 

variables b, c and p, respectively, such that 
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 (21) 

After this, all N local variables are constrained to be equal, 

and the following (equivalent to (20)) problem is defined: 

max   minimize q  (22a) 

PpCcBb  )()()(   ,
~

  ,
~

  :subject to nnn  (22b) 
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 (22d) 

Npcb  naqrqaq nnnnnnnn  ,) , ,(ˆ )()()(max
 (22e) 

              ....  ,...  ,... )()1()()1()()1( NNN ppccbb   (22f) 

The problem (22) can be transformed to the canonical form 

as follows 





N

F pcb
n

nnnn
Iq ) , , (    minimize )()()(max )(

 (23a) 
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....  ,...  ,...   :subject to )()1()()1()()1( NNN ppccbb   (23b) 

In (23), F(n), nN, are the feasibility sets defined by 

; 
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IF(n)(∙), nN, are the indicator functions of F(n), given by 

.
 , ,,

 , ,,0
) , ,(

)()()()(

)()()()(

)()()()(









nnnn

nnnn

nnnF n
I

Fpcb

Fpcb
pcb  (24b) 

After this, ADMM can be applied to solve (23). A detailed 

description of ADMM, also known as Douglas-Rachford 

splitting, can be found in [15]. In short, ADMM can be applied 

to the problems of a kind 

)()(     minimize zgxf
n

nn 
N

 (25a) 

. ,   :subject to N nzxn
 (25b) 

To solve the above problem, ADMM uses the method of 

multipliers concatenated with an iteration of the Gauss-Seidel 

algorithm [40], i.e., it iterates on i as shown below [15]: 
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Here x
i
n and z

i
 are the i

th
 updates of the optimization variables 

xn and z, respectively; u
i
n is the i

th
 update of a scaled dual 

variable un; ||∙||2 is the Euclidean norm; 0 < λ ≤ 1/L, where L is 

the Lipschitz constant [39] of )( nn xf .  

The algorithm (26) can be further simplified as follows. 

Taking the average (over n) of (26b) and (26c), we obtain the 

following system of equations: 

,11 i

n

i

n

i uxz    (27a) 

.- 111   i

n
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ii

n zxuu  (27b) 

Solving (27) gives us 01 i
nu , and therefore z

i+1
 reduces to 

1i
x  (see (26b)). With these simplifications, we arrive at the 

following algorithm: 
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Now, (28) can be applied to solve (23) as follows: 

,
2

 
) , , (minarg

2

2
)()(

)()()(max

1

)( )(

)( 









 



λ
Iq

i

n

i

n

nnn

i

n n

n

ubb
pcbb F

b

 (29a) 

,
2

 
) , , (minarg

2

2
)()(

)()()(max

1

)( )(

)( 









 



λ
Iq

i

n

i

n

nnn

i

n n

n

vcc
pcbc F

c

 (29b) 

,
2

 
) , , (minarg

2

2
)()(

)()()(max

1

)( )(

)( 









 



λ
Iq

i

n

i

n

nnn

i

n n

n

wpp
pcbp F

p

 (29c) 

,-: 11

)()(

1

)(

  ii

n

i

n

i

n pbuu  (29d) 

,-: 11

)()(

1

)(

  ii

n

i

n

i

n bcvv  (29e) 

.-: 11

)()(

1

)(

  ii

n

i

n

i

n ypww  (29f) 

In (29), b
i
(n) and u

i
(n) are the i

th
 updates of the optimization 

variable b(n) and its scaled dual variable u(n), respectively; c
i
(n) 

and v
i
(n) are the i

th
 updates of the optimization variable c(n) and 

its scaled dual variable v(n), respectively; p
i
(n) and w

i
(n) are the i

th
 

updates of the optimization variable p(n) and its scaled dual 

variable w(n), respectively; iii pcb   ,  ,  are the i
th

 update 

averages of b
i
(n), c

i
(n) and p

i
(n), respectively. The search starts 

with u
0

(n) = 0, v
0
(n) = 0, w

0
(n) = 0

3
, and stops when b

i
(n) = b

i-1
(n), 

c
i
(n) = c

i-1
(n) and p

i
(n) = p

i-1
(n).  

As follows from (29), a proposed iterative resource 

allocation algorithm consists of two steps. At step 1 (equations 

(29a) – (29c)), the searches of primal and dual updates are 

conducted in parallel by N local computing processors. At step 

2 (equations (29d) - (29f)), all the local variables b
i
(n), c

i
(n) and 

p
i
(n) are averaged (using, e.g., broadcasting) and the result is 

given to each local processor. The implementation of the 

algorithm (29) in the considered network model is described in 

Section V. Note, that the number of variables in problems (29a) 

– (29c) is N times less than that in the original problem (20). 

Consequently, by applying the algorithm in (29), the 

complexity of solving (20) can be significantly reduced. In this 

paper, a second-order interior point algorithm modified for 

non-convex problems (described in detail in [34]) is used to 

solve (29a) - (29c). This method has been chosen mainly due to 

its (relatively) low complexity - the worst-case complexity of a 

second-order interior point algorithm for smooth constrained 

nonconvex problems is O(ε-3/2
) (see [40] for a proof). 

C. Feasibility Pump Heuristic for Solving MINLP 

After the problem (29) is solved, we should apply some 

suitable technique to find optimal/near-optimal result. A typical 

deterministic method for solving MINLPs is a well-known 

branch-and-bound algorithm and its various modifications [42]. 

Some examples of heuristic approaches are [43] - [45]. In this 

paper, a Feasibility Pump (FP) heuristic for non-convex 

MINLPs ([45], [46]) is applied to solve (34). FP algorithm is 

perhaps the most simple and most effective for producing more 

and better solutions in a shorter average running time. For the 

problems with non-binary integer variables, the FP’s 
complexity is exponential in size of a problem. For the 

problems with binary variables, its complexity is polynomial 

[47]. The local convergence properties of FP algorithm for 

non-convex problems have been proved in [46].  

A fundamental idea of FP heuristic is to decompose the 

problem into two parts: integer feasibility and constraint 

feasibility. The former is achieved by rounding (solving a 

convex relaxation to the original problem), the latter - by 

projection (solving a continuous relaxation). Consequently, two 

 
3 Initial settings of b0

n, c
0
n and p0

n will be discussed in Section 6. 
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sequences of points are generated. The first sequence, 

 J

jj

 

1 
) ,,( 


pcb , J = 1, 2, …, contains the integral points that may 

violate the non-convex constraints. The second sequence, 

 J

jj

 

1 
) ,,( 


pcb , contains the points which are feasible for a 

continuous relaxation to the original problem but might not be 

integral. More specifically, with input 
1) ,,( pcb  being a 

solution to (29), the algorithm generates two sequences by 

solving the following problems for j = 1, …, J: 

1 
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                  Npcb  naqrqaq nnnnn  ,) , ,(ˆmax
 (31e) 

where ||∙||1 and ||∙||2 are l1 norm and l2 norm, respectively. The 

rounding step is carried out by solving the problem (30), 

whereas the projection is the solution to (31). A suggested FP 

algorithm alternates between the rounding and projection steps 

until 
j) ,,( pcb  = 

j) ,,( pcb  (which implies feasibility) or the 

number of iterations j has reached the predefined limit J. The 

workflow of a corresponding FP algorithm is presented in 

Figure 3.  

Note that (31) is very similar to (20), and therefore it can be 

solved using the same ADMM-based technique. Problem (30) 

is the convex MINLP which can be solved to optimality by at 

least five different algorithms: branch-and-bound, generalized 

Benders decomposition, outer approximation, branch-and-cut 

algorithm and the extended cutting plane technique [48]. In this 

work, the modification of a branch-and-bound technique 

proposed in [42] has been used to solve (30). 

  0. Initialization: input J; set j := 1; solve (20) to obtain 
j) ,,( pcb ; 

  1. If 
j) ,,( pcb  is feasible then goto step 7; 

  2. While ( j < J ) do: { 

  3.      Rounding: solve (30) to obtain 
j) ,,( pcb ; 

  4.      If (
j) ,,( pcb =

j) ,,( pcb ) then goto step 7; 

  5.      Projection: solve (31) to obtain 
1) ,,( jpcb ;  

  6.      Set j := j + 1;    } 

  7. Output: solution *) ,,( pcb  := 
j) ,,( pcb . 

Fig. 3.  FP algorithm for solving a non-convex MINLP. 

V. ALGORITHM IMPLEMENTATION 

A. Implementation in LTE-D System 

Note that the problem (11) describes a general resource 

allocation procedure where DUs and CUs can access both the 

UL and the DL spectrum resources of the eNB. However, 

according to the current 3rd Generation Partnership Project 

(3GPP) Release 12 specifications, CUs can occupy only the DL 

spectrum resources, whereas the UL resources are reserved for 

D2D communications ([31], [49]). Hence, in order to apply a 

proposed resource allocation method to a standard LTE-Direct 

(LTE-D) network, we have to make some modifications to 

formulation (11). In the following, we present two versions of 

the algorithm for resource allocation in LTE-D system. 

Discussion through the rest of the paper is applicable to both 

Frequency Division Duplex (FDD) and Time Division Duplex 

(TDD) LTE operation modes. 

1) The Algorithm with the Controlled Power Levels of UEs 

Since different channels (UL and DL) are reserved for CUs 

and DUs, there is no interference between cellular and D2D 

users, i.e. cn(1-cm)b
k
nb

k
m = 0, for all nN, mN, kK. The 

interference exists only between the DUs operating on the same 

RBs and hence, the SINRs expression in (6) will transform to 
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N
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k
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k
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k
nmm

k
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k
nnn

n

k
nn

k
nnnk

n

, ,
)1(

)1(
                 

}\{

 (32a) 

where the interference for Un (caused by other DUs operating 

on RBk) is given by 

., ,)1()1(
}\{

KN
N

 


knGbbpccI
nm

k

mn

k
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k

nmmn

k

n
 (32b) 

Consequently, a feasibility set for matrix b transforms to 

.
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0)1( ,1 ,1 },1 ,0{ 
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k
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Then, a resource allocation problem takes form 

 


 ) , ,( max   minimize pcb
N

nnn
n

raq  (34a) 

PpCcBb    ,  ,  :subject to  (34b) 

. ,)1()1(
}\{

N
N K

  
 

nIGbbpcc
tar

n

nm k

k

mn

k

m

k

nmmn
 (34c) 

Similar to (11), above problem is a non-smooth non-convex 

MINLP, and therefore it can be solved using the same solution 

method. Note however, that the complexity of (34) is lower 

than the complexity of (11), since the number of constraints in 

(34) is less than that in (11). 

2) The Algorithm with Fixed Power Levels of UEs 

In this paper, we also propose a simplified version of the 

algorithm for LTE-D system. In this modification, each user 

Un, nN, can be either in active state, where it transmits data 

with some fixed transmission power level equal Pn, or in idle 

state with transmission power level P0 close to 0. In this case, a 

resource allocation problem is given by 

 


 ) ,( max   minimize cb
N

nnn
n

raq  (35a) 
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CcBb    ,  :subject to  (35b) 

N
N K

  
 

nIGbbPcc
tar
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nm k
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 (35c) 

with 
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)1(
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 (35d) 

The above problem is a non-smooth non-convex integer 

programming problem (since all the variables are binary), 

which can be solved using a technique presented in Section IV. 

Note that the complexity of (35) is lower than the complexity of 

(34), because the number of variables is reduced from N×(K+2) 

to N×(K+1). 

B. Target Interference Levels 

In our network, some of the users may operate on very noisy 

channels, and further reduction of SINR in these channels will 

be disastrous. To indicate such channels, for each user on each 

RB, we set a certain target SINR level, denoted SINR
tar

, below 

which the data transmission is considered unsatisfactory. Then, 

at any slot t, the SINR should be kept at the level 
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for users operating in cellular mode, and 
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 (36b) 

for user operating in D2D mode.  

Consequently, the interfering CUs and DUs are allowed to 

transmit at the levels 

, , NK

K


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Combining (37a) and (37b), we arrive at 
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Note that right-hand side of (38) depends on the values of p 

which are unknown at the beginning of slot t (i.e. before 

resource allocation). Therefore, we deploy past (available) 

observations of p, and set 
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 (39) 

where T is the number of past observations; 
np , n N, is the 

average value of pn during the period [t - 1, t - T]. Note, that for 

algorithm implementations in LTE-D system (described in 

previous subsection), the target interference levels can be set 

using similar considerations. 

C. Resource Allocation Procedure 

In this paper, two different implementation schemes of the 

algorithm presented in Sections III and IV are considered. The 

first scheme, called Real-Time (RT), utilizes a centralized 

resource allocation (as described in [11]). In this scheme, RB, 

mode and power assignments are carried by the eNB for both 

the CUs and DUs. The corresponding procedure (repeated at 

the beginning of each slot t) is described as follows.  

In the UL direction, all of the users (DUs and CUs) collect 

their instantaneous buffer status information and send it to the 

eNB using SRs via dedicated PUCCHs. After receiving all the 

SRs, the eNB solves (11) using FP algorithm shown in Figure 

1. After getting an optimal solution (b, c, p)
*
, the eNB transmits 

the SGs containing the RB, mode and power allocations to the 

corresponding users via PDCCHs. In the DL direction, the eNB 

determines the DL buffer status for all of the users operating in 

cellular mode, solves (11), and sends the SGs together with 

optimal allocations (b, c, p)
*
 to the corresponding users via 

PDCCHs [11].  

Note that at any slot t, RT scheme needs exactly two control 

signalling steps: step 1 with SRs transmitted by the users to the 

eNB; step 2 with the UL and DL optimal allocations sent by the 

eNB to the users. The main disadvantage of this scheme is 

related to delay due to UL scheduling, which may grow 

significantly when the number of users (equalling N in our 

case) sending the SRs at slot t is more than the number of LTE 

PUCCHs (see, e.g., [23], [50]).  

In the second scheme, called Non-Real-Time (NRT), the 

growth of scheduling delay is avoided by increasing the 

duration of a resource allocation period (from one to T > 1 

slots), and decreasing the number of SRs sent simultaneously 

within one slot. In this implementation, upon arrival of Un, n
N to the network, the random number τn from the interval [0, T - 

1] is generated and stored in the memory of its device. The 

NRT scheme is repeated within each resource allocation period 

[t, t + T - 1], as follows. 

In the UL direction, each user device updates its 

instantaneous buffers status information, calculates the average 

buffer status during the period [t + τn – T + 1, t + τn], given by  

 
N


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


 n
T

itqita

qa

T

i

nn

nn   ,

)()(
1

0


 (40) 

and transmits this information to the eNB via PUCCH at the 

beginning of slot τn.  
After receiving the buffer status reports from all of the users 

(at slot t + T – 1), the eNB replaces the instantaneous buffers 

status reports an(t) + qn(t) in (11) by the corresponding average 

values 
nn qa  , for all nN.  After getting an optimal solution 

(b, c, p)
*
, the eNB sends the SGs containing the RB, mode and 

power allocations to corresponding users via PDCCHs. Note, 

that the determined optimal allocations will be valid for the 

next allocation period [t + T, t + 2T - 1]. 

In the DL direction, the eNB collects the instantaneous DL 

buffer status and calculates the average buffer status for all of 

the users operating in cellular mode according to (40) for τn = t 
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+ T - 1. After replacing the instantaneous buffers status reports 

an(t) + qn(t) in (11) by the corresponding average values ,nn qa 
the eNB finds a solution (b, c, p)

*
, and transmits the SGs with 

the optimal allocations (for the next allocation period [t + T, t + 

2T - 1]) to corresponding users via PDCCHs. 

The main advantage of the above resource allocation 

procedure is reduced control signalling (the number of 

signalling steps in the second scheme is T times less than that in 

the first scheme). Additionally, the number of users 

simultaneously sending SRs in the second scheme is in general 

less than that in the first scheme, which helps to decrease the 

UL scheduling delay. The main drawback of the second 

resource allocation procedure is related to “non-real-time” 
allocation (since network resources are assigned based on the 

averaged, rather than instantaneous, buffer status values for a 

prolonged period T). This could potentially reduce the 

efficiency of a proposed NRT algorithm. 

VI. PERFORMANCE EVALUATION 

A. Simulation Settings 

A simulation model of the network has been implemented 

upon a standard LTE-A platform using the OPNET simulation 

and development package [51]. The model consists of one 

eNBs and N users randomly positioned inside a three-sector 

hexagonal cell with antenna pattern specified in [30]. It is 

assumed that the users operate outdoors in a typical urban 

environment. Main simulation parameters of the model are 

listed in Table II.  

TABLE II 

SIMULATION PARAMETERS OF THE MODEL 

Parameter Value 

Cell radius 500 m 

Frame Structure Type 2 (TDD) 

Slot duration 1 ms 

TDD configuration 0 

eNodeB max Tx power 46 dBm 

UE max node Tx power 23 dBm 

Noise power -174 dBm/Hz 

Path loss, cellular link 128.1 + 37.6 log(d), d[km] 

NLOS path loss, D2D link 40 log(d) + 30 log(f) + 49, d[km], f[Hz] 

LOS path loss, D2D link 16.9 log(d) + 20 log (f/5) + 46.8, d[m], f[GHz] 

Shadowing st. dev. 10 dB (cell mode); 12 dB (D2D mode) 

 

Discussion in this section mainly concerns the following 

schemes: 

1) A general resource allocation procedure (formulated in (11)) 

with RT and NRT implementations. Further in the paper 

these schemes are referred to as G-RT (General RT 

algorithm) and G-NRT (General NRT algorithm), 

respectively. 

2) The first version of the algorithm for LTE-D system with the 

controlled UEs’ power levels (formulated in (34)) using RT 

and NRT implementations, referred to as 1-RT (1
st
 algorithm 

with RT allocation) and 1-NRT (1
st
 algorithm with NRT 

allocation), respectively. 

3) The second version of the algorithm for LTE-D system with 

fixed UEs’ power levels (formulated in (34)) using RT and 

NRT implementations, referred to as 2-RT (2
nd

 algorithm 

with RT allocation) and 2-NRT (2
nd

 algorithm with NRT 

allocation), respectively. 

In all NRT schemes, the duration of a resource allocation period 

is set to be equal T = 10 slots. The allowed number of iterations 

in FP algorithm (see Figure 3) is limited to J = 200. 

In the following, performance of the proposed resource 

allocation schemes is benchmarked with the performance of the 

following previously proposed algorithms: Energy-efficient 

Resource Sharing for mobile device-to-device multimedia 

communications (denoted ERS) described in [52], and 

Distributed Resource Allocation in D2D-enabled multi-tier 

cellular networks (denoted DRA) described in [5]. 

Unfortunately, there have been no prior works where the same 

objective (to minimize maximum buffer size of the users) has 

been considered. Hence, the relevance of the reference schemes 

has been determined mainly based on their ability to jointly 

perform mode selection, interference mitigation, spectrum 

management and power control. Both ERS and DRA partly 

satisfy this criterion. Particularly, ERS performs (for potential 

D2D pairs) a joint mode selection, power control and 

interference management with the objective to minimize the 

total transmission power of DUs. DRA allocates the spectrum 

and transmission power with the objective to maximize the sum 

rate of DUs and CUs, subject to interference constraints. 

All of the schemes (G-RT/NRT, 1-RT/NRT, 2-RT/NRT, 

ERS, DRA) have been simulated with the settings listed in 

Table II. The user traffic in simulations has been modelled 

according to [53] using the Hypertext Transfer Protocol 

(HTTP) 1.1 model. According to the model, the users generate 

pages or images with exponential page inter-arrival intervals 

(mean equal 60 sec). It is assumed that one page consists of one 

object, whereas one image consists of five objects. The object 

size is constant and equal 1000 bytes.  

In NRT schemes, the duration of a resource allocation period 

T has been determined based on the following considerations. 

First of all, it should be long enough to decrease the number of 

signalling steps and the number of users simultaneously 

transmitting the SRs. On the other hand, to preserve the 

efficiency of resource allocation, T should not exceed the mean 

inter-arrival time of pages/images in user traffic model (equal 

60 sec in our case). Consequently, T = 10 slots has been 

selected.  

In all schemes, the target interference levels have been 

determined based on (39), with T = 10 slots and SINR
tar

 = 0 dB. 

Note that the value of T in (39) should be set to be long enough 

to capture the trending power level for each user. However, 

because of time-varying wireless channel quality, the 

observation period should not exceed the fluctuation 

periodicity of the SINR in time domain. According to a recent 

study [54], the minimum and mean SINR fluctuation periods 

(for fixed users operating in outdoor environment) are equal 7 

and 25 ms, respectively. Consequently, we can choose any 

value of T, such that 7 ≤ T ≤ 25. 

B. Simulation Results 

First, we evaluate the complexity of different algorithms in 

simulations. Note, that G-RT/NRT use the same formulation 
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(11) for resource allocation, and therefore their computational 

complexities are identical. Same is true for 1-RT/NRT and 

2-RT/NRT. Figure 4 demonstrates simulation results collected 

in the network with 10 users in C, and the overall number of 

users N varying from 10 to 150.  

Here we observe performance of the proposed algorithms 

with a so-called “cold” start (denoted G-RT-C, 1-RT-C, 

2-RT-C in the figure) and a “warm” start (G-RT-W, 1-RT-W, 

2-RT-W). When a “cold” setting is used, we start with 
initialization b

0
(n) = c

0
(n) = p

0
(n) = 0 for any nN. In a “warm” 

setting, we start from the last obtained optimal values of the 

optimization variables b, c and p. Obtained results show that 

the “warm” start improves performance of the algorithms in 
terms of the number of iterations necessary for convergence. 

Such results can be easily explained by the fact that the external 

network parameters change more slowly than slot duration (1 

ms). Therefore, in general, the “warm” start is much closer to 

the optimal solution than zero-initialization. 

 
Fig. 4.  Average number of iterations necessary for convergence as a function of 

the overall number of UEs N in simulations conducted for 10 users in C. 

Let us now evaluate the delay/SINR performance of different 

schemes in simulations. Figures 5 and 6 illustrate mean packet 

end-to-end delay and SINR for the network with 10 users in C, 

N = 110 and the number of DUs varying from 1 to 99. Figure 5 

demonstrates the impact of cellular traffic offloading on mean 

packet end-to-end delay for UEs. As the number of users 

operating in D2D mode increases, the packet delay in the 

network decreases. The speed of decrease in delay is at first 

(when the number of DUs is less than 50) very fast, and then 

slows down. A slowing speed of delay increase is explained by 

decreasing channel quality (see Figure 6 showing the negative 

impact of increase in the number of DUs on mean SINR).  

The graphs on both figures confirm that G-RT/NRT have a 

superior performance among the proposed algorithms, whereas 

2-RT/NRT show the worst service quality. To understand such 

results, note that in general schemes, DUs and CUs can be 

allocated both the UL and the DL RBs. On the contrary, in 

1-RT/NRT and 2-RT/NRT, the UL RBs are reserved for DUs, 

and therefore the “choice” of available RBs (and hence the 

possibility to select the “best” RBs) in these algorithms is more 
limited compared to G-RT/NRT. Additionally, since the power 

levels of the users are fixed in 2-RT/NRT, the efficiency of 

these techniques in terms of reducing the packet delay and 

achieving the higher SINR levels is diminished. In this regard, 

the possibility of power allocation in G-RT/NRT and 

1-RT/NRT can be considered as an extra degree of freedom in 

optimization. This degree of freedom, however, results in the 

growing computational complexity (see Figure 2). Hence, there 

always exists a trade-off between achieving the best network 

performance and increased complexity of the algorithm. 

 
Fig. 5.  Mean packet end-to-end delay as a function of the number of UEs 

operating in D2D mode in simulations conducted for 10 users in C and N = 110. 

 
Fig. 6.  Mean SINR as a function of the number of UEs operating in D2D mode 

in simulations conducted for 10 users in C and N = 110. 

Figures 7 and 8 illustrate performance of the network with 10 

users in C and the overall number of UEs varying from 10 to 

150. It follows from these graphs that all NRT schemes achieve 

slightly better results than the corresponding RT schemes when 

the number of users is high. Note that if the number of 

simultaneous SRs in the system is higher than the number of 

PUCCHs, the UL scheduling delay component is growing, 

resulting in increased overall packet delay. In NRT, the number 

of users simultaneously sending SRs is smaller than that in RT 

procedures, and therefore in highly loaded scenarios, the NRT 

implementation is more efficient. We also observe that ERS 

shows the worst performance in terms of mean packet delay. In 

ERS, the power control, interference management and mode 

selection are implemented with the objective to minimize the 
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total transmission power of UEs. This means that this algorithm 

is originally not designated for improving the QoS (in our case, 

reducing delay) of the users.  

It should be mentioned that all versions of the proposed 

resource allocation approach show improved (compared to 

ERS and DRA) delay performance, which can be explained by 

the use of appropriate objective (buffer size minimization). 

Note that the objective stated in DRA (PHY-layer sum rate 

maximization) does not necessarily result in reduced delay for 

the users. In DRA (and also ERS), the buffer status information 

is not taken into account. Hence, the allocations according to 

DRA and ERS algorithms may be very unfair (meaning that the 

users with lower traffic demands can be allocated more 

bandwidth then the users with higher traffic demands). 

 
Fig. 7.  Mean packet end-to-end delay as a function of overall number of UEs N 

in simulations conducted for 10 users in C. 

 
Fig. 8.  Mean SINR as a function of the overall number of UEs N in simulations 

conducted for 10 users in C. 

VII. CONCLUSION 

This paper considers the problem of joint D2D/cellular mode 

selection, RB allocation, power control and interference 

management for D2D communication underlaying LTE-A 

network. The problem has been formulated as an optimization 

problem where the modes, RBs and power levels of user 

devices are allocated to maximize the minimum buffer size of 

UEs subject to certain interference constraints. Possible 

realizations of a proposed resource allocation approach include 

general algorithms with real-time and non-real time 

implementation, as well as the algorithms suitable for LTE-D 

network (with fixed and controlled power levels of UEs).  

Simulation results have shown that all proposed algorithms 

outperform existing relevant resource allocation schemes in 

terms of mean packet delay for the users (which is explained by 

the appropriate choice of optimization objective). General 

algorithm introduce smaller delay than their LTE-D 

modifications (the choice of available resources in LTE-D 

algorithms is limited, since UL RBs are reserved for DUs). The 

algorithms with the controlled UEs’ power levels perform 
better than the algorithm with fixed UEs’ power levels (extra 
degree of freedom of power assignment provides possibility to 

obtain more favourable results).  

Consequently, to achieve the best results, the number of 

degrees of freedom (i.e., the number of optimization variables) 

and the choice of available resources should be as large as 

possible. However, such widened choice also relates to increase 

in the size of the problem, resulting in higher complexity of a 

corresponding algorithm. 
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