
Dynamic Cache Partitioning for CMP/SMT Systems

G. E. Suh (suh@mit.edu), L. Rudolph (rudolph@mit.edu) and S.
Devadas (devadas@mit.edu)
Massachusetts Institute of Technology

Abstract. This paper proposes a technique for dynamic cache partitioning amongst
simultaneously executing processes/threads. We present a general partitioning scheme
that can be applied to set-associative caches at any partition granularity. Fur-
thermore, in our scheme, processes/threads can have overlapping partitions, which
provides more degrees of freedom when partitioning caches with low associativity.

Since memory reference characteristics of processes/threads can change very
quickly, our method collects the miss-rate characteristics of processes/threads at
run-time, and partitions the cache amongst the executing ones. Partition sizes are
varied dynamically to improve miss-rates.

Trace-driven simulation results show a relative improvement in the L2 hit-rate
of up to 40.5% over those generated by the standard least recently used replacement
policy, and IPC improvements of up to 17%. Our results show that smart cache
management and scheduling is important for CMP/SMT systems to achieve high
performance.

1. Introduction

In the near future, microprocessors will be able to execute multiple
processes/threads simultaneously and exploit process/thread-level par-
allelism 1. Multiple processors may be on a single chip (CMP) [5], or
simultaneous multithreading (SMT) may be used [13, 9, 6]. In these
systems, processes or threads share parts of the memory system often
including L1 and L2 caches. Therefore, executing multiple contexts
simultaneously exacerbates the stress on the memory subsystem, espe-
cially since the standard least recently used (LRU) replacement scheme
treats all references in the same way. In the LRU scheme, a single
process can easily “pollute” the cache with its data, causing higher
miss-rates for other threads, and resulting in low overall performance.

Managing cache space amongst multiple processes is particularly
important when the cache is large enough to support multiple con-
texts, but not large enough to hold all of the working sets of the
simultaneously executing processes. In fact, an early study of the SMT
architecture demonstrated significant improvement in IPC for a set of
workloads that fit into a 256-KB L2 cache, where cache contention is

1 Hereafter, we use a term ’process’ to represent both process and thread rather
than explicitly using ’process/thread’.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 8/12/2004; 17:55; p.1



2

not a problem [9]. However, we believe that workloads have become
much larger and more diverse; multimedia programs such as video or
audio processing software often consume hundreds of MB and many
SPEC CPU2000 benchmarks benefit by using several MB caches [8].

This paper presents a dynamic cache partitioning scheme that ex-
plicitly allocates cache space amongst simultaneously executing pro-
cesses and minimize the overall cache miss-rate. Using a set of on-line
counters, our scheme dynamically estimates each process’ gain or loss in
different cache allocations in terms of the number of cache misses. Then,
the allocation is dynamically changed so that more needy processes can
use more cache space. For example, consider the case when a streaming
process runs simultaneously with a process with high temporal local-
ity. Our partitioning scheme detects that more cache space does not
improve a streaming process, and allocates most of cache space to the
other process.

Our scheme only considers partitioning amongst simultaneous pro-
cesses. In conventional time-shared systems, cache partitioning depends
not only on the active process, but also on the memory reference pattern
of inactive processes which have run in the past, and will run again in
the near future. On the other hand, in CMP/SMT systems, multiple
processes are active at the same time, collectively stressing the memory
system. Since these processes very quickly use up cache resources once
they start running, partitioning depends only on the memory reference
characteristics of the set of active processes.

The cache can be partitioned by either augmenting the standard
LRU replacement policy or using column caching [3]. In the augmented
LRU policy, the replacement unit keeps track of the number of cache
blocks belong to each active process, and allocates a new cache block
to a process only if its current allocation is below its limit. Column
caching partitions the cache at cache column or “way” granularity (A
d-way associative cache has d columns). The simulation experiments
presented here are based on the augmented LRU policy.

Simulation results demonstrate that the cache partitioning can sig-
nificantly improve both the miss-rate and the instructions per cycle
(IPC) of the overall workload. Partitioning the cache amongst simul-
taneous processes is especially effective when the cache is not large
enough to hold the entire working set, but not too small so that it can
hold some critical portion of the working set.

This paper is organized as follows. In Section 2, we describe related
work. In Section 3, we first study the optimal cache partitioning prob-
lem for the ideal case of fully associative caches that are partitionable
on a cache-block basis. We then extend our method to the more realistic

paper.tex; 8/12/2004; 17:55; p.2



3

set-associative cache case. Section 4 evaluates the partitioning method
by simulations. Finally, Section 5 concludes the paper.

2. Related Work

Stone, Turek and Wolf [10] investigated the optimal allocation of cache
memory between two competing processes that minimizes the overall
miss-rate of a cache. Their study focuses on the partitioning of instruc-
tion and data streams, which can be thought of as multitasking with a
very short time quantum, and shows that the optimal allocation occurs
at a point where the miss-rate derivatives of the competing processes
are equal.

In previous work [11] we proposed an analytical cache model for
multitasking, and also studied the cache partitioning problem for time-
shared systems based on the model. That work is applicable to any
length of time quantum rather than just short time quantum, and shows
that the cache performance can be improved by partitioning a cache
into dedicated areas for each process and a shared area. However, the
partitioning was performed by collecting the miss-rate information of
each process off-line, and did not describe techniques to partition the
cache memory at run-time.

Thiébaut, Stone and Wolf applied their theoretical partitioning study
[10] to improve disk cache hit-ratios [12]. The model for tightly inter-
leaved streams is extended to be applicable for more than two processes.
They also describe the problems in applying the model in practice,
such as approximating the miss-rate derivative, non-monotonic miss-
rate derivatives, and updating the partition. Trace-driven simulations
for 32-MB disk caches show that the partitioning improves the relative
hit-ratios in the range of 1% to 2% over the LRU policy. However, they
only focused on disk caches that are fully-associative with cache block
granularity whereas the scheme in this paper works for set-associative
caches.

3. Partitioning Algorithm

This section presents our cache partitioning algorithm. We lead up to
a general partitioning method in several steps. First, given a fully-
associative cache that can be partitioned on a cache-block basis and
knowing the miss-rate for each task as a function of partition size, we
show how an optimal partition is obtained by iteratively increasing the
partition size for the process that will benefit the most. Next, we show

paper.tex; 8/12/2004; 17:55; p.3



4

that it is possible to compute the miss-rate functions on-line using many
hardware counters for a fully-associative cache, and that it is possible
to approximate the miss-rate function using fewer counters in the case
of a set-associative cache. These results are then combined and applied
to the more practical case of coarse-grained partitioning. Finally, the
algorithm to actually allocate cache blocks to each process is developed.

3.1. Optimal Cache Partitioning

Given N executing processes sharing a cache of C blocks with parti-
tioning on a cache block granularity, the problem is to partition the
cache into N disjoint subsets of cache blocks so as to minimize the
overall miss-rate. For each process, the miss-rate as a function of par-
tition size (the number of cache blocks), is known. Let ci represent the
number of cache blocks allocated to the ith process. A cache partition
is specified by the number of cache blocks allocated to each process,
i.e., {c1, c2, ..., cN} . Since it is unreasonable to repartition the cache
every memory reference, the partition remains fixed over a time period,
π, that is long enough to amortize the repartitioning cost.

The number of cache misses for the ith process over π is given by a
function of partition size (mi(x)). The optimal partition for the period
is the set of integer values {c1, c2, ..., cN}, that minimizes the following
expression:

total misses over time period π =
N∑

i=1

mi(ci) (1)

under the constraint that
∑N

i=1 ci = C. C is the total number of blocks
in the cache.

For the case where the number of misses for each process is a strict
convex function of cache space, Stone, Turek and Wolf [10] noted that
finding the optimal partition, {c1, c2, ..., cN}, falls into the category
of separable convex resource allocation problems. The following, well-
known, simple greedy algorithm yields an optimal partition [10, 7]:

1. Let the marginal gain, gj(x), be the number of additional hits for
the jth process, when the allocated cache blocks increases from x

to x + 1.

2. Initialize c1 = c2 = ... = cN = 0.

3. Increase by one the number of cache blocks assigned to the process

that has the maximum marginal gain given the current allocation.

Increase cj by one, where j is the index for which gj(cj) is largest.

paper.tex; 8/12/2004; 17:55; p.4



5

0 1 2 3 4 5 6 7

x 10
4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Cache Blocks

M
is

s−
ra

te

Figure 1. The miss-rate of art as a function of cache blocks.

4. Repeat step 3 until all cache blocks are assigned (i.e., C times).

3.2. Handling Non-Convexity

The number of misses for a real application is often not strictly convex
as illustrated in Figure 1. The figure shows the miss-rate curve of art
from the SPEC CPU2000 benchmark suite [8] for a 32-way 1-MB cache.
As long as the miss-rate curve is convex, the marginal gain function
decreases, and at the non-convex points, the marginal gain function
will increase.

In theory, every possible partition should be compared to obtain
the optimal partition for non-convex miss-rate curves. However, non-
convex curves can be approximated by a combination of a few convex
curves. For example, the miss-rate of art can be approximated by two
convex curves, one before the steep slope and one after that. Once a
curve only has a few non-convex points, the convex resource allocation
algorithm can be used to guarantee the optimal solution for non-convex
cases.

1. For each process, i, compute the ρi non-convex points of its miss-
rate curve: {pi,1, pi,2, ..., pi,ρi

}, gi(pi,j) < gi(pi,j + 1).

2. Execute the convex algorithm with ci initialized to 0 or pi,j, ∀j.

3. Repeat step 2 for all possible initializations, and choose the parti-
tion that results in the maximum

∑N
i=1 mi(ci).

paper.tex; 8/12/2004; 17:55; p.5



6

3.3. Computing the Marginal Gain

To perform dynamic cache partitioning, the marginal gains of having
one more cache block should be estimated on-line. As discussed in the
previous section, gi(x) is the number of additional hits that the ith

process can obtain by having x + 1 cache blocks compared to the case
when it has x blocks. Assuming the LRU replacement policy is used,
gi(0) represents the number of hits on the most recently used cache
block of the ith process, gi(1) represents the number of hits on the
second most recently used cache block of the ith process, and so on.

We use a set of counters to collect the marginal gains of each process
for the past time periods, and assume that the past marginal gain is
a good prediction for the future. For a fully-associative cache with C

blocks, it is possible to compute gi(x) over a time period π on-line
using C counters. When process i references a data item in the cache
that is the kth most recently referenced, then counter k for process i is
increased. At the end of the time period, these counters corresponds to
the marginal gain of the process.

For set-associative caches, a set of counters, one for each associativity
(way) of the cache rather than each cache block, is maintained per
process. On every cache hit, the corresponding counter is increased.
That is, if the hit is on the most recently used cache block of the process,
the first counter is increased by one, and so on. The kth counter value
represents the number of additional hits for the process by having the
kth way. If we ignore the degradation due to low associativity, the kth

counter value can also be thought of as the number of additional hits
for a cache with k · S blocks compared to a cache with (k − 1) · S

blocks, where S is the number of cache sets. Therefore, gi(x) satisfies
the following equation.

k·S−1∑

x=(k−1)·S

gi(x) = counti(k) (2)

where counti(k) represents the kth counter value of the ith process.
To estimate marginal gains from Equation 2, assume that gi(x) is a

straight line for x between k ·S and (k +1) ·S − 1. This approximation
is very simple to calculate and yet shows reasonable performance in
partitioning. This is especially true in the case of large L2 (level 2)
caches, which only see memory references that are filtered by L1 (level
1) caches, and often show the miss-rate that is proportional to cache
size. To be more accurate, gi(x) can be assumed to be a form of an
power function, e.g., a · xb. Empirical studies showed that the power
function often accurately estimates the miss-rate [4].

paper.tex; 8/12/2004; 17:55; p.6



7

Since characteristics of processes change dynamically, the estimation
of gi(x) should reflect the changes. This is achieved by giving more
weight to the counter value measured in more recent time periods.
After every π memory references, we multiply each counter by δ, which
is between 0 and 1. As a result, the effect of hits in previous time
periods exponentially decays.

3.4. Coarse Granularity Partitioning

Since it is rather expensive to control the assignment of each cache
block, practical partitioning mechanisms perform allocation of chunks
of cache blocks, referred to as a partition block. We will use D to refer to
the number of cache blocks in a partition block. We allow the allocation
of one partition block to multiple processes and let the replacement
policy decide the allocation within a shared partition block.

First, consider the no sharing case where each partition block is
allocated to only one process. The algorithm for cache block granularity
partitioning can be directly applied. Define the partition marginal gain
as gi(x) = mi(x · D) − mi((x + 1) · D) and use the greedy algorithm
to assign one partition block at a time to a process, resulting in an
optimal partition without sharing. However, sharing a partition block is
essential to achieve high performance with coarse granularity partition-
ing. For example, when there are many more processes than partition
blocks, it is obvious that processes must share partition blocks in order
to properly use the cache.

Knowing the number of misses for each process as a function of
cache space, the effect of sharing partition blocks can be evaluated once
the allocation of the shared blocks by the LRU replacement policy is
known. Consider the case when Nshare processes share Bshare partition
blocks. Since each partition block consists of D cache blocks, the case
can be thought of as Nshare processes sharing Bshare · D cache blocks.
Since CMP/SMT systems tightly interleave memory references of the
processes, the replacement policy can be thought of as random.

Define Bdedicate,i as the number of partition blocks that are allocated
to the ith process exclusively, and xi as the number of cache blocks that
belongs to the ith process. Since the replacement can be considered
as random, the number of replacements for a certain cache region is
proportional to the size of the region.

The number of misses that replace the cache block in the shared
space mshare,i(x) can be estimated as follows.

mshare,i(x) =
Bshare

Bdedicate,i + Bshare

· mi(x). (3)

paper.tex; 8/12/2004; 17:55; p.7



8

Under the random replacement policy, the number of cache blocks
belonging to each process for the shared area is proportional to the
number of cache blocks that each process brings into the shared area.
Therefore, xi can be written as

xi = Bdedicate,i · S +
mshare,i(xi)∑N

j=1 mshare,j(xj)
· (Bshare · S). (4)

Since xi is on both the left and right sides of Equation 4, an iterative
method can be used to estimate xi starting with a initial value that is
between Bdedicate,i · S and (Bdedicate,i + Bshare) · S.

3.5. Partitioning Mechanisms

For set-associative caches, various partitioning mechanisms can be used
to actually allocate cache space to each process. One way to partition
the cache is to modify the LRU replacement policy which has the
advantage of controlling the partition at cache block granularity, but
LRU implementations can be expensive for high-associativity caches.

On the other hand, there are mechanisms that operate at coarse
granularity. Page coloring [1] can restrict virtual address to physical
address mapping, and as a result restricts cache sets that each process
uses. Column Caching [3] can partition the cache space by restricting
cache columns (ways) that each process can replace. However, it is
relatively expensive to change the partition in these mechanisms, and
the mechanisms support a limited number of partition blocks. In this
section, we describe the modified LRU mechanism and column caching
to be used in our experiments.

3.5.1. Modified LRU Replacement

In addition to LRU information, the replacement decision depends on
the number of cache blocks that belongs to each process (bi). On a miss,
the LRU cache block of the process (i) that caused the miss is chosen
to be replaced if its actual allocation (bi) is larger than the desired one
(ci ≤ bi). Otherwise, the LRU cache block of another over-allocated
process is chosen. For set-associative caches, there may be no cache
block of an over-allocated process in the set. In this case, the standard
LRU replacement policy is used and the LRU cache block is evicted
from the set.

3.5.2. Column Caching

Column caching is a mechanism that allows partitioning of a cache
at column or “way” granularity. A standard cache considers all cache
blocks in a set as candidates for replacement. As a result, a process’

paper.tex; 8/12/2004; 17:55; p.8



9

Table I. The benchmark sets simulated. All but the Image
Understanding benchmark are from SPEC CPU-2000.

Name Process Description

Mix-1 art Image Recognition/Neural Network

mcf Combinatorial Optimization

Mix-2 vpr FPGA Circuit Placement and Routing

bzip2 Compression

iu Image Understanding

Mix-3 art1 Image Recognition/Neural Network

art2

mcf1 Combinatorial Optimization

mcf2

data can occupy any cache block. Column caching, on the other hand,
restricts the replacement to a sub-set of cache blocks, which essentially
partitions the cache.

Column caching specifies replacement candidacy using a bit vector
in which a bit indicates if the corresponding column is a candidate for
replacement. An LRU replacement unit is modified so that it replaces
the LRU cache block from the candidates specified by a bit vector.
Each partitionable unit has a bit vector. Since lookup is precisely the
same as for a standard cache, column caching incurs no performance
penalty during lookup. For more details on column caching, see [3].

4. Experimental Results

This section presents the results of a trace-driven simulation system
in order to understand the quantitative effects of our cache allocation
scheme. The simulations concentrate on an 8-way set-associative L2
cache with 32-Byte blocks and vary the size of the cache over a range
of 256 KB to 4 MB. Due to the large size and long latency of L2 caches,
our scheme is more likely to be useful for an L2 cache, and so that is the
focus of our simulations. In the experiments, we assume a CMP system
where each processor has its own L1 instruction and data caches. Only
a L2 cache is shared.

Three different sets of benchmarks are simulated, see Table I. The
first set (Mix-1) has two processes, art and mcf both from SPEC

paper.tex; 8/12/2004; 17:55; p.9



10

CPU2000. The second set (Mix-2) has three processes, vpr, bzip2 and
iu. Finally, the third set (Mix-3) has four processes, two copies of art
and two copies of mcf, each with a different phase of the benchmark.

4.1. Hit-rate Comparison

The simulations compare the overall hit-rate of a standard LRU re-
placement policy and the overall hit-rate of a cache managed by our
partitioning algorithm. The partition is updated every two hundred
thousand memory references (π = 200000), and the weighting factor
is set as δ = 0.5. These values have been arbitrarily selected; more
carefully selected values of π and δ are likely to give better results. The
hit-rates are averaged over fifty million memory references and shown
for various cache sizes (see Table II).

The simulation results show that the partitioning can improve the
L2 cache hit-rate significantly: for cache sizes between 1 MB to 2 MB,
partitioning improved the hit-rate up to 40% relative to the hit-rate
from the standard LRU replacement policy. For small caches, such as
256-KB and 512-KB caches, partitioning does not seem to help. We
conjecture that the size of the total workloads is too large compared to
the cache size. At the other extreme, partitioning cannot improve the
cache performance if the cache is large enough to hold all the workloads.
The range of cache sizes for which partitioning can improve perfor-
mance depends on both the number of simultaneous processes and the
characteristics of the processes. Considering that SMT systems usually
support eight simultaneous processes, cache partitioning can improve
the performance of L2 caches in the range of up to tens of MB.

The results also demonstrate that the benchmark sets have large
footprints. For all benchmark sets, the hit-rate improves by 10% to 20%
as the cache size doubles. This implies that these benchmarks need a
large cache, and therefore executing benchmarks simultaneously can
degrade the memory system performance significantly.

4.2. Effect of Partitioning on IPC

Although improving the hit-rate of the cache also improves the perfor-
mance of the system, modern superscalar processors can hide memory
latency by executing other instructions that are not dependent on
missed memory references. Therefore, the effect of cache partitioning
on the system performance, and in particular on IPC (Instructions Per
Cycle), is evaluated based on system simulations.

The simulation results in this section are produced by the Sim-
pleScalar tool set [2]. SimpleScalar is a cycle-accurate processor sim-
ulator that supports out-of-order issue and execution. Our processor

paper.tex; 8/12/2004; 17:55; p.10



11

Table II. Hit-rate Comparison between the standard LRU and
the partitioned LRU.

Size L1 L2 Part. L2 Abs. Rel.

(MB) %Hits %Hits %Hits %Imprv. %Imprv.

art + mcf

0.2 15.6 15.3 -0.2 -1.5

0.5 17.2 16.4 -0.8 -4.6

1 71.9 26.2 36.9 10.6 40.4

2 50.0 51.1 1.1 2.2

4 76.7 75.0 -1.6 -2.2

vpr + bzip2 + iu

0.2 22.9 22.1 -0.8 -3.6

0.5 27.5 28.2 0.6 2.5

1 95.4 33.5 35.8 2.3 7.0

2 59.6 66.3 6.6 11.2

4 81.3 81.5 0.2 0.2

art1 + mcf1 + art2 + mcf2

0.2 12.0 12.6 0.6 5.3

0.5 14.2 14.3 0.1 0.7

1 71.5 16.9 19.0 2.1 12.5

2 26.6 34.9 8.2 31.0

4 50.5 51.3 0.7 1.5

model used in the simulations can fetch and commit 4 instructions at a
time, and has 4 ALUs and 1 multiplier for integers and floating points
respectively. To be consistent with the trace-driven simulations, 32-KB
8-way L1 caches with various sizes of 8-way L2 caches are simulated.
L2 access latency is 6 cycles and main memory latency is 16 cycles.

Figure 2 (a) shows the IPC of two benchmarks (art and mcf) as a
function of L2 cache size. Each benchmark is simulated separately and
is allocated all system resources including all of the L2 cache. L1 caches
are assumed to be 32-KB 8-way for all cases. For various L2 cache sizes,
IPC is estimated as a function of the L2 hit-rate (Figure 2 (b)).

The figures illustrate two things. First, the IPC of art is very sen-
sitive to the cache size. The IPC almost doubles if the L2 cache size is
increased from 1 MB to 4 MB. Second, the IPCs of these two bench-

paper.tex; 8/12/2004; 17:55; p.11



12

0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(a)

Cache Size (MB)

IP
C

art
mcf

0 0.5 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(b)

L2 Hit−rate

IP
C

art
mcf

Figure 2. IPC of art and mcf under 32-KB 8way L1 caches and various size 8-way
L2 caches. (a) IPC as a function of cache size. (b) IPC as a function of L2 hit-rate.

marks are relatively low considering there are 10 functional units (5 for
integer, 5 for floating point instructions). Therefore, for these bench-
marks, it is particularly important to manage cache space carefully to
achieve high IPC.

When executing the processes simultaneously on CMP systems, the
IPC values are approximated from Figure 2 (b) and the hit-rates are es-
timated from the trace-driven simulations (of the previous subsection).
For example, the hit-rates of art and mcf are 25.79% and 26.63%,
respectively, if two processes execute simultaneously with a 32-KB 8-
way L1 cache and a 1-MB 8-way L2 cache, from trace-driven simulation.
From Figure 2 (b) the IPC of each process for the given hit-rates can
be estimated as 0.594 and 0.486. Since each processor does not share
resources except the L2 cache, the total IPC can be approximated as
the sum, 1.08.

Table III summarizes the approximated IPC when an L2 cache is
managed by the standard LRU replacement policy and when an L2
cache is managed by our partitioning algorithm. The absolute improve-
ment in the table is the IPC of the partitioned case subtracted by
the IPC of the standard LRU case. The relative improvement is the
improvement relative to the IPC of the standard LRU, and is calculated
by dividing the absolute improvement by the IPC of the standard LRU.
The table shows that the partitioning algorithm improves IPC for all
cache sizes by up to 17%.

The experimental results also show that CMP/SMT should manage
caches carefully. In the case of four processes with a 2-MB cache, the
system can achieve the overall IPC of 2.160 from Table III. However,

paper.tex; 8/12/2004; 17:55; p.12



13

Table III. IPC Comparison between the standard LRU and the partitioned LRU strategy for the
case of executing art and mcf simultaneously.

Cache LRU Partition Abs. Rel.

Size Hit-rate(%) IPC Hit-rate(%) IPC Improv. Improv.

(MB) art mcf art mcf (%) (%)

art + mcf

0.25 8.8 20.4 1.064 8.0 20.5 1.065 0.001 0.09

0.5 10.3 22.2 1.067 14.5 17.8 1.070 0.003 0.28

1 25.7 26.6 1.080 61.6 19.5 1.167 0.087 8.06

2 63.7 40.3 1.189 76.8 33.1 1.347 0.158 13.29

art1 + mcf1 + art2 + mcf2

0.25 6.4/6.7 16.4/15.2 2.123 6.5/3.5 29.8/11.3 2.126 0.003 0.14

0.5 7.3/7.6 19.5/18.2 2.128 7.7/4.6 30.7/15.2 2.131 0.003 0.14

1 9.3/10.1 22.1/21.4 2.134 9.1/32.4 31.1/13.5 2.161 0.027 1.27

2 25.1/25.5 28.1/25.1 2.160 57.2/73.2 32.0/16.0 2.456 0.307 14.21

4 63.9/63.6 41.7/41.2 2.382 73.9/86.7 49.5/26.6 2.786 0.404 16.96

if you only consider one process (art1), its IPC is only 0.594 and it
can achieve an IPC of 1.04 alone (Figure 2). The performance of a
single process is significantly degraded by sharing caches. Moreover, the
performance degradation by cache interference will become even more
severe as the latency to the main memory increases. This problem can
be solved by smart partitioning of cache memory for some cases. If the
cache is too small, we believe that the process scheduling should be
changed.

5. Conclusion

Low IPC can be attributed to two factors, data dependency and mem-
ory latency. Executing multiple processes simultaneously such as in
CMP/SMT systems mitigates the first factor but not the second. We
have discovered that simultaneous execution of multiple processes may
exacerbate the problem when the executing processes require large
caches. That is, when multiple executing processes interfere in the
cache, even multiple processing units cannot be well utilized because
not all required data is present in the memory.

paper.tex; 8/12/2004; 17:55; p.13



14

We have studied one method to reduce cache interference among
simultaneously executing processes. Our on-line cache partitioning al-
gorithm estimates the miss-rate characteristics of each process at run-
time, and dynamically partitions the cache amongst the processes that
are executing simultaneously. The algorithm estimates the marginal
gains as a function of cache size and uses a search algorithm to find the
partition that minimizes the total number of misses.

The hardware overhead for the modifications proposed in this paper
are minimal. A small number of additional counters is required. The
counters are updated on cache hits, however, they are not on the crit-
ical path and so a small buffer can absorb any burstiness. To actually
partition the cache, we can modify the LRU replacement hardware in a
simple way to take the values of the counters into account. Or, we can
use column caching which requires a small number of additional bits in
the TLB entries, and a small amount of off-critical-path circuitry that
is invoked only during a cache miss.

The partitioning algorithm has been implemented in a trace-driven
cache simulator. The simulation results show that partitioning can im-
prove the cache performance noticeably over the standard LRU replace-
ment policy for a certain range of cache size for given threads. Using
a full-processor simulator, the effect of partitioning on the instructions
per cycle (IPC) has also been studied. The preliminary results show
that we can also expect IPC improvement using the partitioning algo-
rithm. While we have not used a full CMP/SMT simulator to generate
IPC numbers, the large improvements obtained in hit rates lead us to
believe that significant IPC improvements will be obtained using a full
CMP/SMT simulator, or on real hardware.

The simulation results have shown that our partitioning algorithm
can solve the problem of process interference in caches for a range of
cache sizes. However, partitioning alone cannot improve the perfor-
mance if caches are too small for the workloads. Therefore, processes
that execute simultaneously should be selected carefully considering
their memory reference behavior. Cache-aware job scheduling is a sub-
ject of our ongoing work.

Even without CMP/SMT, one can view an application as multiple
processes executing simultaneously where each process has memory
references to a particular data structure. Therefore, the result of this
investigation can also be exploited by compilers for a processor with
multiple functional units and some cache partitioning control.

paper.tex; 8/12/2004; 17:55; p.14



15

Acknowledgements

Funding for this work is provided in part by the Defense Advanced
Research Projects Agency under the Air Force Research Lab contract
F30602-99-2-0511, titled “Malleable Caches for Data-Intensive Com-
puting”. Thanks also to Enoch Peserico, Derek Chiou, David Chen
and Vinson Lee for their comments.

References

1. Bershad, B. K., B. J. Chen, D. Lee, and T. H. Romer: 1994, ‘Avoiding Conflict
Misses Dynamically in Large Direct-Mapped Caches’. In: ASPLOS VI.

2. Burger, D. and T. M. Austin: 1997, ‘The SimpleScalar Tool Set, Version
2.0’. Technical report, University of Wisconsin-Madison Computer Science
Department.

3. Chiou, D. T.: 1999, ‘Extending the Reach of Microprocessors: Column and
Curious Caching’. Ph.D. thesis, Massachusetts Institute of Technology.

4. Chow, C. K.: 1975, ‘Determining the Optimum Capacity of a Cache Memory’.
IBM Tech. Disclosure Bull.

5. Dally, W. J., S. Keckler, N. Carter, A. Chang, M. Filo, and W. S. Lee: 1994, ‘M-
Machine Architecture v1.0’. Technical Report Concurrent VLSI Architecture
Memo 58, Massachusetts Institute of Technology.

6. Eggers, S. J., J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M.
Tullsen: 1997, ‘Simultaneous Multithreading: A Platform for Next-Generation
Processors’. IEEE Micro 17(5).

7. Fox, B.: 1966, ‘Discrete Optimization via Marginal Analysis’. Management

Science 13.
8. Henning, J. L.: 2000, ‘SPEC CPU2000: Measuring CPU Performance in the

New Millennium’. IEEE Computer.
9. Lo, J. L., J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen, and S. J. Eggers:

1997, ‘Converting thread-level parallelism to instruction-level parallelism via
simultaneous multithreading’. ACM Transactions on Computer Systems 15.

10. Stone, H. S., J. Turek, and J. L. Wolf: 1992, ‘Optimal Partitioning of Cache
Memory’. IEEE Transactions on Computers 41(9).

11. Suh, G. E., S. Devadas, and L. Rudolph: 2001, ‘Analytical Cache Models with
Application to Cache Partitioning’. In: the 15th international conference on

Supercomputing.
12. Thiébaut, D., H. S. Stone, and J. L. Wolf: 1992, ‘Improving Disk Cache Hit-

Ratios Through Cache Partitioning’. IEEE Transactions on Computers 41(6).
13. Tullsen, D. M., S. J. Eggers, and H. M. Levy: 1995, ‘Simultaneous Multi-

threading: Maximizing On-Chip Parallelism’. In: 22nd Annual International

Symposium on Computer Architecture.

paper.tex; 8/12/2004; 17:55; p.15


