
 

 

CSAIL 
Massachusetts Institute of Technology

Dynamic Cache Partitioning for 
Simultaneous Multithreading Systems

Ed Suh, Larry Rudolph, Srini Devadas

In the proceedings of the IASTED International Conference 
on Parallel and Distributed Computing and Systems

2001, August

 Computation Structures Group 
Memo 446

The Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139

Computer Science and Artificial Intelligence Laboratory



 

 



Dynamic Cache Partitioning for Simultaneous Multithreading
Systems

G. Edward Suh, Larry Rudolph and Srinivas Devadas
Laboratory for Computer Science

MIT
Cambridge, MA 02139

email: �suh,rudolph,devadas�@mit.edu

ABSTRACT
This paper proposes a dynamic cache partitioning method
for simultaneous multithreading systems. We present a
general partitioning scheme that can be applied to set-
associative caches at any partition granularity. Further-
more, in our scheme threads can have overlapping parti-
tions, which provides more degrees of freedom when par-
titioning caches with low associativity.

Since memory reference characteristics of threads can
change very quickly, our method collects the miss-rate
characteristics of simultaneously executing threads at run-
time, and partitions the cache among the executing threads.
Partition sizes are varied dynamically to improve hit rates.
Trace-driven simulation results show a relative improve-
ment in the L2 hit-rate of up to 40.5% over those gener-
ated by the standard least recently used replacement policy,
and IPC improvements of up to 17%. Our results show that
smart cache management and scheduling is important for
SMT systems to achieve high performance.

KEY WORDS
Memory System, Simultaneous Multithreading, Cache Par-
titioning

1. Introduction

Microprocessors with multiple functional units have low
IPC (Instructions per Cycle) rates either because of a lack
of parallelism, or because of a high incidence of data
dependencies. Simultaneous Multi-Threading, [1, 2, 3]
(SMT), helps in the former case but, in the latter case, it
only exacerbates the stress on the memory subsystem, es-
pecially since the standard LRU replacement scheme treats
all references in the same way. Thus, a single thread can
easily “pollute” the cache with its data, causing higher miss
rates for other threads, and resulting in low overall perfor-
mance.

This paper presents a dynamic cache partitioning al-
gorithm that minimizes the overall cache miss rate for si-
multaneous multithreading systems. Rather than relying
on the standard least recently used (LRU) cache replace-
ment policy, our algorithm dynamically allocates parts of
the cache to the most needy threads using on-line estimates

of individual thread miss rates. The cache is assumed to
be large enough to support multiple contexts, but not large
enough to hold all of the working sets of the simultaneously
executing threads. Although a 1997 study has shown that
a 256-KB L2 cache, which is reasonable size for modern
microprocessors [4, 5, 6], is large enough for a particular
set of workloads [2], we believe that workloads have be-
come much larger and diverse; multimedia programs such
as video or audio processing software often consume hun-
dreds of MB and many SPEC CPU2000 benchmarks now
have memory footprints larger than 100 MB [7].

We propose a novel cache partitioning scheme
wherein a cache miss will only allocate a new cache block
to a thread if its current allocation is below its limit. To im-
plement this scheme, we require counters in the cache that
provide on-line estimates of individual thread miss rates.
Based on these counters, we can augment LRU replace-
ment to better allocate cache resources to threads, or we
can use Column caching [8], which allows threads to be
assigned to overlapping partitions, to partition the cache.
Simulation shows that the partitioning algorithm can sig-
nificantly improve both the miss-rate and the instructions
per cycle (IPC) of the overall workload.

In conventional time-shared systems, cache partition-
ing depends not only on the active thread, but also on the
memory reference pattern of inactive threads which have
run in the past, and will run again in the near future. On
the other hand, in SMT systems, multiple threads are ac-
tive at the same time, collectively stressing the memory
system. Since these threads very quickly use up cache re-
sources once they start running, partitioning depends only
on the memory reference characteristics of the set of active
threads. This differs from traditional time sharing systems
where one must also consider the length of the time quan-
tum and the characteristics of the ready, but not executing
threads. Since the memory references from each thread are
interleaved very tightly, one can consider an SMT system to
be a traditional time-sharing system with a context switch
at each memory reference.1

This paper is organized as follows. In Section 2, we

1In many systems, each page fault or disk access causes a context
switch and so disk cache partitioning schemes are somewhat relevant to
SMT cache partitioning.



describe related work. In Section 3, we first study the op-
timal cache partitioning problem for the ideal case of fully
associative caches that are partitionable on a cache-block
basis. We then extend our method to the more realistic set-
associative cache case. Section 4 evaluates the partitioning
method by simulations. Finally, Section 5 concludes the
paper.

2. Related Work

Stone, Turek and Wolf [9] investigated the optimal allo-
cation of cache memory between two competing processes
that minimizes the overall miss-rate of a cache. Their study
focuses on the partitioning of instruction and data streams,
which can be thought of as multitasking with a very short
time quantum, and shows that the optimal allocation occurs
at a point where the miss-rate derivatives of the competing
processes are equal. The LRU replacement policy appears
to produce cache allocations very close to optimal for their
examples.

In previous work [10] we proposed an analytical
cache model for multitasking, and also studied the cache
partitioning problem for time-shared systems based on the
model. That work is applicable to any length of time quan-
tum rather than just short time quantum, and shows that
the cache performance can be improved by partitioning a
cache into dedicated areas for each process and a shared
area. However, the partitioning was performed by collect-
ing the miss-rate information of each process off-line. The
work of [10] did not investigate how to partition the cache
memory at run-time.

Thiébaut, Stone and Wolf applied their theoretical
partitioning study [9] to improve disk cache hit-ratios [11].
The model for tightly interleaved streams is extended to be
applicable for more than two processes. They also describe
the problems in applying the model in practice, such as ap-
proximating the miss-rate derivative, non-monotonic miss-
rate derivatives, and updating the partition. Trace-driven
simulations for 32-MB disk caches show that the partition-
ing improves the relative hit-ratios in the range of 1% to
2% over the LRU policy.

Our partition work differs from previous efforts. It
works for set-associative caches with multiple threads and a
coarse-grained partition, whereas Thi´ebaut et al. [11] only
focused on disk caches that are fully-associative with cache
block granularity. Finally, this work discusses an on-line
method to partition the cache, whereas our previous only
covered partitioning based on off-line profiling [10].

3. Partitioning Algorithm

This section presents our cache partitioning algorithm. We
lead up to a general partitioning method in several steps.
First, given a fully-associative cache that can be partitioned
on a cache-block basis and knowing the miss-rate for each
task as a function of partition size, we show how an optimal

partition is obtained by iteratively increasing the partition
size for the thread that will benefit the most. Next, we show
that it is possible to compute the miss rate functions on-line
using many hardware counters for a fully associative cache,
and that it is possible to approximate the miss-rate function
using fewer counters in the case of a set-associative cache.
These results are then combined and applied to the more
practical case of coarse grained partitioning. Finally, the
algorithm to actually allocate cache blocks to each thread
is developed.

3.1 Optimal Cache Partitioning

Given� executing threads sharing a cache of� blocks
with partitioning on a cache block granularity, the prob-
lem is to partition the cache into� disjoint subsets of
cache blocks so as to minimize the overall miss-rate. For
each thread, the miss-rate as a function of partition size
(the number of cache blocks), is known. Let� � represent
the number of cache blocks allocated to the� �� thread. A
cache partition is specified by the number of cache blocks
allocated to each thread, i.e.,���� ��� ���� ��� . Since it is
unreasonable to repartition the cache every memory refer-
ence, the partition remains fixed over a time period,�, that
is long enough to amortize the repartitioning cost.

The number of cache misses for the��� thread over�
is given by a function of partition size (� ����). The op-
timal partition for the period is the set of integer values
���� ��� ���� ���, that minimizes the following expression:

total misses over time period� �

��

���

������ (1)

under the constraint that
��

��� �� � �. � is the total num-
ber of blocks in the cache.

For the case where the number of misses for each
thread is a strict convex function of cache space, Stone,
Turek and Wolf [9] noted that finding the optimal partition,
���� ��� ���� ���, falls into the category of separable convex
resource allocation problems. The following, well-known,
simple greedy algorithm yields an optimal partition [9, 12]:

1. Let the marginal gain,	����, be the number of addi-
tional hits for the
 �� thread, when the allocated cache
blocks increases from� to �� �.

2. Initialize�� � �� � ��� � �� � �.

3. Increase by one the number of cache blocks assigned
to the thread that has the maximum marginal gain
given the current allocation.
Increase�� by one, where
 is the index for which
	����� is largest.

4. Repeat step 3 until all cache blocks are assigned (i.e
� times).



3.2 Computing the Marginal Gain

The computation of the marginal gain,	 ����, depends on
the the miss rate for task� as a function of the cache par-
tition size,�����, over a time period,�. For a fully as-
sociative LRU cache, it is possible to compute����� on-
line using� counters. When a task references a data item
in the cache that is the��� most recently referenced item,
then counter� for task� is increased. At the end of the time
period, these counters form the miss rate function for each
task, as described below. The description below applies to
the general case of a set-associative cache.

To perform dynamic cache partitioning, the marginal
gains of having one more cache block can be estimated
on-line. As discussed in the previous section,	���� is the
number of additional hits that the��� thread can obtain by
having� � � cache blocks compared to the case when it
has� blocks. Assuming the LRU replacement policy is
used,	���� represents the number of hits on the most re-
cently used cache block of the��� thread,	���� represents
the number of hits on the second most recently used cache
block of the��� thread, and so on.

For each thread, a set of counters, one for each asso-
ciativity (way) of the cache, is maintained. On every cache
hit, the corresponding counter is increased. That is, if the
hit is on the most recently used cache block of the thread,
the first counter is increased by one, and so on. The� ��

counter value represents the number of additional hits for
the thread by having the� �� way. If we ignore the degrada-
tion due to low associativity, the��� counter value can also
be thought of as the number of additional hits for a cache
with � � � blocks compared to a cache with�� � �� � �
blocks, where� is the number of cache sets. Therefore,
	���� satisfies the following equation.

������

���������

	���� � �������� (2)

where�������� represents the��� counter value of the���

thread.
To estimate marginal gains from Equation 2, assume

that 	���� is a straight line for� between� � � and
�� � �� � � � �. This approximation is very simple to cal-
culate and yet shows reasonable performance in partition-
ing. This is especially true in the case of large L2 (level 2)
caches, which only see memory references that are filtered
by L1 (level 1) caches, and often show the miss-rate that
is proportional to cache size. To be more accurate,	 ����
can be assumed to be a form of an power function, e.g.,
� � ��. Empirical studies showed that the power function
often accurately estimates the miss-rate [13].

Since characteristics of threads change dynamically,
the estimation of	���� should reflect the changes. This is
achieved by giving more weight to the counter value mea-
sured in more recent time periods. After every� memory
references, we multiply each counter byÆ, which is be-
tween� and�. As a result, the effect of hits in previous

0 1 2 3 4 5 6 7

x 10
4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Cache Blocks

M
is

s−
ra

te

Figure 1. The miss-rate ofart as a function of cache blocks.

time periods exponentially decays.
The number of misses for a real application is often

not strictly convex as illustrated in Figure 1. The figure
shows the miss-rate curve ofart from the SPEC CPU2000
benchmark suite [7] for a 32-way 1-MB cache. As long as
the miss-rate curve is convex, the marginal gain function
decreases, and at the non-convex points, the marginal gain
function will increase. In theory, every possible partition
should be compared to obtain the optimal partition for non-
convex miss-rate curves. However, non-convex curves can
be approximated by a combination of a few convex curves.
For example, the miss-rate ofart can be approximated by
two convex curves, one before the steep slope and one after
that. Once a curve only has a few non-convex points, the
convex resource allocation algorithm can be used to guar-
antee the optimal solution for non-convex cases.

1. For each thread,�, compute the� � non-convex points
of its miss-rate curve:���	�� ��	�� ���� ��	
��, 	����	�� �
	����	� � ��.

2. Execute the convex algorithm with� � initialized to�
or ��	� , �
.

3. Repeat step 2 for all possible initializations, and
choose the partition that results in the maximum��

���������.

3.3 Coarse Granularity Partitioning

Since it is rather expensive to control each cache block,
practical partitioning mechanisms perform allocation of
chunks of cache blocks, referred to as apartition block. We
will use� to refer to the number of cache blocks in a par-
tition block. We allow the allocation of one partition block
to multiple threads and let the replacement policy decide
the cache block level partition.

First, consider the no sharing case where each parti-
tion block is allocated to only one thread. The algorithm
for cache block granularity partitioning can be directly
applied. Define the partition marginal gain as	 ���� �



���� � �� � ����� � �� � �� and use the greedy algo-
rithm to assign one partition block at a time, resulting in an
optimal partition without sharing. However, sharing a par-
tition block is essential to achieve high performance with
coarse granularity partitioning. For example, when there
are many more threads than partition blocks. It is obvious
that threads must share partition blocks in order to use the
cache.

Knowing the number of misses for each thread as
a function of cache space, the effect of sharing partition
blocks can be evaluated once the allocation of the shared
blocks by the LRU replacement policy is known. Con-
sider the case when����� threads share����� partition
blocks. Since each partition block consists of� cache
blocks, the case can be thought of as����� threads shar-
ing ����� � � cache blocks. Since SMT systems tightly
interleave memory references of the threads, the replace-
ment policy can be thought of as random.

Define���������	� as the number of partition blocks
that are allocated to the��� thread exclusively, and�� as
the number of cache blocks that belongs to the� �� thread.
Since the replacement can be considered as random, the
number of replacements for a certain cache region is pro-
portional to the size of the region.

The number of misses that replaces the cache block in
the shared space�����	���� can be estimated as follows.

�����	���� �
�����

���������	� ������

������� (3)

Under the random replacement, the number of cache
blocks belonging to each process for the shared area is pro-
portional to the number of cache blocks that each process
brings into the shared area. Therefore,� � can be written by

�� � ���������	� � � �
�����	�������

��������	�����
� ������ � ���

(4)

Since�� is on both the left and right sides of Equation 4, an
iterative method can be used to estimate�� starting with a
initial value that is between���������	��� and����������	��
������ � �.

3.4 Partitioning Mechanisms

For set-associative caches, various partitioning mecha-
nisms can be used to actually allocate cache space to each
thread. One way to partition the cache is to modify the LRU
replacement policy which has the advantage of controlling
the partition at cache block granularity, but LRU implemen-
tations can be expensive for high-associativity caches.

On the other hand, there are mechanisms that operate
at coarse granularity. Page coloring [14] can restrict virtual
address to physical address mapping, and as a result re-
strict cache sets that each thread uses. Column Caching [8]
can partition the cache space by restricting cache columns

(ways) that each thread can replace. However, it is rela-
tively expensive to change the partition in these mecha-
nisms, and the mechanisms support a limited number of
partition blocks. In this section, we describe the modified
LRU mechanism and column caching to be used in our ex-
periments.

3.4.1 Modified LRU Replacement

In addition to LRU information, the replacement decision
depends on the number of cache blocks that belongs to each
thread (��). On a miss, the LRU cache block of the thread
(�) that caused the miss is chosen to be replaced if its actu-
ally allocation (��) is larger than the desired one (�� � ��).
Otherwise, the LRU cache block of another over-allocated
thread is chosen. For set-associative caches, there may be
no cache block of the desired thread in the set, so the LRU
cache block of a randomly chosen thread is replaced.

3.4.2 Column Caching

Column caching is a mechanism that allows partitioning of
a cache at column or “way” granularity. A standard cache
considers all cache blocks in a set as candidates for replace-
ment. As a result, a process’ data can occupy any cache
block. Column caching, on the other hand, restricts the re-
placement to a sub-set of cache blocks, which essentially
partitions the cache.

Column caching specifies replacement candidacy us-
ing a bit vector in which a bit indicates if the corresponding
column is a candidate for replacement. A LRU replace-
ment unit is modified so that it replaces the LRU cache
block from the candidates specified by a bit vector. Each
partitionable unit has a bit vector. Since lookup is precisely
the same as for a standard cache, column caching incurs no
performance penalty during lookup.

4. Experimental Results

This section presents the results of a trace-driven simula-
tion system in order to understand the quantitative effects of
our cache allocation scheme. The simulations concentrate
on an 8-way set-associative L2 cache with 32-Byte blocks
and vary the size of the cache over a range of 256 KB to
4 MB. Due to large space and long latency, our scheme is
more likely to be useful for an L2 cache, and so that is the
focus of our simulations. We note in passing, that we be-
lieve our approach will work on L1 caches as well.

Three different sets of benchmarks are simulated, see
Table 1. The first set (Mix-1) has two threads,art and
mcf both from SPEC CPU2000. The second set (Mix-2)
has three threads,vpr, bzip2 andiu. Finally, the third
set (Mix-3) has four threads, two copies ofart and two
copies ofmcf, each with a different phase of the bench-
mark.



Name Thread Description

Mix-1 art Image Recognition/Neural Network
mcf Combinatorial Optimization

Mix-2 vpr FPGA Circuit Placement and Routing
bzip2 Compression
iu Image Understanding

Mix-3 art1 Image Recognition/Neural Network
art2
mcf1 Combinatorial Optimization
mcf2

Table 1. The benchmark sets simulated. All but the Image Understanding
benchmark are from SPEC CPU-2000.

4.1 Hit-rate Comparison

The simulations compare the overall hit-rate of a standard
LRU replacement policy and the overall hit-rate of a cache
managed by our partitioning algorithm. The partition is
updated every two hundred thousand memory references
(� � ������), and the weighting factor is set asÆ � ���.
These values have been arbitarily selected; more carefully
selected values of� andÆ are likely to give better results.
The hit-rates are averaged over fifty million memory refer-
ences and shown for various cache sizes (see Table 2).

The simulation results show that the partitioning can
improve the L2 cache hit-rate significantly: for cache sizes
between 1 MB to 2 MB, partitioning improved the hit-rate
up to 40% relative to the hit-rate from the standard LRU
replacement policy. For small caches, such as 256-KB and
512-KB caches, partitioning does not seem to help. We
conjecture that the size of the total workloads is too large
compared to the cache size. At the other extreme, partition-
ing cannot improve the cache performance if the cache is
large enough to hold all the workloads. The range of cache
sizes for which partitioning can improve performance de-
pends on both the number of simultaneous threads and
the characteristics of the threads. Considering that SMT
systems usually support eight simultaneous threads, cache
partitioning can improve the performance of caches in the
range of up to tens of MB.

The results also demonstrate that the benchmark sets
have large footprints. For all benchmark sets, the hit-
rate improves by 10% to 20% as the cache size doubles.
This implies that these benchmarks need a large cache,
and therefore executing benchmarks simultaneously can
degrade the memory system performance significantly.

4.2 Effect of Partitioning on IPC

Although improving the hit-rate of the cache also improves
the performance of the system, modern superscalar proces-
sors can hide memory latency by executing other instruc-
tions that are not dependent on missed memory references.
Therefore, the effect of cache partitioning on the system

Size L1 L2 Part. L2 Abs. Rel.
(MB) %Hits %Hits %Hits %Imprv. %Imprv.

art + mcf
0.2 15.6 15.3 -0.2 -1.5
0.5 17.2 16.4 -0.8 -4.6

1 71.9 26.2 36.9 10.6 40.4
2 50.0 51.1 1.1 2.2
4 76.7 75.0 -1.6 -2.2

vpr + bzip2 + iu
0.2 22.9 22.1 -0.8 -3.6
0.5 27.5 28.2 0.6 2.5

1 95.4 33.5 35.8 2.3 7.0
2 59.6 66.3 6.6 11.2
4 81.3 81.5 0.2 0.2

art1 + mcf1 + art2 + mcf2
0.2 12.0 12.6 0.6 5.3
0.5 14.2 14.3 0.1 0.7

1 71.5 16.9 19.0 2.1 12.5
2 26.6 34.9 8.2 31.0
4 50.5 51.3 0.7 1.5

Table 2. Hit-rate Comparison between the standard LRU and the parti-
tioned LRU.

performance, and in particular on IPC (Instructions Per Cy-
cle), is evaluated based on entire system simulations.

The simulation results in this section are produced
by SimpleScalar tool set [15]. SimpleScalar is a cycle-
accurate processor simulator that supports out-of-order is-
sue and execution. Our processor model for the simula-
tions can fetch and commit 4 instructions at a time, and has
4 ALUs and 1 multiplier for integers and floating points
respectively. To be consistent with the trace-driven simula-
tions, 32-KB 8-way L1 caches with various sizes of 8-way
L2 caches are simulated. L2 access latency is 6 cycles and
main memory latency is 16 cycles.

Figure 2 (a) shows the IPC of two benchmarks (art
andmcf) as a function of L2 cache size. Each benchmark
is simulated separately and is allocated all system resources
including all of the L2 cache. L1 caches are assumed to be
32-KB 8-way for all cases. For various L2 cache sizes, IPC
is estimated as a function of the L2 hit-rate (Figure 2 (b)).

The figures illustrate two things. First, the IPC of
art is very sensitive to the cache size. The IPC almost
doubles if the L2 cache size is increased from 1 MB to 4
MB. Second, the IPCs of these two benchmarks are rela-
tively low considering there are 10 functional units (5 for
integer, 5 for floating point instructions). Since the utiliza-
tions of the functional units are so low, executing these two
benchmarks simultaneously will not cause many conflicts
in functional resources.

When executing the threads simultaneously the IPC
values are approximated from Figure 2 (b) and the hit-rates
are estimated from the trace-driven simulations (of the pre-
vious subsection). For example, the hit-rates ofart and



0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(a)

Cache Size (MB)

IP
C

art
mcf

0 0.5 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
(b)

L2 Hit−rate

IP
C

art
mcf

Figure 2. IPC ofart andmcf under 32-KB 8way L1 caches and various
size 8-way L2 caches. (a) IPC as a function of cache size. (b) IPC as a
function of L2 hit-rate.

mcf are 25.79% and 26.63%, respectively, if two threads
execute simultaneously with a 32-KB 8-way L1 cache and
a 1-MB 8-way L2 cache, from trace-driven simulation.
From Figure 2 (b) the IPC of each thread for the given hit-
rates can be estimated as 0.594 and 0.486. Assuming no
resource conflicts, the IPC with SMT can be approximated
as the sum, 1.08. This approximation bounds the maximum
IPC that can be achieved by SMT.

Table 3 summarizes the approximated IPC for SMT
with a L2 cache managed by the standard LRU replace-
ment policy and one with a L2 cache managed by our par-
titioning algorithm. The absolute improvement in the table
is the IPC of the partitioned case subtracted by the IPC of
the standard LRU case. The relative improvement is the
improvement relative to the IPC of the standard LRU, and
is calculated by dividing the absolute improvement by the
IPC of the standard LRU. The table shows that the parti-
tioning algorithm improves IPC for all cache sizes up to
17%.

The experiment results also show that SMT should
manage caches carefully. In the case of four threads with
a 2-MB cache, SMT can achieve the overall IPC of 2.160
from Table 3. However, if you only consider one thread
(art1), its IPC is only 0.594 whereas it can achieve an
IPC of 1.04 alone (Figure 2). The performance of a single
thread is significantly degraded by sharing caches. More-
over, the performance degradation by cache interference
will become even more severe as the latency to the main
memory increases. This problem can be solved by smart
partitioning of cache memory for some cases. If the cache
is too small, we believe that the thread scheduling should
be changed.

5. Conclusion

Low IPC can be attributed to two factors, data dependency
and memory latency. SMT mitigates the first factor but not
the second. We have discovered that SMT only exacer-
bates the problem when the executing threads require large
caches. That is, when multiple executing threads interfere
in the cache, even SMT cannot utilize all the functional
units because not all required data is present in the mem-
ory.

We have studied one method to reduce cache interfer-
ence among simultaneously executing threads. Our on-line
cache partitioning algorithm estimates the miss-rate char-
acteristics of each thread at run-time, and dynamically par-
titions the cache among the threads that are executing si-
multaneously. The algorithm estimates the marginal gains
as a function of cache size and uses a search algorithm to
find the partition that minimizes the total number of misses.

The hardware overhead for the modifications pro-
posed in this paper are minimal. A small number of ad-
ditional counters is required. The counters are updated on
cache hits, however, they are not on the critical path and
so a small buffer can absorb any burstiness. To actually
partition the cache, we can modify the LRU replacement
hardware in a simple way to take the values of the coun-
ters into account. Or, we can use column caching which
requires a small number of additional bits in the TLB en-
tries, and a small amount of off-critical-path circuitry that
is invoked only during a cache miss.

The partitioning algorithm has been implemented in a
trace-driven cache simulator. The simulation results show
that partitioning can improve the cache performance no-
ticeably over the standard LRU replacement policy for a
certain range of cache size for given threads. Using a full-
system simulator, the effect of partitioning on the instruc-
tions per cycle (IPC) has also been studied. The prelimi-
nary results show that we can also expect IPC improvement
using the partitioning algorithm. While we have not used
a full SMT simulator to generate IPC numbers, the large
improvements obtained in hit rates lead us to believe that
significant IPC improvements will be obtained using a full
SMT simulator, or on real hardware.

The simulation results have shown that our partition-
ing algorithm can solve the problem of thread interference
in caches for a range of cache sizes. However, partition-
ing alone cannot improve the performance if caches are too
small for the workloads. Therefore, threads that execute si-
multaneously should be selected carefully considering their
memory reference behavior. Cache-aware job scheduling is
a subject of our ongoing work.

Even without SMT, one can view an application
as multiple threads executing simultaneously where each
thread has memory references to a particular data struc-
ture. Therefore, the result of this investigation can also be
exploited by compilers for a processor with multiple func-
tional units and some cache partitioning control.



Cache LRU Partition Abs. Rel.
Size Hit-rate(%) IPC Hit-rate(%) IPC Improv. Improv.
(MB) art mcf art mcf (%) (%)

art + mcf
0.25 8.8 20.4 1.064 8.0 20.5 1.065 0.001 0.09
0.5 10.3 22.2 1.067 14.5 17.8 1.070 0.003 0.28

1 25.7 26.6 1.080 61.6 19.5 1.167 0.087 8.06
2 63.7 40.3 1.189 76.8 33.1 1.347 0.158 13.29

art1 + mcf1 + art2 + mcf2
0.25 6.4/6.7 16.4/15.2 2.123 6.5/3.5 29.8/11.3 2.126 0.003 0.14
0.5 7.3/7.6 19.5/18.2 2.128 7.7/4.6 30.7/15.2 2.131 0.003 0.14

1 9.3/10.1 22.1/21.4 2.134 9.1/32.4 31.1/13.5 2.161 0.027 1.27
2 25.1/25.5 28.1/25.1 2.160 57.2/73.2 32.0/16.0 2.456 0.307 14.21
4 63.9/63.6 41.7/41.2 2.382 73.9/86.7 49.5/26.6 2.786 0.404 16.96

Table 3. IPC Comparison between the standard LRU and the partitioned LRU strategy for the case of executingart andmcf simultaneously.

Acknowledgements

Funding for this work is provided in part by the Defense
Advanced Research Projects Agency under the Air Force
Research Lab contract F30602-99-2-0511, titled “Mal-
leable Caches for Data-Intensive Computing”. Thanks also
to Enoch Peserico, Derek Chiou, David Chen and Vinson
Lee for their comments.

References

[1] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simul-
taneous multithreading: Maximizing on-chip paral-
lelism. In 22nd Annual International Symposium on
Computer Architecture, 1995.

[2] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M.
Tullsen, and S. J. Eggers. Converting thread-level par-
allelism to instruction-level parallelism via simultane-
ous multithreading.ACM Transactions on Computer
Systems, 15, 1997.

[3] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L.
Stamm, and D. M. Tullsen. Simultaneous multi-
threading: A platform for next-generation processors.
IEEE Micro, 17(5), 1997.

[4] C. Freeburn. The hewlett packard PA-RISC 8500 pro-
cessor. Technical report, Hewlett Packard Laborato-
ries, October 1998.

[5] Compaq. Compaq alphastation family.

[6] MIPS Technologies, Inc.MIPS R10000 Microproces-
sor User’s Manual, 1996.

[7] J. L. Henning. SPEC CPU2000: Measuring CPU per-
formance in the new millennium.IEEE Computer,
July 2000.

[8] D. T. Chiou. Extending the Reach of Microproces-
sors: Column and Curious Caching. PhD thesis,
Massachusetts Institute of Technology, 1999.

[9] H. S. Stone, J. Turek, and J. L. Wolf. Optimal par-
titioning of cache memory. IEEE Transactions on
Computers, 41(9), September 1992.

[10] G. E. Suh, S. Devadas, and L. Rudolph. Analytical
Cache Models with Application to Cache Partition-
ing. In the ���� international conference on Super-
computing, 2001.

[11] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving
disk cache hit-ratios through cache partitioning.IEEE
Transactions on Computers, 41(6), June 1992.

[12] B. Fox. Discrete optimization via marginal analysis.
Management Science, 13, 1966.

[13] C. K. Chow. Determining the optimum capacity of a
cache memory. IBM Tech. Disclosure Bull., 1975.

[14] B. K. Bershad, B. J. Chen, D. Lee, and T. H. Romer.
Avoiding conflict misses dynamically in large direct-
mapped caches. InASPLOS VI, 1994.

[15] D. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. Technical report, University of
Wisconsin-Madison Computer Science Department,
1997.


