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ABSTRACT The concentrated popularity distribution of video files and the caching of popular files on users

and their subsequent distribution via device-to-device (D2D) communications have dramatically increased

the throughput of wireless video networks. However, since popularity distribution is not time-invariant, and

the files available in the neighborhood can change when other users move into and out of the neighborhood,

there is a need for replacement of cache content. In this work, we propose a practical and feasible replacement

architecture for base station (BS) assisted wireless D2D caching networks by exploiting the broadcasting of

the BS. Based on the proposed architecture, we formulate a caching content replacement problem, with the

goal of maximizing the time-average service rate under the cost constraint and queue stability. We combine

the reward-to-go concept and the drift-plus-penalty methodology to develop a solution framework for the

problem at hand. To realize the solution framework, two algorithms are proposed. The first algorithm is

simple, but exploits only the historical record. The second algorithm can exploit both the historical record

and future information, but is complex. Our simulation results indicate that when dynamics exist, the systems

exploiting the proposed designs can outperform the systems using a static policy.

INDEX TERMS Caching content replacement, device-to-device communication, wireless caching network.

I. INTRODUCTION

The demand of wireless traffic has increased dramatically

in the past several years, and this demand is expected to

continue to grow in the future [2]. Among numerous wire-

less applications, the delivery of video content accounts for

majority of the data traffic; how to support this application is

one of the challenges for 4G and 5G systems [3], [4]. Con-

ventional throughput-enhancing approaches (e.g., massive

antenna systems, network densification, and millimeter wave

systems) all rely on obtaining more physical resources and/or

increasing infrastructure investment, which are generally

expensive [5]. In contrast, memory has become the cheapest

hardware resource owing to the rapid development of the

semiconductor industry. This then motivates researchers to

exploit content (in particular video) caching in both wireline

and wireless networks [3]–[6]. The idea is to trade memory

for bandwidth by caching files during the off-peak hours,

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Shuja .

and then using the cached files during the peak hour. This

idea, combined with the asynchronous content reuse and

concentrated popularity distribution of video content, renders

caching in wireless networks a promising solution to satisfy

video traffic demand [3]–[5].

Recently, on-device video caching, combined with high

performance device-to-device (D2D) communications [7]

for video distribution, has shown (both in theory and in

practice) its capability to improve performance signifi-

cantly without needing to install additional infrastructure and

without having to use complicated coding [8]–[10].1 As a

result, numerous papers have investigated such D2D-based

caching using different strategies and from different aspects,

including successful transmission (hit) rate [17], [18],

throughput [19], [20], energy efficiency [20], [21], and

delay [22], [23]. For example, [20]–[22] investigated designs

that consider the interplay between caching policy and

1Other approaches can be used to exploit caching at the wireless edge,
e.g., femtocaching [3], [11], [12]; BS-caching [13], [14]; and coded multi-
casting [15], [16]. Howeveer, they are beyond the scope of this paper.
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cooperation distance as well as the trade-offs between dif-

ferent goals. Stochastic geometry techniques were exploited

to analyze cache-aided D2D networks in [24], whereas [25]

leveraged mobility to enhance networks. By using the graph-

ical approach, [26] proposed a joint content caching and link

scheduling design. In [27], caching and dynamic streaming

strategies were investigated while considering the trade-off

between video quality and diversity in the design.

The main challenge in caching networks sits on the net-

work’s decision on which file is cached by whom. This is,

by and large, considered as the caching policy design prob-

lem.Althoughmany researchers have already investigated the

different aspects of this problem using different approaches,

their main emphasis generally lies on the direction of static

policies based on network statistics, i.e., the same caching

policy is used throughout the whole network and over the

whole time horizon without considering specific dynamics.

Conversely, it can be beneficial to consider dynamics of the

network and to proactively conduct dynamic caching content

replacement/refreshing, in which content of caches is proac-

tively replaced by some controllers according to the dynamics

of the network. There are several motivations for it: (i) the

popularity distribution can change with time (e.g., emer-

gence of a new viral video) and space (e.g., recording of

different sports teams are popular in different cities); (ii) the

caching realizations of the network can be inappropriate

(e.g., users do not cache files according to the designated pol-

icy); and (iii) user mobility can change the locally available

user density and cached files. Such network dynamics can

degrade the performance of a network that uses a statically

designed caching policy, whereas adaptations (cache replace-

ment) can automatically compensate. Accordingly, adopting

a dynamic design can be beneficial; however, to the best

of our knowledge, proactive dynamic content caching and

replacement in wireless D2D caching networks have still yet

to be investigated fully (as will be further discussed below).

Thus, this paper aims to improve this situation.

A. RELATED LITERATURE REVIEW

Several papers have investigated the dynamic cache replace-

ment in femtocaching and BS-caching cases [28]–[34].

In [28], the authors proposed adopting a distributed caching

replacement approach via Q-learning, albeit their focus was

on caching at the BS and on fixed network topology. In [29],

the caches of BSs were refreshed periodically to stabilize

the queues of two request types and to satisfy the quality of

service requirements. In [30], the authors aimed to offload

the traffic to infostations, and thus used a multi-armed bandit

optimization to refresh the caches of BSs. Meanwhile, [31]

proposed an algorithm exploiting the multi-armed bandit

optimization to learn the popularity of the cached content

and update the cache to increase the cache-hit rate. In [32],

a reinforcement learning framework was proposed while con-

sidering popularity dynamics into the analysis in order to

refresh the caches in BSs and to minimize delivery cost.

In [33], the loss due to outdated caching policy was analyzed

for a small cell BS and an updating algorithm to mini-

mize the offloading loss was proposed. Based on real-data

observations, [34] established a workload model and then

developed simple caching content replacement policies for

edge-caching networks. However, these caching replacement

policies for femtocaching do not carry over to D2D caching

networks due to the following: (i) the use of more constrained

wireless channels demands a specific architecture for con-

ducting replacement; (ii) the distributed file-caching struc-

ture and intertwined D2D cooperations and communications

between users result in a more complicated and constrained

conditions for making replacement decisions; and (iii) the

locally available cached files can change with time due to

user mobility, e.g., users carrying critical files could vanish

right after the replacement actions.

Cache replacement in users has its history in the Computer

Science community [35], [36], which generally consider

individual replacement and/or networks with special prop-

erties without considering D2D cooperation. Although [37]

implicitly used content caching replacement, the study

mainly focused on joint content delivery and caching design

at a given time slot at a given user demand. This is obviously

different from our goal. In [38], user cache refreshment was

investigated using a Markov decision process (MDP); how-

ever, the study focused on efficient buffering for a single user

and ignored the important multiuser situation and D2D net-

work communications. In [39], the problem of how users can

‘‘reactively’’ update their caching content was investigated.

This is different from our aim of ‘‘proactively’’ updating the

caching content.

B. CONTRIBUTIONS OF THIS PAPER

In this work, we consider BS-assisted wireless D2D caching

networks and focus on dealing with different dynamics,

including user mobility and the change of popularity distri-

bution. We first propose a network architecture for content

replacement. Since dynamics exist when conducting content

replacement, we then devise approaches to help decide which

files should be cached and what files should be removed

from users’ caches. To provide a general design for the

network, we describe the network using several random

processes, i.e., service process that describes the services

for video file requests, arrival process that describes the

arrivals of requests, and outage process that describes the

dropping of requests. Thus, any network whose behavior

can be described by those processes can use our design.

To conduct replacement, we propose using the broadcasting

nature of the BS. To observe the network behavior and make

decisions, we use a queueing system to individually queue

up requests of different files. Hence the BS can make deci-

sions by observing the network state and queueing record.

Since the replacement action (via broadcasting) generates

cost, we thus aim to maximize the time-average service rate,

defined as the average number of requests served per time

slot, subject to a time-average cost constraint and queue

stability.
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The replacement problem includes three parts: (i) deciding

when to conduct a replacement; (ii) deciding which files to

newly cache on users; and (iii) deciding what files should be

replaced, i.e., deleted from the caches. The joint design of

these three problems is extremely challenging. Thus, we pro-

pose a heuristic but effective procedure for the final part

of the problem. Most of the work in the paper concen-

trates on the first two parts, i.e., deciding when and which

files to push into the user caches. For this, we develop a

sequential decision-making optimization problem, and pro-

pose a solution framework by combining the ‘‘reward-to-

go’’ concept and the drift-plus-penalty methodology from

Lyapunov optimization [40]. We also provide analytical

results to show insights and benefits of this framework.

Directly solving the optimization problem in the framework

might not be feasible; thus, we propose two algorithms for

practical implementation, as the algorithms can satisfy the

time-average constraint and stabilize the queues. The first

algorithm makes myopic decisions to minimize the upper

bound of the drift-plus-penalty term. This approach is fairly

simple; however, it uses historical record and present sys-

tem states without considering future information. On the

other hand, we can leverage on potential future information

in the second algorithm, as it employs Monte-Carlo sam-

pling [41], [42] to incorporate future information into the

decision-making process. To enhance the second approach,

two complexity-reduction approaches for Monte-Carlo sam-

pling are proposed. We use simulations to demonstrate the

efficacy of the proposed replacement designs and to gain

insights into these approaches. The results show that when

dynamics exist and our approaches are used, the network is

significantly improved as compared to that when the static

approaches are used. Our main contributions are summarized

as following:

• We discuss the replacement problem in wireless

D2D caching networks and propose a network archi-

tecture for the replacement procedure. To the best

of our knowledge, this is the first work to focus

on dynamic replacement in wireless D2D caching

networks.

• We formulate the replacement problem in the form of a

sequential decision-making problem with time-average

cost constraint and queue stability. We propose a solu-

tion framework that incorporates the reward-to-go con-

cept into the drift-plus-penalty methodology and then

discuss the insights and benefits gained from adopting

this framework.

• To put the proposed framework in practice, we develop

and propose using two replacement algorithms that can

satisfy the time-average constraints and stabilize the

queueing system. The first algorithm is fairly simple to

implement, but uses only the current system state and

historical records for the content replacement. The sec-

ond algorithm, on the other hand, can effectively lever-

age on both historical record and future predictions to

make decisions.

• Our simulations, which adopt the practical network con-

figurations for cache replacement, validate the effective-

ness of our proposed designs. The results show that the

dynamic cache replacement can significantly improve

network performance. Likewise, the simulation results

provide insights into the dynamic replacement process

performed in this paper.

II. SYSTEM MODEL

In this work, we consider a BS-assisted wireless D2D caching

network, in which users in the network can cache files and

communicate with one another. We consider a centrally con-

trolled scheduling for D2D networks; the BS serves as the

central controller that collects requests and caching informa-

tion from users, schedules D2D communications, and decides

on the replacement actions. We also assume that the BS can

broadcast files to users, thereby enabling the cache content

replacement for users. To focus on the performance of the

on-device caching, we assume that users can be served only

through self-caching, D2D caching, and broadcast without

using user-specific BS links. Thus, user requests can only be

satisfied in three ways: files in their own caches, files acces-

sible via D2D communication, and broadcast files. When a

user generates a request, it first checks whether this request

can be satisfied by the files in its own cache, i.e., by self-

caching. If yes, then the request is satisfied; otherwise, i.e., a

request cannot be satisfied by self-caching, this request is sent

to the BS for possible services via the D2D communication

or via broadcast.

We assume in the file replacement process that the central

controller can observe all requests sent to the BS and knows

the information on which files are cached by which users.

These assumptions consequently lead to some additional sig-

naling cost. Moreover, broadcasting files from the BS to the

users also induces cost. Since the amount of signaling bits

is typically much smaller than the number of bits in a video

delivery, the cost of the signaling overhead could be included

as part of the cost of conducting a file replacement (which is

mainly dominated by the cost of the file broadcast). As will

be shown later in Sec. III, our problem formulation considers

this cost by having a time-average cost constraint.

We consider a library consisting ofM files and assume that

all files have equal sizes for simplicity. We assume users can

cache only a single file of the library, i.e., S = 1, in most of

the paper (Secs. III-VI) for simplicity, and extend to networks

where users can cache multiple files, i.e., S > 1, in Sec. VII.

We consider a homogeneous request probability model which

uses am to describe the probability of a user to request file m,

with
∑M

m=1 am = 1.2 To describe the realization of the

files cached in the network at time t , we denote the caching

2Nevertheless, it will be evident that our proposed replacement framework
and designs can also be applied to networks that consider individual user
preference [43], [44], although the information on individual preference is
not fully leveraged. The design that fully exploits such information is an
important direction for future studies
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probability of file m as bm(t):

bm(t) =
Nm(t)

∑M
n=1 Nn(t)

, (1)

where Nm(t) is the number of users caching file m in the

D2D network at time t known by the BS via signaling.

By definition, 0 ≤ bm(t) ≤ 1 then indicates the probability

of file m being cached by a user of the network. We consider

both active and inactive users. The active users are defined as

the users who generate requests, whereas the inactive users

are those who do not, albeit both types of users participate in

the D2D communications. Note that an inactive user can also

choose not to participate in theD2D communications depend-

ing on the scenario assumptions. However, such inactive user

is then independent of the D2D network, and can thus be

ignored without restriction of generality. Moreover, as will

become clear in the succeeding discussions, our replacement

approach does not use the specific information regarding the

number of active and inactive users for making decisions.

Instead, we use the queuing dynamics of requests to implicitly

convey the information on the number of active users waiting

for the services. Hence, we do not need to specify the distri-

butions (or numbers) of active and inactive users in themodel.

We adopt a queueing system at the BS with M queues,

where queue m stores requests for file m, to help identify the

historical record and make replacement decisions. We denote

Qm(t) as the number of requests in queue m at time t . The

update of queue m is described as

Qm(t + 1) = max{Qm(t) + rm(t) − sm(t) − soutm (t), 0}, (2)

where rm(t) ≥ 0 is the number of requests of file m arriving

at time t , sm(t) ≥ 0 is the number of requests of file m

satisfied by the network at time t , and soutm (t) ≥ 0 is the

outage of requests of file m at time t . Here, an outage is

defined as a user dropping the request before being served

by the network. It should be noted that rm(t) and sm(t) of (2)

do not include the requests and services directly satisfied

by and provided through self-caching. This is because those

requests that self-caching can satisfy would be directly han-

dled by the corresponding services, and they cancel each

other. Such result is in line with our model, which posits

that a BS can only observe those requests that self-caching

cannot satisfy. On the contrary, the impact of self-caching is

implicitly considered in the process, as the requests satisfied

by self-caching are resolved without having to add requests

to the queuing system. Note that when evaluating the overall

network performance in simulations, the requests satisfied by

self-caching are still considered in the evaluation. Our results

in this paper can be used by any file request and content

delivery model described in (2). As a result, we do not assume

a specific file request and content delivery model.

Observe that Qm(t), rm(t), sm(t), and s
out
m (t) are random

processes, where rm(t) is related to the popularity distribution

and the number of users and their modes; sm(t) is related

to the caching distribution of users and the number of users

in the network; soutm (t) depends on the user’s willingness to

wait for the service. Obviously, for files that are not stored

by any of the users, if there is no other sources for accessing

them (e.g., file broadcasting due to replacement actions), then

an outage occurs no matter how long the user is willing

to wait. With these interpretations, we identify conditions,

i.e., time scale decomposition and monotonicity below, that

can significantly benefit the replacement scheme. Note that

these conditions are not assumptions that will be used in our

analysis later on. Instead, they describe the conditions that

would give large replacement benefits in practice. However,

violating these conditions can gradually decrease the perfor-

mance gain. For example, when user mobility becomes faster,

the performance gradually degrades (see Fig. 5). Despite this,

violating these conditions does not prevent us from using the

analytical results and replacement designs provided in this

paper.

Time scale decomposition:
1) Popularity distribution varies slowly with respect to the

replacement, i.e., E
[

Tpop
]

> E
[

Trep
]

, where E
[

Tpop
]

is the average time period that the popularity distri-

bution stays invariant and E
[

Trep
]

is the average time

between two replacement actions.

2) User mobility is slow with respect to the replacement,

i.e., E [Tcell] > E
[

Trep
]

, where E [Tcell] is the average

time period that a user stays in the effective service area

of the same BS.

3) The user mode switches from active to inactive at a

frequency similar to or slower than the frequency of

the replacement, i.e., E [Tmode] > E
[

Trep
]

, where

E [Tmode] is the average minimal time period that each

user switches from active to inactive. This condition

guarantees that a user request stays in the queue for a

reasonably long period.

Monotonicity:

1) When the number of requests is sufficient, the number

of services, E [sm(t)], is monotonically increasing as a

function of bm(t). However, sm(t) can also be a function

of other parameters, such as queue size Qm(t), user

locations, user modes, etc. Usually, the more that the

network caches a file, the higher the service rate for the

network would be for that file.

2) The expected number of outages,E
[

soutm (t)
]

, is a mono-

tonically increasing function of the queue size Qm(t).

This is also commonly observed since a larger queue

size indicates longer latency of delivery, and thus

higher probability that users would cancel a request.
The overall procedure in time slot t is as follows: the

users first check whether their requests can be satisfied by

the files in their own caches. If yes, then the requests are

satisfied. Otherwise, users send requests to the BS. The BS

then collects the requests and observes rm(t) (Qm(t), ∀m,

are already known), and then decides what action to take.

If the BS decides to conduct a file replacement, then the

replacement procedure is consequently conducted according

to the decision. After the action, the network serves the

users by a pre-determined content delivery mechanism and
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decides sm(t). Finally, the transition of user modes is con-

ducted leading to soutm (t). We then finish time slot t , and

the network transitions to time slot t + 1. The following

summarizes the assumptions and feasibility of our model:
1) The BS can centrally control the D2D scheduling and

conduct replacement action, collect requests that can-

not be satisfied by self-caching, and collect information

on what files are cached by users.

2) To focus on the effects of on-device caching, users are

served only by self-caching, D2D-caching, and broad-

cast from the BS.

3) Users can be either active or inactive. Since our replace-

ment will use the queuing dynamics of requests tomake

decisions, we do not need to specify the statistics on

numbers of active and inactive users in the network (of

course, we need to specify their statistics for obtaining

the numerical results in Sec. VIII).

4) Our model is very general such that any file request and

any content delivery model that (2) describes can use

our design. We thus do not specify a file request and

content delivery model here (again, we need a specific

file request and content delivery model for obtaining

the numerical results in Sec. VIII).

5) Although our design could be feasibly used in general

situations, this does not mean it would perform well

under extreme scenarios, e.g., high-mobility scenar-

ios. We thus discussed the conditions, i.e., time scale

decomposition and monotonicity, that would give large

benefits.

III. DYNAMIC CACHING CONTENT REPLACEMENT

In this section, we first describe the caching content replace-

ment procedure, and then introduce the mathematical formu-

lation of the replacement problem.

We assume that S = 1 and that the BS can broadcast a

single file at a time.3 Suppose we want to increase bm(t) by

dm(t), where 0 < dm(t) ≤ 1 − bm(t) is the replacement

step-size, i.e., we want to replace other files by file m with a

targeted fraction dm(t). To do this, the BS broadcasts filem to

users and decides which files should be replaced or deleted

from the cache. Here, our policy is to first replace those

files that have the lowest ‘‘pressure’’, i.e., smallest queue

size, on the queue. To be specific, we first construct a file

replacement order by assigning a smaller index to the file with

the smaller queue size. Thereafter, we select and replace the

files that have the lowest index, and then follow the order of

the indices to drop files until we achieve the desired ratio of

files, i.e., dm(t). Note that the user that should drop the file is

selected randomly. For example, when deciding to drop file 3

and cache file 1 from the broadcasting, the users that should

perform this operation are selected randomly from the set of

users caching file 3 in the network. To provide a concrete

3The issue of extending the broadcast of multiple files at a time is still
a subject for future research. As such, broadcasting multiple files within a
short period is not too different from broadcasting only one single file at a
time.

example, suppose we have 3 files with b1(t) = 0.3, b2(t) =

0.3, b3(t) = 0.4 and Q1(t) = 8, Q2(t) = 4, Q3(t) = 2, and

want to increase file 1 by d1(t) = 0.05. The BS broadcasts file

1 and selects file 3 to be replaced by the ratio of 0.05, resulting

in b1(t) = 0.35, b2(t) = 0.3, b3(t) = 0.35 after the replace-

ment. Consider another example that we want to increase file

1 by d1(t) = 0.5. Then we again broadcast file 1 and replace

files, leading to b1(t) = 0.8, b2(t) = 0.2, b3(t) = 0 after the

replacement. The intuition of this replacement procedure is

that the file with a lower pressure likely is cached on users

more frequently than is necessary to serve the user requests.

We note that since the number of files cached in the network is

integer in practice, we cannot realize arbitrary step-size. Thus

in practice, we use Nrep to decide how many users should

conduct the replacement, where Nrep = round(U · dm(t)) is

the integer that can provide the closest approximation to the

desired step-size andU is the number of users in the network.

It is obvious that the considered replacement procedure can

be further optimized by considering more flexible strategies.

For example, instead of dropping all the files with the smallest

index first, and then the second (see the second example),

we can flexibly switch between dropping different files. How-

ever, this flexibility complicates the problem. Since we focus

on deciding when and which file should be broadcast and

what step-size to take, investigating this flexible assignment

is left for future work. Note this suboptimal replacement

procedure is effective enough if we choose carefully both the

file to be broadcast and the step-size.

For most of this work, we focus on deciding when and

which files should be broadcast and newly cached by users

and what step-size to take in the replacement procedure.

The goal of the decisions is to maximize the time-average

number of requests satisfied by the D2D network subject to

the cost constraint and queue stability. We define a broad-

casting action at time t as a two tuple: (m, dm(t)), where

m = 1, 2, . . . ,M is the file being broadcast and 0 < dm(t) ≤

1− bm(t) is the replacement step-size of broadcasting file m.

We also define the silent actionwithout broadcasting asAslt =

(0, 0). Consequently, denoting Dm(t) as the set involving all

possible step-sizes of broadcasting file m at time t , the action

space at time t is A(t) = Abr(t) ∪ {Aslt}, where

A
br(t) = {(m, dm(t)) | m = 1, . . . ,M; dm(t) ∈ Dm(t)}. (3)

The cardinality of Dm(t) can be infinitely large since dm(t) is

generally a real number. However, in practice, Dm(t) is finite

because we only have finite number of users and because

we can implement quantization. With the definition of the

action space, our replacement problem is mathematically

formulated as

max
P

lim inf
T→∞

1

T

T−1
∑

t=0

M
∑

m=1

E
[

sA(t)m (t)
]

(4a)

s.t. lim sup
T→∞

1

T

T−1
∑

t=0

E
[

c
A(t)
inst (t)

]

≤ C (4b)
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lim sup
T→∞

1

T

T−1
∑

t=0

E
[

QA(t)m (t)
]

< ∞, ∀m, (4c)

where A(t) ∈ A(t) is the action we take at time t accord-

ing to some policy P; c
A(t)
inst (t) is the cost of action A(t);

C is the cost constraint; and Q
A(t)
m (t) is the size of queue

m under a sequence of decisions A(0),A(1), . . . ,A(t − 1).

Note that we use Qm(t) for the general purpose, whereas we

use Q
A(t)
m (t) to stress that the result is under the sequence

{A(0),A(1), . . . ,A(t − 1)}. Besides, the superscript ·A(t) is to

explicitly indicate that decision sequence A(t) influences the

random processes. This concept applies to all notations in the

remainder of this paper.

In the formulation, (4b) indicates that we need to follow

a time-average cost constraint. Besides, (4c) indicates that

we need to stabilize every queue such that all requests can

be possibly served as long as they stay in the system [40].4

Furthermore, note that s
A(t)
m (t) in the objective function can

be replaced by some other reward functions, such as num-

ber of bits. In this case, we need to use number of bits to

represent our queue size. In addition, s
A(t)
m (t) is indeed a

function of the system parameter set P(t), which is subject

to the actual file request and content delivery mechanism

of the networks. However, to simplify the notation in the

paper, we do not explicitly write dependence onP(t). Finally,

although c
A(t)
inst (t) can be different when we choose to con-

duct different actions, we simply assume here a constant

cost when broadcasting different files and zero cost when

being silent without broadcasting. Mathematically, we thus

let c
A(t)
inst (t) = c if A(t) ∈ Abr(t) and c

A(t)
inst (t) = 0 if

A(t) = Aslt. Note that since conducting a broadcasting

action should induce a much higher cost than being silent

without broadcasting, a broadcasting action cannot always

be performed. As a result, we generally set c to be larger

than C .

IV. DRIFT-PLUS-PENALTY AIDED MINIMIZATION

METHODOLOGY

Considering the replacement architecture proposed in

Sec. III, our goal is to find a policy P that maximizes the

time-average service rate while subject to queue stability and

cost constraint as described in (4). However, solving (4) is

a sequential decision-making problem, which is very chal-

lenging under general conditions and with large dimension.

To solve this, we combine the drift-plus-penalty methodology

in Lyapunov optimization [40] with the idea of ‘‘reward-to-

go’’ [45], i.e., the reward in the future, to develop the policy

design framework.

4Note that due to the physical constraints in practice, it is possible that
queues Qm(t) are bounded inherently. However, in this case, it is still mean-
ingful to derive an algorithm based on the notion that queues can become
infinite. This is because any algorithm derived for a limiting case will work
close to optimum for a finite, but sufficiently large, n. Consequently, we are
devising an algorithm assuming a large number of requests, which requires
queue stabilization, and then apply this algorithm to cases of inherently finite
queue lengths.

First, we define the reward-to-go for file m at time t in l

time-slots as:

R̃m(t,A(t)) =
1

l

(

sA(t)m (t) + E

[

l−1
∑

τ=1

sA(t+τ )
m (t + τ )

])

, (5)

where A(t + τ ), τ = 0, . . . , l − 1 are actions determined by

a policy P and E
[

s
A(t)
m (t + τ )

]

is the expected service rate

in the τ th time-slot after the considered time t . With this

definition, we then formulate another optimization problem:

max
P

lim inf
T→∞

1

T

T−1
∑

t=0

M
∑

m=1

E
[

R̃m(t,A(t))
]

s.t. (4b), (4c), (6)

whereA(t), ∀t, are determined by a policyP. We then provide

the following Lemma:

Lemma 1: Suppose actions A(t) ∈ A(t), ∀t, are determined

by a policy P and the expected service rate is upper bounded

by a finite number smax as E
[

s
A(t)
m (t)

]

≤ smax . Accordingly,

the following holds:

lim
T→∞

1

T

(

T−1
∑

t=0

E
[

sA(t)m (t)
]

−

T−1
∑

t=0

E
[

R̃m(t,A(t))
]

)

= 0. (7)

Proof: See Appendix A. �

Lemma 1 shows that the optimization problem in (4) is

equivalent to that in (6). Besides, when l = 1, (6) auto-

matically degenerates to (4). Thus, Lemma 1 explains the

rationale of considering (6). To find the effective solution

for (6), we consider using the drift-plus-penalty-minimization

methodology. To define the drift, we first introduce a virtual

cost queue:

Z (t + 1) = max
(

Z (t) + c
A(t)
inst (t) − C, 0

)

, (8)

where 0 ≤ Z (0) < ∞ is the initial condition. We assume that

the number of arrivals is bounded, i.e., rm(t) < ∞, ∀m. Then

by (2) and (8), we can obtain (9), as shown at the bottom of

the next page, where

2B≥

M
∑

m=1

(

rm(t)−s
A(t)
m (t)−soutm (t)

)2
+
(

c
A(t)
inst (t) − C

)2
≥0

is a constant.

We define L(t) = 1
2

[

∑M
m=1 (Qm(t))

2 + (Z (t))2
]

and

define the drift as 1(t) = L(t + 1) − L(t). Consider

a finite non-negative number V . The drift-plus-penalty is

then bounded as in (10), shown at the bottom of the next

page. A policy that selects actions by minimizing the drift-

plus-penalty in (10b) leads to the following theorems:5

5We note that by following the concept of the Bellman’s principle of
optimality, the necessary condition for an optimal policy P is that, while
subject to the queuing stability and cost constraint, P can at each time slot
maximize R̃m(t,A(t)) with l → ∞. Consequently, when l and V tend
to infinity, the drift-plus-penalty-minimization can satisfy the optimality
condition. However, since directly finding R̃m(t,A(t)) with l → ∞ might
not be possible, we need to resort to minimizing (6) with finite l and V for
finding a feasible solution.
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Theorem 1: Suppose M , V , Z (0), and Qm(0), ∀m, are

some finite numbers. Assume rm(t) ≤ rmax, ∀m, are finite

and bounded; C > 0 and c
A(t)
inst (t), ∀A(t) ∈ A(t), are

also finite and bounded. If the adopted policy chooses the

action A(t) ∈ A(t) such that (10b) is minimized for all

t , then Q
A(t)
m (t), ∀m, ∀t , are upper bounded. Accordingly,

constraints in (4c) are satisfied, i.e., every queue is sta-

ble. Moreover, the time-average cost constraint in (4b) is

satisfied.

Proof: See Appendix B. �

Theorem 2: Assume
∑M

m=1 E[Qm(t)] ≤ ǫV , E[Z (t)] ≤

δV , rm(t) ≤ rmax, and c
A(t)
inst (t) ≤ Cmax for some finite pos-

itive ǫ, δ, rmax, and Cmax. Assume that
∑M

m=1 R̃m(t,A(t)) is

finite and upper bounded. When the actions A(t) ∈ A(t), ∀t,

are determined by a policy P, there must exist a finite

non-negative number y∗ such that

lim inf
t→∞

1

T

T−1
∑

t=0

M
∑

m=1

E
[

R̃m(t,A(t))
]

≥ y∗ −
B

V
− ǫrmax − δCmax. (11)

Furthermore, y∗ can be maximized when (10b) is minimized

at all t .

Proof: See Appendix C. �

By observing the proof of Theorem 1, Q
A(t)
m (t), ∀m,

and Z (t) are upper bounded. Therefore, the prerequisite

of Theorem 2 can be realized. Theorem 2 indicates that

minimizing (10b) can effectively maximize y∗. In addition,

V controls the trade-off between the performance of the

reward-to-go and the real and cost queue lengths. When

V = 0, Theorem 2 induces a trivial lower bound. How-

ever, this does not necessarily mean that the time-average

service rate in this situation is very poor. This is because

even if V = 0, we can still stabilize the queuing system,

which implicitly provides good service rate. In this context,

the inclusion of the penalty term can be interpreted as ameans

of controlling the optimization of the service rate. Finally,

we show a lower bound performance of the proposed design

using Theorem 3:

Theorem 3: Assume that there exists a randomized policy

2 that is i.i.d. with respective to time t and independent

to Qm(t), Z (t), and to Bm(t), ∀m, such that the following is

satisfied:

E
[

c2inst(t)
]

− C ≤ δ; E
[

s2m (t)
]

≥ y2m , ∀m;

E

[

M
∑

m=1

(

rm(t) − s2m (t)
)

]

≤ δ, (12)

where δ could be arbitrary small. Suppose A(t) ∈ A(t), ∀t,

are determined by a policy P that minimizes (10b). Then,

the following is satisfied:

lim inf
T→∞

1

T

T−1
∑

t=0

M
∑

m=1

E
[

R̃m(t,A(t))
]

≥

M
∑

m=1

y2m −
B

V
. (13)

Proof: See Appendix D. �

Theorem 3 indicates that the drift-plus-penalty minimiza-

tion approach can be better than an arbitrary randomized

design. This characterizes a lower bound performance of the

drift-plus-penalty-minimization methodology.

The above results show the benefits of using the drift-

plus-penalty methodology to design a policy. However,

directly minimizing (10b) can be very difficult or even impos-

sible due to the need of computing
∑M

m=1 R̃m(t,A(t)).We thus

propose in Secs. V and VI two alternative designs that can be

practiced to help resolve this issue.

V. MYOPIC DRIFT-PLUS-PENALTY AIDED

MINIMIZATION REPLACEMENT

In this section, we propose the first design which myopically

minimizes the drift-plus-penalty, i.e., the drift-plus-penalty

minimization is performed without considering the future

payoff. Observe that when l = 1, the drift-plus-penalty can be

bounded as in (14), as shown at the bottom of the next page,

where X ≥
∑M

m=1Qm(t)rm(t) ≥ 0 is a constant-bound given

that Qm(t), ∀m, are upper bounded (see Theorem 4 later);

(a) is because Qm(t)s
A(t)
m (t) ≥ 0, ∀m.

The original drift-plus-penalty methodology aims to min-

imize the first inequality in (14). However, when the D2D

M
∑

m=1

[Qm(t + 1)]2 + [Z (t + 1)]2 ≤

M
∑

m=1

[

Qm(t) + rm(t) − sA(t)m (t) − soutm (t)
]2

+
[

Z (t) + c
A(t)
inst (t) − C

]2

≤

M
∑

m=1

[Qm(t)]
2 + [Z (t)]2 + 2

[

M
∑

m=1

Qm(t)
(

rm(t) − sA(t)m (t) − soutm (t)
)

+ Z (t)
(

c
A(t)
inst (t) − C

)

]

+ 2B. (9)

1(t) − V

M
∑

m=1

R̃m(t,A(t)) ≤

M
∑

m=1

Qm(t)(rm(t) − sA(t)m (t) − soutm (t)) − V

M
∑

m=1

R̃m(t,A(t)) + Z (t)(c
A(t)
inst (t) − C) + B (10a)

≤

M
∑

m=1

Qm(t)(rm(t) − sA(t)m (t)) − V

M
∑

m=1

R̃m(t,A(t)) + Z (t)(c
A(t)
inst (t) − C) + B. (10b)
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scheduler is complicated, s
A(t)
m (t) might not have an analytical

expression that is easy to compute or estimate under different

actions. Thus, we use the final inequality in (14) and develop

a simplification that is based on the following observation:

if we choose to broadcast file m at time t , then we can imme-

diately know s
A(t)
m (t) = Qm(t) + rm(t) since the broadcast

can satisfy all requests for file m at time t . Besides, since

we assume no cost for silence, we also know that a sufficient

condition to choose to be silent is:

−(Qm(t) + V )sAmm (t) + Z (t)c
Am
inst(t) > 0, ∀m, (15)

where Am ∈ Abr(t) denotes any action broadcasting file m.

By previous observations, we solve the following optimiza-

tion problem for making the decision:

A(t) = arg min
A∈A(t)

gA,V (t), (16)

where gA,V (t) = −
[

∑M
m=1 1{A=Am} · (Qm(t) + V )sAm(t)

]

+

Z (t)cAinst(t) and 1{A=Am} is an indicator function that has value

of 1 only if the BS broadcasts filem. Note that when A = Aslt,

gAslt (t) = 0 and when A = Am, gAm,V (t) = −(Qm(t) +

V ) (Qm(t) + rm(t)) + Z (t)c
Am
inst. As a result, solving (16) is

very simple. The intuition in the solution to (16) is that the

system tends to broadcast the file with higher pressure on the

queue provided that the pressure in the virtual (cost) queue is

sufficiently low.

The complete replacement approach is to solve (16) and

decide the action at every time slot. Since (16) can be easily

solved, the complexity of the approach is low. Also, since

the proposed approach here exploits only the history record

(queue sizes) and the current system state without using any

future information, this approach is named myopic drift-

plus-penalty minimization (MyDPP) replacement. Note that

MyDPP cannot distinguish the differences in step-sizes when

we broadcast the same file; thus this approach cannot adap-

tively select step-sizes. Consequently, when implementing

the MyDPP replacement, we consider a compressed broad-

casting action space Acp(t), in which a constant step-size d

is adopted for any broadcasting action. Mathematically, this

indicatesA(t) = Acp(t)∪{Aslt} for the MyDPP replacement,

where

A
cp(t) = {(m, dm(t)) | m = 1, . . . ,M; dm(t) = d} (17)

Note that the constant step-size d of the replacement pro-

cedure should be carefully selected right at the beginning.

Algorithm 1 Proposed MyDPP Replacement Design

1: Init: Start at t = 0, Qm(0) ≥ 0, ∀m, Z (0) ≥ 0. Set

step-size d(t) = d and V ≥ 0.

2: for t = 0, 1, ... do

3: Evaluate gAm,V (t) = −(Qm(t)+V ) (Qm(t) + rm(t))+

Z (t)c
Am
inst, ∀m

4: if minm=1,...,M gAm,V (t) < 0 then

5: Broadcast the file m, where m =

arg min
m=1,..,M

gAm,V (t)

6: Conduct the replacement procedure provided in

Sec. III with step-size d

7: else

8: Keep silent, i.e., A(t) = Aslt

9: end if

10: Update the real queues Qm(t), ∀m, and the virtual

queue Z (t)

11: end for

Finally, the overall algorithm of MyDPP replacement is sum-

marized in Alg. 1. In addition, the proposedMyDPP approach

can guarantee the time-average cost constraint and stabilize

the queues according to the Theorem 4:

Theorem 4: SupposeM , V , Z (0), andQm(0), ∀m, are some

finite numbers. Consider rm(t) ≤ rmax, ∀m, are finite and

bounded; C > 0 and c
A(t)
inst (t), ∀A(t) ∈ A(t), are also finite

and bounded. Considering using the MyDPP policy, then

Q
A(t)
m (t), ∀m, ∀t , are upper bounded. Accordingly, constraints

in (4c) are satisfied. Moreover, the time-average cost con-

straint in (4b) is satisfied.

Proof: The proof follows the similar approach in

Theorem 1. We thus omit it for brevity. �

VI. DRIFT-PLUS-PENALTY AIDED MINIMIZATION

REPLACEMENT EXPLOITING SAMPLING

Next, we derive a method that exploits the potential future

information, i.e., the knowledge about future changes, in the

popularity distribution and the corresponding payoff. Guess-

ing the future popularity distribution (e.g., which videos will

become "viral") is a widely investigated topic; thus we will

not be discussed further. Instead, we simply assume here

that such future information is available on the BS. Besides,

we assume the operation of the network can be modeled

and simulated via Monte-Carlo methods. Accordingly, we

1(t) − V

M
∑

m=1

R̃m(t,A(t)) ≤

M
∑

m=1

Qm(t)(rm(t) − sA(t)m (t)) − V

M
∑

m=1

sA(t)m (t) + Z (t)(c
A(t)
inst (t) − C) + B

≤ −

M
∑

m=1

Qm(t)s
A(t)
m (t) − V

M
∑

m=1

sA(t)m (t) + Z (t)c
A(t)
inst (t) − Z (t)C + X + B

(a)
≤ −(Qm(t) + V )sA(t)m (t) + Z (t)c

A(t)
inst (t) − Z (t)C + X + B,m = 1, 2, . . . ,M . (14)
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propose the second design, which decides on the actions to

take with the aid of future information (i.e., l > 1).

A. PROPOSED REPLACEMENT EXPLOITING SAMPLING

AND ROLLING HORIZON

To introduce the future information and to satisfy the con-

straints in (4), we first need to minimize (10b) with finite

V and l > 1. However, computing for R̃(t,A(t)) at each

time might be impossible and/or can be very complex.

Therefore, we propose an alternative approach for estimating

R̃(t,A(t)). Besides, to reduce complexity, we aim to skip

such estimation for some time-slots. As such, we observe

that on one hand, we should not broadcast if the cost

queue is already highly pressured. On the other hand, if we

broadcast, then the algorithm shall select the action that

provides the highest reward-to-go. This observation then

breaks down the decision-making problem into two sub-

problems: (i) whether to conduct a broadcast with replace-

ment; and (ii) which file to broadcast with what step-size.

We then solve the sub-problems sequentially by exploiting

the drift-plus-penalty methodology.

When V = 0 and l = 1, the drift-plus-penalty approach

leads to the most stable and cost effective network, which

indicates that such approach is conservative. Thus, we solve

the problem with V = 0 and l = 1 to decide whether to

conduct a broadcast, i.e., we exploit the MyDPP approach

with V = 0 in Sec. V to decide whether to broadcast a file.

When we decide to broadcast a file, we need to select

the specific file and the step-size. In this case, we consider

V = ∞6 to optimize this decision, and then introduce the

Monte-Carlo sampling along with a probabilistic candidate

selection approach to estimate R̃(t,A(t)). Suppose we have

decided to broadcast and conduct a replacement.We first con-

struct the candidate set that includes all the possible broad-

casting candidates. Recall that when we consider to broadcast

at time t , we select an action fromAbr(t) in (3). Accordingly,

the candidate set5(t) is constructed by including all possible

broadcasting actions, i.e., all possible combinations of the

broadcasting files and step-sizes:

5(t) = {π = (m, dm)|m = 1, 2, ..,M; dm ∈ Dm(t)}. (18)

We then use the proposed Monte-Carlo based sampling

to select the best action. Suppose we are in time slot t .

A Monte-Carlo sample of a candidate π = (m, dm) is derived

by using the following Tstage stage simulation procedure:
1) At the simulation time k = t ,7 we broadcast file m

with a step-size dm, and then simulate the system using

Monte-Carlo method and record R̂(k,A(k),W (k)),

where R̂(k,A(k),W (k)) is the sampling reward with

randomnessW (k) at time k .

2) At simulation time k = t + 1 to t + Tstage − 1,

we simulate the system with A(k) = Aslt, i.e., the

system is silent, and record R̂(k,A(k),W (k)).

6In practice, different V could be considered for different tradeoffs.
However, this does not change the essence of our design.

7Note that we conduct the system simulation starting at k = t

3) Output the estimated reward-to-go of candidate π :

R̃t (π ) =

t+Tstage−1
∑

k=t

R̂(k,A(k),W (k)).

We note that we assume the operation of the system can be

modeled and simulated effectively. Besides, Tstage needs to be

carefully chosen to provide effective approximations. Since

we conduct simulations considering only a single broadcast

in Tstage time-slots, Tstage is suggested to be the average

number of time slots between two replacement actions. This

is because, by definition, the system should remain silent

between two replacement actions. Note that cost constraint

and the cost of each broadcast determines the average number

of time slots between two replacement actions. For example,

if the broadcasting cost is cAinst(t) = c, ∀A ∈ Abr(t), then we

can on average broadcast only once every c
C
time slots.

We now describe the candidate selection following the

idea in [41]. Suppose we acquire N samples for each can-

didate at time slot t . Denote the selection probability for a

candidate π as 9n(π ) when considering n samples, where
∑

π∈5 9n(π ) = 1. For a candidate π ∈ 5, the update of

the selection probability is:

9n(π ) =
(βπ )R̃t,n(π )

∑

π∈5 (βπ )R̃t,n(π )
9n−1(π ), n = 1, . . . ,N , (19)

where βπ is the annealing coefficient of candidate π and

R̃t,n(π ) is the sampling reward-to-go for sample n of can-

didate π at time t . We then use the selection probability

9N (π ), ∀π ∈ 5 to decide which file to broadcast and what

its corresponding step-size should be; that is, we decide the

final action according to the sample that the distribution

9N (·) randomly generates. The initial selection probabilities

can be any distribution such that
∑

π∈5 90(π ) = 1. How-

ever, we usually consider the uniform distribution for initial-

ization. We stress that, according to Theorem 3.1 in [41],

when N tends to infinity, this selection approach converges

to the optimal distribution that offers the optimal reward

based on the given sampling procedure and on the candidate

set.

We now summarize the proposed replacement approach in

this sub-section as follows and in Alg. 2. At each time t ,

we first decide whether to broadcast using Alg. 1. If the

result of Alg. 1 suggests broadcasting, then we enter the

next phase, in which we decide the broadcasting file and

the step-size; otherwise, the system remains silent. If we

broadcast, then we need to construct the candidate set

5 and use Monte-Carlo sampling to acquire reward-to-go

samples. We then compute for the final selection distri-

bution 9N (·) using (19); the action, including both the

broadcasting file and step-size, is determined by using a

random sample of the selection distribution. The replace-

ment approach proposed here is named sampling based

drift-plus-penalty (SPDPP). Compared with MyDPP, SPDPP

can adaptively adjust the step-size and exploit the future

benefits to make decisions. Besides, the proposed SPDPP

replacement can also satisfy the required constraints. This is
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Algorithm 2 Proposed SPDPP Replacement Design

1: Init: Set Qm(0) ≥ 0, ∀m, Z (0) ≥ 0, and the number of

samples N

2: for t = 0, 1, ... do

3: Evaluate gAm,0(t) = −Qm(t) (Qm(t) + rm(t)) +

Z (t)c
Am
inst, ∀m

4: if minm=1,..,M gAm,0(t) < 0 then

5: Construct the candidate set 5

6: Compute 9N (·) using (19) with the proposed

sampling procedure

7: Select the action: (m, dm) = π ∼ 9N (·)

8: Broadcast file m and conduct the replacement

procedure with step-size dm
9: else

10: Keep silent, i.e., A(t) = Aslt

11: end if

12: Update the real queues Qm(t), ∀m, and the virtual

queue Z (t)

13: end for

because we use the same approach as MyDPP to decide

whether to broadcast or not. We thus omit the proofs for

brevity.

B. COMPLEXITY REDUCTION APPROACH

Alg. 2 considers all possible broadcasting files and step-sizes

as candidates and uses a pre-determined sample sizeN . How-

ever, it is sometimes unnecessary to go through all candi-

dates and use up to N samples for every candidate. In this

section, we discuss some approaches to make Alg. 2 less

complex. Specifically, we aim to use the algorithm itself to

decide the number of candidates and samples. We therefore

propose two complexity reduction approaches that can be

used simultaneously.

1) INITIAL CANDIDATE NUMBER REDUCTION

In some situations, some files are redundantly cached to the

point that we even want to decrease their percentages in

the network. Thus, we do not have to include them in the

candidate set. To identify those files, we observe that we

broadcast only if there exists a file m such that gAm,0(t) < 0.

This indicates that it is more necessary to broadcast files

with gAm,0(t) < 0. Thus, we can include only those files

in our candidate set. Note that this approach might result in

the drop of the optimal solution. However, the probability for

this to occur can be reduced by setting some lower bound on

the minimal number of files to be included in the candidate

set, and then adding files with smaller gAm,0(t) in an ascend-

ing order. In addition, we can also set up a hard constraint

for the maximum number of files included in the candi-

date set. Although this might result in the loss of the opti-

mal solution, it could also effectively bound complexity in

practice.

2) SAMPLING WITH CANDIDATE PRUNING

We can adaptively prune the candidates to reduce the num-

ber of samples per candidate during the sampling process.

Recall that the update of the selection distribution 9n(·) is

a sequential update. Thus, instead of completely generating

R̃k,n(π ), ∀π, n, and then find the final selection distribution,

we can gradually generate the samples and update the selec-

tion distribution; that is, we generate R̃k,1(π ), ∀π, and then

compute for 91(·); generate R̃k,2(π ), ∀π, and then compute

for 92(·); and so on. In updating the selection distribution,

when there is a candidate π such that 9n(π ) < ǫ, it is

improbable that this candidate would be selected. Hence,

we set 9n(π ) = 0 and normalize 9n(·) such that their sum

is still equal to one. When 9n(π ) = 0, we then know that

it is never selected. Thus, π is pruned from the candidate

set, and we no longer need to generate more samples for this

candidate. This process continues until either there exists a

candidate π such that 9n(π ) = 1 or until n = N is reached.

This approach can reduce the number of candidates during

the sampling process, and can allow to terminate the process

earlier. It is clear that when ǫ → 0, this approach tends to

maintain optimality asymptotically.

VII. EXTENSION TO CACHING MULTIPLE FILES

For the convenience of elaborating the designs and funda-

mental concepts, we assumed in the previous sections that

each user would cache only one file, i.e., S = 1. Here,

we describe how we extend the proposed designs to the net-

works such that the users can cache multiple files, i.e., S > 1.

As discussed previously, a caching content replacement is

constituted by deciding which file should be newly cached

by users and which file should be removed. To extend the

proposed designs, we first extend the replacement procedure

in Sec. III to determine what files to remove from the users

when S > 1. Suppose we want to increase bm(t) by dm(t).

We first find all users who do not cache file m. Among those

users, we randomly select Nrep users such that bm(t) can

increase dm(t) if those users newly cache file m. Recall that

the Nrep defined in Sec. III is the integer that can provide

the closest approximation to the desired step-size. When the

selected users receive the broadcast filem, they need to decide

which file to remove from their caches in order to cache

file m. To make the decision, each user looks at the files in

their own caches and removes the file that has the smallest

corresponding queue size. Clearly, such decision follows the

similar intuition as that discussed in Sec. III – we remove the

file whose corresponding queue has the lowest pressure.With

this extended replacement procedure, our designs, aiming

to decide what file should be newly cached by users, can

directly be applied to the networks. Thus, to conduct the

replacement in networks with S > 1, we first decide when

and which file to newly cache by using the same approaches

as those proposed in Secs. V and VI, and then use the

extended replacement procedure to decide which file should

be removed by which user.
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VIII. PERFORMANCE EVALUATIONS AND DISCUSSIONS

In this section, we use simulations to evaluate the proposed

replacement designs and provide relevant discussions. Note

that although we need to consider a specific file request

and content delivery mechanism in the following simulations

for the purpose of obtaining numerical results, this does

not mean that our proposed framework and algorithms are

restricted to it.8

A. SIMULATION ENVIRONMENT

In all simulations, we consider 4000 users located (and pos-

sibly moving) within a square-shaped area, with side length

1000 m. The BS is located at the center of this square and

serves as the central controller. The service coverage of the

BS, i.e., the cell, also covers a square-shaped area, with

side length 500 m. The consideration of a simulation area

that is larger than the serving area is to emulate the users’

behavior, which moves in and out of the coverage region.

D2D communication is implemented based on the clustering

of the users in a cell, as has been widely adopted for D2D

based video caching [9], [18], [20], [22]. In particular, the cell

is split into several smaller and equal-sized sqaure clusters,

where only users within the same cluster can communicate

with each other. We denote the side length G of a cluster as

the cluster size. To avoid interference, a spatial reuse scheme

is employed, i.e., only clusters that are a minimum dis-

tance apart from one other may use the same time/frequency

resources, similar to cellular frequency reuse. Thus, the size

of a cluster, also interpreted as the cooperation distance,

can greatly affect the throughput and outage performance.

All communications within a cluster use the same data rate

regardless of the distance between the users, corresponding

to a fixed modulation and coding scheme. In all simulations,

D2D links have a service rate of 200 Mbits/s. This service

rate is feasible when we adopt mmWave communications or

whenwe apply reuse factor one alongwith the advancedWiFi

service. To be able to use either approach, we consider the

cluster size G to be upper bounded by 100 m [9], [20]. All

users generate requests according to a request distribution.

In a cluster, users fulfill requests from files in the local

cache whenever possible. Otherwise, the requests are sent

to the BS. Among the requests (in the same cluster) that

can be fulfilled via D2D communications, the BS randomly

selects one such request to satisfy. The above D2D scheduling

and delivery generally follow the priority-scheduling as that

detailed in [20]. We consider here users cannot be served by

user-specific BS links, but can be served by broadcasting of

the BS. When the BS broadcasts file m (for both replacement

and service), all user requests in the cell for filem are satisfied

8Simulation results under a different simulation environment can be found
in the conference version [1]. Although we present only the results of the
MyDPP approach in [1], the results still demonstrate the generality of our
replacement framework. Moreover, although we cannot analytically charac-
terize nor empirically demonstrate the optimality of the proposed designs
in complex networks, we still numerically show that the proposed design is
near-optimal in a very simplified scenario (see Fig. 2 in [1]).

and the queue of filem is cleared. Control overhead is ignored

in simulations for simplicity.

We model the service using a slotted structure and then

evaluate the performance in terms of the number of requests

satisfied per slot, which include the requests satisfied by

self-caching, D2D communications, and BS broadcasting.

We consider a slot length of 6 s and simulate T = 14400 time

slots (complete 24 hours) to obtain one sample result. This

setup allows the users to finish downloading a file whose size

is 150MBwithin each slot. Note that this file size is enough to

provide around 30 minutes of video with fairly good quality.

We adopt the mobility model in [25], which directly connects

to the user velocity and the random waypoint model in [46]

such that we can model the user movement. Each user u in

the mobility model randomly selects a target point within

the simulation area, i.e., within the 1 km2 area, and moves

toward the target point with a constant velocity. To decide the

velocity of the movement, each user u randomly selects the

velocity in [0, 2Vu], where Vu is the average velocity of this

user. Vu is randomly selected from [0, 2Vnet] at the beginning

of the simulations, where Vnet = 1 m/s (3.6 km/h) is the

average velocity in the network, which corresponds to a fast

walking speed. The general mobility pattern is as follows.

Each user first picks a target point, selects the velocity for

this trip, and then moves toward the target. Since we adopt

the slotted structure, each user checks whether the moving

distance is sufficient to reach the target point at the end of

each time slot. If yes, then the user chooses another target

point and velocity for a new trip; if not, then the user keeps

moving toward the same target point until it arrives.

A user can either be in an active or inactive mode. When

the request of an active user is satisfied, the user immedi-

ately transits to inactive. Each user can change its mode at

the end of each time slot, and the probability of changing

mode is 0.05. When a user changes from active to inactive,

the request of the user is dropped from the queueing system,

thereby causing outage. Conversely, a user’s request is gen-

erated according to the request distribution at the time that

a user changes from an inactive to an active. This request is

accordingly sent to the BS at the beginning of the next time

slot if the local cache cannot satisfy the request. A user can

move in and out of the cell. When a user moves out of the cell

at the end of the time slot, the request of the user is dropped

from the network, and the BS loses the information of the

user. On the other hand, when a user moves into the cell,

the user can either be in an active or inactive mode with equal

probability. If the user is in active mode, then the request is

generated according to the request distribution at that time

slot.

We consider a single update of the request distribution per

hour, i.e., a single update every 600 time slots. The request

distribution update is always the last function to be conducted

in a time slot. In each update, K new files are added into the

library and become the most popular K files. Thus, the rank

of all the original files should degrade by K . In addition,

the originally least popular K files are dropped from the
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library, indicating the users are no longer interested in those

files. Aside from adding and dropping files, the concentration

rate of the request distribution can change at each update.

We model the request distribution by using a Zipf distribu-

tion [20] with Zipf parameter γ = 0.2 + 0.5(k − 1), k =

1, 2, . . . , 25. The change of index k , indicates the change of

the concentration rate, and wemodel this using aMarkov pro-

cess with a transition probability matrix P, in which Pk,k =

0.5,Pk,k+1 = 0.25,Pk,k−1 = 0.25, where 2 ≤ k ≤ 24;

P1,1 = 0.5,P1,2 = 0.5,P25,25 = 0.5,P25,24 = 0.5;

Pk,l = 0, otherwise.

Due to users’ mobility, we also need to consider the outage

caused by those users moving away from each other during

the transmission. This condition is called ‘‘mobility outage’’.

Notice that users are guaranteed to communicate with each

other only if they are in the same cluster. Thus, mobility

outage occurs when two users that have established D2D

communications at the beginning of a time slot are not in

the same cluster at the end of the time slot. Once an outage

occurs, the request is not satisfied, and the user remains active

with the same request. Note that when users are served by

the broadcasting from the BS, such mobility outage does not

happen.

To initialize a simulation, we adopt the following pro-

cedures: (i) all users are uniformly distributed within the

square with side length 1000 m; (ii) users located within the

BS service area are set to active mode, whereas the users

located outside the BS service area are set to inactive mode;

(iii) every user randomly selects their average velocities used

during the simulation, and then initializes a new trip by using

the described mobility model; and (iv) the initial request

distribution is set at index k = 13, i.e., γ = 0.8.

In all the simulations below, MATLABTM is used to

build up our simulation environment. We run simulations

on a server with 72 CPU cores. Each core has a rate

of 2.1 GHz.

B. SIMULATION RESULTS

Now, we evaluate the proposed designs. We present our

results by their sample means (specific points) and sample

deviations (error bars). In all simulations, we consider C = 1

and cAinst = 20, ∀A ∈ Abr(t). This means that on the aver-

age, the broadcasting action happens once per 20 time slots.

In the MyDPP approach, V = 0 is considered9 and different

step-sizes (indicated in the legends of the figures) are used.

In the SPDPP approach, we consider Tstage = 20, N = 10,

βπ = 1.3, ∀π ∈ 5, and Dm(t) = {dm | (1 − bm(t))/2
k >

dmin, k = 0, 1, . . . , }∪{dmin}, where dmin = 0.001 is themin-

imal step-size. We use the complexity reduction approaches

in Sec. V.C for SPDPP. The minimal and maximal number of

9Although differentV can entail different trade-off by theorems. However,
the low-complexity implementation is merely the approximation of the exact
drift-plus-penalty minimization; thus, the trade-off entailed by V in MyDPP
is not very unclear. We thus choose the most cost-effective case (V = 0) for
the demonstrations.

candidate files are 2 and 4, respectively.10 The threshold for

pruning a candidate is ǫ = 10−6. In Figs. 1 and 2, to focus

on evaluating the performance of the replacement designs,

the mobility outage is temporarily excluded. Then in the

remaining figures, the influence of such outage is included.

All the proposed replacement designs can satisfy the cost

constraint within δ < 0.005 accuracy, i.e., 1
T

∑T−1
t=0 c

A(t)
inst (t) ≤

C + δ with high probability, and accordingly stabilize the

queueing system in the simulations. This is not shown in the

figures for brevity.

In the following dicussion, we demonstrate the perfor-

mance of the proposed replacement designs and compare

them with static approaches. In all figures, ‘‘Zipf-0.8’’ indi-

cates a time-invariant caching policy based on a Zipf distri-

bution with parameter 0.8 [22]; ‘‘Brod’’ indicates that the BS

periodically broadcasts, i.e., the BS broadcasts the files in a

round-robin manner every 20 time slots, but does not conduct

replacement. The ‘‘Zipf-0.8’’ policy is also used as the initial

caching policy for the replacement designs. Sincewe focus on

demonstrating the performance of the replacement designs,

we do not try to optimize the static policy. Besides, we adopt

this policy because it is simple to use and performs well [22]

as it matches the initial request distribution, which also has

the Zipf parameter γ = 0.8.

FIGURE 1. Throughput as a function of cluster size of the MyDPP
replacement with different step-sizes.

In Fig. 1, S = 1, M = 100, and K = 3 are considered.

We observe that the choice of step-size indeed significantly

influences the results, and the optimal step-size depends on

the adopted parameters and network configurations. Clearly,

the best step-size cannot be obtained before we actually

run the simulations, thereby preventing the real-time opti-

mization. Fortunately, we can still obtain a somewhat effi-

cient step-size by looking at the concentration rate of the

request distribution. From experience with our simulations,

the step-size performs well when it is on the order of the pop-

ularity of themost popular files, e.g., d = 0.05 in the figure.11

Besides, when the caching distribution is inappropriate,

having a larger cluster size could improve performance.

10Of course, a candidate file can have different step-sizes and recall that
a final candidate is jointly determined by the candidate file and step-size.

11A step-size of d = 0.05 is optimum to use for the simulations discussed
in this paper. In simulations that consider different network setups, however,
a different d could be the optimum.
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This is intuitive because when the caching distribution is

inappropriate, we need to enlarge the cluster size to increase

the probability that a user can find the desired file in the

cluster. For example, in Fig. 1, the MyDPP with d = 0.05 has

the best performance when cluster size is within the range of

60−70 m, whereas the MyDPP with d = 0.01 performs best

when it is around 71 m. This is because when the step-size is

d = 0.01, the replacement might not be fast enough to adjust

the user caches such that the new files can be accommodated

within a short period after the request distribution is updated.

Finally, we observe that all proposed designs perform better

than the static approaches and outperform the MyDPP with

extremely small step-size (d = 0.001). This validates the

benefits of having appropriate replacement even when some

type of broadcasting is used. Note that when d is very small,

the MyDPP is very close to simply providing appropriate

broadcasting without cache content replacement.

FIGURE 2. Throughput as a function of cluster size under different
replacement schemes.

We now compare MyDPP and SPDDP in Fig. 2.

We assume S = 1 andM = 100 in the figures, andK = 3 and

K = 6 in Fig. 2a and Fig. 2b, respectively. We observe that

the proposed SPDPP replacement performs the best without

needing to manually select the appropriate step-size. The pro-

posed MyDPP design is comparable with the SPDPP design

when we optimize the step-size. The benefit of MyDPP is

that it is less complex and does not need predictive informa-

tion, although a suitable step-size still needs to be selected

for the replacement. All the proposed replacement designs

demonstrate significant improvement when compared to the

static policy. In Fig. 3, we compare the performance of the

same network under the different replacement schemes, sim-

ilar to that done in Fig. 2. This time, however, we consider

FIGURE 3. Throughput as a function of cluster size under the different
replacement schemes in networks with mobility outage.

the influence of mobility outage in the analysis. From the

figure, we gather the same observations as those in Fig. 2.

Besides, by comparing Fig. 2 with Fig. 3, we observe that the

performance in Fig. 3 slightly degrades due to the mobility

outage, and such degradation is larger when the cluster size

is smaller. This is intuitive because when the cluster size is

small, it is more likely to suffer from mobility outages.

In Fig. 4, we evaluate the proposed designs in networks

where the user can cache multiple files. The replacement

design is implemented following the extension approach pro-

posed in Sec. VII. We consider S = 5, M = 100, and K = 3

in Fig. 4a. The results are generally consistent with our pre-

vious observations. Besides, the performance is improved as

comparedwith that S = 1 in Fig. 3. This is clearly because the

total number of files that can be cached in a cluster increases.

We also note that, in line with results from the literature,

the optimum cluster size shrinks as more files can be cached

per users. In Fig. 4b, we consider S = 5, M = 1000, and

K = 6 and obtain the same observations as those in all

previous figures. This indicates that our replacement designs

are effective while considering a more practical library size.

Due to page limitation and for simplicity, we do not show here

that the same observations and improvements are likewise

obtained in networks with other parameters, e.g., M = 200

and Tstage = 30.

Finally, we demonstrate the effects of violating the con-

ditions provided at the end of Sec. II. In Fig. 5, we con-

sider S = 1, K = 3, and M = 100 and evaluate the

MyDPP design in networks with different average network

velocities, i.e., Vnet = 1, 5, 13, 21 m/s. We observe that the

performance gain of the MyDPP design gradually decreases

as Vnet increases, yet it still outperforms the static policies
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FIGURE 4. Throughput as a function of cluster size under the different
replacement schemes in networks including mobility outage and with
caching of multiple files per user.

FIGURE 5. Throughput as a function of cluster size for MyDPP
replacement with different average network velocities.

even at high mobility conditions, e.g., Vnet = 21 m/s

(75.6 km/h). This result demonstrates that the performance

gain of a replacement design gradually decreases as the

conditions are violated. However, even if the conditions are

violated, the proposed replacement still gives more benefits

than the static policies.

IX. CONCLUSION

In this paper, we investigated dynamic caching content

replacement in BS-assisted wireless D2D caching networks

as a response to the issue of time-varying dynamics of net-

works, e.g., time-varying popularity distribution and mobility

of users. Our goal is to refresh the caching content in users

such that it can match the demand of the network. We pro-

posed a network architecture for caching content replacement

by exploiting the broadcasting nature of the BS and by using

a queueing system to track the history record. We formulated

the replacement problem as a sequential decision-making

problem that maximizes the service rate while being sub-

ject to the cost constraint and queue stability. By combin-

ing the concept of rewards-to-go and the drift-plus-penalty

methodology, a solution framework was proposed. Two algo-

rithms that approximate the solution were proposed: the first

algorithm used only the historical record, whereas the sec-

ond used both historical record and near-future information.

We showed, both analytically and empirically, that our pro-

posed designs can significantly improve the performance

while still satisfying the constraints. We also observed that

dynamic caching content replacement is necessary to realize

the potential performance gain of D2D caching when dynam-

ics exist.

APPENDIXES

APPENDIX A

PROOF OF LEMMA 1

Observe that

T−1
∑

t=0

R̃(t,A(t)) =

T−1
∑

t=0

1

l

(

sA(t)m (t) + E

[

l−1
∑

τ=1

sA(t+τ )
m (t + τ )

])

(20)

Suppose that actions A(t), ∀t, are determined by policy P.

By taking the expectations on both sides of (20) and then

divided by T , we can obtain:

1

T

T−1
∑

t=0

E
[

R̃(t,A(t))
]

=
1

T

T−1
∑

t=0

(

1
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[

sA(t)m (t)
]

+ E

[
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∑
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sA(t+τ )
m (t + τ )

])

=
1

T

l−2
∑

t=0

t + 1

l
E
[

sA(t)m (t)
]

+
1

T

T
∑

t=l−1

E
[

sA(t)m (t)
]

+
1

T

T+l−1
∑

t=T+1

l + T − t

l
E
[

sA(t)m (t)
]

. (21)

Eq. (21) then leads to:

1

T

T−1
∑

t=0

E
[

sA(t)m (t)
]

−
1

T

T−1
∑

t=0

E
[

R̃(t,A(t))
]

=
1

T

l−2
∑

t=0

l − t − 1

l
E
[

sA(t)m (t)
]

−
1

T

T+l−1
∑

t=T+1

t − T

l
E
[

sA(t)m (t)
]

(22)

It follows that when T → ∞, we obtain

lim
T→∞

(

1

T

T−1
∑

t=0

E
[

sA(t)m (t)
]

−
1

T

T−1
∑

t=0

E
[

R̃(t,A(t))
]

)

= 0.

(23)

APPENDIX B

PROOF OF THEOREM 1

Proof of Queue Stability: Suppose M , Z (0), and

Qm(0), ∀m, are finite numbers. Also, assume that C > 0,

33922 VOLUME 8, 2020



M.-C. Lee et al.: Dynamic Caching Content Replacement in BS Assisted Wireless D2D Caching Networks

cAinst > 0, ∀A ∈ A(t), and rm(t) ≤ rmax, ∀m, t , are finite and

bounded. Suppose that the system ultimately becomes unsta-

ble, then a sequence {A(t)} generated by minimizing (10b)

and an m such that lim
t→∞

QA(t)m (t) = ∞ must exist. Thus, for

some t0, the network must not broadcast file m when t > t0.

However, this is impossible: as long as there is no broadcast,

Z (t) reduces to 0 as t → ∞. When Z (t) = 0, however,

we can choose freely to broadcast file m and empty queue

m to minimize (10b). This leads to contradiction. Therefore,

we conclude that Qm(t), ∀m, ∀t, cannot go to infinity, and

thus are upper bounded. This leads the queue stability in (4c)

to be satisfied. �

Proof of Satisfaction of Cost Constraint: To prove this,

we need to prove the rate stability of Z (t). Recall that the

decision whether to broadcast a file is determined by mini-

mizing (10b). Assume that Z (t) is infinite when t → ∞. Then

we know that for some t0, Z (t) >
Mν2+Vymax

cAinst(t)
must hold when

t > t0, where ν and ymax are some positive numbers such

that sAm(t) ≤ ν, Qm(t) ≤ ν, and
∑M

m=1 R̃m(t,A(t)) ≤ ymax .

Note that ν and ymax must exist since Qm(t), ∀m, are upper

bounded. This indicates that when t > t0, the solution of

minimizing (10b) must be Aslt(t) since

−

M
∑

m=1

Qm(t)s
A(t)
m (t) − V

M
∑

m=1

R̃m(t,A(t)) + Z (t)cAinst(t)

> 0 = Z (t)cA
slt

inst. (24)

This means, in this case, we will never choose to broadcast

the file. Consequently, Z (t) can never increase to infinity

when Z (0) is finite. This contradicts the assumption; thus,

Z (t) must be finite and upper bounded by
Mν2+Vymax

c
when

t → ∞. This indicates Z (t) is rate stable according to

Definition 2.2 in [40]. Then, by the Rate Stability Theorem

(Theorem 2.5 in [40]), we know the cost constraint in (4b) is

satisfied. �

APPENDIX C

PROOF OF THEOREM 2

Since rm(t) ≤ rmax and c
A(t)
inst ≤ Cmax, it follows that there

must exist some finite non-negative number y∗ for a policy

P such that (10) can be bounded as in (25), as shown at the

bottom of this page. Then by summing the inequality for t

from 0 to T − 1, we can obtain

T−1
∑

t=0

[

1(t) − V

M
∑

m=1

R̃m(t,A(t))

]

≤ −TVy∗ + TB+ rmax

T−1
∑

t=0

M
∑

m=1

Qm(t) + Cmax

T−1
∑

t=0

Z (t).

(26)

After some algebraical manipulations, it follows that

1

T

T−1
∑

t=0

M
∑

m=1

R̃m(t,A(t)) ≥ y∗ −
B

V
−
rmax

TV

T−1
∑

t=0

M
∑

m=1

Qm(t)

−
Cmax

TV

T−1
∑

t=0

Z (t) +
L(T ) − L(0)

VT
. (27)

We suppose that
∑M

m=1 E[Qm(t)] ≤ ǫV , and E[Z (t)] ≤ δV .

By letting T → ∞ and taking the expectation, we then obtain

lim inf
T→∞

1

T

T−1
∑

t=0

E

[

M
∑

m=1

R̃m(t,A(t))

]

≥ y∗ −
B

V
− ǫrmax − δCmax. (28)

Finally, according to (25), we can understand that the mini-

mization of (10b) can maximize y∗.

APPENDIX D

PROOF OF THEOREM 3

Consider the drift-plus-penalty minimization policy P,

in which A(t) is determined by P. Using (10) and summing

from t = 0 to t = T − 1, we can obtain

L(T ) − L(0) − V

T−1
∑

t=0

M
∑

m=1

R̃m(t,A(t))

≤

T−1
∑

t=0

M
∑

m=1

QA(t)m (t)(rm(t) − sA(t)m ) − V

T−1
∑

t=0

M
∑

m=1

R̃m(t,A(t))

+

T−1
∑

t=0

ZA(t)(t)
(

c
A(t)
inst (t) − C

)

+

T−1
∑

t=0

B (29)

1(t) − V

M
∑

m=1

R̃m(t,A(t)) ≤

M
∑

m=1

Qm(t)(rm(t) − sA(t)m (t)) − V

M
∑

m=1

R̃m(t,A(t)) + Z (t)(c
A(t)
inst (t) − C) + B

≤

M
∑

m=1

Qm(t)rm(t) − V

M
∑

m=1

R̃m(t,A(t)) + Z (t)c
A(t)
inst (t) + B

≤ rmax

M
∑

m=1

Qm(t) − Vy∗ + CmaxZ (t) + B. (25)
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Since A(t) minimizes (10b), we obtain

T−1
∑

t=0

M
∑

m=1

QA(t)m (t)(rm(t) − sA(t)m ) − V

T−1
∑

t=0

M
∑

m=1

R̃m(t,A(t))

+

T−1
∑

t=0

ZA(t)(t)
(

c
A(t)
inst (t) − C

)

+

T−1
∑

t=0

B

≤

T−1
∑

t=0

M
∑

m=1

QA(t)m (t)(rm(t) − s2m ) − V

T−1
∑

t=0

M
∑

m=1

R̃m(t, 2)

+

T−1
∑

t=0

ZA(t)(t)
(

c2inst(t) − C
)

+

T−1
∑

t=0

B. (30)

Then by taking expectations on (29) and using (30) and the

assumption in (12), we can obtain

L(T ) − L(0) − V

T−1
∑

t=0

M
∑

m=1

E
[

R̃m(t,A(t))
]

≤

T−1
∑

t=0

M
∑

m=1

E
[

QA(t)m (t)
]

δ − V

T−1
∑

t=0

M
∑

m=1

E
[

R̃m(t, 2)
]

+

T−1
∑

t=0

E
[

ZA(t)(t)
]

δ +

T−1
∑

t=0

B

(a)
≤

T−1
∑

t=0

M
∑

m=1

E
[

QA(t)m (t)
]

δ − V

T−1
∑

t=0

M
∑

m=1

y2m

+

T−1
∑

t=0

E
[

ZA(t)(t)
]

δ +

T−1
∑

t=0

B, (31)

where (a) is because policy2 is i.i.d.. Since δ can be arbitrar-

ily close to zero, it follows that

lim inf
T→∞

1

T

T−1
∑

t=0

M
∑

m=1

E
[

R̃m(t,A(t))
]

≥ lim
T→∞

1

VT

T−1
∑

t=0

M
∑

m=1

Vy2m −
B

V
+
L(T ) − L(0)

VT

≥

M
∑

m=1

y2m −
B

V
.
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