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This paper studies a capacity management problem with upgrading. A firm needs to procure multiple classes of capacities
and then allocate the capacities to satisfy multiple classes of customers that arrive over time. A general upgrading rule is
considered, i.e., unmet demand can be satisfied using multistep upgrade. No replenishment is allowed and the firm has to
make the allocation decisions without observing future demand. We first characterize the structure of the optimal allocation
policy, which consists of parallel allocation and then sequential rationing. Specifically, the firm first uses capacity to satisfy
the same-class demand as much as possible, then considers possible upgrading decisions in a sequential manner. We also
propose a heuristic based on certainty equivalence control to solve the problem. Numerical analysis shows that the heuristic
is fast and delivers close-to-optimal profit for the firm. Finally, we conduct extensive numerical studies to derive insights
into the problem. It is found that under the proposed heuristic, the value of using sophisticated multistep upgrading can
be quite significant; however, using simple approximations for the initial capacity leads to negligible profit loss, which
suggests that the firm’s profit is not sensitive to the initial capacity decision if the optimal upgrading policy is used.
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1. Introduction
Driven by intensified market competition and rapidly chang-
ing consumer trends, many firms have expanded their prod-
uct lines to cater to different customer segments. On one
hand, by offering products with a wide range of quality,
design, and characteristics, firms can reach more consumers,
generate additional sales, and extract higher profit mar-
gins. On the other hand, this has caused significant difficul-
ties in matching supply with demand because the demand
is less predictable at the individual segment level than
at the aggregate level. Various operational strategies (e.g.,
postponement, component commonality, modular design)
have been proposed for firms to enjoy the benefit of prod-
uct differentiation while mitigating the risk of mismatches
between supply and demand. This paper studies the influ-
ential practice of upgrading, where higher-quality products
can be used to satisfy demand for a lower-quality prod-
uct that is sold out. Such a practice takes advantage of
risk pooling (product substitution essentially allows prod-
uct/demand pooling), which results in several immediate
benefits: First, it increases revenue by serving more demand;
second, it enhances customer service by reducing lost sales;

third, it may lead to lower inventory investment by hedging
against demand uncertainty.

The practice of upgrading or substitution has been widely
adopted in the business world. In the automobile industry,
firms may shift demand for a dedicated capacity to a flex-
ible capacity when the dedicated capacity is constrained
(Wall 2003). In the semiconductor industry, faster mem-
ory chips can substitute for slower chips when the lat-
ter are no longer available (Leachman 1987). More exam-
ples in production/inventory control settings can be found
in Bassok et al. (1999) and Shumsky and Zhang (2009).
Similar practice is ubiquitous in the service industries as
well. For instance, airlines may assign business-class seats
to economy-class passengers, car rental companies may
upgrade customers to more expensive cars, and hotels may
use luxury rooms to satisfy demand for standard rooms.

Both practitioners and academics surely understand the
importance of the upgrading practice. Substantial research
has been conducted on how to manage upgrading in a variety
of problem settings. Here we contribute to this large body of
literature by studying a dynamic capacity management prob-
lem under general upgrading structure. For convenience,
we use the terms “product” and “capacity” exchangeably
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throughout the paper, and similarly for “upgrading” and
“substitution” (strictly speaking, upgrading is one-way sub-
stitution). A brief description of our problem is as follows.
Consider a firm selling N products with differentiated qual-
ities in a fixed horizon consisting of T periods. There are N
classes of customers who arrive randomly in each period.
Each customer requests one unit of the product; in the case
of a stock-out, the customer can be satisfied with a higher-
quality product at no extra charge. Unsatisfied demand is
backlogged and the firm incurs a goodwill cost. The firm
needs to first determine the procurement quantity of each
product at the beginning of the horizon, and then decide
how to distribute the products among incoming customers.
Because of long ordering lead time, the firm cannot replen-
ish inventory before the end of the horizon; as a result,
the firm must dynamically allocate the products over time,
before observing future demand.

This paper represents an extension of the recent work by
Shumsky and Zhang (2009, referred to as SZ hereafter). As
one of the first studies that incorporate dynamic allocation
into substitution models, SZ make a simplifying assumption
to maintain tractability. Specifically, they consider single-
step upgrading, i.e., a demand can only be upgraded by the
adjacent product. Clearly, this is a restrictive assumption
because in many practical situations firms may have incen-
tives to use multistep upgrading to satisfy demand. Thus
there is a need for a theoretical model that captures the
realistic upgrading structure. The purpose of this paper is to
fill this gap in the literature. While relaxing the single-step
upgrading assumption, we attempt to address the following
questions as in SZ: What is the optimal initial capacity?
How should the products be allocated among customers
over time? Are there any effective and efficient heuristics
for solving the capacity management problem? The main
findings from this paper are summarized as follows.

We start with the dynamic capacity allocation problem.
In each period, the firm needs to use the available prod-
ucts to satisfy the realized demand. When a product is
depleted while there is still demand for that product, the
firm may use upgrading to satisfy customers. How to make
such upgrading decisions is a key in substitution models.
With the general upgrading structure, the optimal alloca-
tion policy is complicated by the fact that the upgrading
decisions within a period are interdependent. Under the
backlog assumption, we show that a Parallel and Sequential
Rationing (PSR) policy is optimal among all possible poli-
cies. The PSR policy consists of two stages: In stage 1, the
firm uses parallel allocation to satisfy demand as much as
possible (i.e., demand is satisfied by the same-class capac-
ity). Then in stage 2, the firm sequentially upgrades left-
over demand, starting from the highest demand class; when
upgrading a given demand class, the firm starts with the
lowest capacity class. The optimality of such a sequential
rationing scheme depends on an important property. That
is, when using a particular class of capacity to upgrade

demand, the upgrading decision does not depend on the sta-
tus of the portion of the system below that class. The PSR
can greatly reduce the computational complexity because
the upgrading decisions do not have to be solved jointly.
As an extension, we also consider the multihorizon model
with capacity replenishment and show that the PSR policy
remains optimal in each horizon. Our theoretical results,
though intuitive, turn out to be very challenging to prove.
Indeed, our proofs rely on intricate arguments and fully
exploit the special structure of the upgrading problem.

Despite the simplified policy structure given by the PSR,
solving the problem is still quite involved because of the
curse of dimensionality. So there is a need to search for
fast heuristics that perform well for the firm. We present
a heuristic that adapts certainty equivalence control (CEC)
to exploit the sequential rationing property in the PSR pol-
icy. Such a heuristic is more appealing than the commonly
used CEC heuristic, and we call it refined certainty equiva-
lence control (RCEC) heuristic. Through extensive numer-
ical experiments, we find that the RCEC heuristic delivers
close-to-optimal profit for the firm.

The RCEC heuristic enables us to solve large problems
effectively. Thus we can use numerical studies based on
such a heuristic to derive more insights into the dynamic
capacity management problem. First, compared to single-
step upgrading, general upgrading (multistep upgrading)
can be highly valuable, especially when the capacities are
severely unbalanced. Second, our numerical studies indi-
cate that the firm’s profit is not sensitive to the initial
capacity decision, given that the optimal upgrading pol-
icy is used. For instance, either the newsvendor capacities
(calculated assuming no upgrading) or the static capacities
(calculated assuming complete demand information) pro-
vide nearly optimal profit for the firm. However, the neg-
ative impact of using suboptimal allocation policies could
be quite significant. These findings suggest that from the
practical perspective, deriving the optimal allocation policy
should receive a higher priority than calculating the optimal
initial capacity.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related literature. Section 3 describes the
model setting. The optimal allocation policy is character-
ized by §§4 and 5. Section 6 extends the base model to
multiple horizons with capacity replenishment. Section 7
proposes the RCEC heuristic and §8 presents the findings
from numerical studies. The paper concludes with §9. All
proofs are given in the appendix (available as supplemental
material at http://www.dx.doi.org/10.1287/opre.2015.1446).

2. Literature Review
This paper falls in the vast literature on how to match sup-
ply with demand when there are multiple classes of uncer-
tain demand. To facilitate the review, we may divide this
literature into four major categories using the following cri-
teria: (1) whether there are multiple capacity types or a
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single capacity type; and (2) whether the nature of capac-
ity allocation is static or dynamic. A problem is called
static if capacity allocation can be made after observing full
demand information. The category that involves the sin-
gle capacity and static allocation essentially reduces to the
newsvendor model that is less relevant. Thus, our review
below focuses on the representative studies from the other
three categories.

The first category of studies involves multiple capacity
types and static capacity allocation. In these studies, firms
invest in capacities before demand is realized and then allo-
cate capacities to customers after observing all demand.
Because of the existence of multiple capacity types, the
issue of substitution naturally arises. Van Mieghem (2003)
and Yao and Zheng (2003) provide comprehensive surveys
of this category of studies, which can be further divided
into two groups. One group of papers study the opti-
mal capacity investment and/or allocation decisions under
substitution. Parlar and Goyal (1984) and Pasternack and
Drezner (1991) are among the first to consider the sim-
plest substitution structure with two products. Bassok et al.
(1999) extend the problem to the general multiproduct case.
Hsu and Bassok (1999) introduce random yield into the
substitution problem. By assuming single-level substitution,
Netessine et al. (2002) study the impact of demand cor-
relation on the optimal capacity levels. Van Mieghem and
Rudi (2002) propose the notion of newsvendor networks
that consist of multiple newsvendors and multiple periods
of demand. Similar settings can be found in the studies on
multiperiod inventory models with transshipment, includ-
ing Robinson (1990), Archibald et al. (1997), and Axsäter
(2003). Although these studies involve multiple periods,
replenishment is allowed and capacity allocation in each
period is made with full demand information. The other
group of studies focuses on the value of capacity flexibility.
Fine and Freund (1990) and Van Mieghem (1998) consider
two types of capacities (dedicated and flexible) and study
the optimal investment in flexibility. Bish and Wang (2004)
and Chod and Rudi (2005) incorporate pricing decisions
when studying the value of resource flexibility. Jordan and
Graves (1995) investigate a manufacturing flexibility design
problem and discover the well-known chaining rule: Lim-
ited capacity flexibility, configured to connect all produc-
tion facilities and products in a complete chain, can almost
deliver the benefit of full flexibility. Their classic work on
the design of flexibility has inspired numerous follow-up
studies. For example, recently, Chou et al. (2010, 2011)
have provided analytical evaluations of the chaining struc-
ture for both symmetric and asymmetric problem settings
with large scales.

The second category of related literature studies the
allocation of a single capacity to multiclass demand in
a dynamic environment. This category dates back to the
early work by Topkis (1968), who characterizes the optimal
rationing policy that assigns capacity to different customer
classes over time. Since then similar rationing policies have

been applied to various industry settings. For instance,
many revenue management studies focus on how to maxi-
mize firms’ revenue through capacity rationing when there
are multiple fare classes for a single seat type; see Talluri
and van Ryzin (2004b) for a review of this literature. A
stream of studies on production and inventory control has
also derived threshold policies when serving multiple cus-
tomer classes; see Ha (1997, 2000), de Véricourt et al.
(2001, 2002), Deshpande et al. (2003), Savin et al. (2005),
Ding et al. (2006) and the references therein.

The third category of studies involves multiple capac-
ity types and dynamic capacity allocation. It differs from
the first category mainly in that firms need to allocate
capacities to customers without full demand information.
There are relatively few papers in this category. Shumsky
and Zhang (2009) consider a dynamic capacity manage-
ment problem with single-step upgrading. They charac-
terize the optimal upgrading policy and provide easy-to-
compute bounds for the optimal protection limits that can
help solve large problems. Xu et al. (2011) consider a two-
product dynamic substitution problem where customers
may or may not accept the substitution choice offered by
the seller. Our paper extends Shumsky and Zhang (2009)
to allow general upgrading. We show that a sequential
upgrading policy is optimal for such a problem and pro-
vide a fast heuristic that can effectively solve the optimal
capacity investment and allocation decisions. Our problem
can be framed as a network revenue management model
with full upgrading, where the fares are fixed and each
demand requests one unit of the corresponding resource
(see Gallego and van Ryzin 1997). Gallego and Stefanescu
(2009) introduce two continuous optimal control formula-
tions for capacity allocation but concentrate on the analysis
of deterministic cases. Steinhardt and Gönsch (2012) study
a similar network revenue management problem but allow
at most one customer in each period, which means there
is at most one upgrading decision in each period. In con-
trast, we consider multiple interdependent upgrading deci-
sions in each period that involve a much more challenging
structure. Our work is also related to the studies on airline
revenue management that involve multiple fare products.
Talluri and van Ryzin (2004a) study revenue management
under a general customer choice model. Zhang and Cooper
(2005) consider the selling of parallel flights with dynamic
customer choice among the flights. More recent develop-
ments include Liu and van Ryzin (2008) and Zhang (2011).
In these studies, firms need to decide the subset of products
from which a customer can choose; AQ‘‘While’’ is used
only as a temporal term, never causal. Confirm change to
‘‘although’’ here and similar edits throughout.although in
our paper, firms decide how to allocate capacities to real-
ized demand. Therefore, both the model settings and results
are quite different between these studies and our paper.

3. Model Setting
Consider a firm managing N types of products to satisfy
customer demand. The products are indexed in decreasing
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quality so that product 1 has the highest quality whereas
product N has the lowest quality. There are N correspond-
ing classes of customer demand, i.e., a customer is called
class j if she requests product j (1 ¶ j ¶ N ). The sales
horizon consists of T discrete periods. The initial capaci-
ties of the products must be determined prior to the first
period and no capacity replenishment is allowed during
the sales horizon. (In §6, we extend the model to consider
multiple horizons and allow for replenishment.) Customers
arrive over time and the demand in each period is random.
Let Dt

= 4dt
11 d

t
21 0 0 0 1 d

t
N 5

ᵀ ∈ <N
+

denote the demand vec-
tor for period t 41 ¶ t ¶ T 5, where superscript ᵀ stands
for the transpose operation. Throughout the paper we use
bold letters for vectors and matrices, and use 4Z5i for the
ith component of vector Z (or 4Z5ij for the correspond-
ing element in matrix Z). For instance, 4Dt5i = dt

i is the
demand for product i in period t. We assume demand is
independent across periods; however, demands for different
products within a period can be correlated.

Let rj be the revenue the firm collects from satisfying
a class j customer. If product j is out of stock, then a
class j customer could be upgraded at no extra charge by
any product i as long as i < j . If a class j demand cannot be
satisfied in period t, then it will be backlogged to the next
period and the firm has to incur a goodwill cost gj .

1 Define
G= 4g11 0 0 0 1 gN 5 ∈ <N

+
. To incorporate service settings like

the car rental industry, we include a usage cost denoted
by ui for product i. We make the following assumptions:

Assumption 1 (A1). r1 > r2 > · · ·> rN .

Assumption 2 (A2). g1 > g2 > · · ·> gN .

Assumption 3 (A3). u1 >u2 > · · ·>uN .

We may define �ij = rj + gj − ui 4i ¶ j5 as the profit
margin for satisfying a class j customer using product i.
Based on the above assumptions, we know �ij > �ik and
�jk >�ik 4i < j < k5. In other words, for a given capacity,
it is more profitable to satisfy a higher class of demand;
for a given demand, it is more profitable to use a lower
class of capacity. These assumptions are similar to, but
more general than, those made in SZ: We have relaxed
the single step upgrading assumption in SZ (�ij > 0 only
if j = i+ 1) and added Assumption (A2) about the backo-
rder costs. Note that the above assumptions do not require
all �ij to be positive. Specifically, if �ij < 0 for some i
and j , then the assumptions imply that �1j < · · · <�ij < 0
and �iN < · · ·<�ij < 0, which are reasonable in practice.

The firm’s objective is to maximize the expected profit
over the sales horizon. There are two major decisions for
the firm. First, the firm needs to determine the initial capac-
ity before the start of the selling season; second, the firm
needs to allocate the available capacities to satisfy demands
in each period. Let C = 4c11 0 0 0 1 cN 5 ∈ <N

+
denote the

capacity cost vector, Xt = 4xt
11 x

t
21 0 0 0 1 x

t
N 5

ᵀ ∈ <N
+

the start-
ing capacities in period t, and D̃t = 4d̃t

11 d̃
t
21 0 0 0 1 d̃

t
N 5

ᵀ ∈ <N
+

the backordered demand at the beginning of period t. We

use Yt for the capacity allocation matrix in period t, i.e.,
4Yt5ij = ytij is the amount of product i offered to satisfy
class j demand (yij = 0 if i > j). Define ät4Xt1 D̃t5 as the
optimal revenue-to-go function in period t given the state
variable 4Xt1 D̃t5. Then the buyer’s problem can be formu-
lated as follows:

max
X1∈<N

+

ç4X15=ä14X1105−C ·X11 (1)

and for each period t 41 ¶ t ¶ T 5:

ät4Xt1D̃t5

= Ɛ
Dt
8ät4Xt1D̃t

�Dt59

= Ɛ
Dt

{

max
Yt

6H4Yt
� D̃t3Dt5+ät+14Xt+11D̃t+157

}

1 (2)

where

H4Yt
� D̃t3Dt5=

∑

1¶i¶j¶N

�ijy
t
ij −G · 4D̃t

+Dt51 (3)

Xt+1
=Xt

−Yt
· 1¾ 01 (4)

D̃t+1
= D̃t

+Dt
− 4Yt5ᵀ · 1¾ 01 (5)

Yt ¾ 01 1= 41111 0 0 0 115ᵀ0

We assume leftover products have zero value and unmet
demand is lost at the end of the selling season, so äT+1 ≡ 0.
Note that the optimal revenue-to-go function ät4Xt1 D̃t5 is
recursively defined in (2). Given the allocation decision Yt ,
H4Yt � D̃t3Dt5 in (3) denotes the single period revenue,
which is the difference between the upgrading revenue and
the goodwill cost. The state transition between two consec-
utive periods is governed by (4) and (5), which represent
two constraints for the allocation decision Yt in period t.

4. Parallel and Sequential Rationing
(PSR)

This section starts analyzing the upgrading problem given
in (1). Here we introduce several useful definitions and
qualitatively characterize the optimal allocation policy. The
formal optimality proof will be presented in the next sec-
tion. As the first step, since

ç405=−G ·

T
∑

t=1

4T +1−t5Ɛ6Dt7>−�1

lim
X1→�

ç4X15=
T
∑

t=1

N
∑

i=1

4ri−ui5Ɛ6d
t
i 7− lim

X1→�

C ·X1
=−�1

(6)

and the fact that ç4X15 is continuous in X1 ∈ <N
+

, we know
there exists a finite X∗ ∈ <N

+
that solves the optimization

problem in (1).
From Murty (1983) and Rockafellar (1996), for any

demand realization DT in period T , it is straightforward
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to see äT 4XT 1 D̃T � DT 5 is concave in the state variable
4XT 1 D̃T 5, which are the right-hand side variables in the
linear program defined by (2). Since concavity is preserved
under the expectation operation on Dt 41 ¶ t ¶ T 5 and
the maximization operation with respect to the allocation
decision Yt (see, e.g., Simchi-Levi et al. 2014, Proposi-
tions 2.1.3 and 2.1.15), ät is again concave in 4Xt1 D̃t5 in
each period t. Clearly, the revenue function

ä̂t4Yt
�Xt1D̃t3Dt5=H4Yt

� D̃t3Dt5+ät+14Xt+11D̃t+151 (7)

in period t given state 4Xt1 D̃t5 and demand realization Dt ,
is also concave in the allocation decision Yt . The concavity
property is summarized in the following proposition whose
formal proof is omitted.

Proposition 1. In period t, ät4Xt1 D̃t5 is concave in
4Xt1 D̃t5, and ä̂t4Yt �Xt1 D̃t3Dt5 is concave in Yt .

Notice that the allocation decision Yt is constrained by
a bounded polyhedron defined by (4)–(5) and ä̂t in (7)
is continuous in Yt . Thus, there always exists an opti-
mal allocation to the general upgrading problem in each
period t. For a given state 4Xt1 D̃t5 and demand realiza-
tion Dt , there are two types of decisions: parallel alloca-
tions ytii for all i 41 ¶ i ¶ N5 and upgrading decisions ytij
for classes i and j 41 ¶ i < j ¶ N5. These are dynamic
decisions because they will not only determine revenue
H in the current period but also affect future revenue
ät+14Xt+11 D̃t+15.

It is straightforward to solve the parallel allocation prob-
lem. In our model, the maximum revenue we can get from a
unit of capacity i is �ii through the parallel allocation, i.e.,
capacity i is used to fulfill demand class i. It is suboptimal
to satisfy demand from lower classes using capacity i when
there is still unmet demand i. Furthermore, the expected
value of carrying over capacity i to the next period will
not exceed �ii, either. Hence the optimal strategy is to use
the parallel allocation as much as possible, which implies
ytii = min4dt

i + d̃t
i 1 x

t
i 5. Another implication is that in the

state variable 4Xt1 D̃t5, class i 41 ¶ i¶N5 cannot be posi-
tive in both Xt and D̃t . Thus, we can use a single variable
Mt = 4Xt − D̃t5= 4mt

11m
t
21 0 0 0 1m

t
N 5

ᵀ to represent the state
at the beginning of period t (before the parallel alloca-
tion): mt

i > 0 means there is positive capacity for i whereas
mt

i < 0 means there is backordered demand for i. In the rest
of the paper we will use Mt and 4Xt1 D̃t5 exchangeably.

The more challenging question is how to make the
upgrading decisions after the parallel allocation. The state
after the parallel allocation in period t is 4mt

1 − dt
11m

t
2 −

dt
21 0 0 0 1m

t
N −dt

N 5
ᵀ. Note that mt

i −dt
i > 0 means that there

is leftover capacity i, whereas mt
i − dt

i < 0 implies that
there is unsatisfied demand i and capacity i must have
been depleted. The firm needs to decide how much demand
should be upgraded using higher class capacities. This is
equivalent to a rationing problem, i.e., how much capacity

should be protected to satisfy future demand. The upgrad-
ing problem in our model is different from the one stud-
ied in SZ. Particularly, with the single-step assumption in
SZ, when capacity i is depleted, classes above i and those
below i become independent of each other in future peri-
ods, and thus the upgrading problem is greatly simplified
because all the upgrading decisions can be solved sepa-
rately. However, with the general upgrading structure in
our model, the upgrading decisions after parallel alloca-
tion are no longer isolated. In this case, we may have to
solve all decisions jointly, which could be computationally
intensive. Fortunately, close scrutiny shows that the follow-
ing two observations can greatly reduce the complexity of
the upgrading problem. The intuition and formal proofs of
these observations will be presented in §5.1.

First, the upgrading decision ytij of using capacity i to
upgrade demand j is independent of the demands and the
capacities below class j . Second, for demand class j with
mt

j − dt
j < 0, the upgrading decisions ytij , i = 11 0 0 0 1 j − 1

can be solved sequentially in i starting from the lowest
class i (i < j) with positive capacity. Based on these obser-
vations, the upgrading problem can be sequentially solved
as follows:

Step 1. Identify the smallest j 41 ¶ j ¶ N5 with mt
j −

dt
j < 0 (the highest class with unmet demand);
Step 2. For the largest i (the lowest capacity class) less

than j with mt
i − dt

i > 0, determine the upgrading quantity
ytij in period t (or equivalently, the quantity of capacity i to
be protected for the next period). When solving ytij , we can
ignore the classes lower than j;

Step 3. Repeat Step 2 until all capacity classes available
for upgrading demand j have been considered;

Step 4. Repeat Step 1 until all unmet demand classes
have been considered.

To summarize, the firm may allocate capacity using the
so-called Parallel and Sequential Rationing (PSR) policy.
Under such a policy, the firm first performs the parallel
allocation on each class to satisfy new demands, and then
sequentially decides upgrading quantities for classes with
unmet demand. For easy reference, hereafter we refer to
the aforementioned allocation policy as the PSR policy.

The most crucial decision in the sequential upgrading
procedure is to determine ytij in Step 2. Consider the deci-
sion about how much capacity i should be used to upgrade
demand j . It is clear that as long as the current upgrade
revenue �ij is greater than the expected marginal value in
the future, capacity i should be used to upgrade demand j .
Such an upgrading or rationing decision essentially spec-
ifies the protection levels for the capacities. Let pij be
the optimal protection level of capacity i with respect to
demand j , i.e., the firm should stop upgrading demand j
by capacity i when the capacity level of i drops to pij .
Since ät4Xt1 D̃t5 is concave in 4Xt1 D̃t5 by Proposition 1,
the expected marginal value of capacity i is monotonically
increasing as capacity i decreases. Hence, the protection
level pij in period t is the unique lower bound above which
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using capacity i to upgrade demand j is profitable. Define
4¡/¡p5ät = 64¡/¡p+5ät1 4¡/¡p−5ät7 as the subdifferential
of ät with respect to some variable p, where 4¡/¡p−5ät

and 4¡/¡p+5ät are the left and right derivatives, respec-
tively. Let

Nt
= 4nt

11 n
t
21 0 0 0 1 n

t
N 5

ᵀ

denote the state of the system immediately before the epoch
of determining ytij . Specifically, Nt is a generic system
state and can be recursively defined, i.e., Nt could be the
resulting state after the parallel allocation and possibly
some upgrading allocations as well (recall the upgrading
decisions are made sequentially starting from the highest
demand class). The optimal protection levels can be defined
as follows.

Definition 1. The optimal protection level pij ¾ 0 under
state Nt = 4nt

11 n
t
21 0 0 0 1 n

t
N 5

ᵀ is defined as

pij =



































p if �ij ∈
¡

¡p
ät+14nt

110001n
t
i−11p1010001

01−p1nt
j+110001n

t
N 51

0 if �ij >
¡

¡p+
ät+14nt

110001n
t
i−11p101000101

−p1nt
j+110001n

t
N 5�p=00

(8)

With the protection levels pij and Nt , the optimal upgrad-
ing decision ytij is simply given by min44nt

i −pij5
+1 4−nt

j5
+5

where 4x5+ = max4x105. Notice that there are 0’s between
classes i and j since the PSR policy does not consider ytij
if there exists a class s4i < s < j5 with positive capacity
or unmet demand. When class s has a positive capacity,
it is more profitable to upgrade demand j with capacity s
instead of capacity i, and it is unnecessary for us to
consider ytij if there is capacity s remaining after solv-
ing ytsj . When there is unmet demand for class s, capacity i
should upgrade demand s first, and it would be suboptimal
to upgrade demand j if class s still has unmet demand after
upgrading ytis .

Before presenting the main results, we wish to further
reduce the computation in the general upgrading problem
by exploring its structure. With the single-step upgrading
rule, SZ shows that whenever a capacity (say, i) is depleted,
the entire problem decouples into two independent sub-
problems, where the first subproblem consists of products
above i and the second consists of products below i (see
Lemma 4 in SZ). Under the general upgrading rule, such
a property in SZ clearly does not hold. However, it can be
shown that under a similar but stronger condition, our prob-
lem can also be separated into independent subproblems,
as stated in the next lemma.

Lemma 1. Consider an N -class general upgrading prob-
lem with state Nt = 4nt

11 n
t
21 0 0 0 1 n

t
N 5

ᵀ in period t. If
∑i

s=k n
t
s ¶ 0 for all class k ¶ i, then the problem can be

separated into two independent subproblems: an upper part
consisting of classes 411 0 0 0 1 i5, and a lower part consisting
of classes 4i+ 11 0 0 0 1N 5.

Lemma 1 represents a generalized version of the sepa-
ration property in SZ. For convenience, we say class i is
separable if it satisfies the condition stated in Lemma 1.
Notice that unlike the property in SZ, nt

i ¶ 0 is not enough
to split the N -class general upgrading problem since there
may be class k 4k < i5, which can upgrade demands in
classes 4i+11 0 0 0 1N 5. However, the condition in Lemma 1
ensures that none of classes 411 0 0 0 1 i5 has enough capac-
ity to upgrade the demand in 4i+ 11 0 0 0 1N 5 when optimal
upgrading is performed. Specifically, there may exist class
k < i with positive capacity that can upgrade the demand
in 4i + 11 0 0 0 1N 5, but it is more profitable for capacity k
to satisfy the demand in classes 4k+ 11 0 0 0 1 i5 first, which
will consume all of class k’s capacity. Therefore, Lemma 1
asserts that the entire upgrading problem can be simpli-
fied by decomposition under certain conditions. That is, the
profit of the N -class problem can be written as the sum
of the profits from independent subproblems 411 0 0 0 1 i5 and
4i+ 11 0 0 0 1N 5 whenever class i is separable. This observa-
tion will allow us to present the optimality proof in §5.1 on
each of the nonseparable subproblems, significantly simpli-
fying the exposition.

5. Optimality and Properties of PSR

5.1. Optimality

We now present the optimality proof of the PSR policy.
The proof essentially shows that two results hold for each
period by induction: First, the marginal value of ät in (8)
has certain properties; second, the PSR policy is optimal
because of these properties. As a preparation for the opti-
mality proof, we introduce the concepts of greedy upgrad-
ing and effective state. By greedy upgrading, we refer to
a PSR step with zero protection levels. That is, after the
parallel allocation, the unmet demand will be sequentially
upgraded as much as possible. In addition, we define the
effective state as follows.

Definition 2. Consider a state vector Nt = 4nt
11 n

t
21 0 0 0 1

nt
N 5 in period t 41 ¶ t ¶ T 5. For class r 41 ¶ r ¶ N5, the

effective state N̂t
r = 4n̂t

11 0 0 0 1 n̂
t
r 1 n

t
r+11 0 0 0 1 n

t
N 5 is defined as

the resulting state after applying the greedy upgrading for
classes 411 0 0 0 1 r5.

In fact, given any state Nt and its effective state N̂t
r for

some class r , let h 41 ¶ h ¶ r5 denote the highest class
with n̂t

h > 0, then class h−1 is separable in Nt . To see this,
note that given n̂t

h > 0, there is no upgrade between classes
411 0 0 0 1 h − 15 and 4h1 0 0 0 1 r5 when applying the greedy
upgrading. Thus, for all class k < h, we have

∑h−1
s=k n

t
s ¶

∑h−1
s=k n̂

t
s ¶ 0, where the first inequality holds because

there may be upgrade between classes 411 0 0 0 1 k− 15 and
4k1 0 0 0 1 h− 15 when performing the greedy upgrading, and
the second inequality follows from the definition of class h.
Hence, according to Lemma 1, h − 1 is separable, and
classes 411 0 0 0 1 h − 15 can be ignored in the subsequent
allocation decisions.
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Consider a state vector Nt = 4nt
11 0 0 0 1 n

t
N 5 in period t.

For 1 ¶ i < j ¶N , define

ã+−

ij ät4Nt5=
¡

¡n+

i

ät4Nt5−
¡

¡n−
j

ät4Nt51

ã−+

ij ät4Nt5=
¡

¡n−
i

ät4Nt5−
¡

¡n+

j

ät4Nt50

Notice that the protection level pij in (8) can be equiva-
lently defined as

ã+−

ij ät+14Nt5�p=pij
¶ �ij ¶ã−+

ij ät+14Nt5�p=pij
1

where Nt = 4nt
11 0 0 0 1 n

t
i−11 p101 0 0 0 101−p1nt

j+11 0 0 0 1 n
t
N 5.

Thus, the properties of ã+−

ij ät+14Nt5 and ã−+

ij ät+14Nt5 will
have useful implications on the optimal protection levels.

Now we are in the position to prove the optimality of
the PSR by induction.

Proposition 2. Consider an N -class general upgrading
problem in period t (1 ¶ t ¶ T ) with state vector Nt , where
4nt

i+11 0 0 0 1 n
t
j−15¶ 0 and nt

j < 0.
1. We have

ã+−

ij ät+14Nt5=ã+−

ij ät+14N̂t
i−151

ã−+

ij ät+14Nt5=ã−+

ij ät+14N̂t
i−151

(9)

both of which are independent of the values of 4nt
j1 0 0 0 1 n

t
N 5.

2. The PSR policy solves the general upgrading problem
in period t.

Proposition 2 deserves some discussion. The first part
of Proposition 2 states that the optimal protection level pij

in period t is independent of the values of 4nt
j1 0 0 0 1 n

t
N 5,

although it is affected by the classes above i through
the effective state 4n̂t

11 0 0 0 1 n̂
t
i−15. These results provide the

rationale behind the sequential rationing in the PSR policy.
We offer the following intuitive explanation of these results.
First, we explain why ã+−

ij ät+14Nt5 and ã−+

ij ät+14Nt5 are
independent of 4nt

j1 0 0 0 1 n
t
N 5. Before deciding pij or ytij ,

without loss of generality, suppose there are p units of
capacity i lined up to upgrade unmet demand j . Meanwhile,
the unmet demand in class j can be treated as a waiting
line, which will be satisfied in the first-come first-served
sequence. To determine pij we need to compare �ij with
the expected value of each unit of capacity i. Consider the
capacity unit 1, i.e., the first unit in front of the capacity
line. Given the backorder assumption, capacity unit 1 can
only satisfy either a future demand in classes 4i1 0 0 0 1 j −15
or the first unit in the waiting line of demand j . Hence, the
expected value of capacity unit 1 in class i is independent
of states 4nt

j+11 0 0 0 1 n
t
N 5. Furthermore, the above argument

only relies on the fact that there exists unmet demand j .
Thus, the expected value of capacity unit 1 is also indepen-
dent of nt

j , the length of the waiting line of demand j . Such
an argument applies to any other capacity units of class i.

Next, we explain the equalities in (9). Note that for any
class k 41 < k < i5 with positive capacity, it would not
upgrade demand from class i or below in any optimal pol-
icy if there exists class r 4k < r < i5 with backordered
demand or positive capacity. In fact, it would be more valu-
able to use capacity k to upgrade demand r in the for-
mer case and to use capacity r to upgrade demand from
class i or below in the latter case. The remaining capac-
ity of class k after upgrading all backordered demands in
classes 4k+ 11 0 0 0 1 i− 15 equals n̂t

k as defined in the effec-
tive state. Therefore, the expected future value of capacity i
in period t should equivalently depend on the effective state
4n̂t

11 0 0 0 1 n̂
t
i−15.

Finally, for any given period t under the PSR policy,
the effective states of all intermediate states for classes
41121 0 0 0 1 i− 15 are the same before we exhaust the capac-
ity of class i. Thus, Proposition 2 implies that when solv-
ing pij , it is sufficient to use the first i − 1 components
of Mt − Dt (i.e., the state of the system in period t after
the parallel allocation) instead of Nt (i.e., the state of the
system prior to deciding ytij ) in the PSR policy. This is
a unique and interesting property of the general upgrad-
ing problem, allowing us to simultaneously and indepen-
dently solve all protection levels based on Mt −Dt . Specif-
ically, for any classes i and j 41 ¶ i < j ¶ N5 with nt

i >
0 and nt

j < 0, the protection level pij can be immedi-
ately determined by 4¡/¡p5ät+14mt

1 −dt
11 0 0 0 1m

t
i−1 −dt

i−11
p101 0 0 0 101−p101 0 0 0 105.

5.2. Properties of Protection Levels

After establishing the optimality of the PSR policy, we
explore some important properties related to the optimal
protection levels from the PSR policy.

First, if both the initial capacity X1 and all demands
are integer valued, similar to SZ, we can prove that there
exists an integer valued optimal policy generated by the
PSR policy.

Proposition 3. If initial capacity X1 and demand D11
0 0 0 1DT are integer valued, there exists an integer valued
optimal policy Y11 0 0 0 1YT derived by the PSR policy.

To further characterize the protection level pij defined
in (8), we need to deal with the marginal value of ät with
respect to each capacity level and unmet demand level.
Intuitively, one may think that the profit will be higher
if there is an additional unit of capacity i− 1 41 < i¶N5
rather than capacity i. But this is not necessarily true. When
making upgrading decisions, one more unit of capacity
from the higher class i−1 always provides more flexibility,
but such a flexibility does not necessarily mean a higher
profit since �ij > �i−11 j 4i < j5 by our assumption. Sim-
ilarly, one more unit of demand in a lower class, which
can be upgraded by more classes of capacities, has simi-
lar advantage but can not guarantee greater profit because
�ij > �i1 j+1 4i ¶ j5. However, we can show two different
monotone properties of the protection levels. First, since

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
2.

11
1.

87
] 

on
 0

6 
M

ar
ch

 2
01

6,
 a

t 2
0:

53
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Yu, Chen, and Zhang: Dynamic Capacity Management with General Upgrading
Operations Research 63(6), pp. 1372–1389, © 2015 INFORMS 1379

lower demand has less value for any capacity, the protec-
tion level should increase in the class index of demand.

Proposition 4. For the same 4nt
11 0 0 0 1 n

t
i−15 in period t

41 ¶ t ¶ T 5, pij ¶ pi1 j+1 when i < j .

Because the general upgrading problem in period T is
a transportation problem, äT 4XT 1 D̃T 5 is submodular in
4XT 1−D̃T 5 (see Topkis 1998). This implies the protection
level pij in period T − 1 under state NT−1 is decreasing in
4nT−1

1 1 0 0 0 1 nT−1
i−1 5. In fact, the same monotonicity holds in

earlier periods.

Proposition 5. The optimal protection level pij 41 ¶ i <
j ¶ N5 in period t 41 ¶ t ¶ T 5 are component-wise
decreasing in 4nt

11 0 0 0 1 n
t
i−15.

For any class i 41 ¶ i ¶ N5, this result assures that the
more capacities (or less back-ordered demands) in classes
higher than i, the more upgrades can be offered by class i.
Note that larger 4nt

11 0 0 0 1 n
t
i−15 means higher probability

of demand i being upgraded in remaining periods, which
decreases the expected marginal value of capacity i and
gives class i a greater incentive to upgrade lower demands
in the current period.

It is noteworthy that although the result for the last
period can be proved using lattice programming in Topkis
(1998), the commonly used preservation property of super-
modularity under maximization operations, Theorem 2.7.6
in Topkis (1998), does not apply. In fact, the revenue-to-
go function äT 4XT 1 D̃T 5 in period T , used in the dynamic
program recursion for period T − 1, is the optimal objec-
tive value of a transportation problem that is submodular
in 4XT 1−D̃T 5. Therefore, our proof relies heavily on the
structure of the general upgrading problem and fully uti-
lizes the optimality of the PSR policy.

One may ask whether the optimal protection levels are
decreasing over time, i.e., the protection level would be
lower if there are fewer periods to go. Interestingly, though
this is true in SZ, it does not hold in our upgrading problem.
This is mainly due to the existence of the backorder cost.
Note that the purpose of the protection levels is to balance
the goodwill loss of carrying backorders and the revenue
loss of losing future demand from the same class. For early
periods that are still far away from the end of the horizon,
because a backorder causes the goodwill loss in each period
until it is upgraded, the protection levels may be lower to
avoid high backorder costs; in contrast, when it is close
to the end of the horizon, the protection levels may come
back up because carrying backorders will be less costly.

We may use a two-product three-period example to
explain this counter-intuitive result. Let 421−25 be the state
after the parallel allocation, D2 = 40105 and D3 = 41105
with probability 1. Working backward to solve the p12 in
period 2, since

ä3421−25−ä3411−15= �12 − g2 <�121

ä3411−15−ä340105= �11 − g21

we have p12 = 1 in period 2 if �11 − g2 >�12. Since D2 =

40105, there is

ä2421−25−ä2411−15= �12 − g2 <�121

ä2411−15−ä240105= �11 − 2g20

Therefore, if �11 − g2 > �12 > �11 − 2g2, the optimal
protection level p12 increases from 0 in period 1 to 1 in
period 2. That is, the protection level does not necessarily
decrease over time in our general upgrading problem.2

6. Multiple Horizons with Capacity
Replenishment

Now we extend our model to multiple horizons with capac-
ity replenishment. Specifically, there are K 4K ¾ 15 hori-
zons, each consisting of T periods. Demands across hori-
zons are independent and identically distributed. At the
beginning of each horizon k 41 ¶ k¶K5, the firm observes
the leftover capacity X and unmet demand D̃ carried over
from the previous horizon. There are two decisions for the
firm in each horizon: First, the firm decides how much
capacity to replenish; second, it allocates capacity to satisfy
demand as formulated in (2). For completeness, we assume
unmet demand after the Kth horizon can also be satis-
fied by purchasing additional capacity. There is a unit cost
vector C = 4c11 0 0 0 1 cN 5 ∈ <N

+
for capacity replenishment.

The remaining capacity at the end of each horizon incurs
a holding cost h = 4h11 0 0 0 1 hN 5 ∈ <N

+
. The leftover capac-

ity after the Kth horizon can be sold at the initial capacity
cost, i.e., it has salvage value C. Revenues and costs are
discounted at a rate � 40 < � ¶ 15 for each horizon. We
introduce a discount factor here because a horizon might
be long enough so that the time value of money should be
taken into account. The rest of the model setting remains
the same as in §3.

We show the optimality of a myopic policy in which the
firm only needs to solve a single-horizon problem. For this
purpose, define

äT+14XT+11 D̃T+15

= 4�C−h5 ·XT+1
+�4Á−C5 · D̃T+11 (10)

where Á= 4�111 0 0 0 1�NN 5 is the revenue from parallel allo-
cation. Since we assume the leftover capacity after the
Kth horizon can be sold at the initial capacity cost and
unmet demand after the Kth horizon can also be satisfied
by purchasing additional capacity, at the end of the Kth
horizon, the unit salvage value of the remaining capacity
XT+1 is �C−h, and the value of the back-ordered demand
DT+1 is �4Á − C5. That is, the terminal value at the end
of the Kth horizon is exactly given by äT+14XT+11 D̃T+15
if the remaining capacity is XT+1 and the back-ordered
demand is D̃T+1, which is essential for the optimality of
the myopic policy (similar terminal value assumptions have
been commonly used in the literature). Let ç4X3�C −
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h3�4Á−C55 denote the optimal profit of a single-horizon
model with initial capacity X and a terminal value speci-
fied by äT+14XT+11 D̃T+15. Note that although �C−h and
�4Á−C5 are constants, they are used as arguments in ç
to emphasize the terminal values of the remaining capac-
ity and back-ordered demand. This is different from the
single-horizon model with zero end values in §3.

From the proof of Proposition 1, ät4Xt1 D̃t5, which is
similarly defined as (2) with äT+1 ≡ 0 being replaced by
äT+1 in (10), is still concave in 4Xt1 D̃t5. In particular,
ç4X3�C−h3�4Á−C55 is concave in X from the concav-
ity of ä14X105. Furthermore, similarly as (6), we can show
that there exists an optimizer X∗ for the concave function
ç4X3�C−h3�4Á−C55:

X∗
∈ arg max

X∈<N
+

ç4X3�C−h3�4Á−C550 (11)

Note that X∗ is the optimal capacity level for the replen-
ishment model with K = 1.

The next proposition characterizes the optimal capacity
replenishment and allocation policies in the multihorizon
model, given that the firm starts with an initial capacity
X ¶ X∗. It shows that the structural results from the base
model in §3 remain valid in the multihorizon model; thus
we will focus on the base model in the rest of the paper.

Proposition 6. Suppose the firm starts with an initial
capacity X¶X∗ in (11). The firm’s optimal replenishment
policy in the multihorizon model is a base stock policy
with the optimal base stock level X∗. Furthermore, the PSR
algorithm solves the optimal allocation decisions within
each horizon.

7. Heuristics and Benchmark Models
So far we have characterized the structure of the optimal
allocation policy for our dynamic capacity management
problem. In this section, we propose an effective heuristic
for solving the optimal allocation policy. For future com-
parison, we also present two benchmark models that are
simplified versions of the general upgrading problem.

7.1. Heuristics

We have shown that the PSR policy yields the optimal
allocation decisions Yt for the firm in period t, which
essentially consist of the optimal protection levels for each
capacity class. These optimal protection levels are defined
by (8) and can be solved by backward induction. For
instance, the optimal protection levels in period t depend
on the revenue-to-go function ät+1, which is determined
by the protection levels used in period t + 1. To evalu-
ate ät+1, one needs to derive the optimal protection lev-
els for all possible states in period t + 1 (note that these
protection levels, though possessing the appealing proper-
ties established earlier, are still state-dependent). Because
of the curse of dimensionality, solving the exact optimal

upgrading decisions is quite difficult for large problems.3

Therefore, we need to search for heuristics that can solve
the problem effectively.

Since solving the allocation decision is equivalent to
solving the Bellman equation (2) in period t, in order to
develop efficient heuristics, we focus on the one-step looka-
head policy that hinges upon reasonable approximations
to ät+1. The basic idea is as follows. Suppose ǟt+1

approx is
an easy-to-compute and acceptable approximation to ät+1.
Given the initial state 4Xt1 D̃t5 and the realized demand Dt

in period t, we solve the following optimization program

max
Yt

6H4Yt
� D̃t3Dt5+ ǟt+1

approx4X
t+11 D̃t+1571 (12)

and obtain the corresponding allocation decision Yt
approx

4Xt1 D̃t �Dt5 in period t. Let ät
approx be the revenue collected

by applying the policy 4Yt
approx1 0 0 0 1Y

T
approx5 from period t

to T . For simplicity, we do not distinguish between the pol-
icy and the decision (e.g., Yt

approx and Yt
approx4X

t1 D̃t � Dt5),
since the proper interpretation is usually clear from the con-
text. Note that Yt

approx is a suboptimal policy in the general
upgrading problem and ät

approx 6= ǟt
approx in general. More-

over, ät
approx4N

t5¶ät4Nt5 for any state Nt in period t since
ät4Nt5 adopts the optimal policy from period t to T .

As pointed out by Bertsekas (2005b), even with readily
available revenue-to-go approximations, computing ät

approx

may still involve substantial computational effort. A num-
ber of simplifications of the optimization in (12), including
different ǟt+1

approx functions, have been considered. Here we
present two of them that stand out both in terms of com-
putational time and revenue performance. Because of the
linearity in the upgrading problem, the first natural candi-
date is the traditional certainty equivalence control (CEC)
heuristic in the literature (see, e.g., Bertsekas 2005a). The
CEC is a suboptimal control that treats the uncertain quan-
tities as fixed typical values in the stochastic dynamic pro-
gram. In our case, we use demand means as typical values
in evaluating the function ǟt+1

approx. Thus, under the CEC,
expectation calculations are no longer relevant, which can
alleviate the computational burden in our problem. Specif-
ically, the optimal allocation policy in period t is solved
together with all future periods where the mean demand is
used as approximation. That is, the optimal allocation deci-
sion Yt

CEC in the CEC heuristic will be obtained by solving
the following linear program:

max
4Yt

CEC1 Ȳ
t+110001ȲT 5¾0

{

H4Yt
CEC � D̃t3Dt5+

T
∑

l=t+1

H4Ȳl
� D̃l3Ìl5

}

s.t. D̃t+1
= D̃t

+Dt
−4Yt

CEC5
ᵀ
·11

D̃l+1
= D̃l

+Ìl
−4Ȳl5ᵀ ·11 l= t+110001T 1

(

Yt
CEC +

T
∑

l=t+1

Ȳl

)

1¶Xt1

4Yt
CEC5

ᵀ
·1¶ D̃t

+Dt1
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(

Yt
CEC +

k
∑

l=t+1

Ȳl

)ᵀ

1¶ D̃t
+Dt

+

k
∑

l=t+1

Ìl1

k= t+110001T 1

(13)

where Xt , D̃t , and Dt are the capacities, backorders, and
realized demand in period t, respectively, and 4Ì11Ì21 0 0 0 1
ÌT 5 denote the mean demand vectors.

The solution to (13) yields the allocation decisions
4Yt

CEC1 Ȳ
t+11 0 0 0 1 ȲT 5 for periods from t to T , where 4Ȳt+11

0 0 0 1 ȲT 5 are discarded in the subsequent periods. We
implement Yt

CEC as the allocation decision for period t
and then move on to solve problem (13) in period t + 1.
Let ät

CEC be the revenue collected by applying the pol-
icy 4Yt

CEC1 0 0 0 1Y
T
CEC5 in periods from t to T . Define

çCEC4X5 = ä1
CEC4X105 as the firm’s total revenue given

initial capacity X under the CEC heuristic.
Although the above CEC heuristic can simplify our prob-

lem, its computational time is still quite long. Consider
an N -product general upgrading problem with t periods
remaining, the CEC heuristic solves the allocation deci-
sions in the current period as a transportation problem with
N classes of capacities and tN classes of demands, whose
running time is O4tN 34log4tN 5 + N logN55 (see Brenner
2008). In addition, the optimal allocation is derived from
the linear program in (13), which does not use the PSR pro-
cedure and the marginal analysis in (8). This means that the
CEC might be further improved by exploiting the special
properties inherited in our upgrading problem.

To this end, we further simplify the revenue-to-go func-
tion by applying greedy upgrading. So the approximation
to ät+1 consists of two components: certainty equivalence
control (CEC) and greedy upgrading. Under the CEC, again
the mean demand is used as an approximation in all future
periods. At the same time, ǟt+1

approx is simplified by adopting
greedy upgrading from periods t+ 1 to T rather than solv-
ing the linear program as in the CEC heuristic. Such sim-
plification, though suboptimal, is much easier to compute
than the linear program.4 Given these characteristics of the
approximation, we call it refined certainty equivalence con-
trol (RCEC) and write ǟt+1

approx as ǟt+1
RCEC. In addition to the

above approximation, the RCEC heuristic then calculates
the protection levels in (8) by replacing ät+1 with ǟt+1

RCEC,
and determines the allocation decision Yt

RCEC in period t by
applying the PSR policy to solve the following program

max
Yt

6H4Yt
� D̃t3Dt5+ ǟt+1

RCEC4X
t+11 D̃t+1570

Note that ǟs
RCEC 4s ¾ t + 15 can be defined recursively

as follows:

ǟs
RCEC4X

s1D̃s5=H4Ys
� � D̃s3Ìs5+ǟs+1

RCEC4X
s+13D̃s+151 (14)

where Xs+1 = Xs − Ys
� · 1, D̃s+1 = D̃s + Ìs − 4Ys

�5
ᵀ · 1,

ǟT+1
RCEC ≡ 0, and Ys

� = 4ysij4�55N×N is the solution to the
following linear program:

max
Ys
�¾0

{

∑

1¶i¶j¶N

�ijy
s
ij4�5

∣

∣

∣

∣

4Ys
�5

ᵀ
· 1¶Ìs

+ D̃s1Ys
� · 1¶Xs

}

0

Given the protection levels derived from ǟt+1
RCEC, Yt

RCEC is
the allocation policy in period t solved by the PSR pol-
icy, and ät

RCEC is the revenue collected by applying policy
4Yt

RCEC1 0 0 0 1Y
T
RCEC5 in period t to T . Define çRCEC4X5 =

ä1
RCEC4X105 as the firm’s total revenue given initial capac-

ity X under the RCEC heuristic, and XRCEC as the optimal
capacity that maximizes çRCEC4X5.

We now illustrate how the PSR policy can be used to sig-
nificantly simplify the computation of the allocation policy
Yt

RCEC (through the protection levels) without the explicit
function form of ǟt+1

RCEC. Although greedy upgrading (rather
the optimal allocation) is used in ǟt+1

RCEC, it can be shown
that for any state Nt = 4nt

11 0 0 0 1 n
t
N 5,

¡

¡p
ǟt+1

RCEC4n
t
110001n

t
i−11p101000101−p1nt

j+110001n
t
N 5 (15)

is decreasing in p.5 Thus, the protection levels in the PSR
policy can be solved by a binary search, and it suffices
to examine whether the protection level pij is between
max4nt

i + nt
j105 and nt

i . The binary search starts with the
two initial points max4nt

i + nt
j105 and nt

i . If it proceeds
to evaluate more points in the middle (i.e., pij is strictly
between max4nt

i + nt
j105 and nt

i), then there must remain
both surplus capacity i and unmet demand j after per-
forming the ytij allocation. In this case, there will be no
upgrade between classes 411 0 0 0 1 i−15 and 4j1 0 0 0 1N 5, and
it is unnecessary to compute the protection levels between
these two sets. In addition, it indicates that when determin-
ing the upgrading between classes r and s for i¶ s < r ¶
j1 4s1 r5 6= 4i1 j5, either surplus capacity s or unmet demand
r must be zero and the binary search only needs to check
the two boundary points. Consequently, the N classes can
be partitioned into a number of blocks (say K blocks), and
upgrading takes place only within each block. Moreover,
in each block there is at most one pair of i and j such
that the binary search evaluates more than two points to
determine pij . For block k 41 ¶ k ¶ K5 with size nk 42 ¶
nk ¶ N5, the total number of calls to compute the deriva-
tive in (15) is no more than O4n2

k + log �X�5, where �X� is
the upper bound of the initial capacity in each class. Since
there is no upgrade between blocks, to solve the allocation
decision in each period, the total number of calls to eval-
uate ǟt+1

RCEC would be bounded by O4N 2 +N log �X�5. It is
noteworthy that the advantage of using protection levels is
that they can fully characterize the upgrading policy; these
protection levels can be computed via binary search that
makes a small number of calls to ǟt+1

RCEC, so there is no
need to undertake the more demanding task of deriving the
explicit expression of ǟt+1

RCEC.
Consider an N -product general upgrading problem with

t periods remaining. Since greedy upgrading can be solved
in the running time of O4tN 25, from the above analysis,
the RCEC has a running time of O4tN 34N + log �X�55 in
the worst scenario, which is significantly shorter than the
CEC when �X� is moderate. More appealingly, the PSR
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policy can further reduce the computational complexity in
practice. Recall the discussion after Proposition 2, the pro-
tection level pij 41 ¶ i < j ¶ N5 in period t only depends
on the effective state above i, which is decided by Mt −Dt .
Thus, we can use parallel computing technique and solve
all protection levels independently based on Mt −Dt .

A common feature of the RCEC and CEC heuristics
is that both use mean demand in future periods as an
approximation. There is a critical difference between these
two heuristics. In the RCEC, the PSR procedure is used;
in particular, the optimal protection level is determined
by (8) (i.e., by comparing the upgrading value to the future
marginal value). By contrast, in the CEC, the optimal allo-
cation is derived from the linear program in (13), which uti-
lizes neither the PSR procedure nor (8). It seems the adop-
tion of the PSR procedure in the RCEC plays an important
role in both reducing the computational complexity and
improving the approximation performance, which will be
further discussed in §8.1.

7.2. Benchmark Models

For future comparison, we introduce two benchmark mod-
els in this subsection. The first one is called the crystal ball
(CB) model. In this model, the firm has perfect demand
forecast when allocating the capacities in each period. Such
a benchmark has been widely adopted in the literature
because it offers the “perfect hindsight” upper bound of the
firm’s optimal profit. For instance, it has been used in SZ
but is called static model because the firm essentially faces
a static capacity allocation problem given complete demand
information. Let � represent a sample path of demand
4D11 0 0 0 1DT 5 over the sales horizon, and Dt4�5 the demand
in period t on sample path �. Then, the firm’s expected
profit from period t to T is defined as Ɛ�6ä

t4Xt1 D̃t3�57,
where

ät4Xt1 D̃t3�5= max
Yt 10001YT

T
∑

l=t

H4Yl
� D̃l3Dl4�55

s.t. D̃l+1
= D̃l

+Dl4�5− 4Yl5ᵀ · 11 l = t1 0 0 0 1 T 1

T
∑

l=t

Yl
· 1¶Xt1

k
∑

l=t

4Yl5ᵀ · 1¶ D̃t
+

k
∑

l=t

Dl4�51 k = t1 0 0 0 1 T 1

Yl ¾ 01 l = t1 0 0 0 1 T 0

The firm’s optimal profit in the crystal ball model is given
by

max
X1∈<N

+

çCB4X
15= max

X1∈<N
+

{

Ɛ
�
6ä14X1103�57−C ·X1

}

1 (16)

which can be used to benchmark the performance of our
heuristic in the dynamic upgrading problem.

The second benchmark is the model without product
upgrading. In this case, the firm’s problem reduces to N
independent newsvendors (NV) with backorders. The firm’s
expected profit can be written as

max
X1∈<N

+

çNV4X
15

= max
X1∈<N

+

{

Ɛ
8D110001DT 9

N
∑

s=1

T
∑

t=1

6�ss min4xt
s1 d

t
s5

− gs4d̃
t
s +dt

s57−C ·X1

}

s.t. xt+1
s = 4xt

s −dt
s5

+1 d̃t+1
s = d̃t

s + 4dt
s − xt

s5
+1

x1
s = 4X15s1 dt

s = 4Dt5s1

s = 11 0 0 0 1N 1 t = 11 0 0 0 1 T 0

(17)

Note that although the two benchmark models (CB and
NV) are similar to the static and independent newsvendor
models used in SZ, because of the backlogging assump-
tion, the firm has to allocate capacity in each period in our
model, rather than accumulate the demand for the entire
selling season and then allocate the capacity as in SZ. In §8,
we use Monte Carlo simulation to generate demand sample
paths and use the sample average approximation method to
solve the two benchmark models.

8. Numerical Studies
In this section, we conduct numerical studies to derive
insights into the capacity management problem. First, we
test the performance of the RCEC heuristic proposed in
the previous section. After that, by using the heuristic and
benchmark models, we investigate the importance of the
allocation mechanism and the capacity sizing decision. For
simplicity, we focus on integral demands.

8.1. Performance of RCEC

Because of the complexity of the problem, we use exten-
sive numerical experiments to test the performance of the
heuristics. These experiments are conducted using MAT-
LAB R2013a on an Intel Core i7-2600 desktop with 12 Gb
RAM. We focus on the RCEC heuristic because it will be
used later for further numerical investigation.

The first set of experiments has N = 4 and T = 3. For
such a problem size, we can use backward induction to
evaluate the firm’s optimal profit ç4X5 given in (1). Later
we will also discuss the performance of the RCEC for
larger problem sizes where it is difficult to evaluate ç4X5
directly. Given an initial capacity X ∈ <N

+
, define the per-

formance measure

ãopt =

∣

∣

∣

∣

çRCEC4X5−ç4X5
ç4X5

∣

∣

∣

∣

∗ 100%1 (18)

i.e., the percentage of profit loss by using çRCEC4X5 rather
than ç4X5.
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Table 1. The percentage profit loss (ãopt) of RCEC rel-
ative to the optimal solution.

90%- 95%- 99%-
Mean Std. Median percentile percentile percentile Max.

0040 1013 0015 0077 1027 5058 17099

To calculate ç4X5=ä14X105, we use the Monte Carlo
method and consider a comprehensive range of scenar-
ios, which capture different fluctuation patterns of demand
means along the selling horizon (i.e., variation of Ɛ6Dt7
from t = 1 to T ), different correlations between classes of
demands in each period (i.e., Corr4dt

i 1 d
t
j5 for all 1 ¶ i ¶

j ¶ N ), different demand distributions (i.e., Normal distri-
bution with integer rounding and Poisson distribution), and
various economic parameters (i.e., revenue 4r11 0 0 0 1 rN 5,
goodwill cost 4g11 0 0 0 1 gN 5, usage cost 4u11 0 0 0 1 uN 5, and
capacity cost 4c11 0 0 0 1 cN 5). Furthermore, to ensure the
robustness of the results, we also test a number of dif-
ferent initial capacities X used in (18), which consist of
both realistic and extreme scenarios. In total there are 4,212
experiments in this numerical study. A full description of
the setup of the numerical study is lengthy and thus given
in the appendix.

The statistics for the ãopt value are reported in Table 1.
It can be seen that the RCEC performs very well in this
numerical study. Among all the experiments tested, the 90th
percentile of the profit loss is 0077%, and the average is
0040%.

Next we test the performance of the RCEC in larger
problems. Specifically, we consider problems with N = 5
products and up to T = 60 periods. Given such sizes, it is
extremely time-consuming to evaluate the optimal revenue
function ç4X5. Instead, we use çCB4X5 from the crystal
ball (CB) model defined in (16) as the benchmark for com-
parison. Recall that çCB4X5 is an upper bound of the opti-
mal revenue ç4X5 for any X, and the following relationship
holds: çCB4X5¾ç4X5¾çRCEC4X5. Define

ãCB =

∣

∣

∣

∣

çRCEC4X5−çCB4X5
çCB4X5

∣

∣

∣

∣

∗ 100%0

Then ãCB is an upper bound of ãopt, the percentage profit
loss of the RCEC (i.e., çRCEC4X5) relative to the optimal
revenue (i.e., ç4X5).

Similar experiment design has been used as Table 1
except that now we consider 5 products with several differ-
ent T values. This allows us to examine up to 4 levels of
upgrading. Also by varying T we can study the impact of
the number of periods (or the frequency of upgrading deci-
sions) on the problem. Specifically, T takes values from
a set 831151301609. For each T , there are 13,260 experi-
ments in total in this numerical study. To save space, we
provide a detailed description in the appendix.

We summarize the statistics of ãCB for different T ’s in
Table 2. The table shows that the value of ãCB is increas-
ing in the number of periods, T . The RCEC ignores the

Table 2. The percentage profit loss (ãCB) of RCEC rel-
ative to the CB solution.

T Mean Std. Median 90%-percentile Max.

3 0.14 0.38 0.00 0.34 6074
15 1.52 2.51 0.23 4.83 12006
30 2.37 3.36 0.42 5.37 23037
60 3.52 3.82 0.59 8.21 39036

randomness of the demand in future periods (recall that the
mean demand is used). Thus, compared to çCB4X5, more
demand information is lost as T increases. Table 2 also
indicates that the value of ãCB is small in general: Even for
T = 60, ãCB is 8021% at the 90th percentile, and the aver-
age is about 3052%. This observation has two implications.
First, since ãCB is the upper bound of ãopt, we know that
ãopt is generally small in the tested examples. This means
that for the 5-product numerical experiments, the RCEC
also performs well. Second, the observation implies that
the difference between çCB4X5 and ç4X5 is small. In other
words, the value of advance demand information is not sig-
nificant for many cases. Such a result is in line with some
of the findings reported in the literature. For instance, SZ
finds from numerical study that when the optimal upgrading
policy is used, the firm’s expected revenue is consistently
within 1% of the revenue in a static model (i.e., the crystal
ball model). Similarly, Acimovic and Graves (2015) find
in a dynamic order fulfillment setting that the crystal ball
model improves the performance of the proposed heuristic
by 2%, i.e., the performance difference between the crystal
ball model and the true optimum is smaller than 2%.

We now compare the performances of the RCEC and the
CEC. Define the ratio

� =
çRCEC4X5
çCEC4X5

to measure the relative performances of the two heuristics.
So a ratio higher (lower) than 1 implies that the RCEC
outperforms (underperforms) the CEC. We calculate the
ratio for the problem instances used in the numerical study
underlying Table 2 (i.e., N = 5 and T = 831151301609).
The statistics of the ratio values are summarized in Table 3
since the results are consistent across different T ’s. Mean-
while, as we mentioned earlier, we also compare the actual
computation times of the CEC and the RCEC heuristics in
these instances, i.e., the total computation times for deriv-
ing the capacity allocations and obtaining the values of
çCEC and çRCEC for any given X. Specifically, we use
MOSEK toolbox for MATLAB version 7 to solve the lin-
ear program in (13) in the CEC heuristic, and we apply
the binary search to solve the protection levels in (8) while
replacing ät+1 by ǟt+1

RCEC in (14). Similarly, we define

�time =
Time for solving çRCEC4X5
Time for solving çCEC4X5

1

whose statistics are also reported in Table 3.
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Table 3. Comparison of RCEC and CEC.

Mean Std. Min. 25%-percentile Median Max.

� 1000 0004 0002 1000 1000 4081
�time 0009 0005 0000 0005 0008 1013

We observe that the CEC may outperform the RCEC in
some instances (e.g., the ratio can be as low as 2%);6 how-
ever, for the majority of the examples, the RCEC performs
better than the CEC. More importantly, the reduction of
computation time from CEC to RCEC is substantial: all
else being equal, the average time for solving a test instance
using the RCEC is only 9% of that using the CEC.

Why does the RCEC exhibit a better overall perfor-
mance? We offer the following plausible explanation. In
both the CEC and RCEC heuristics, we replace the future
random demands by their means in each period. Such
an approximation clearly will change our original prob-
lem and result in suboptimal solutions. In the RCEC,
the optimal protection level is determined by compar-
ing two values: The first is the upgrading value from
using the product in the current period; the second is the
expected marginal value of the product if it is saved to
the next period. For illustration, consider the upgrading of
demand j using capacity i in period t. The latter value
is defined as ǟt+1

RCEC4X
t+1 + ei1 D̃

t+1 + ej � �t+11 0 0 0 1�T 5 −

ǟt+1
RCEC4X

t+11 D̃t+1 ��t+11 0 0 0 1�T 5, where es 4s = i1 j5 is the
unit vector with 1 in position s. The mean demand approx-
imation may introduce biases into the two revenue func-
tions. However, since the expected marginal revenue is
defined as the difference between the two revenue func-
tions, these biases may be canceled out to some degree.
In other words, the inaccuracies introduced by certainty
equivalence control might be reduced in the RCEC heuris-
tic. Note that such a cancellation effect does not exist in
the traditional CEC heuristic. Therefore, the RCEC gener-
ally outperforms the CEC. In addition, the RCEC is more
attractive than the CEC in terms of computational time in
our numerical study.

One may also use the deflected linear decision rule
(DLDR) method proposed in Chen et al. (2008) to approx-
imate ät in the PSR algorithm. Let ät

DLDR be the revenue
collected by using Yt

DLDR’s in the remaining sales horizon,
and denote çDLDR4X5 = ä1

DLDR4X105 as the expected rev-
enue under the DLDR heuristic. We evaluate çDLDR4X5
in the numerical study described above and find that
çDLDR4X5 and çRCEC4X5 are almost identical in all the
problem instances.

Based on the results in Tables 1 and 2, we conclude that
the RCEC performs very well in a wide range of problem
situations. In addition, the RCEC greatly reduces the com-
putational complexity of the original problem. Therefore,
in the rest of the paper, we will use the RCEC to solve
the dynamic capacity management problem. Although the
RCEC only provides an approximation of the optimal pol-
icy, we expect the insights to carry over to the optimal

policy because the performance of the RCEC is close to
optimal in most of our numerical studies.

8.2. Value of Optimal Upgrading

Given the efficiency and effectiveness of the RCEC heuris-
tic, we are ready to derive more insights into the problem
using numerical studies. There are a couple of natural ques-
tions we would like to address. First, what is the value
of using multistep upgrading? Second, what is the value
of using the optimal capacity? Both questions are impor-
tant from a practical standpoint because managers need
to know how complex an upgrading structure should be
used and how to determine the initial capacity. This sub-
section focuses on the first question, and the second will
be addressed in the next subsection.

Let çk
RCEC4X5 be the revenue function given initial

capacity X and k-level upgrading (i.e., product i can be
used to satisfy class j demand only if i¶ j ¶ i+ k). Note
that when k = 0, no upgrading is allowed, and ç0

RCEC4X5=

çNV4X5, where çNV4X5 is the optimal revenue in the
newsvendor model in (17). Define

ãk
RCEC =

çk
RCEC4X5−çk−1

RCEC4X5
çk−1

RCEC4X5
∗ 100%1 k = 11213141

which measures the percentage profit gain from one addi-
tional level of upgrading under the RCEC.7

We evaluate the values of ãk
RCEC using the same param-

eters as those for Table 2 except the initial capacities.
Intuitively, upgrade is more valuable when the capacity is
unbalanced, i.e., there is excess capacity for some prod-
ucts while there is shortage for the others. Such unbalance
may occur even if the initial capacities are optimally set,
because demand may fluctuate because of seasonality and
trend while capacities are determined for the long term.
Thus, when choosing the initial capacity we use the fol-
lowing procedure. Start with the optimal capacity under the
RCEC, denoted as XRCEC (the computation of XRCEC will
be discussed in the next subsection); then set the capacity
for one product (say, product j) to 0 while adding capac-
ity 4XRCEC5j to a higher-quality product; finally, scale the
entire capacity vector by different multipliers. Mathemati-
cally, for 1 ¶ i < j ¶ 5, we consider all initial capacity X,
whose components are given by

4X5i = �44XRCEC5i + 4XRCEC5j51 4X5j = 01

4X5s = �4XRCEC5s1 ∀ s ∈ 81121314159\8i1 j91

where � ∈ 80091111019. There are 10 combinations of the
initial capacities for each � and parameter set; one exam-
ple is X = 44XRCEC51 + 4XRCEC52101 4XRCEC531 4XRCEC541
4XRCEC555. A full list of the initial capacities are given
in the appendix. We believe such a design captures the
possible capacity scenarios that may happen over time
as the firm allocates products to satisfy realized demand,
especially those with unbalanced capacities. Moreover, the
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Table 4. The value of using multistep upgrading
(ãk

RCEC).

T Upgrading level k Mean Median 90%-percentile

3 1 29075 20064 51063
2 5071 2009 15021
3 1045 0011 4099
4 0025 0001 0028

15 1 25096 20025 47044
2 4086 2099 12088
3 0079 0004 2070
4 0007 0 0009

30 1 20038 19088 45063
2 3089 1063 11070
3 0067 0002 2002
4 0005 0 0007

60 1 16077 12057 32070
2 2088 1007 10023
3 0040 0 201
4 0003 0 0004

mean of total demand over the selling horizon remains the
same for different T ∈ 831151301609, which implies that
less demand information is available within each period for
larger T . The numerical results for different T values are
given in Table 4.

There are several observations from Table 4. First,
Table 4 suggests that the firm’s profit increases in the num-
ber of upgrading levels k and the marginal value decreases
in k. In particular, we can see that most of the gains are
achieved with a single level of upgrading, though more can
be achieved with multistep upgrading. In some cases, the
value from two or more levels of upgrading can be quite
high. For instance, with T = 3, the benefit of moving from
one-step upgrading to two-step upgrading can be as high
as 15021% at the 90th percentile (i.e., for at least 10% of
the scenarios, the value is more than 15021%). This result
implies that single-step upgrading may not capture the full
benefit of upgrading, and multistep upgrading is needed in
certain cases.

Second, Table 4 indicates that the value of multistep
upgrading decreases in T . That is, using more upgrading
levels will be less beneficial for the firm when there are
more time periods in the selling horizon. Close scrutiny
reveals that there is a key contributing factor to this inter-
esting observation. A large T value means there are more
time periods, which allows “chain allocation” to be more
likely to happen. To see this, first consider T = 1. In
this case, under single-step upgrading, product 1 cannot
be used to satisfy demand 3. However, with T = 2, it is
possible that product 2 is used to satisfy demand 3 in
period 1; then, in the second period, product 1 is used to
satisfy demand 2. These two allocations essentially mean
that product 1 is used to satisfy demand 3. Evidence of
such a chain allocation has been observed in our numeri-
cal study. For instance, we examine the upgrading patterns
for scenarios with T = 3 and T = 15 under the full upgrad-
ing structure. With T = 3, the average numbers of upgrades

Table 5. The value of using multistep upgrading
(ãk

RCEC) under optimal initial capacity.

Upgrading level k Mean Median 90%-percentile

1 1034 0087 3061
2 0040 0021 1014
3 0014 0005 0042
4 0005 0001 0017

from product 1 to demand 2 (i.e.,
∑T

t=1 y
t
12), product 2

to demand 3 (i.e.,
∑T

t=1 y
t
23), and product 1 to demand 3

(i.e.,
∑T

t=1 y
t
13) are 1006, 1303, and 501, respectively, whereas

the corresponding numbers with T = 15 are 1209, 1500,
and 400. Note that there are more upgrades from prod-
uct 1 to demand 3 with T = 3 than with T = 15 even
though there are fewer chances for upgrading with T = 3.
The chain allocation is analogous to multistep upgrading;
the only difference is that it can be better executed when
there are more time periods. Therefore, multistep upgrad-
ing is less valuable since it can be implemented even under
single-step upgrading, but in a different way.

Finally, the numerical experiments suggest that multi-
step upgrading is most valuable when the initial capacity is
unbalanced. For example, for T = 3, when the optimal ini-
tial capacity XRCEC is used, the incremental value of mov-
ing from 2-level to 3-level upgrading is 0004% on average;
however, for initial capacity X = 44XRCEC511 4XRCEC52 +

4XRCEC551 4XRCEC531 4XRCEC54105, the counterpart value is
5010%. This indicates that the multistep upgrading is quite
important because unbalanced capacity may arise over
time, even if the problem starts with the optimal initial
capacity.

What is the benefit of using more upgrading levels if the
optimal initial capacities are used? To answer this ques-
tion, let XRCEC4k5 4k = 0111 0 0 0 145 be the optimal initial
capacities obtained from the RCEC heuristic with k-level
upgrading, and redefine

ãk
RCEC =

çk
RCEC4XRCEC4k55−çk−1

RCEC4XRCEC4k−155

çk−1
RCEC4XRCEC4k−155

∗100%1

k=1121314

which is the percentage profit gain from one additional
level of upgrading under the RCEC if the corresponding
optimal initial capacities are used. Using the same set of
parameters as in Table 4, we obtain the numerical results
given in Table 5.

As one may expect, the values of using multistep upgrad-
ing are much smaller in Table 5 because the initial capac-
ities have been accordingly adjusted, and this lowers the
benefit of using more levels of upgrading. However, the
value of multistep upgrading should not be overlooked
either: the additional profit by moving from one-step to
two-step upgrading captures about 30% of that from no
upgrading to one-step upgrading.8 Our numerical analysis
also indicates that the more variable the demand, the higher
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the value of upgrading. We omit the details because sim-
ilar observations have already been made in Bassok et al.
(1999) and SZ.

8.3. Capacity Sizing Decision vs. Allocation
Mechanism

The profit of the upgrading problem hinges upon both the
initial capacity and the allocation mechanism. This raises
an interesting question: Which decision is more important,
capacity sizing or allocation mechanism? This is a prac-
tical question because the firm may wish to focus lim-
ited resources on improving the decision that has a bigger
impact on profit. To shed some light on this question, we
measure the importance of each decision using the profit
loss when a suboptimal decision is applied rather than the
optimal one. Next, we describe the suboptimal decisions
that will be used.

In our problem, it is time-consuming to derive the opti-
mal initial capacity even if we can efficiently solve the
optimal allocation decision by the RCEC heuristic. So we
consider two simple alternatives. The first alternative is to
use the optimal capacity XCB in the crystal ball model. The
crystal ball model is called static model in SZ, who find
that XCB yields nearly optimal revenue for the firm in their
single-step upgrading model. To check whether the result
carries over to our general upgrading model, define

ãXCB
=

∣

∣

∣

∣

çRCEC4XCB5−çRCEC4XRCEC5

çRCEC4XRCEC5

∣

∣

∣

∣

∗ 100%

to measure the performance of the crystal ball capacity
XCB. With the same parameters used for Tables 2–4, we
evaluate ãXCB

for 624 examples and summarize the results
in Table 6 (the first row). It can be seen that ãXCB

is gener-
ally negligible in the numerical study: The average revenue
difference is 0002% and the maximum is 1010%.

Note that since the true optimal capacity is unknown, we
use XRCEC, the optimal initial capacity under RCEC, as the
benchmark for the comparison. It is worth mentioning that
despite its excellent performance, the firm’s total revenue
function çRCEC4X5 is not necessarily concave in X under
the RCEC heuristic. A nonconcave example is provided in
the appendix. Thus if needed, we resort to the following
approach to determine XRCEC. We start with the optimal
capacity from the crystal ball model and apply the grid
search to find the optimal initial capacity: For each search
step, we move from X= 4x11 x21 0 0 0 1 xN 5

ᵀ to the point in set
8X′ = 4x′

11 x
′
21 0 0 0 1 x

′
N 5

ᵀ2 maxi∈811210001N 9 �x
′
i − xi� = 19, which

gives the largest function value of çRCEC. That is, we con-
duct a local search along the grid; such an approach has
also been used in SZ.

An even simpler alternative is to use the newsvendor
capacity XNV, i.e., the optimal capacity under no upgrading.
Similarly, in the same numerical study, we define

ãXNV
=

∣

∣

∣

∣

çRCEC4XNV5−çRCEC4XRCEC5

çRCEC4XRCEC5

∣

∣

∣

∣

∗ 100%

Table 6. Capacity decision vs. allocation mechanism.

Mean Std. Median 90%-percentile Max.

ãXCB
0002 5032 ∗ 10−2 0 0004 1010

ãXNV
0030 2089 ∗ 10−1 0026 0068 1062

ãgreedy 5060 5068 8003 12081 13075

and present the statistics of ãXNV
in Table 6 (the second

row). We can see that ãXNV
is greater than ãXCB

in gen-
eral, but it offers reasonably good performance as well.
The average and maximum revenue differences are 0030%
and 1062%, respectively. In particular, the number at the
90th percentile is 0068%, which means that the newsven-
dor capacity performs quite well for the majority of the
scenarios. From the above observations, one can see that
these simple alternatives to the optimal capacity perform
reasonably well. Therefore, as long as the optimal upgrad-
ing policy is used, the value of using the optimal capacity
seems to be very small in our problem setting.

Next, we consider the impact of using a suboptimal allo-
cation policy. We first use greedy upgrading as the sub-
optimal policy. Under such a policy, unmet demands are
upgraded in the order characterized by the PSR policy;
however, there is no rationing and surplus capacities are
used for upgrading as much as possible. It serves as a
reasonable suboptimal policy because it is intuitive and
straightforward to implement in practice. Furthermore, the
RCEC heuristic incorporates greedy upgrading to simplify
its computation. Specifically, let çgreedy4X5 be the expected
profit using greedy upgrading given initial capacity X. We
define

ãgreedy =

∣

∣

∣

∣

çRCEC4XRCEC5−çgreedy4XRCEC5

çRCEC4XRCEC5

∣

∣

∣

∣

∗ 100%

as the profit loss because of greedy upgrading. The same
parameters for ãXCB

and ãXNV
have been used, and the

statistics of ãgreedy are presented in Table 6 (the third row).
The average profit loss because of greedy upgrading is
50598%, which is much larger than those for ãXCB

and
ãXNV

. In addition to greedy upgrading, we also test sub-
optimal allocation policies that involve only k-step (k = 01
0 0 0 1N − 2) upgrading. The magnitudes of profit losses are
still generally much larger than those for ãXCB

and ãXNV
.

To save space, the detailed results are presented in the
appendix.

The above numerical results based on the RCEC heuris-
tic suggest that the benefit of choosing an effective allo-
cation mechanism outweighs that of choosing an accurate
initial capacity. Based on these observations, in practice,
the firm may decide the initial capacity by using simple
approximations (e.g., either the NV or CB model) and
focus on optimally allocating the capacity during the sales
horizon.
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9. Conclusion
This paper studies a firm’s capacity investment and alloca-
tion problem in a dynamic setting with stochastic demand.
There are multiple demand classes, which can be satis-
fied by multiple classes of capacities. Demand arrives in
discrete time periods, and the firm needs to make capac-
ity allocation decisions in each period before observing
future demand. A general upgrading structure is consid-
ered, which is broad enough to cover a wide range of
practical upgrading situations. One may also view this as
an inventory management problem with one-way dynamic
substitution.

We first show that for any given initial capacity, a Par-
allel and Sequential Rationing (PSR) policy is optimal for
the firm. Under the PSR policy, the firm can make upgrad-
ing decisions in each period sequentially rather than jointly,
which greatly reduces the complexity of the capacity allo-
cation problem. Despite the well-structured PSR policy, the
dynamic allocation problem is still subject to the curse
of dimensionality. Thus we propose a Refined Certainty
Equivalence Control (RCEC) heuristic that improves over
the traditional CEC methodology by exploiting the prop-
erty of the PSR policy. Through extensive numerical exper-
iments, we find that the RCEC heuristic is highly effi-
cient and yields nearly optimal revenue for the firm. With
the help of the RCEC heuristic, we conduct numerical
studies to derive managerial insights about the dynamic
capacity management problem. Our numerical studies indi-
cate that the multistep upgrading could be significantly
valuable, especially when the capacities are not balanced
(either because of suboptimal initial investment or unex-
pected demand realizations over time). We find that using
simple approximations (e.g., the newsvendor model with-
out substitution and the crystal ball model with perfect
demand forecast) for the initial capacities leads to negligi-
ble profit loss, whereas the negative impact of using a sub-
optimal allocation (e.g., greedy upgrading) could be quite
significant. In this sense, the allocation mechanism plays a
more important role in our problem than the capacity sizing
decision.

There are several interesting directions for future
research. First, it is worthwhile exploring models with
general nonstationary model parameters. The PSR policy
remains optimal as long as the profit margin is monoton-
ically decreasing over time. However, with general non-
stationary model parameters, the optimal policy is still
unknown. It is possible that the parallel allocation is not
used to the maximum extent, and the upgrading decision
may depend on the demands and capacities below the class
being upgraded if a higher profit margin is expected in
some later period. Second, it is a challenge to analyze mod-
els with lost sales. The backorder assumption used in this
paper is critical for the optimal PSR allocation policy. It is
not clear how the optimal policy looks under the lost-sales
assumption. Third, it would be interesting to take pricing
decisions into account, i.e., the firm may adjust prices over

time depending on the evolution of demand and remaining
capacity levels. Finally, recently there has been a grow-
ing interest in studying opportunistic consumer behavior in
operations problems. In our upgrading setting, a consumer
may intentionally choose the product that is sold out, hop-
ing to receive a free upgrade later. It would be interesting
to investigate how such a behavior may affect the firms’
operational strategies (e.g., upgrading policies).

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2015.1446.
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Endnotes

1. The backorder assumption is used mainly for tractabil-
ity. Notice that an unmet demand could be upgraded in any
subsequent period, so it is reasonable to assume that the
customers are willing to wait for potential upgrades, i.e.,
unsatisfied demands can be backlogged.
2. This counter-intuitive example remains valid for any
goodwill cost g2 if the length T satisfies �11 − 4T −25g2 >
�12 > �11 − 4T − 15g2 and D2 = · · · = DT−1 = 40105 and
DT = 41105.
3. To deal with the dimensionality issue, SZ propose a
series of bounds to approximate the optimal protection lev-
els. For instance, when computing the protection level for
product i, one may consider only the capacity for i − 1,
while assuming the products above i − 1 to be either �

(this gives a lower bound of the protection level) or 0 (this
gives an upper bound). It has been found that under the
single-step upgrading assumption, these bounds are very
tight and yield nearly optimal revenue for the firm. How-
ever, such bounds do not work well in our model, where
general upgrading is allowed.
4. We have tested the heuristic without the greedy upgrad-
ing and found that the performance is almost identical. That
is, the use of greedy upgrading in this heuristic can sig-
nificantly reduce the computational complexity but has a
negligible impact on the revenue performance.
5. Since future demands are known, there exists a period
s 4t+1 ¶ s ¶ T 5 in which capacity i will be depleted. From
the expression in (15), a marginal change of p only affects
the greedy upgrading in period s because both capacity i
and backorder demand j change simultaneously in p. In
particular, capacity i is used to sequentially satisfy demands
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from class i to j in period s. As p increases, the additional
units of capacity i will be used to satisfy demands from
lower classes that have smaller profit margins. Thus, the
partial derivative is a decreasing step function of p.
6. The differences between RCEC and CEC seem to be
quite large in extreme cases. The reason is that the optimal
expected profits in these cases are very close to zero and
thus a small perturbation in çRCEC and çCEC may drasti-
cally change the ratio �.
7. Note that ãk

RCEC may be negative since çk
RCEC may

be different from the optimal value. However, we only
observed 15 cases out of 74,880 (i.e., 0002%) in our numer-
ical study.
8. In our numerical study, upgrade constitutes 1092% of the
total satisfied demands on average when the optimal initial
capacity is used, and 26059% when the suboptimal initial
capacities are adopted. If the firm uses frequent upgrad-
ing to satisfy customer demand (e.g., the initial capacity is
poorly decided), customers may learn about the upgrading
pattern and become opportunistic. That is, a class i cus-
tomer may intentionally ask for product j (i < j), hoping
that she will be upgraded when product j is out of stock.
Incorporating such a behavior is out of the scope of this
paper and therefore left for future research.
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