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We examine a multiperiod capacity allocation model with upgrading. There are multiple product types, corresponding to
multiple classes of demand, and the firm purchases capacity of each product before the first period. Within each period,
after demand arrives, products are allocated to customers. Customers who arrive to find that their product has been depleted
can be upgraded by at most one level. We show that the optimal allocation policy is a simple two-step algorithm: First, use
any available capacity to satisfy same-class demand, and then upgrade customers until capacity reaches a protection limit,
so that in the second step the higher-level capacity is rationed. We show that these results hold both when all capacity is
salvaged at the end of the last demand period as well as when capacity can be replenished (in the latter case, an order-
up-to policy is optimal for replenishment). Although finding the optimal protection limits is computationally intensive,
we describe bounds for the optimal protection limits that take little effort to compute and can be used to effectively solve
large problems. Using these heuristics, we examine numerically the relative value of strictly optimal capacity and dynamic
rationing, the value of perfect demand information, and the impact of demand and economic parameters on the value of
optimal substitution.
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1. Introduction
Many manufacturing and service firms use capacity or
inventory flexibility to meet uncertain demand from mul-
tiple classes of customers. When capacity for a particular
product has been exhausted, demand for that product may
be met by a substitute product. For many applications, the
assignment of capacity to customers is complicated by the
fact that demand arrives over time and capacity must be
allocated before demand is fully known.
Consider a manufacturer of personal computers that oper-

ates an assemble-to-order system. The firm maintains stocks
of critical components such as hard disk drives, which are
available in many sizes. If a particular customer’s requested
size is unavailable, the firm may choose to upgrade the cus-
tomer to a more expensive size (the customer may or may
not be aware of the upgrade, depending upon how the disk
drive is formatted before shipping). Customers arrive over
time, and therefore the disk drive allocation decision must
be made when the demand for each type of drive is still
uncertain. Reorder cycles may be lengthy, so that some disk
drives must be allocated to customers before stocks can
be replenished. Bassok et al. (1999) describe and provide
references for similar upgrade problems from the semi-
conductor and steel industries, and parallel problems are
found in the service industries. Car rental agencies upgrade
customers to more expensive cars, hotels allocate various

grades of rooms among customers, and airlines upgrade
customers from economy to business class or first-class
seats.
Here we analyze dynamic multiproduct capacity mod-

els in which demand arrives in discrete periods. Through-
out this paper, we use the term “capacity,” although the
products may be interpreted as either service capacities or
tangible inventory. For this problem, we ask how much
capacity should be acquired and how that capacity should
be distributed among customers as demand is realized? Our
models have the following attributes:
1. Initially, we assume that there is a single opportunity

to invest in capacity before any demand is realized. We
then consider a more general model with repeated capacity
replenishment.
2. The time after the initial purchase (or between replen-

ishments) is broken into a finite number of demand peri-
ods (T ), and the decision maker allocates capacity to
customers after observing demand within each period.
3. Demand that is not satisfied in each period is lost

(there is no backlogging).
4. Demand for a product can be met by a product from

the next-higher class (for example, a computer manufac-
turer’s demand for a hard disk drive may be met with a
larger drive).
5. Capacity may be rationed so that the firm may choose

not to allocate high-class capacity to a lower-class customer.
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Our models can be seen as an extension of the single-
period multiproduct newsvendor models of Bassok et al.
(1999), Netessine et al. (2002), and others, to an environ-
ment with multiperiod demand. Another model with this
flavor is the “newsvendor network” of Van Mieghem and
Rudi (2002), but their model allows the firm to replenish
capacity between every demand period, whereas in ours
replenishment occurs every T periods. Our models are also
similar to yield management models in which a firm must
find optimal rules for rationing capacity among customer
classes. Therefore, this paper can also be seen as a gen-
eralization of the yield management problem to include
multiple types of capacity as well as the ability to upgrade
customers to a higher-capacity class.
After reviewing the literature, in §3 we describe our basic

model with a single opportunity for capacity investment
and show that a single-period static formulation provides an
upper bound on the expected profit of the dynamic model.
In §4, we prove that a threshold-rationing scheme is the
optimal policy among all possible policies and describe
a necessary and sufficient condition for the optimal level
of rationing (the number of units to ration is sometimes
called the protection limit). In §5, we extend the results to
the setting in which capacity can be replenished after each
sequence of T demand periods. We show that if demands
between replenishment opportunities are independent and
identically distributed, then the threshold-rationing policy
is optimal between replenishments and a stationary order-
up-to policy is optimal for each replenishment.
The remainder of this paper focuses on the character-

istics, calculation, and relative impact of the threshold-
rationing policy. In §6, we show that the protection limit
of each capacity class is decreasing as time increases and
is decreasing in the capacity level of any of the available
products.1 We also derive complementary pairs of lower
and upper bounds on the optimal protection limits that grow
progressively tighter as the computational effort needed to
calculate each pair of bounds increases. Section 6 then
describes numerical experiments demonstrating that over a
wide range of parameters, the bounds are extremely tight.
In fact, bounds based only upon the capacity level of one
adjacent product allow us to estimate protection levels that
are extremely close to optimal, and these bounds can be cal-
culated quickly, even for large models with many products.
In §7, we employ these bounds to generate numerical

examples using reasonably large capacity quantities and
time periods. Using these examples, we first compare the
optimal capacities for the single-period static model and the
dynamic model described in this paper. We find that the dif-
ferences between the optimal static and dynamic capacities
are usually small, and when they are not, the difference in
profits due to using capacity that is optimal for the static
model (rather than the dynamic model) for the dynamic
case is negligible. In that section, we also numerically ex-
amine the value of using optimal rationing, rather than
two simple heuristics: (i) upgrading with no rationing,

or (ii) no upgrading. We explore how the value of optimal
rationing versus these heuristics changes with the availabil-
ity of advance demand information, economic parameters
(e.g., contribution margins and initial costs), and demand
parameters (e.g., the variance and within-period correla-
tions of the demand). Finally, in §8 we describe future
research.

2. Related Literature
There are many models in the literature that capture a sub-
set of the five characteristics described above, but none,
to our knowledge, addresses all five (see the review article
by Van Mieghem 2003 for a more complete characteri-
zation of the literature on capacity investment and man-
agement). Some researchers have focused on single-period
“multidimensional newsvendor models,” a term used in
Van Mieghem (1998). For example, Bassok et al. (1999)
propose a general multiproduct inventory model to study
the benefits of substitution. Pasternack and Drezner (1991)
find the optimal stocking policy for goods with stochastic
demand and substitution in both the “up” and “down” direc-
tions. Fine and Freund (1990) and Van Mieghem (1998)
study optimal levels of flexible and dedicated production
capacities. Netessine et al. (2002) study the value of single-
level upgrades with an emphasis on the impact of demand
correlation on the optimal investment levels. In all of these
papers, the firm purchases inventory before demand is real-
ized and distributes the inventory to customers after observ-
ing all demand.
Tomlin and Wang (2008) consider a firm that sells

two vertically differentiated products to two classes of
customers. Both supply and demand are uncertain. The
utility-maximizing customers may choose to purchase a
second-choice product if the first-choice product is not
available. They examine the firm’s optimal pricing and
inventory allocation policies. Again, theirs is a single-period
model in which all allocation decisions are made either
before demand is realized or after all demand is realized.
As in our paper, Van Mieghem and Rudi (2002) present

a multidimensional newsvendor model that also incorpo-
rates multiperiod demand. However, their model allows the
firm to replenish inventory between each and every demand
period. For the applications we have in mind, adjustments
in inventory occur over a longer time scale than the within-
period rationing and allocation decisions, so that the firm
must find the optimal allocation, given only the inventory
it purchases every T demand periods. The firm’s inability
to replenish inventory between demand periods also distin-
guishes our work from the literature on multiperiod inven-
tory models with transshipment, such as Karmarkar (1981),
Robinson (1990), Archibald et al. (1997), and Axsäter
(2003).
The literature on yield management does focus on envi-

ronments in which capacity-sizing decisions are made and
then capacity must be allocated as demand arrives over
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time. See McGill and van Ryzin (1999) and Talluri and
van Ryzin (2004) for surveys of this literature. Papers by
Curry (1990), Wollmer (1992), and Brumelle and McGill
(1993) characterize the optimal rationing policy for an air-
line seat allocation problem in which a fixed seat capacity
must satisfy demand for multiple fare classes. The follow-
ing papers generalize these results by incorporating can-
cellations and/or overbooking: Bitran and Gilbert (1996),
Subramanian et al. (1999), and Zhao and Zheng (2001).
Savin et al. (2005) describe a model that is tailor-made
for studying the renting or leasing of capital equipment to
multiple customer classes. They formulate the problem as
a queueing control problem and allow the rental period to
be stochastic rather than uniformly fixed. In all of these
papers, there is a single type of resource—a coach seat on
a single-leg flight or a single type of rental car—so that
there is no discussion of “upgrades.”
There are a few papers in the yield management area

that do address the issue of inventory substitution. Alstrup
et al. (1986) study a dynamic overbooking problem with
two inventory classes and two-way substitution. Karaesmen
and van Ryzin (2004) examine a more general overbooking
problem with multiple substitutable inventory classes. Both
papers formulate a two-stage model: first a booking stage,
and then an allocation stage after all demand is realized.
Although substitution is allowed during the second, the
allocation stage, there is no substitution as demand arrives
during the booking stage. In our model, substitution may
occur during each demand period.
Researchers have addressed the topics of substitution

and rationing in the context of production and inventory
control. The model of Topkis (1968) is similar to the
problem described in this paper. Topkis also assumes a
given initial level of inventory and characterizes the opti-
mal rationing policy as a set of “critical rationing levels,”
although his model assumes a single type of inventory and
multiple demand classes. Topkis shows that, under certain
conditions, the critical rationing levels decline over time
(analogous results for our model are derived in §6). Articles
by Ha (1997a, b, and 2000) consider make-to-stock pro-
duction systems with several demand classes. These papers
show that the optimal stock-rationing policy can be char-
acterized by a sequence of production limits and storage
levels that are also monotone in customer class. Research
by de Véricourt et al. (2001, 2002) describes the benefits
of optimal stock allocation for these make-to-stock systems
and characterizes techniques to calculate optimal parame-
ters for the allocation decision. Motivated by a study of the
military logistics systems, Deshpande et al. (2003) analyze
a service parts inventory system with two demand classes
characterized by different arrival rates and shortage costs.
It is shown that a static rationing policy is close to optimal
in situations typical of the military and high-technology
industries. Frank et al. (2003) consider an inventory sys-
tem in which replenishment is possible and stock may be
protected from stochastic demand while it is used to fill

higher-priority deterministic demand. Ding et al. (2006)
study an inventory system with multiple customer classes
and partial backlogging. The likelihood of backlogging is a
function of the discount offered to customers. They deter-
mine the optimal discounts to offer and characterize the
optimal allocation policy for such an inventory system. All
of these papers consider single-item production systems,
whereas we examine a system with multiple products and
substitution.
Kapuscinski and Tayur (2000) study a dynamic capac-

ity reservation problem in a make-to-order environment, in
which demands are classified by their waiting-time sensi-
tivities. Eynan (1999) examines the benefits of inventory
pooling and shows that these benefits are not significantly
reduced by the “cannibalization” of inventory by low-
margin customers, but he does not consider the benefits of
a rationing policy. Again, these papers focus on problems
involving a single product and multiple demand classes,
whereas we consider multiple products and demand classes.

3. The Model
In this section, we describe the products offered by the firm,
the customer demand classes, the cost and demand parame-
ters (along with a few assumptions about these parameters),
and the firm’s decision variables. At the end of the first
subsection, we present the problem formulation, whereas in
the second subsection, we present two related formulations
and bounds on the objective function value based on the
related formulations.

3.1. Problem Description

Consider a firm that serves N classes of demand by provid-
ing N types of products indexed by j = 1�2� � � � �N . Product
quality decreases as index j increases, so that product j can
be used to satisfy a customer of class i as long as j � i.
This is often called “one-way substitution” and is a common
practice in many manufacturing and service applications.
Products with superior quality are acceptable to customers
who request an inferior product, but not vice versa.
Time periods are indexed by t, and demand arrives

in each of the t = 1� � � � � T periods, where T is finite.
Demand is independent between periods, although prod-
uct demands within a period need not be independent.
Let �t = ��t1��

t
2� � � � ��

t
N 	 denote the demand in period t,

an N -variate random variable. Let Dt = �dt
1�d

t
2� � � � � d

t
N 	

denote all realized demand in period t (we will use boldface
characters to represent vectors). Initially, we assume that
each period’s demand for a particular product is a nonneg-
ative real number, so that Dt ∈�+

N . We will assume, how-
ever, that demand is integer valued when deriving bounds
and heuristics in §6 and when conducting numerical exper-
iments in §§6 and 7. Here we also assume that any capacity
left over after time T is salvaged. In §5, we consider a
model in which capacity is held over for use during another
set of demand periods.
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Let caj be the purchase cost for each unit of product j and
let uaj be the usage cost when a unit is sold. That is, the firm
pays caj upfront, whether the capacity is sold or not, and
only pays uaj when a unit of capacity is sold to a customer.
Let lj be the salvage value of product j after period T .
One method for assessing total salvage value is to explic-
itly multiply lj by the leftover capacity of j after the last
demand period. For most of the analysis below, however,
we will work with an equivalent formulation in which the
salvage value is assessed indirectly by incorporating it into
an effective unit purchase cost cj = caj − lj and an effective
usage cost uj = uaj + lj .
When a customer arrives, she pays pj for a product of

type j . The firm may also pay a penalty cost vi if it can-
not provide a product to a customer of type i. We assume
that demand is not backlogged, revenues and costs remain
constant over time, and that the time horizon is sufficiently
short so that there is no discounting of costs or revenues
across demand periods (in §5, we will allow discounting
across replenishment intervals).
Let �ij be the unit contribution margin for satisfying a

class i customer with product j . We make the following
assumptions:

Assumption 1 (A1). �ij = pi+vi−uj > 0 if j � i� j+1;
�ij < 0 otherwise.

Assumption 2 (A2). p1 + v1 >p2 + v2 > · · ·>pN + vN .

Assumption 3 (A3). u1 >u2 > · · ·>uN .

Assumption (A1) states that only one-step upgrading is
profitable. In practice, the contribution margin accrued from
multistep upgrades is often small, or negative. From a net-
work design perspective, single-step upgrading can often
deliver most of the benefits of more complex substitution
schemes. For example, when quantifying the value of flexi-
ble production capacity, Jordan and Graves (1995) find that
a chain of factories, each with a single link to its neigh-
bor (each plant i can produce products i and i+ 1), yields
nearly the same sales as a chain of factories with full flex-
ibility (each plant i can produce all products). Here we
analyze a similar chain of flexible capacity, although in our
model product N cannot be used to upgrade a customer
who desires product 1, so that we are missing the last “link”
in the chain. Assumptions (A2) and (A3) state that both the
revenue (pj +vj ) and the usage cost uj decrease in index j .
That is, products with higher quality have higher revenues
and usage costs. These assumptions imply that �jj > �kj

for all j �= k, so that the maximum margin for product j is
achieved by selling to customers of class j .
Now we describe the state space of the optimiza-

tion problem and the firm’s decision variables. Let Xt =
�xt1� x

t
2� � � � � x

t
N 	, X

t ∈�+
N , be the vector of capacities at the

beginning of period t, t = 1�2� � � � � T . After demand Dt

appears, the firm must make capacity allocation decisions.
Let �DYN�X1	 be the profit function for our model. We for-
mulate this problem as a dynamic program with T + 1 steps.

In period 0 the firm determines the initial capacity X1,
whereas in periods 1 through T the firm allocates its capac-
ity to maximize its revenue.

Dynamic Substitution Model �DYN	
Period 0:

max
X1∈�+

N

�DYN�X1	= max
X1∈�+

N

{
�1�X1	−∑

j

cjx
1
j

}
� (1)

Period t (1� t � T ):

�t�Xt	

= E
�t

{
max

Yt+Xt+1=Xt

Yt∈�+
N �X

t+1∈�+
N

�Ht�Yt �Dt	+�t+1�Xt+1	�

}
� (2)

where

Ht�Yt �Dt	=max
�Yt

[∑
i� j

�ijy
t
ij −

∑
i

�id
t
i

]
� (3)

∑
j

ytij � dt
i � i= 1�2� � � � �N � (4)

∑
i

ytij � ytj � j = 1�2� � � � �N � (5)

ytij ∈�+� i� j = 1�2� � � � �N � (6)

and �T+1 ≡ 0. In this formulation, Yt is a vector of capacity
offered for sale in period t and ytj ≡ �Yt	j is the capac-
ity of product j offered for sale. The vector Xt+1 is the
capacity held over to the next period and the constraints
Yt + Xt+1 = Xt , Yt ∈ �+

N , and Xt+1 ∈ �+
N ensure that the

sum of the capacity offered for sale in period t and the
capacity held over to the next period do not exceed Xt .
The value of Ht�Yt � Dt	 is the revenue from the single-
period capacity problem with substitution, given realized
demand Dt . Within problem Ht , ytij ∈ �+ is the quantity
of product j sold to class i demand and �Yt = �ytij 	 is an
allocation matrix for period t. Inequality (4) is period t’s
demand constraint and (5) is period t’s supply constraint,
i.e., the firm cannot sell more capacity than the capacity
offered in period t.
There are two details of the formulation that require fur-

ther discussion. First, in this formulation there is a dis-
tinction between offered capacity (Yt) and sold capacity
(ytij ). Therefore, it is possible that in the optimal alloca-
tion �Y∗,

∑
i y

∗
ij < ytj . This implies that some offered capacity

is thrown away—it does not generate revenue and is not
held over to the next period. We will see below, however,
that there is at least one optimal solution to �t in which all
offered capacity is sold. (It is true that adding a constraint∑

i y
t
ij = ytj to the formulation would eliminate this com-

plication, but the equality constraint would make it more
difficult to apply useful results from concave analysis.)
The second detail for discussion is that we have chosen

to use positive real numbers to model capacity. In prac-
tice, capacity is often discrete, and demand follows a dis-
crete distribution. In the related literature, capacity has been
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modeled as discrete (e.g., Wollmer 1992) or continuous
(e.g., Curry 1990). Following the approach of Brumelle and
McGill (1993), we begin with a continuous formulation of
the problem, and by using subdifferential optimization we
show that a rationing algorithm is optimal for either discrete
or continuous demand distributions. Then, in Proposition 3,
we show that if capacity and demand are discrete (integer
valued), then the optimal capacity allocation procedure pre-
serves integrality. In §6, we derive bounds and heuristics
for solving large discrete problems.

3.2. Related Models

If we let T = 1, model DYN collapses into the single-period
(or static) model studied by Bassok et al. (1999), Netessine
et al. (2002), and others (we will use the acronym STC
to refer to this model). For the sake of comparison, we
transform the single-period model into an equivalent model
with T periods, and we assume that demand arrives in each
period as it does in the dynamic model. However, in STC,
resources are allocated after all demand is observed. This
transformation will help us to compare the performance of
STC and DYN, given the same demand. In the following
formulation, let X denote the vector of initial capacities and
�STC�X	 the profit function.

Single-Period Substitution Model (STC)

max
X∈�+

N

�STC�X	= max
X∈�+

N

E
��1��2������T �

[
��X	−∑

j

cjxj

]
� (7)

where

��X	=max
Y

[∑
i� j

�ijyij −
∑
i

�i
∑
t

dt
i

]
(8)

s.t.
∑
j

yij �
∑
t

dt
i � i= 1�2� � � � �N � (9)

∑
i

yij � xj� j = 1�2� � � � �N � (10)

yij ∈�+� i� j = 1�2� � � � �N � (11)

We also consider the simplest benchmark model, a model
without product substitution. This is equivalent to N inde-
pendent newsvendors (NV). As in DYN and STC, we
consider demand that arrives sequentially over T periods.
Given independent newsvendors, however, it does not mat-
ter whether the allocation of capacity occurs as the demand
arrives (as in DYN) or after the T th period (as in STC).
In either case, the firm determines the optimal capacity xj
according to the newsvendor fractile and then sells the max-
imum amount of capacity possible.

Independent Newsvendor Model (NV)

max
X∈�+

N

�NV�X	= max
X∈�+

N

∑
j

{
E

��1��2������T �

[
�jj min

(
xj�

∑
t

dt
j

)

− �j

(∑
t

dt
j

)]
− cjxj

}
� (12)

In the following proposition, we compare the profits of
these three models. When omitted, proofs of propositions
and lemmas can be found in the electronic companion that
is part of the online version at http://or.journal.informs.org/.

Proposition 1. �NV�X	��DYN�X	��STC�X	.

It follows that �DYN�XDYN	��STC�XSTC	, where XDYN

and XSTC are the optimal initial capacity vectors.

4. The Optimal Policy: Parallel Allocation
and Then Rationing

Before explicitly describing the optimal rationing policy for
DYN, we first establish two properties for �t�X	, mono-
tonicity (Lemma 1) and concavity (Lemma 2). Note that
the proofs of both lemmas do not require the single-step
upgrading assumption, so that these monotonicity and con-
cavity results hold under a general upgrading structure.

Lemma 1. �t�X	 is monotonically increasing in X.

An immediate implication of Lemma 1 is that there
exists an optimal allocation where the offered capacity in
each period is fully utilized because otherwise one may
improve the profit by passing the unused capacity to the
next period. This implication allows us to restrict our atten-
tion to the subset of solutions to �t in which �Y∗	j =∑

i��Y∗	ij , where Y∗ is the optimal offered vector and �Y∗ is
the optimal allocation matrix (the quantity actually sold).
All of the following results will also hold if we admit opti-
mal solutions in which �Y∗	j >

∑
i��Y∗	ij , but the notation is

more complex and the results are not any more informative.

Lemma 2. �t�X	 is concave in X.

Lemma 2 implies that �DYN�X1	 is also concave.
The analysis in the remainder of this section proves

that at any time period t it is optimal to first satisfy de-
mand from class i with capacity from class i and then
to consider upgrades, where upgrading is limited by some
threshold value. More formally, suppose that capacity Xt =
�xt1� x

t
2� � � � � x

t
N 	 is available at the beginning of period t.

Define �k�
t = ��+k �

t� �−k �
t� as the subdifferential of �t

with respect to the capacity of product k, where �+k �
t

and �−k �
t are the right and left derivatives, respectively.

Also define x∧y =min�x� y	. Proposition 2 will show that
the following algorithm maximizes �t�Xt	 (henceforth, we
will refer to this procedure as the PRA, for the Parallel
assignment then Rationing Algorithm).

Step 1 (parallel assignment). Let ytii = dt
i ∧ xti , i =

1�2� � � � �N . Satisfy as much class i demand with capacity
of product i as possible.

Step 2 (upgrading and rationing). Let Nt be the differ-
ence between parallel demand and capacity:

Nt=�nt1�n
t
2�����n

t
N 	=�xt1−dt

1�x
t
2−dt

2�����x
t
N −dt

N 	� (13)

Note that nti can be positive if there is excess capacity
after Step 1, negative if demand exceeds capacity, or zero.
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For k = 1� � � � �N − 1, if ntk > 0 and ntk+1 < 0, then let
�ntk − p̃k	

+ be the maximum capacity k offered for up-
grading, so that the actual amount of capacity upgraded
yk+1� k = �ntk − p̃k	

+ ∧ �ntk+1�. The quantity p̃k is the pro-
tection limit for product k, and an optimal protection limit
satisfies

�k+1� k ∈ �k�
t+1�nt1� n

t
2� � � � � n

t
k−1� p̃k	� (14)

The rationale behind the PRA is straightforward. From
(A1)–(A3), we see that the contribution margin from a par-
allel allocation is larger than the margin from any present
or future upgrade, so that in Step 1 any available capacity
should be used to satisfy parallel demand. To understand
Step 2, note that a unit of capacity k should be used in
period t for an upgrade if the value of the upgrade, �k+1� k,
is greater than the expected value of that unit in periods
t+ 1 through T . Because the marginal value of capacity k
in future periods declines as the quantity of capacity k rises
(see Lemma 2 above), a threshold rule is optimal when
choosing the number of units to upgrade.
To demonstrate rigorously that the PRA is an optimal

policy, we must first derive a series of intermediate results.
The following lemma establishes the general structure of
the optimal policy.

Lemma 3. The following algorithm solves Ht�Y �D	:
(i) yii = di ∧ yi� i= 1� � � � �N ;
(ii) yi+1�i = �di+1 − yi+1	+ ∧ �yi −di	

+� i= 1� � � � �N − 1.

Lemma 3 allows us to rewrite Ht�Y �D	 as

Ht�Y �D	=
N∑
i=1

�ii�di∧yi	

+
N−1∑
i=1

�i+1�i��di+1−yi+1	
+∧�yi−di	

+	� (15)

This appears to be identical to the PRA: parallel assign-
ment, followed by upgrading. However, we have not yet
determined the optimal offered capacity Yt , and therefore
have not demonstrated that in Step 1 of PRA all available
capacity should be used to satisfy parallel demand and that
in Step 2 a threshold policy is optimal. Lemma 3, however,
does split the optimal policy into two simple decisions: how
much capacity to offer for parallel assignment, and then
how much capacity to upgrade.
Before answering these questions, the following lemma

shows that, after Step 1 of the PRA, the optimization prob-
lem breaks into smaller independent “subproblems”:

Lemma 4. Suppose that at time t after completing Step 1
of PRA, net capacity nti � 0, i= k+1� � � � � k+j , so that the
capacities of these products have been depleted. Then, the
optimization problem can be separated into two indepen-
dent subproblems! an upper part consisting of products 1
to k+ 1, and a lower part consisting of products k+ j + 1
to N .

In general, after parallel assignment, the global optimiza-
tion problem may have been divided into numerous smaller
subproblems, each defined by a series of positive net capac-
ities (e.g., nti > 0, i= j� � � � � k) and a single depleted capac-
ity level for the lowest product (ntk+1 � 0). Therefore, for
each subproblem created after parallel allocation, there is
only one upgrading and rationing decision to be made:
How much capacity of class k do we use for upgrades of
unfilled demand from class k+ 1?
The same observation applies at the beginning of time t,

before parallel assignment. The global optimization at the
beginning of time t may be broken into smaller independent
subproblems, with boundaries defined by depleted capaci-
ties, xti = 0. By convention, for these subproblems we do
not include the “0” capacities of the boundary products.
To be explicit, define B= ��ht1� l

t
1	� � � � � �h

t
m� l

t
m	� as the set

of upper and lower limits for the subproblems at time t,
i.e., (hti� l

t
i ) are the indices of the highest (smallest indexed)

and lowest (largest indexed) products in the ith subprob-
lem, so that hti � lti and x

t
j > 0� hti � j � lti . Then, the profit

of the remaining optimization problem at time t, �t�Xt	 in
Equation (2), can be written as the sum of the profits from
the subproblems:

�t�Xt	=
m∑
i=1

�t
i �X

t
i 	� (16)

where each subproblem �t
i �X

t
i 	 has the same formulation as

�t�Xt	, although the demand and capacity indices of each
subproblem vary from hti to l

t
i , rather than from 1 to N .

In the remainder of this section, we will derive the opti-
mal policy for an optimization problem�t�Xt	 with product
indices i = 1� � � � �N . Because the subproblems are inde-
pendent, and because the objective function of the global
problem is the sum of the values of the subproblems, the
following results apply to any subproblem, as well as to the
global optimization problem.
We now show that the PRA is an optimal policy, given

all possible policies. Because demands are independent
between time periods, we consider only fixed policies that
depend upon the time period and capacity state, but do not
depend upon observed demand realizations. Using the ter-
minology in Porteus (1975), the set of admissible policies is
defined by the constraints of �t and Ht , t = 1� � � � � T , and
the PRA defines an admissible structured policy. Because
of the capacity constraints, all value functions �t�X	 are
finite for finite X.
The following lemma establishes that the value function

�t�X	 has the following three properties: (1) the PRA is an
optimal policy; (2) the marginal value of one unit of capac-
ity in the next period is at most �kk, the value from a par-
allel assignment; (3) the value function for the next period
is concave in the capacity passed on to the next period.
We show that property (1) is preserved under induction:
First, we show that property (2) implies that the full par-
allel assignment in Step 1 of the PRA is optimal. We then
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invoke property (3) to show that in Step 2 of the PRA
there is an optimal upgrading threshold, as defined by con-
dition (14). Finally, because the PRA is optimal, it follows
that the marginal value of a unit of capacity is bounded
by �kk and, from Lemma 2, the value function is concave.

Lemma 5. Suppose that �t+1 has the following properties!
1. The PRA solves �t+1�X	;
2. �−k �

t+1�X	� �kk;
3. �t+1�X	 is concave in X.
Then, properties �1	–�3	 hold for �t .

Proof. Here we will sometimes write the vector Y as
(yk�Y−k) to emphasize the value of the vector’s kth com-
ponent. Define


�t�yk�Y−k�X �D	=Ht�Y �D	+�t+1�X−Y	

so that

�t�X �D	=max
Y�X


�t�yk�Y−k�X �D	�

Let %+
k

�t and %−

k

�t be the right and left derivatives of 
�t

with respect to yk and let %k

�t be the subdifferential of 
�t

with respect to yk. We first prove property 1 and then show
that properties 2 and 3 are preserved under optimization.
1. To show that Step 1 of the PRA is optimal, we see

from Lemma 3 that we need only show that y∗k � �dk ∧ xk	,
where y∗k is the optimal offered (and sold) capacity of prod-
uct k. That is, we will show that all available capacity
in X is available for parallel allocation in Step 1. We con-
sider two cases, yk � xk � dk and yk � dk < xk� When
yk � xk � dk,

%−
k

�t�yk�Y−k�X �D	= �kk − �−k �

t+1�X−Y	 (17)

� 0� (18)

where Equation (17) follows from the derivative of Equa-
tion (15), and inequality (18) follows from induction
Assumption (2). Inequality (18) and the constraint Y�X
imply that y∗k = xk. When yk � dk < xk, Equation (17) and
inequality (18) also apply as long as yk � dk. Therefore,
y∗k � dk. (Note that y

∗
k > dk if some capacity of product k is

used for upgrading.) Therefore, in general, y∗k � �dk ∧ xk	.
To show that Step 2 of the PRA is optimal after Step 1 has

been completed, we first note that by Lemma 3, any upgrad-
ing can only occur when dk < yk � xk and dk+1 > xk+1.
Given these conditions,

%+
k

�t�yk�Y−k�X �D	=



�k+1�k−�+k �

t+1�X−Y	
for dk+dk+1>yk+xk+1�

0 otherwise&

(19)

and

%−
k

�t�yk�Y−k�X �D	=



�k+1�k−�−k �

t+1�X−Y	
for dk+dk+1�yk+xk+1�

0 otherwise.

(20)

Given that dk+1 > xk+1, from Step 1 of the PRA we know
that xk+1 − y∗k+1 = 0. Therefore, given that Step 1 has
been completed, the derivatives of �t+1 in (19) and (20)
are equal to the derivatives in the equivalent subproblems
bounded by products k and l, where l= 1 or xl−1 − y∗l−1 = 0.
That is, in (19), �+k �

t+1�X−Y	 = �+k �
t+1�nl� � � � � nk−1�

xk − yk	 and in (20), �−k �
t+1�X−Y	 = �−k �

t+1�nl� � � � �
nk−1� xk − yk	.
Let pk = xk − yk. We will identify sufficient conditions

on pk to maximize 
�t . Given that dk < yk � xk and dk+1 >
xk+1, from Equation (15), Ht is concave in pk. Because
�t+1 is also concave, 
�t is the sum of concave functions
and is therefore also concave.
Now, recall the PRA’s threshold condition (14), �k+1� k ∈

�k�
t+1�nl� � � � � nk−1� p̃k	 for some p̃k. This condition, Equa-

tions (19) and (20), and the concavity of �t+1 imply that

0 ∈ %k

�t�p̃k�Y−k�X �D	� (21)

Therefore, the threshold p̃k maximizes 
�t in Step (ii) of
Lemma 3, and it is optimal to sell capacity k to customers
k+1 as long as more than p̃k units remain unsold. Finally,
note that p̃k is a function of (nl� � � � � nk−1) and is indepen-
dent of the available capacity nk = xk − dk and the unmet
demand nk+1 = dk+1 − xk+1. Given p̃k, the optimal amount
of capacity k sold is y∗k = dk + �nk − p̃k	

+ ∧ �nk+1�.
2. Given that we optimize using the PRA,

�−k �
t�X	

=�kkPr��k�xk	+�k�k+1

·Pr��k <xk��k+1>xk+1��k+�k+1�xk+xk+1−p̃k	

+�−k �
t+1�X	�1−Pr��k�xk	−Pr��k <xk��k+1>xk+1�

�k+�k+1�xk+xk+1−p̃k	�� (22)

By Assumption 2 of this lemma, and because Assump-
tions (A2) and (A3) of the model imply that �k�k+1 <�kk,
�−k �

t+1�X	� �kk.
3. The concavity of �t follows from the optimality of

the PRA and Lemma 2. �

In the proof, we have shown that the properties in
Lemma 5 are preserved under backwards induction. There-
fore, to show that the PRA is an optimal policy, we need
only show that the three properties hold for period T . From
Hoffman (1963), the PRA is optimal (with no rationing) in
period T , �kk remains an upper bound on the unit value of
capacity, and Lemma 2 implies the concavity is preserved.

Proposition 2. The PRA is an optimal policy from among
all admissible policies.

Proof. Consider the last-period problem, �T �X	. Given
that �T+1 ≡ 0, arguments identical to those in the proof
of Lemma 5 show that �−k �

T �X	 � �kk. From Lemma 2,
�T �X	 is concave in X. In addition, the greedy algorithm
defined by Hoffman (1963) solves �T �X	, and is a special
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case of the PRA with protection limits p̃k = 0. There-
fore, the argument of Lemma 5 iterates backwards through
T �T − 1� � � � �1. �

Next, we show that there exists an integer optimal
rationing policy given that initial capacity is integer valued
and that each period’s demands are integer valued. There-
fore, problems that are integer in demand and capacity have
integer solutions. Let P t be the set of protection levels for
all upgrading problems in period t. Then, we have:

Proposition 3. If X1 and demand vectors �1� � � � ��T

are integer valued, then there exists an optimal integer
rationing policy �P̃ 1� � � � � P̃ T 	.

For any such integer-valued problems in period t, define
(t
k�X

t	 = �t�Xt + ek	−�t�Xt	, where ek is the kth unit
vector. The optimal protection limit, p̃k, is the smallest
value of p such that

�k+1� k �(t+1
k �nt1� � � � � n

t
k−1� p� 	� (23)

The marginal value (t+1
k depends upon the time period,

the current capacities of all products, and the distribution
of future demand, and therefore can be difficult to calcu-
late. In the next section, we consider methods for efficiently
approximating p̃k for integer-valued problems.

5. A Model with Capacity Replenishment
Now assume that every T periods the firm can replenish
capacity, and then the firm faces another capacity-rationing
problem. To avoid confusion, we will continue to use the
term demand period to describe each of the T relatively
short time periods imbedded between each replenishment
opportunity. We will use the term replenishment interval
or just interval to describe each of the longer time peri-
ods between each replenishment. There is a finite num-
ber, R, of replenishment intervals. Assume that demands
among the replenishment intervals are independent and
identically distributed according to the random vectors �=
��1� � � � ��T 	, as defined in §3. Before the first interval, the
firm invests in capacity X and is charged the effective unit
cost c = �c1� � � � � cN 	. Leftover capacity is held between
intervals, and at the beginning of each interval capacity
can be replenished at cost c. Capacity left over at the end
of each interval is assessed holding cost h= �h1� � � � � hN 	.
Capacity left over after the last interval R has value c (i.e.,
it can be sold for the initial effective cost). All other costs
and revenues are as described in §3. Cash flows are dis-
counted using discount factor 0< + � 1 for each interval,
and all costs and revenues are assumed to be expressed as
beginning-of-period monetary units. Finally, note that the
following analysis and results are similar to the analysis
and results in Van Mieghem and Rudi (2002, §4).
Before analyzing the replenishment problem, we extend

the notation for the single-interval DYN problem. Let
��X& l	 represent �DYN�X	, given a vector of effective

salvage values l= �l1� � � � � lN 	. In particular, for our replen-
ishment model, leftover capacities are not salvaged but do
cost h, so the relevant single-interval problem is ��X&−h	.
In addition, an effective salvage value vector +c− h will
be useful for the analysis of the multi-interval replenish-
ment problem. Recall that problem ��X& l	 is concave in X
(see the discussion after Lemma 2). Let X∗ be an uncon-
strained maximizer of the single-interval rationing problem
with salvage value l= +c−h:

X∗ ∈ argmax
X∈�+

N

��X&+c−h	�

Given that the capacity at the beginning of any period is
Z�X∗, we have the following stationary optimal policy.

Proposition 4. Given capacity Z�X∗ at the beginning of
a replenishment interval, an optimal replenishment policy
is to order up to X∗, and the PRA is an optimal rationing
policy within the interval.

If Z>X∗, the PRA may not be an optimal rationing pol-
icy within the interval, and the replenishment policy may
be much more complicated (see Song and Xue 2007 for
an example of such complex replenishment policies in a
multiproduct setting). If we relax the assumption that stock
left over after period R can be sold for c, the replenish-
ment policy may again be much more complicated and the
PRA may no longer be optimal within each interval. Like-
wise, if demand is not stationary, the PRA may not be
optimal. Finding optimal policies for these more general
multi-interval cases may be an interesting area for addi-
tional research.

6. Properties of the Protection Limits:
Monotonicity and Bounds

For the remainder of this paper, we focus on the single-
interval problem with one initial opportunity to purchase
capacity, followed by T demand periods. The results of the
previous section imply that all of the following results also
apply to the problem with multiple replenishments, where
the initial capacity X1 can be interpreted as the capacity
after replenishment.
In this section, we show that the protection limits are

monotonically decreasing in both the amount of capacity
and time, and we use these properties to derive a series of
bounds on the protection limits. We then describe numerical
experiments that demonstrate the tightness of the bounds.
We end with a discussion of how the bounds can be used to
accurately approximate the protection limits for large prob-
lems. Throughout this section, we assume that Xt ∈�+

N and
�t ∈�+

N .

6.1. Monotonicity and Bounds on
the Protection Limits

Let p̃t be the optimal protection limit for a subproblem at
time t. We show that p̃t is monotonically decreasing in the
capacity state and over time.
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Proposition 5. The optimal protection limit p̃t is decreas-
ing in the state vector Xt .

Proposition 6. The optimal protection limit p̃t is decreas-
ing in t.

These propositions lead directly to sets of upper and
lower bounds on the protection limits. We derive the
bounds by restricting our attention to a limited number, i,
of products above the one that might be rationed. To find
the upper (lower) bounds on the protection limit, we set the
capacity of the product immediately above those i products
to 0 (�).
Specifically, suppose that we have a subproblem involv-

ing products 1� � � � � k + 1. Let p̃�X	 be the optimal pro-
tection limit of product k, given initial capacity vector
X = �x1� � � � � xk	 (for clarity, we suppress the super-
script t). Define a new, truncated capacity vector X�i�C	=
�C�xk−i� � � � � xk	, i= 0� � � � � k− 1 (if i= 0, then the capac-
ity vector is just (C�xk)). Setting C = 0 indicates that there
is no capacity of product k− i− 1, and we use the notation
C = � to indicate that there is no capacity constraint for
product k − i − 1. That is, with X�i��	, any quantity of
demand available to be upgraded from product k− i to prod-
uct k− i−1 provides revenue of �k−i� k−i−1 per unit (here we
assume that demand is finite, so that the objective function
is still bounded). Therefore, X�i�0	 and X�i��	 define two
smaller subproblems that involve i+ 2 products. In each
of these subproblems, product k + 1 may be completely
depleted, product k may be rationed, and there are i prod-
ucts with nonzero capacities, products k− i� � � � � k− 1, that
may affect the optimal protection level of product k. The
capacities (x1� � � � � xk−i−2) have no impact on the rationing
problem because products k− i� � � � � k are “cut off” by the
zero or infinite capacity of product k− i− 1.
Now suppose that product k − i − 1 has zero capacity.

Proposition 5 implies that the protection limit of product k
remains the same or declines as the capacity of k− i− 1
increases from zero. Therefore, the protection level for the
subproblem with capacity vector X�i�0	, p̃�X�i�0		, is an
upper bound on p̃�X	. This upper bound becomes tighter
as i increases and more levels of capacity are added above k.
Likewise, if product k− i− 1 has very large capacity, the
protection limit of product k remains the same or increases
as the capacity of k − i − 1 decreases. This implies that
p̃�X�i��		 provides a series of lower bounds, and these
lower bounds are also progressively tighter as i increases.
We make these statements more precise in the following
proposition.

Proposition 7. For a subproblem with k products,

p̃�X�0��		

� p̃�X�1��		� · · ·� p̃�X�k− 1��		

� p̃�X	

� p̃�X�k− 1�0		� p̃�X�k− 2�0		� · · ·� p̃�X�0�0		�

Proof. The tightest bounds, p̃�X�k − 1��		 � p̃�X	 �
p̃�X�k − 1�0		, follow from Proposition 5. Now con-
sider p̃�X�i�0		 for 0 < i � k − 1. From Proposition 5
and Lemma 4, p̃�X�i�0		 = p̃�0� xk−i� � � � � xk	 � p̃�0�0�
xk−i+1� � � � � xk	= p̃�0� xk−i+1� � � � � xk	= p̃�X�i− 1�0		.
For the lower bounds, note that setting C =� has a sim-

ilar impact on the size of the subproblem as setting C = 0.
As in Lemma 4, an inexhaustible supply of capacity splits
the subproblem into smaller pieces: If product k − i − 1
can satisfy any quantity of demand, then the protection
limit of product k > k − i − 1 does not depend upon
the capacity levels of products 1� � � � � k − i − 2. This
fact and Proposition 5 imply that for 0 < i � k − 1,
p̃�X�i��		 = p̃��� xk−i� � � � � xk	 � p̃����� xk−i+1� � � � �
xk	= p̃��� xk−i+1� � � � � xk	= p̃�X�i− 1��		. �

These bounds are useful because the dimensionality
of the dynamic program rises with the number of prod-
ucts in the subproblem. Specifically, for many problems
of reasonable size, calculation of the optimal protec-
tion limits using backwards induction is impossible. For
a subproblem with T time periods, k products, and a
maximum of x̂ for the capacity of each product, there
are O�T x̂k−2	 distinct protection limits to calculate (with
T = 10, x̂= 100, and k= 5, there are over 10 million pro-
tection limits). However, Proposition 7 provides us with
a series of bounds that allow for a trade-off between
accuracy and computational burden. In the next section,
we will focus on �p̃�X�1�0		� p̃�X�1��		�, one-product
bounds, determined by the capacity of a single adjacent
product. There are O�Tkx̂	 protection limits associated
with these bounds. We will also examine the accuracy of
�p̃�X�2�0		� p̃�X�2��		�, two-product bounds, and there
are O�Tkx̂2	 of these. If either of these bounds are suffi-
ciently tight, then protection limits chosen between these
bounds will be both nearly optimal and easy to calculate.
In the next section, we will find that, indeed, there is rarely
any gap between either the one- or two-product bounds,
so that they provide us with methods for solving problems
with large numbers of products.

6.2. Protection Limit Bounds: Numerical
Experiments

We now summarize numerical experiments that test the
quality of the one-product and two-product bounds de-
scribed above. Full details of the parameters are available
in §2 of the online appendix. In all of the experiments, we
have five products (k = 5) and 10 time periods (T = 10).
Each product has a maximum initial capacity of 30 (x̂ �

30) and a maximum total mean demand of 50 across all
time periods (

∑10
t=1E��

t� � 50). In one subset of experi-
ments, we assume that demands arrive according to Poisson
distributions that are independent between demand periods
and between products. In another subset, we assume that
demands arrive according to multivariate normal distribu-
tions, truncated at zero and rounded to the nearest integer.
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Table 1. Size of gaps for one-product and two-product bounds.

No. of gaps Percentage of gap> 0 Maximum Mean Maximum
Gap type calculated (no. of instances) gap revenue loss revenue loss

/1�X	 123�012 0�3%�395	 1 0.00001% 0.0031%
/2�X	 4�442�196 0�0001%�6	 1 ≈0 ≈0

For this latter subset, we vary the within-period coefficient
of correlation among all demands from −0.25 to 0.9.
Given these demand distributions, we run 408 experi-

ments using a wide variety of parameter values. We vary
the ratio of demand to capacity for each product, the dis-
tribution of demand over time, the pattern of mean demand
between products and across time periods, and the marginal
contribution of parallel sales and upgrades. We consider
both realistic and extreme cases, e.g., for one extreme
case we set the initial capacity to be X1 = �1�45�1�45�1�.
Note that in these experiments, we assume an arbitrary ini-
tial capacity, whereas in the numerical experiments of §7
below, we will always use the optimal initial capacity.
For each scenario, we calculate the gaps /1�X	 ≡

p̃�X�1�0		 − p̃�X�1��		 and /2�X	 ≡ p̃�X�2�0		 −
p̃�X�2��		 for product 4 (note that /2�X	= 0 for products
1, 2, and 3 because the protection limits of these prod-
ucts depend upon the capacity of at most two products).
The 408 experiments yield 123,012 one-product bounds
and 4,442,196 two-product bounds for product 4. Table 1
summarizes the results of the experiments. For both the
one-product and two-product bounds, the maximum gap is
just one unit, and most of the bounds have no gap at all.
In fact, for the two-product bounds, just six out of the 4.4
million gaps are one.
Therefore, for these experiments, either of the two-

product bounds is equivalent to the optimal solution, and the
one-product bounds are quite close. Using the one-product
upper bound on the protection limit rather than either two-
product bound produces a small loss in expected revenue,
just 0.00001% on average and a maximum revenue loss
of 0.0031%. Additional experiments described in §7 with
another set of five-product problems produce similar results:
Out of 27,000 protection levels calculated, over 99% of the
gaps /1�X	 are zero, and the maximum gap is again one.
The accuracy of the heuristic protection limits based on

these bounds, and the relative ease with which one- and
two-product bounds can be calculated, provide us with an
opportunity to compare the static and dynamic formulations
in a realistic context, with large numbers of products and
time periods.

7. The Value of Optimal Capacity and
Allocation: Numerical Experiments

This section describes the results from analytical and
numerical studies designed to understand how the param-
eters of the model affect two quantities: (i) the value of
optimal upgrading, and (ii) the value of using the capacity

that is strictly optimal, given that optimal upgrading will
be applied, rather than using capacity that is optimal for
the simpler static model. Here we calculate the value of
optimal upgrading as the difference between the profit gen-
erated from the DYN model and the profit generated from
two simpler heuristics, the NV model and a greedy heuris-
tic in which ytk+1� k = ��dt

k+1 − xtk+1	
+ ∧ �xtk − dt

k	
+� for

k= 1� � � � �N − 1, i.e., all possible upgrading is performed
in each period. We calculate the value of strictly optimal
capacity as the difference between the profits generated by
DYN and a hybrid heuristic in which the initial capacity is
optimal for the STC problem and then optimal upgrading
is used, once customers begin arriving.
We assess the impact of model parameters on the quan-

tities (i) and (ii) described above. In particular, we examine
the impact of three attributes of the model:
• Availability of advance demand information. In the

one-period model (STC), all demand information is avail-
able when all allocation occurs, so that capacity may be
assigned to customers without any possibility of cannibal-
ization. In practice, demand information may become avail-
able in small increments over time, and we examine the
impact of the incremental release of demand information
by varying the number of periods in the DYN model.
• Economic parameters, the contribution margins �ij

and the initial capacity costs cj .
• Demand parameters, the variance and within-period

correlations of the demand.
Our experiments include almost 5,000 parameter scenar-

ios with a two-product model and 20 scenarios with a five-
product model. In §4 of the online appendix, we include
an expanded version of this section with full details on
the parameter values used in the scenarios, the algorithms
used to find the optimal capacities and protection levels,
and the results of the experiments. Here we will provide an
overview of the models, summarize the results, and present
illustrative examples.
First, we describe parameters that are common to all of

the models. For all two-product scenarios, the total mean
demand for each product over all periods is 60 units, where-
as for the five-product scenarios the total mean demand for
each product over all periods is 20 units. For every scenario,
demand for high-value products rises over the time peri-
ods, whereas demand for low-value products declines. This
is consistent with environments that are amenable to yield
management techniques, in which high-value customers
tend to arrive after low-value customers. In all experiments,
we chose economic parameter ranges that were bounded
either by (A1)–(A3) or by limits imposed by real-world
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applications, e.g., c1 > c2, the unit cost of product 1 should
be greater than the unit cost of product 2.
In general, our numerical experiments lead to the follow-

ing observations,
1. Profits from DYN and the hybrid heuristic are nearly

identical, so that using capacity that is optimal for STC
when paired with optimal upgrading, produces results that
are close to results when using the optimal capacity for
DYN.
2. Profits from DYN (or the hybrid heuristic) are consis-

tently within 1% of STC, so that perfect demand informa-
tion has relatively little value as long as optimal upgrading
is used.
3. As T grows, profits from DYN and the hybrid heuris-

tic decline relative to STC, but not by much. For reasonably
large T (say, T � 5), profits from NV dominate profits from
the greedy heuristic. This appears to be due to the fact that
when T is large, advance demand information is not avail-
able for many of the allocation decisions. Therefore, in this
environment the risk of cannibalization is higher under the
greedy heuristic, and it is safer to keep products separate,
as in the NV model.
In addition, we learned that the optimal upgrading policy

generated by DYN is most valuable, as compared to the
simple heuristics, when
4. �i+1� i/�ii is close to one for all i = 1� � � � �N − 1. If

upgrades have a relatively high value, then using optimal
upgrading provides significant profit above the newsvendor
solution with no upgrading.
5. c1 − cN is close to zero and cN � ci � c1,

i= 2� � � � �N − 1. If c1 is close to cN , product-1 capacity
is relatively inexpensive, whereas product-N capacity is
relatively expensive. Therefore, it is optimal to invest in
large amounts of the high-value product and relatively lit-
tle lower-value product. This increases the likelihood of
low-value shortage and high-value surplus, providing more
opportunities to upgrade.
6. �11/�NN is close to one. When �11/�NN is large

(�1), parallel revenues from high-value products represent
a high proportion of the revenue, so that upgrading provides
relatively less value. On the other hand, if parallel contri-
bution margins of products 1 and N are similar, then type-1
parallel revenues do not dominate and optimal upgrading
is valuable.
7. Demand variance is high. With uncertain demand,

mismatches between demand and capacity are more likely
to occur, so that optimal upgrading becomes useful.
8. Demand correlation between products is low. Under

low correlation, it is more likely that a stockout for a low-
type product is paired with a surplus of a higher-type prod-
uct, thus increasing the value of optimal upgrading.
In the following sections, we present examples to illus-

trate many of these observations. Again, the online appendix
contains more details on all the experiments and the com-
plete set of evidence for points 1–8.

7.1. The Value of Using Optimal Capacity in
the Dynamic Model

Using both analysis and numerical experiments, we have
found that the optimal initial capacities under STC and
DYN may differ substantially in certain stylized environ-
ments. Analysis of a model with two products, two time
periods, and continuous demand and capacity shows that
the marginal value of an additional unit of type-2 capac-
ity is more valuable under DYN than under STC. This is
because extra type-2 capacity can be useful as a buffer to
protect against supply cannibalization, upgrades of type-2
customers in the first period that lead to a shortage of
type-1 capacity for type-1 customers in the second period.
Although this result is not sufficient to show that the optimal
quantity of type-2 capacity under DYN is always greater
than the optimal type-2 capacity under STC (xDYN2 � xSTC2 ),
we have conducted thousands of numerical experiments
using a wide variety of parameters and two types of dis-
tribution functions (truncated normal and uniform), and in
every case, xDYN2 � xSTC2 . A subset of these experiments are
described in §3 of the online appendix. There is no analogue
of these results for type-1 capacity, and the online appendix
contains examples in which xDYN1 � xSTC1 and xDYN1 > xSTC1 .
The online appendix also describes results that character-
ize how the protection limit in the two-product, two-period
model changes with the product contribution margins, the
distribution of product demand, and the correlation between
demand distributions.
Again, we do find that large differences between the

optimal initial capacities for STC and DYN can occur in
extreme cases, e.g., when there are just two periods, all of
type-2 demand in period 1, and all of type-1 demand in
period 2. In more realistic cases, however, optimal capaci-
ties for STC and DYN are often nearly identical, and when
they are not, there is a negligible difference in profits due
to using STC-optimal capacity for the dynamic case (our
hybrid heuristic) rather than using DYN-optimal capac-
ity. This observation is useful because finding the optimal
capacity for DYN is significantly more difficult than finding
the optimal capacity for STC because the capacity opti-
mization in DYN must take the future dynamic rationing
policy into account, and therefore must evaluate the full
dynamic program, given any initial capacity level. This can
be cumbersome, even when taking advantage of the bounds
described in Proposition 6. The value of STC given any
capacity level, however, requires few relatively simple cal-
culations (see Netessine et al. 2002).
To examine the impact of using optimal capacity, for each

scenario we found the percentage increase in the expected
profit due to using the optimal capacity for DYN rather than
using the hybrid heuristic with the STC-optimal capacity.
That is,

value of using optimal capacity

≡ �DYN�XDYN	−�DYN�XSTC	

�DYN�XDYN	
� (24)
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where �X�XY 	 is the profit from model X when starting
with capacity that is optimal for model Y .
Of the nearly 5,000 scenarios in the two-product model,

for 48% of the scenarios the DYN and STC capacities
were identical. Overall, the average value of using optimal
capacity—the average value of definition (24)—was 0.0008
(0.08% of the DYN profit). The 90th percentile of (24)
among scenarios was 0.25%, and the maximum value was
2%. Results for the five-product experiments were simi-
lar: an average value of 0.01% and a maximum value of
0.05%. Therefore, ignoring the dynamic rationing policy
when finding the initial capacity by using STC for capac-
ity optimization, and then using optimal rationing, almost
always performs as well as the much more complex capac-
ity optimization in DYN.

7.2. The Value of Optimal Upgrading

In this section, we compare the profit from DYN with the
profit from the NV model (no upgrading) and the greedy
heuristic (myopic upgrading). First, we examine how DYN
and the heuristics perform as the number of periods changes.
These experiments quantify the value of advance demand
information. Then, we examine the effects of changes in
the financial and demand parameters.

7.2.1. Advance Demand Information. The model in
DYN is equivalent to STC if the firm has a perfect demand
forecast: If the firm knows exactly who is coming and when,
then it can optimally allocate capacity among customers
as if all customers had arrived in the same time period.
Here we construct a series of DYN models, each of which
has the same total demand over all periods. The models
have an increasing number of periods, T , and we release
less demand information within each period as T increases.
The impact of this change can be seen in Figure 1, which

Figure 1. Profits as a fraction of STC profits in the five-
product model as the number of periods, T ,
varies.
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displays profits from the five-product DYN model, hybrid
heuristic, NV model, and greedy heuristic, all as a fraction
of the upper-bound STC profit (e.g., the top line in the fig-
ure shows �DYN�XDYN	/�STC�XSTC	 as T varies). In this
example, as the number of periods in DYN increases, infor-
mation availability decreases (more allocations are being
made with less demand information), and the allocation is
less effective than the allocation in STC. The figure also
demonstrates other elements of points 1–3 above: Relative
profits from DYN and the hybrid heuristic are virtually
identical at the top of the figure (the lines essentially over-
lap) and both remain within 1% of STC. We also see that
the results from NV are superior to the greedy heuristic for
T � 5.
Over all two-product experiments, when T = 20 the

median difference between the DYN formulation and the
STC upper bound is also less than 1%. This leads to per-
haps the most important point, observation 2, that perfect
demand information has relatively little value as long we
use the optimal initial capacity and optimal upgrading.

7.2.2. Impact of the Economic and Demand Param-
eters. In Figure 1, for large T , the difference between
DYN and NV is approximately 3% of the STC profit,
and the difference between DYN and greedy can be much
larger. Now we ask, in general, when is it worth implement-
ing optimal upgrading, the DYN policy, rather than one of
the simpler heuristics? When assessing the value of optimal
upgrading, we will compare DYN with the NV heuristic
because the NV heuristic dominates the greedy heuristic
for most problems with large T .
For example, Figure 2 illustrates observation 4, above—

that the value of optimal upgrading rises with the relative
upgrade value, �i+1� i/�i� i. This figure was generated using
the five-product model with T = 10� As in Figure 1, the

Figure 2. Profits as a fraction of STC profits in the five-
product model as the contribution margin of
upgrading varies.
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figure displays profits as a fraction of STC, and again the
DYN and hybrid results are nearly identical. We also see
that as the value of upgrades rises, the relative performance
of the NV solution declines so that the value of optimal
upgrading increases. Similar plots for observations 5–8,
above, are available in §4 of the online appendix.

8. Conclusions and Future Research
In this paper, we formulate a flexible capacity investment
and allocation problem in which demand arrives over a
sequence of discrete time periods. Because total demand
from the most lucrative customers is uncertain when capac-
ity allocation decisions must be made, the firm may hold
back, or ration, some products before the last time period.
We show that the optimal assignment policy involves two
steps: greedy allocation, followed by upgrading that is lim-
ited by a protection limit. We extend these results to a
model in which the firm may replenish its capacity every
T time periods and derive heuristics for generating nearly
optimal protection limits for large problems.
We then explore the impact on total expected profit

of using dynamic-optimal capacity and optimal upgrading.
We also examine the consequences of using suboptimal
policies, such as a greedy policy (“upgrade whenever pos-
sible”) and a no-upgrade policy that separates the prob-
lem into simple newsvendor problems. We find that using
optimal capacity for the static problem, when paired with
optimal upgrading, produces profits that are close to profits
when using the optimal capacity for the dynamic problem.
We also find that under optimal upgrading, profits are con-
sistently close to the upper-bound profits of the static prob-
lem, so that perfect demand information has relatively little
value as long as optimal upgrading is used. Finally, we find
that using optimal upgrading rather than no upgrading or
greedy upgrading (no rationing) is particularly important
when the value of upgrading is high, products are close
together in terms of cost or marginal revenue, demand vari-
ance is high, and demand correlation is low.
There are many possible extensions to the model, such as

the inclusion of backlogging and incorporating interperiod
demand dependence that would allow the firm to update
protection levels as demand arrives. It would also be inter-
esting to relax the single-step upgrading assumption. For
this latter extension, determining the actual values of opti-
mal booking limits can be difficult, particularly in problems
with large numbers of flexible products and time periods,
so that recursive and/or heuristic methods for finding book-
ing limits would be useful.
Most of the literature on upgrading and substitution as-

sumes that customers do not react strategically to the firm’s
actions, and this assumption also applies to our model. How-
ever, customers may intentionally demand a lower-quality
product in the hope of getting upgraded to a higher-quality
product. This may not be an issue if the higher-quality prod-
uct can be degraded (for example, a large hard disk drive can

be formatted to be a smaller one at very little cost). How-
ever, degrading the product quality is not practical in most
service industries. The impact of strategic customer behav-
ior on firms’ optimal capacity investment and upgrading
decisions is an interesting direction for future research.
Finally, in many real-world environments customer ar-

rivals cannot be divided into time periods, and an extension
of the analysis would be to compare our dynamic model
with a model that features continuous arrivals (e.g., cus-
tomers arrive according to a Poisson or diffusion process).
As Topkis (1968) points out, however, the assumption that
demand arrives in discrete periods “might be expected to
be a good approximation to reality if the intervals are made
‘small enough’ ” (p. 161). In addition, a model with a
small number of discrete demand periods may be a reason-
able approximation when different customer classes tend
to arrive in different periods, as is often the case in yield
management applications.

9. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnote
1. Throughout this paper, we use decreasing for nonin-
creasing and increasing for nondecreasing.
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