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Dynamic causal brain circuits during working
memory and their functional controllability
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Control processes associated with working memory play a central role in human cognition,

but their underlying dynamic brain circuit mechanisms are poorly understood. Here we use

system identification, network science, stability analysis, and control theory to probe func-

tional circuit dynamics during working memory task performance. Our results show that

dynamic signaling between distributed brain areas encompassing the salience (SN), fronto-

parietal (FPN), and default mode networks can distinguish between working memory load

and predict performance. Network analysis of directed causal influences suggests the anterior

insula node of the SN and dorsolateral prefrontal cortex node of the FPN are causal outflow

and inflow hubs, respectively. Network controllability decreases with working memory load

and SN nodes show the highest functional controllability. Our findings reveal dissociable roles

of the SN and FPN in systems control and provide novel insights into dynamic circuit

mechanisms by which cognitive control circuits operate asymmetrically during cognition.
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A
lmost all cognitively demanding tasks depend on working
memory, the ability to maintain and manipulate infor-
mation in the absence of sensory input1–3. Working

memory is considered a “sketchpad of conscious thought” and a
foundational component of information processing and problem-
solving4. Cognitive control processes associated with working
memory play an essential role in development5,6 and impair-
ments in these processes are a key component of cognitive dys-
function in many psychiatric disorders, including schizophrenia
and attention deficit hyperactivity disorder7–11. Although con-
siderable progress has been made in identifying brain regions
involved in working-memory-related cognitive processes, the
dynamic circuit mechanisms by which it operates in the human
brain are poorly understood. In particular, little is known about
dynamic causal and asymmetric interactions between distributed
brain regions during working memory task performance and
their cognitive load-dependent network properties. Furthermore,
reliance on small sample sizes in previous studies has been a
serious limitation, leaving unclear the reliability of reported
findings.

Here we leverage data from the Human Connectome Project
(HCP)12 to investigate causal dynamic circuit mechanisms
involving cognitive control systems consistently implicated in
working memory. The present study focuses on three major
concepts: causal circuits and hubs, functional controllability of
brain circuits, and reproducibility of findings. We first apply
state-space models to determine dynamic causal circuits, probe
dynamic brain network properties including causal outflow and
inflow hubs of information flow13,14, and determine sources of
individual differences in working-memory task performance.
Second, we develop and apply a control theory framework
extending previous work15–18 to identify brain nodes that facil-
itate distinct brain states associated with high and low cognitive
load. Third, we validate our findings using replicability and sta-
bility analysis. Our computational tools drawn from state-space
modeling, network science, and control theory, along with a ‘Big
Data’ approach allowed us to address fundamental gaps in our
understanding of causal networks underlying cognitive control
during working memory, their controllability, and
reproducibility.

The first goal of our study is the identification of the directed
neural circuits underlying cognition during working memory
using fast temporal-resolution (subsecond) fMRI data and a large
sample of well-characterized healthy young adults. The theore-
tical focus of the present work lies in a triple network model of
cognitive control systems which posits a key role for the salience
network (SN) in switching brain networks with the resultant
engagement of the FPN and disengagement of the DMN during
cognitively demanding tasks13,19. Analysis of causal control cir-
cuits has the potential to inform how asymmetries and hier-
archies in directed influence allow individual networks or specific
brain nodes to control others.

There is now extensive evidence demonstrating that the cog-
nitive demanding n-back working-memory task engage or dis-
engage core nodes of the salience (SN), frontoparietal networks
(FPN), and default mode networks implicated in cognitive
control20–22. Early research on the neural basis of cognitive
control processes engaged during working memory has primarily
focused on the dorsolateral prefrontal cortex in the middle frontal
gyrus (MFG) based on observations of neuronal activity during
online maintenance of task-relevant information23–25. Since then,
non-human electrophysiological studies and human neuroima-
ging studies have consistently identified distributed frontoparietal
regions involved in working memory including the anterior insula
(AI), dorsomedial prefrontal cortex (DMPFC), anterior cingulate
cortex, MFG, frontal eye field (FEF), and inferior parietal lobule

(IPL)26–29. Meta-analyses of human neuroimaging studies have
also highlighted consistent activation of these brain
areas20,22,30,31. Notably, these regions overlap prominently with
the SN and FPN19,32,33. In contrast, the posterior cingulate cortex
(PCC) and ventromedial prefrontal cortex (VMPFC) encom-
passing the default mode network (DMN) are deactivated during
cognitively demanding tasks21,34, but there have been suggestions
that the degree of disengagement may have a direct impact on
working-memory performance35–37. Other related research has
suggested that the DMN may also encode task-relevant infor-
mation during cognitively demanding tasks38,39. While these
studies point to a highly consistent pattern of working-memory-
related neural activity in the SN, FPN, and DMN, there have been
no systematic investigations of their dynamic functional inter-
actions and network properties.

Human neuroimaging studies of working memory have pri-
marily focused on regional brain activation20,22,30,31 and undir-
ected functional interactions37,40,41, and there is now growing
interest in examining how cognitive functions emerge as a result
of dynamic causal interactions between distributed brain
regions4. The need for such investigations has gathered particular
impetus in light of recent electrophysiological studies in monkeys
and rodents demonstrating significant asymmetries in inter-
regional interactions during working memory4,42,43. Crucially,
the focus on undirected functional connectivity in previous
studies37,40,41 precludes inference of how brain networks or
regions might influence and control other regions. More recently,
analysis of causal interactions among lateral prefrontal cortex
regions has pointed to a key role for the dorsolateral prefrontal
cortex in integrating information for cognitive control
operations44,45. However, a comprehensive understanding of
dynamic functional interactions and causal hubs involving mul-
tiple large-scale brain networks is still lacking. Specifically, the
relative order and potential hierarchies of causal signaling are
unknown.

We investigated context-specific dynamic causal circuit
mechanisms involving core nodes of the SN–FPN–DMN cogni-
tive control system using multivariate dynamic state-space sys-
tems identification (MDSI)46–48. MDSI uses a state-space
model46–48 for estimating context-specific causal interactions in
latent neuronal signals after taking into account inter-regional
variations in hemodynamic response. A particular advantage of
MDSI is that it does not require testing a large number of pre-
specified models, which is especially problematic as the number
of the models to be tested increases exponentially with the
number of nodes48. This approach not only enabled us to probe
large-scale causal networks associated with working memory, but
also, critically, to determine how directed network properties such
as causal hubs and network controllability change with working-
memory load.

We probed network properties and casual hubs associated with
context-specific interactions of the SN, FPN, and DMN. The past
decade has seen an explosion of research on the study of static
brain network properties based on its structural and intrinsic
functional connections. In contrast, little is known about causal
control hubs and how they change with working memory, or
more generally, cognitive load. Hubs are highly connected regions
important for integration of activity across brain regions14,49,50.
The weighted directed graphs estimated by MDSI allowed us to
compute hubs from both the perspective of outflow from, and
inflow into, each node of the SN, FPN, and DMN. This enabled
us to test hypotheses about the differential and asymmetric
functional roles of the SN, FPN, and DMN nodes, and how they
change with working-memory load.

The specific hypotheses we test in with respect were based on a
body of prior work suggesting a key role for the AI node of the SN
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in switching brain networks during tasks such as the stop signal,
Flanker, and oddball tasks13,51. However, working-memory load
in such response inhibition tasks is minimal and how the SN,
FPN, and DMN interact causally during a canonical working-
memory task such as the n-back task is poorly understood. Based
on previous research we first test the hypothesis that causal
interactions involving the SN, FPN, and DMN would be dyna-
mically modulated by working-memory load and that directed
network interaction patterns would differ between the high- and
low-load working memory conditions. We predicted that the
strength of dynamic causal interactions between the SN and FPN
would increase with load, while dynamic causal interaction
between the DMN and the two other networks would decrease
with working-memory load. Next, based on previous findings
suggesting a key role for the SN in switching networks13,19,33, we
hypothesized that the AI node of the SN would emerge as a causal
outflow hub during working-memory load conditions with sig-
nificant inflow into FPN and DMN nodes. Last, we hypothesized
that the strength of dynamic causal interactions between the SN,
FPN, and DMN would predict working-memory performance.

The second major focus of our study was the development and
application of control theory to asymmetric causal circuits asso-
ciated with cognition during working memory. Controllability, in
the classical sense, measures the ability to perturb a system from a
given initial state to random target states, in finite time, by means
of external control inputs. Crucially, nodes with higher con-
trollability require lower energy for perturbing a system from its
current state16,52, and controllability measures are useful for
identifying driver nodes which have the potential to influence
overall system dynamics53. Control properties of complex sys-
tems can provide insights into how they can be perturbed to
achieve desired behaviors54–56. We examined average network
controllability, a key index of control in complex systems which
has been applied to many disciplines of physics, engineering, and
biology53,57,58. Previous applications of control theory to human
neuroimaging have been based on structural brain connectivity
derived using diffusion tensor imaging15. However, researchers
have drawn attention to the importance of dynamics between
state variables for the study of controllability in complex
systems16. Thus, structural topology by itself is ill-suited for
assessing brain-cognitive-state dependent control in complex
functional brain networks59. Here, we address this challenge
using a dynamical state-space model which lends itself more
naturally to assessments of controllability. Network controllability
measures computed in this framework using MDSI allowed us to
identify nodes that need the lowest energy to perturb the
SN–FPN–DMN cognitive control system, and to determine how
controllability changes with distinct brain states associated with
high and low cognitive load. We predicted that network con-
trollability would depend on working-memory load with lower
controllability during high load reflecting less flexibility in net-
work interactions. We further test the hypothesis that the AI node
of the SN would emerge as the node with high controllability
associated with its dominant pattern of casual outflow. We con-
trast our theoretical model and framing with an alternative
hypothesis, based on DTI-based symmetric structural con-
nectivity measures, that the DMN has the highest controllability
in the human brain15.

We investigated dynamic casual functional circuits using a
large (N= 737) sample of participants from the HCP who per-
formed an n-back working-memory task during fMRI scanning12.
The n-back task consists of high (2-back) and low (0-back)
working-memory load conditions presented in blocks. Specifi-
cally, participants were presented with a temporal sequence of
visual stimuli and were required to respond whether the current
stimulus was identical to the one they saw two time-steps back

(2-back) or whether the current stimuli matched a known target
(0-back). The 2-back task condition places considerably higher
load on working memory as it involves dynamic updating of the
contents of working memory. Figure 1 provides an overview of
our data analysis pipeline showing key steps including analysis of
task performance, regional activation, MDSI of causal interac-
tions during the high and low conditions, causal outflow hubs,
functional controllability, and the relation between causal inter-
actions and behavior.

Finally, the third major focus of our study was to leverage the
large HCP sample size to determine the stability of our findings
related to dynamic causal interactions during working memory.
Previous studies of casual functional circuits engaged during
working memory have been limited by small sample sizes, typi-
cally ranging from 20 to 40, often leading to inconsistent and
contradictory findings44,60–65. Furthermore, such small sample
sizes have precluded analysis of the stability and reliability of
causal network interactions and network metrics. Stability ana-
lyses demonstrated the robustness of our findings, and our
approach represents an important step in ensuring robustness
and replication of the mechanisms by which control circuits
operate during working memory.

Results
Behavior during the 2- and 0-back working-memory condi-
tions. Performance accuracy was significantly higher in the low-
load (0-back) condition (93 ± 7%) compared to the high-load
(2-back) condition (86 ± 8%) (t736= 23.3, p < 0.001, Cohen’s d=
0.92, two-side paired t-test). Reaction times on the 0-back con-
dition (738 ± 136ms) were significantly shorter than those on the
2-back condition (966 ± 149 ms) (t736= 51.5, p < 0.001, Cohen’s
d= 1.6, two-side paired t-test). These results confirm that
working-memory performance is less accurate and slower on the
2-back than 0-back conditions, consistent with the higher
working-memory load on the 2-back task.

Dynamic causal interaction patterns during the 2- and 0-back
working-memory conditions. We focused our analysis of
dynamic causal interactions on 11 core SN, FPN, and DMN
regions known to display a consistent profile of task-related
activation and deactivation during the 2-back working-memory
task21 (Fig. 1A). SN nodes consisted of the left and right AI (lAI,
rAI) and DMPFC; FPN consisted of left and right MFG (lMFG,
rMFG), left and right FEF (lFEF, rFEF), and left and right IPL
(lIPL, rIPL); and the DMN consisted of the PCC and VMPFC. SN
and FPN regions of interest (ROIs) showed significantly greater
activation in the 2-back, compared to the 0-back, task condition,
whereas DMN ROIs showed significantly reduced activity in the
2-back condition (Fig. 1B). Note that the DMPFC node was
identified based on its highest levels of activation in the dor-
somedial wall. This peak is dorsal to the anterior cingulate cortex
node that typically anchors the SN. Our designation of the
DMPFC within the SN from a network identification point of
view is based on several reasons: (i) independent components
analysis of task and resting-state fMRI both identify an extended
dorsomedial wall cluster that encompasses the DMPFC and
dorsal anterior cingulate cortex66,67; (ii) the DMPFC showed
significantly greater activation than the adjoining dorsal anterior
cingulate cortex (6-mm radius sphere, x= 7, y= 18, z= 33),
determined from a previous study using independent component
analysis on a separate resting-state fMRI data33, when contrasting
the 2-back and 0-back task conditions (t736= 29.06, p < 0.001,
Cohen’s d= 1.07, two-side paired t-test); (iii) other functional
brain atlases have also assigned the DMPFC ROI to the SN68; and
(iv) graph-theory analysis on directed connectivity matrices
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estimated by MDSI demonstrated that DMPFC and AI are part of
the same module during both the 2-back and 0-back task con-
ditions (Fig. 2A).

MDSI identified several links that showed significant dynamic
causal interactions in the 2-back and 0-back task conditions (p <
0.01, FDR-corrected, two-side paired t-test) (Fig. 2B). Next,
leveraging the large sample size of the HCP dataset, we examined
the stability of dynamic causal interaction patterns using
bootstrapping with subsamples ranging from 20 to 600. We

found that dynamic causal interaction patterns achieved a high
level of stability (r > 0.8, Pearson’s correlation) with subsample
sizes of N= 30 or more (Fig. 2C). These results demonstrate that
MDSI reliably estimates dynamic causal interaction patterns
associated with both the 2-back and 0-back conditions.

rAI is the outflow hub and rMFG is the inflow hub during both
the 2-back and 0-back working-memory conditions. We eval-
uated net causal influences of each node and determined causal
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Fig. 1 Schematic illustration of data analysis strategy and procedures. A Salience Network (SN), Frontal-Parietal Network (FPN), and Default Mode

network (DMN) ROIs: (1) left anterior insula (lAI); (2) right anterior insula (rAI); (3) dorsomedial prefrontal cortex (DMPFC); (4) left middle frontal gyrus

(lMFG); (5) right middle frontal gyrus (rMFG); (6) left frontal eye field (lFEF); (7) right frontal eye field (rFEF); (8) left intraparietal lobule (lIPL); (9) right

intraparietal lobule (rIPL); (10) posterior cingulate cortex (PCC), and (11) ventromedial prefrontal cortex (VMPFC). B General linear model analysis

revealed significant working-memory-load-related activation in SN and FPN (task-positive nodes), and deactivation in the DMN (task-negative nodes) (p <

0.01, FDR-corrected, two-sided t-test). N= 737 participants. Data are presented as mean ± SEM. C Overview of data analysis pipeline. We first screened

the HCP n-back working-memory dataset based on head motion, behavioral performance, and participant handedness. We then extracted time series from

each of the 11 ROIs and applied MDSI to determine working-memory load-specific dynamic causal interactions from each participant in the 2-back and 0-

back task conditions. MDSI-derived causal influences were then used to investigate (1) whether multivariate dynamic causal interaction patterns

distinguished 2-back versus 0-back task conditions, (2) task-dependent causal outflow from each ROI, (3) network controllability as a function of working-

memory load, and (4) the relationship between the strength of dynamic causal interactions and behavioral performance. HCP human connectome project,

MDSI multivariate dynamic state-space systems identification, ROI region of interest. Source data are provided as a Source data file.
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signaling hubs during performance of the two working-memory
tasks. To accomplish this, we computed the outflow degree of
each node in each task and participant. The outflow degree is the
weighted node degree: averaged outflow weights (all the output
connections from a node to all other nodes) minus averaged
inflow weights (all the input connections to a node from all other
nodes). The rAI and lAI showed significant positive outflow in
both the 2-back and 0-back conditions, with the rAI showing the
highest outflow degree (p < 0.05, FDR-corrected, Fig. 3A, two-side

paired t-test). Stability analysis revealed that this rAI finding was
highly stable (>80%) with sample sizes of N= 100 or more
(Fig. 3B). That is, the rAI showed the consistently highest outflow,
across multiple random subsamples of the data.

In contrast, the rMFG and rFEF showed significant inflow,
with the rMFG showing the highest inflow degree (p < 0.05, FDR-
corrected, Fig. 3A, two-side paired t-test). Stability analysis also
revealed that this rMFG finding was highly reliable (>80%) with
subsample sizes of N= 80 or more (Fig. 3B). That is, the rMFG
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C. Stability of causal influences
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Fig. 2 Working-memory load-specific dynamic causal influences. A MDSI and graph-theoretic analyses identified four communities associated with

directed causal influences in both the 2-back and 0-back working-memory task conditions: (i) SN consisting of lAI, rAI, and DMPFC nodes, (ii) left FPN

consisting of lMFG, lFEF, and lIPL nodes, (iii) right FPN consisting of rMFG, rFEF and rIPL nodes, and (iv) DMN consisting of PCC and VMPFC nodes (p <
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indicate that a pair of ROIs belong to different communities. B Significant directed causal influences between SN, FPN, and DMN ROIs in the 2-back and

0-back working-memory task conditions (p < 0.01, FDR-corrected, two-sided t-test). N= 737 participants. Red cells indicate significant positive influences

and blue indicates significant negative influences. C Stability analyses revealed highly stable multivariate patterns of causal influences among SN, FPN, and

DMN nodes in 2-back and 0-back task conditions (r > 0.8 for sample size >25). X-axis shows sample sizes ranging from 20 to 600. Y-axis shows stability,
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VMPFC ventromedial prefrontal cortex. Source data are provided as a Source data file.
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showed the consistently highest inflow, across multiple random
subsamples of the data.

These results identify the rAI as a robust outflow hub and the
rMFG (dorsolateral prefrontal cortex) as a robust inflow hub,
independent of working-memory load.

Dynamic causal interaction patterns differentiate 2- and 0-
back working-memory conditions. We examined whether
multivariate patterns of dynamic causal interactions differed
between the two task conditions. A support vector machine
(SVM) algorithm with 10-fold cross-validation revealed a classi-
fication accuracy of 75% (p < 0.01, permutation test, Fig. 4).

Next we sought to determine specific links which differ in the
strength of dynamic causal interactions between the 2-back and
0-back conditions (all ps < 0.01, FDR-corrected, two-side paired t-
test; Fig. 5A). Increased dynamic causal interactions in the 2-back
condition were observed primarily between SN and FPN nodes.
In contrast, dynamic causal influences from the PCC node in the
DMN on the SN and FPN decreased in the 2-back, compared to
the 0-back, condition.

We then examined the stability of working-memory load-
dependent dynamic causal interaction patterns. We found that
dynamic causal interaction patterns achieved a high level of
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Fig. 3 Working-memory load-specific dynamic causal outflow. A AI showed the highest directed causal outflow between SN, FPN, and DMN nodes in

both the 2-back and 0-back working-memory task conditions (p < 0.05, FDR-corrected, two-sided t-test). n= 737 participants. Data are presented as

mean ± SEM. In contrast, the rMFG showed the highest directed causal inflow among all nodes in both task conditions (p < 0.05, FDR-corrected, two-sided

t-test). n= 737 participants. Data are presented as mean ± SEM. B Stability analyses revealed highly stable directed causal outflow from the rAI and

directed causal inflow into the rMFG in both the 2-back and 0-back working-memory task conditions. X-axis shows sample size, ranging from 20 to 600. Y-

axis shows stability, computed as the probability that the rAI shows the highest positive directed causal outflow among SN, FPN, and DMN nodes, and the

probability that the rMFG shows the highest causal inflow in random subsamples drawn from N= 737 participants. lAI left anterior insula, rAI right anterior

insula, DMPFC dorsomedial prefrontal cortex, lMFG left middle frontal gyrus, rMFG right middle frontal gyrus, lFEF left frontal eye field, rFEF right frontal

eye field, lIPL left intraparietal lobule, rIPL right intraparietal lobule, PCC posterior cingulate cortex, VMPFC ventromedial prefrontal cortex. Source data are

provided as a Source data file.
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stability (r > 0.8, Pearson’s correlation) with sample sizes of N=
200 or more (Fig. 5B). These results demonstrate that MDSI
reliably estimates dynamic causal interaction patterns associated
with working-memory load. Results also suggest that larger
samples are needed for reliable causal interaction patterns

associated with differences between task conditions, compared
to each task condition individually, and that the sample size of N
= 737 used in the present study reliably detects modulation of
dynamic causal interactions with working-memory load.

DMPFC and PCC are dominant load-dependent outflow and
inflow nodes, respectively. We next contrasted the net causal
influences of each node between the high and low-load working-
memory conditions. Comparison of outflow degree between the
two conditions revealed that the lAI and rAI, the two dominant
outflow hubs during both the 2-back and 0-back task conditions,
did not differ in net load-dependent outflow (ps > 0.4). Instead, it
was the DMPFC, and lIPL nodes that showed significantly greater
outflow in the 2-back, compared to the 0-back, task condition (p
< 0.05, FDR-corrected, two-side paired t-test; Fig. 5A), with the
DMPFC showing the strongest effects. Crucially, the DMPFC
showed significantly greater load-dependent outflow than the lAI
and rAI (p < 0.05, FDR-corrected, two-side paired t-test).

Comparison of inflow degree between the two conditions
revealed that the rMFG, the dominant inflow hub during both the
2-back and 0-back task conditions, did not differ in net load-
dependent inflow (p > 0.8, Pearson’s correlation). Instead, it was
the PCC, rFEF, and rIPL nodes that showed significantly higher
net inflow in the 2-back, compared to the 0-back, condition (p <
0.05, FDR-corrected; Fig. 5B), with the PCC showing the
strongest effects. Crucially, the PCC showed significantly greater
load-dependent inflow than the rMFG (p < 0.05, FDR-corrected,
two-side paired t-test).

These results identify the DMPFC and the PCC, rather than
the AI and MFG as nodes that show load-dependent outflow and
inflow during working memory.

Dynamic causal interaction patterns predict working-memory
performance. Finally, we investigated whether dynamic causal
interactions between the SN, FPN, and DMN are related to
working-memory performance. A canonical correlation analysis
(CCA) was used with brain measures consisting of the weights of
bidirectional causal interactions and behavioral measures con-
sisting of accuracy and reaction time in each participant. CCA
model fits were significant in the 2-back condition (Pillai’s trace
= 0.37, p < 0.05, permutation test, Bonferroni corrected) but not
in the 0-back condition (Pillai’s trace= 0.30, p= 0.44, permuta-
tion test). CCA identified a significant relation between dynamic
causal weights and behavioral scores in the 2-back condition (r=
0.46, p < 0.001, Fig. 6A). Figure 6B illustrates the canonical cor-
relation coefficients, with the strongest predictive weights being
those associated with the DMPFC. These results highlight the
behavioral relevance of dynamic causal interactions between the
SN, FPN, and DMN, and the prominent role of the DMPFC in
working-memory performance.

Network controllability differs between the 2-back and 0-back
task conditions. We used casual directed networks estimated by
MDSI to investigate functional network controllability associated
with the two working-memory conditions (see Supplementary
Methods and Supplementary Figs. S1–S5 for detailed mathema-
tical formulation of network controllability, and elaboration using
simulated directed causal networks). Network controllability was
evaluated for each node and task condition and entered into an
ANOVA with factors working-memory load and node. We found
a significant main effect of node (F10,736= 60.26, p < 2.0e−16,
ANOVA) and load (F1,736= 63.79, p < 5.33e−15, AVNOA)
(Fig. 7A). Network controllability was lower in the 2-back,
compared to the 0-back condition, and this finding held for all
nodes (all ps < 0.001, two-side paired t-test). In the 0-back task,
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Fig. 5 Working-memory load-dependent dynamic causal influence and

net outflow. A MDSI analysis revealed links with significantly greater

directed causal influences between SN, FPN, and DMN nodes in the 2-back,

compared to the 0-back, working-memory task condition (p < 0.05, FDR-

corrected, two-sided t-test). n= 737 participants. B The DMPFC and lIPL

showed significantly higher directed causal outflow in the 2-back, compared

to the 0-back, task condition. In contrast, the PCC, rFEF and rIPL showed

significantly higher directed causal inflow in the 2-back, compared to the

0-back, task condition (p < 0.05, FDR-corrected, two-sided t-test). n= 737

participants. Data are presented as mean ± SEM. C Stability analyses

revealed highly stable multivariate patterns of causal influences between SN,

FPN, and DMN nodes in 2-back versus 0-back (r > 0.8 with samples >200).

X-axis is the subsample sizes, ranging from 20 to 600. Y-axis is the stability

measures, which is the correlation of multivariate causal interaction patterns

between subsamples and original dataset. lAI left anterior insula, rAI right

anterior insula, DMPFC dorsomedial prefrontal cortex, lMFG left middle

frontal gyrus, rMFG right middle frontal gyrus, lFEF left frontal eye field, rFEF

right frontal eye field, lIPL left intraparietal lobule, rIPL right intraparietal

lobule, PCC posterior cingulate cortex, VMPFC ventromedial prefrontal

cortex. Source data are provided as a Source data file.
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the rAI, lAI, and DMPFC had significantly higher controllability
than other nodes (all ps < 0.001, Bonferroni corrected, two-side
paired t-test) except for the lFEF. In the 2-back task, the rAI, lAI,
and DMPFC had significantly higher controllability than other
nodes (all ps < 0.001, Bonferroni corrected, two-side paired t-test)
except for the lMFG and lFEF.

To further evaluate the differential controllability of the three
brain networks, we grouped ROIs’ controllability scores by their
networks and conducted an ANOVA with factors working-
memory load and network (SN, FPN, and DMN). We found a
significant main effect of network (F2,736= 60.26, p < 2.0e−16,
ANOVA), and load (F1,736= 63.79, p < 5.33e−15, ANOVA), and
a significant interaction between load and network (F2,736=
12.41, p < 4.53e−06, AVNOA). SN nodes (rAI, lAI, and DMPFC)
had the highest level of controllability in both the 0-back and 2-
back tasks (all ps < 1.9e−13, two-side paired t-test). Network
controllability was higher in the 0-back, compared to the 2-back
condition, and this finding held for all three networks (all ps <
0.001, Bonferroni corrected, two-side paired t-test) (Fig. 7B).
Further analysis revealed that the load × network interaction
arose from load differences characterized by higher controllability
of the SN compared to the FPN (t736= 4.62, p= 4.61e−06, two-
side paired t-test) and the DMN (t736= 3.92, p= 9.84e−05, two-
side paired t-test), and no differences between the FPN and DMN
(t736= 0.61, p= 0.54, two-side paired t-test).

We then examined the stability of these findings, focusing first
on working-memory load-dependent differences in network
controllability. Higher network controllability on the 0-back,
compared to the 2-back, condition achieved a high level of
stability (>80%), with sample sizes of N= 90 or more (Fig. 7C).
Results showing network differences, with SN having the highest
network controllability, also showed a high level of stability
(>80%) with samples of N= 100 or more for the 2-back task
condition and N= 50 or more for the 0-back condition.

These results demonstrate that network controllability
decreases with working-memory load, and that SN nodes have
the highest controllability among SN, FPN, and DMN nodes.
Furthermore, these results are highly stable and reliable.

Working-memory load effects on outflow and inflow. Addi-
tional analysis examined the effects of working-memory load on
outflow and inflow separately. This analysis revealed distinct
patterns of outflow and inflow weights associated with memory
load (Supplementary Notes A, Supplementary Fig. 6). Notably,

the SN and FPN showed significantly greater outflow in the 2-
back than 0-back conditions whereas the DMN had significantly
weaker outflow in the 2-back than 0-back condition (ps < 0.05,
FDR-corrected, two-side paired t-test). In contrast, the FPN, but
not the SN or DMN, showed significantly greater inflow weights
in the 2-back than 0-back condition (ps < 0.05, FDR-corrected,
two-side paired t-test).

Reproducibility of findings in subsamples. To examine the
robustness of our findings with respect to subsamples, we divided
the data into three subsets and conducted a complete set of
supplemental analyses on each subset. We replicated all our
findings as described in Supplementary Information (Supple-
mentary Notes B, Supplementary Figs. 7–9).

Hierarchy of network controllability with respect to left and
right FPN. Additional analyses revealed a hierarchy of network
controllability such that controllability was significantly greater in
SN than LFPN, in LFPN than RFPN, and in RFPN than DMN (all
ps < 0.01, Bonferroni corrected, two-side paired t-test).

Robustness of network controllability with respect to nor-
malized causal interaction weights. MDSI simultaneously esti-
mates the causality between regions (C matrices) under each
condition within the same modeling framework. Therefore, the
average controllability estimated under the different conditions
can be directly compared without the need for additional nor-
malization. To further ensure that our findings were robust with
respect to mean connection strength in each condition, we con-
ducted network controllability analyses on normalized causal
interaction weights. We replicated all our findings (Supplemen-
tary Notes C, Supplementary Fig. 10).

Robustness of findings with respect to ROI selection. To
examine the robustness of our findings with respect to node
selection, we conducted comprehensive analyses using functional
ROIs determined using meta-analysis of working-memory tasks.
We replicated all our findings (Supplementary Notes D, Supple-
mentary Figs. 11–16).

Discussion
We used computational tools drawn from state-space modeling,
network science, and control theory to investigate dynamic circuit
mechanisms underlying working memory in a core cognitive
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Fig. 6 Dynamic causal influence relation to behavioral performance. A Canonical correlation analysis revealed a significant relationship between directed

SN, FPN, and DMN causal influences and behavioral performance in the 2-back working-memory task condition (r= 0.46, p < 0.001, Pearson’s

correlation). B Correlation coefficients contributing to brain-behavior relations highlights positive influences between SN and FPN nodes and negative

influences of SN and FPN nodes on PCC and VMPFC nodes of the DMN. lAI left anterior insula, rAI right anterior insula, DMPFC dorsomedial prefrontal
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control system anchored in the salience, frontoparietal, and
default mode networks (SN, FPN, and DMN, respectively). We
uncovered robust and stable load-dependent dynamic causal
interaction patterns associated with working memory. Dynamic
causal influences involving the SN, FPN, and DMN accurately
distinguished between the high and low-load conditions and
predicted behavioral performance. Network analysis of directed
causal influences revealed that the anterior insula node of the SN
is a casual outflow hub whereas the dorsolateral prefrontal cortex
node of the lateral FPN is an inflow hub, independent of working-
memory load. In contrast, the DMPFC emerged as a dominant
load-dependent outflow node with stronger load-dependent
outflow than both the right and left AI. From the perspective of
hierarchical signaling, our findings highlight the relative control
properties of the SN and FPN and bring to light the importance
of the SN in driving control.

We further developed a control-theoretic framework to
investigate working-memory load-dependent functional network
controllability and to identify driver nodes which influence
overall system dynamics. We found that network controllability
decreased with working-memory load, and that the anterior
insula and DMPFC nodes of the SN showed the highest network
controllability. Finally, we leveraged a large sample of participants
(N= 737) to demonstrate the reliability of our findings. Our
findings provide insights into dynamic circuit mechanisms by
which core cognitive control circuits operate asymmetrically
during working memory, and highlight the dissociable roles of the
SN, FPN, and DMN in cognitive systems control.

Dynamic causal interactions in the SN–FPN–DMN cognitive
control system distinguish high and low-load working-memory
conditions. Dynamic causal interactions between SN, FPN, and
DMN nodes reliably distinguished between the high- and low-
load working-memory conditions. At the network level, classifi-
cation analysis with cross-validation revealed that multivariate
patterns of dynamic causal interactions accurately distinguished
between and predicted high (2-back) versus low (0-back)
working-memory task conditions (Fig. 4). Stability analysis
revealed that this result was reliable and replicable across
subsamples.

We then identified individual links that distinguish between
the 2-back and 0-back conditions. We found that dynamic causal
influences between multiple SN and FPN nodes that were
significantly greater in the 2-back, compared to the 0-back,
conditions (Fig. 5A). In contrast, dynamic causal interactions
linking the DMN to the SN and FPN were lower in the 2-back,
compared to the 0-back, task conditions. Thus, dynamic causal
influences within the SN and FPN (“task-positive” networks)
increased with working-memory load, whereas dynamic causal
influences from the DMN (“task-negative” network) to the SN
and FPN decreased with working-memory load. These results
demonstrate how modulation of cognitive load during working
memory alters causal dynamics in the SN–FPN–DMN cognitive
control system.

Causal outflow and inflow hubs during working memory.
MDSI-derived measures of the full bidirectional (asymmetric)
connectivity matrix between SN, FPN, and DMN nodes allowed
us to probe key network properties associated with working
memory. We identified casual outflow and inflow hubs during the
2-back and 0-back task conditions by computing the net weighted
degree of each node (Fig. 3A). A high positive node degree
indicated that a node exerted greater causal influence on other
nodes than other nodes exerted on it, while a high negative value
indicated the reverse. This analysis revealed that the rAI and lAI
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Fig. 7 Working-memory load-dependent functional controllability in SN,

FPN, and DMN. A Functional network controllability, assessed in each

brain node, was significantly lower in the 2-back, compared to the

0-back, working-memory task condition (p < 0.001, two-sided t-test). n

= 737 participants. Data are presented as mean ± SEM. AI and DMPFC

nodes in the SN have significantly higher controllability than FPN and

DMN nodes, except for lFEF and lMFG nodes of the FPN in the 2-back

task condition and lFEF in the 0-back task condition (p < 0.001, two-sided

t-test). n= 737 participants. Data are presented as mean ± SEM.

B Functional network controllability, assessed across SN, FPN, and DMN

nodes, was significantly lower in the 2-back, compared to the 0-back,

working-memory task condition (p < 0.001, two-sided t-test). N= 737

participants. Data are presented as mean ± SEM. The SN shows

significantly higher controllability than the FPN (p= 4.61e−06, two-side

paired t-test) and DMN (p= 9.84e−05, two-side paired t-test). N= 737

participants. Data are presented as mean ± SEM. C Stability analyses

revealed stable load effect (0-back > 2-back) and network difference

(SN > FPN and SN > DMN). X-axis shows sample size, ranging from 20 to

600. Y-axis shows stability, computed as the probability that the load

effect of controllability is significantly different between 2-back and 0-

back working-memory conditions, and the probability that the SN shows

greater controllability than the FPN and DMN in both 2-back and 0-back

working-memory conditions, in random subsamples drawn from N= 737

participants. lAI left anterior insula, rAI right anterior insula, DMPFC

dorsomedial prefrontal cortex, lMFG left middle frontal gyrus, rMFG right

middle frontal gyrus, lFEF left frontal eye field, rFEF right frontal eye field,

lIPL left intraparietal lobule, rIPL right intraparietal lobule, PCC posterior

cingulate cortex, VMPFC ventromedial prefrontal cortex. Source data are

provided as a Source data file.
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had the highest causal outflow during both task conditions. In
contrast, the rMFG was the inflow hub, with the strongest causal
influences on this node from all other regions, again, in both task
conditions. Crucially, net causal influences did not differ in these
regions between the high and low-load conditions, and stability
analysis demonstrated the robustness and replicability of these
findings.

The AI, a key node in the SN, is engaged in a wide range of
cognitive control69,70, and it has an important role in detecting
salient external signal, relocating cognitive resources, and
directing goal-directed behavior19. While the AI has not been
widely probed in the context of working-memory, meta-analytic
studies have shown that the AI is activated during almost all
working-memory tasks20,31,71. Interestingly, engagement of the
AI does not appear to be dependent on the category of
information maintained in working memory, including social
and/or affective information72, visual objects21, spatial location73,
and verbal and tonal stimuli74. Yet the role of AI in human
working memory has remained elusive.

Our MDSI analysis suggests that the AI plays a dominant role
in driving dynamical interactions among the SN, FPN, and DMN,
independent of working-memory load. This finding is consistent
with its hypothesized role in transient network switching in
response to salient behaviorally relevant stimuli13,19,33. The 0-
back task relies on detection of a stimulus that matches the target
whereas the 2-back task requires participants to not only detect
and encode incoming stimuli, but also to maintain and update
information. The dominant causal influence of the AI on the SN,
FPN, and DMN is thus more closely aligned to detection and
transient encoding of stimuli, a process shared by both the 2-back
and 0-back working-memory tasks. To our knowledge, there are
no electrophysiological investigations of the primate AI during
performance of working-memory tasks. However, a recent
optogenetic study in rodents suggests a specific causal role for
the AI in working memory: suppression of transient delay period
activity in the AI significantly reduced working-memory task
performance75.

Our findings further highlight a dissociation between the
functional roles of the AI and the MFG node of the FPN, which
encompasses dorsolateral prefrontal cortex regions consistently
implicated in working memory22. Remarkably, while the AI was
an outflow hub, the MFG was reliably identified as an inflow hub
during both the 2-back and 0-back task conditions. These results
help resolve an important unaddressed issue regarding the
differential roles of the AI and MFG in working memory. We
suggest that higher causal inflow into the MFG may activate MFG
regions known to play a critical role in maintenance and
manipulation of the content of working memory. High inflow
may reflect convergence of signals associated with external
stimuli, internal representations, or task rules needed for working
memory performance. Further studies examining spatiotemporal
dynamics with simultaneous electrophysiological recordings are
required to test this hypothesis.

Working-memory load-dependent net outflow and inflow.
Next, we examined whether the lAI and rAI, the two dominant
outflow hubs during both the 2-back and 0-back task conditions,
differed in net load-dependent outflow. Notably, both the left and
right AI showed no differences with working-memory load.
Instead, analysis of the net weighted degree revealed that the
DMPFC had the highest differential outflow associated with
working-memory load (Fig. 5B). Moreover, DMPFC net outflow
was significantly greater than both the left and right AI even after
correction for multiple comparisons.

The DMPFC has been implicated in a broad range of cognitive
control tasks70,76,77 and damage or disturbance in the DMPFC
impairs cognitive control functions78,79. However, the functional
role of this region has remained unclear as its dynamic causal
interactions have not been previously probed. The 2-back
working-memory task, in particular, places significant demands
on cognitive control as it requires dynamic updating of
information with each new stimulus presentation. Our identifica-
tion of higher outflow in the 2-back, compared to the 0-back,
condition is consistent with neurophysiological studies demon-
strating (i) early modulation of DMPFC activity by working-
memory load80, (ii) engagement during switching from automatic
to controlled action81, and (iii) selection of action sets77, the
demand for all of which is significantly greater in the 2-back task
condition. Our findings are also aligned with a recent optogenetic
investigation in rodents showing that modulation of projection
from medial prefrontal cortex to the AI impairs circuit plasticity
during working memory75. Together, these findings suggest that
the DMPFC plays an important role in reconfiguration of
functional circuits with increased working memory task demands.

We then examined whether the rMFG, the dominant inflow
hub during both the 2-back and 0-back task conditions, differed
in net load-dependent inflow. Notably, although the rMFG
showed no differences in net causal flow with working-memory
load, its dynamic causal interactions with multiple SN and FPN
nodes increased with working-memory load (Fig. 5A). Instead,
analysis of the net weighted degree revealed that the PCC had the
highest differential inflow associated with working-memory load
(Fig. 5B). Moreover, PCC net inflow was significantly greater than
the rMFG even after correction for multiple comparisons. Thus,
in contrast to the DMPFC, the PCC showed significantly
increased net negative inflow in the 2-back, compared to the 0-
back, task condition (Fig. 5B). This parallels the reduction of PCC
activation during the 2-back, compared to the 0-back task
condition (Fig. 1B).

The PCC is a core node of the DMN, which is involved in self-
referential processes including mind-wandering, stimulus-
independent thoughts, and autobiographic memory82–86.
Increased cognitive demand is often accompanied by DMN
deactivation across a broad range of cognitive tasks, including
working memory87,88. Our findings demonstrate that deactiva-
tion of the PCC is accompanied by net negative causal outflow
from the PCC (Supplementary Fig. 6). Reduced outflow signals
and consistent with disengagement of the DMN from the SN and
FPN, which facilitates access to working-memory resources
required for task performance35. The inability to generate these
causal inflow signals may contribute to working-memory deficits
observed in patients with schizophrenia and depression89,90.

Dynamic causal interactions predict working-memory perfor-
mance. Dynamic causal mechanisms identified by our study are
behaviorally relevant. We used CCA to examine the relation
between the strength of dynamic causal interactions and beha-
vioral performance in the 2-back task. We found a significant
canonical correlation model and a strong relationship between
multivariate measures of task-evoked causal connectivity and
behavioral variables in the 2-back condition. Interestingly, the
CCA model showed a significant model fit only in the 2-back
condition but not in the 0-back condition, demonstrating the
specificity of findings with respect to working-memory load.
Predictive weights consisted of positive directed connectivity
between the SN and FPN and negative directed weights between
the DMN, and the two “task positive” networks (Fig. 6B). Find-
ings thus implicate dynamic causal interactions between all three
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networks in successful working-memory performance, and fur-
ther demonstrate involvement of the DMN together with the SN
and FPN in influencing complex cognitive functions.

Network controllability during working-memory performance.
Analysis of the control properties of complex networks has the
potential to provide insights into how they can be manipulated to
achieve desired behaviors54–56,58. We used average controllability,
measured as the trace of controllability Gramian Wt as our
quantitative metric for controllability17. In the context of func-
tional brain networks, average controllability quantifies the
influence of each node or module over the entire network, with
higher controllability reflecting lower average control energy
needed to drive networks from a given node or a set of nodes (see
Supplementary Methods). Our approach here examines cognitive
context-dependent controllability and emphasizes the importance
of the actual system dynamics in determining control91,92.

Two key findings emerged from our analysis of load-dependent
functional controllability during working-memory task perfor-
mance. First, controllability decreased with working-memory
load (Fig. 7). This suggests that higher input energy is required to
control the network when the working-memory load is high. This
finding is noteworthy because it shows that network controll-
ability is load and context-dependent; in other words, functional
brain circuits are more difficult to control during complex,
compared to simpler, cognitive tasks. Notably, these findings were
highly reliable and remained stable with sample sizes of N= 90 or
more. We suggest that with more items to manipulate in working
memory, network interactions become more rigid thus reducing
controllability. It should be noted, however, that controllability is
not directly related to the overall magnitude of coupling but
rather the structure of the connectivity matrix93.

Second, we found that the AI and DMPFC nodes of the SN had
the highest controllability, implying that they are candidate nodes
for controlling network dynamics with the lowest levels of input
energy. Moreover, these SN nodes showed the highest controll-
ability independent of working-memory load; that is, SN nodes
are adequate for controlling network dynamics under both the
high and low conditions. In addition to determining controll-
ability associated with each node, we also examined controll-
ability associated with the SN, FPN, and DMN. Here we took
advantage of the observation that any linear function of the
controllability Gramian is a modular set function18. This implies
that we can first compute the Gramian of each node individually
and then average across the nodes of each network to determine
controllability of each network. This analysis revealed that SN
nodes had significantly higher controllability than the FPN and
DMN. Additional analysis revealed that in both the 2-back and 0-
back tasks, controllability was significantly greater in the SN
compared to left FPN, in the left FPN compared to right FPN,
and in right FPN compared to the DMN. These results point to
hemispheric differences and a hierarchy of controllability in
lateral frontoparietal cortex. Whether this pattern reflects a
control hierarchy from attention capture (SN) to abstract control
(left FPN) to concrete control (right FPN) is an intriguing
hypothesis that warrants further investigation44. Nodes or
modules with high average controllability are predicted to have
a larger influence over the network. The high network
controllability of the AI at the node level and the SN at the
network level is consistent with their critical role in dynamic
network switching33,94 and may contribute to its high levels of
spatiotemporal flexibility observed across a wide range of
cognitive tasks13,19,51,95.

Our findings demonstrate that functional network controll-
ability is dependent on cognitive load, and furthermore, reveal

that SN nodes have the highest functional network controllability.
We hypothesize that these nodes are prime targets for altering
functional network dynamics.

Robust mechanisms underlying triple network model of
dynamic cognitive control. The present study has focused on a
theoretical model of prefrontal cortex networks that support
flexible cognitive control functions13,19. Our findings based on
asymmetric patterns of directed causal influence between key
nodes of the SN, FPN, and DMN as well as their functional
controllability are consistent with the triple network model of
cognitive control, and shed further light on the underlying
mechanisms and their robustness. First, the AI showed the
highest causal outflow among all nodes suggesting a dominant
role of this key SN node in driving dynamic interactions between
regions between the SN, FPN, and DMN. Second, high levels of
causal inflow into the MFG suggest that this FPN node is crucial
for integrating cognitive control signals from multiple other
prefrontal and parietal cortical regions. Third, disengagement of
the DMN from the SN and FPN under high cognitive load is
marked by reduced outflow signals from the PCC. Fourth, the SN
demonstrated the highest controllability, indicating a prominent
role in driving network interactions. Fifth, these findings were
replicable and stable, as discussed below. Taken together, these
findings provide insights into the mechanisms by which pre-
frontal cortex networks implement cognitive control and facilitate
rapid system reorganization to meet cognitive task demands.
Further studies are needed to clarify the role of SN, FPN, and
DMN in the context of models of hierarchical control associated
with different levels of abstraction96 and multiple-demand sys-
tems engaged by diverse cognitive demands97.

Reproducibility and detection of stable dynamic causal con-
nectivity patterns during working memory. Reproducibility is a
major challenge for all neuroscience98,99. This is especially true
for computational models that infer causal dynamics using
fMRI13,100,101. To our knowledge, no previous studies have
addressed this question in any cognitive domain using large
samples to evaluate the stability of causal dynamics. Here we
addressed this challenge by leveraging the large sample size of the
HCP data, which allowed us to probe the stability of dynamic
causal connectivity and network properties during working
memory. We used bootstrapping procedures to determine the
stability of findings as a function of sample size. This approach
revealed replicability of our findings, and identified sample sizes
required to achieve reliability: (1) multivariate patterns of
dynamic causal interactions in the 2-back and 0-back conditions
were highly stable with sample sizes of 30 or more; (2) stable
estimates of the differences between high and low working-
memory load conditions required large samples of 200 or more;
(3) the rAI and rMFG emerged as robust outflow and inflow
hubs, respectively, with sample sizes of N= 80–100 or more; (4)
network controllability decreases with working-memory load and
SN nodes having the highest controllability was stable with
sample sizes of N= 100 or more. Together these findings suggest
that a sample size of 737 uncovers stable patterns of dynamic
causal interactions associated with the n-back task. An important
implication of our findings is that sample sizes used in most
previous fMRI studies of causal circuit interactions may be pro-
blematic and may have led to highly inconsistent findings
reported in the literature, particularly with respect to working-
memory load-dependent effects. While our findings stress the
importance of establishing reliability in analysis of causal circuit
dynamics, the question of sample size ultimately depends on
experimental design and sufficient individual-level data102.
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Note on interpreting causality and the effects of unobserved
variables. The present study has leveraged advances in state-space
models to jointly infer causal interactions between brain regions
without the confounding influences of regional variation in
hemodynamic response function or the need to test multiple
network models47. While this provides distinct advantages over
techniques such as Granger causal analysis, dynamic causal
modeling, and transfer entropy, two issues need to be highlighted.
First, at present no (validated) methods exist that can extend
causal network analysis, controlling for hemodynamic confounds,
to the whole-brain level, spanning 350 or more anatomically
distinct regions, due to the sheer number of parameters that need
to be estimated. Instead, our approach has focused on probing
causal dynamics associated with three key prefrontal cortex net-
works consistently implicated in cognitive control and working
memory. Second, relatedly, this raises the question of whether
findings could be influenced by unobserved confounds because
erroneous inferences on connectivity (causal or otherwise) can
occur when data from a limited set of brain regions or neuronal
populations are used in data analysis103, a problem that is further
confounded when there is a mismatch between the true network
dynamics and the model used for inference104. There currently
are no good solutions to these problems, short of extensive
invasive manipulations to each processing unit spanning the
entire brain. We have addressed this challenge in the present
study by, as summarized in the previous section, conducting
extensive reproducibility, stability, and cross-validation analyses
using a large sample size, the only realistic approach with real-
world non-invasive human brain imaging data.

Asymmetries in directed influence are the essence of how one
brain region controls another. State-space modeling and network
analysis uncovered mechanisms underlying operation of a core
SN–FPN–DMN cognitive control circuit implicated in working
memory. Our analyses revealed that causal influences between
multiple nodes in the FPN, SN, and DMN are modulated by
working-memory load, and predict working-memory perfor-
mance. We identified casual outflow and inflow hubs reflecting
asymmetries in how core cognitive control circuits operate during
working memory. Functional network measures enabled us to
determine how directed network properties such as causal hubs
and network controllability change with working-memory load,
revealing the dissociable roles of the SN and FPN in cognitive
systems control. Importantly, we demonstrate high levels of
reliability of our findings using subsampling techniques and
provide unique insights into reproducible dynamical systems-
based mechanisms of human working memory. More broadly,
our computational approach drawing on state-space modeling,
network science, and control theory provide tools for probing
working memory and cognitive control in the human brain, and
their dysfunction in psychiatric and neurological disorders.

Methods
Ethics statement. Data acquisition for the HCP was approved by the Institutional
Review Board of The Washington University in St. Louis (IRB # 201204036),
informed consent was obtained for each participant, and data were de-identified.

HCP data selection. HCP data from 737 right-handed individuals (age: 22–36
years old, 413 female/324 male) were selected from a total of 1200 subjects based on
the following criteria: (1) participant had complete n-back task behavioral and fMRI
data; (2) range of head motion in any translational and rotational direction <1 voxel;
(3) average scan-to-scan head motion <0.2 mm; (4) accuracies in 0-back and 2-back
conditions >50%; and (5) criterion (1)–(4) met in both sessions separately.

HCP n-back working-memory task. The HCP n-back working-memory task
combines the category-specific representation task and the n-back working-
memory task in a single-task paradigm105. Subjects were presented with blocks of
trials that consisted of pictures of faces, places, tools, and body parts. Within each
session, the four different stimulus types were presented in separate blocks.

Furthermore, within each session, half of the blocks are 2-back working-memory
tasks and half are 0-back working-memory tasks. In the 2-back working-memory
task blocks, subjects were requested to determine whether the current stimulus
matches the stimulus in two presentations of stimuli prior within the same block.
In the 0-back working-memory task blocks, subjects were requested to determine
whether the current stimulus matches the target that was presented in the begin-
ning of each block (cue). A 2.5 s cue indicates the task type (and target for the 0-
back task) at the beginning of each block. Each of the two sessions contains 8 task
blocks (10 trials of 2.5 s each, for 25 s) and 4 fixation (“rest”) blocks (15 s). On each
trial, the stimulus is presented for 2 s, followed by a 0.5-s inter-trial-interval (ITI).

fMRI data acquisition. For each individual, 405 frames were acquired in each
session using multiband, gradient-echo planar imaging with the following para-
meters: TR= 720 ms; TE= 33.1 ms; flip angle= 52°; field of view= 280 × 180 mm;
matrix= 140 × 90; and voxel dimensions= 2 mm isotropic.

fMRI preprocessing. Raw fMRI data for both sessions were obtained from the
HCP and underwent standard preprocessing steps, including realignment, slice-
time correction, normalization, and spatial smoothing with a Gaussian kernel of 6-
mm FWHM70 using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

General linear model and contrasts of interest. A conventional general linear
model (GLM) analysis was conducted in order to determine load-dependent and
categorical-dependent activation/deactivation peaks. Each block in each session was
modeled as one of the following vectors: 0-back-faces, 0-back-places, 0-back-tools,
0-back-body, 2-back-faces, 2-back-places, 2-back-tools, and 2-back-body. The onset
and duration of each vector were the onset and duration of the corresponding block.
The contrasts of interest include 0-back, 2-back, and 2-back versus 0-back.

Networks and regions of interest (ROI). We used SN, FPN, and DMN nodes
from a previous study based on the same HCP n-back working-memory task as
used here, albeit with a smaller sample size (N= 122)21. SN and FPN ROIs were
identified based on working-memory load-dependent activation (2-back > 0-back
task conditions): lAI, rAI, lMFG, rMFG, lFEF, rFEF, lIPL, rIPL, and DMPFC. DMN
ROIs PCC and VMPFC were based on task-related deactivation (2-back < 0-back)
(Fig. 1A). Each ROI was constructed as a 6-mm radius sphere centered at the voxel
that showed peak activation.

ROI activation analysis. Contrast weights of 2-back and 0-back task conditions
were extracted in each ROI. Paired t-tests were used to examine whether activa-
tions differed significantly between the two task conditions and corrected for
multiple comparisons using Bonferroni correction.

Time series extraction. The original time series were extracted from the pre-
processed fMRI data for each ROI, resulting in a matrix with a dimension of T ×N,
where T is the number of time points and N is the number of voxels in the ROI.
Singular value decomposition was applied on the ROI time series matrix, and the
resultant first eigenvariate corresponding to the first principal component is obtained
to represent the signals of interest within the ROI. The output was a T × 1 vector. We
used the first eigenvariate instead of mean signal within the ROI to reduce noise in
potentially heterogeneous ROIs. A multiple linear regression approach with 6 rea-
lignment parameters (3 translations and 3 rotations) was applied to the time series to
reduce head-motion-related artifacts and high-pass filtered (>0.008 Hz).

Multivariate dynamical systems identification of causal interactions. We used
multivariate dynamical systems identification (MDSI) to investigate causal inter-
actions in the SN, FPN, and DMN during working memory. Here we provide brief
descriptions of the method. Details can be found in the publications focused on
method development46–48, and scripts are available from SCSNL website (https://
med.stanford.edu/scsnl/publications.html).

MDSI is a state-space model consisting of a state equation to model the latent
“neuronal–like” (quasi neuronal) states of the dynamic network and an observation
equation to model BOLD-fMRI signals as a linear convolution of latent neural
dynamics and hemodynamic responses48. MDSI estimates both intrinsic and
experimentally modulated causal interactions between brain regions while
accounting for variations in hemodynamic responses in these regions.

The state equation in MDSI is a multivariate linear difference equation or a first-
order multivariate auto regressive (MVAR) model that defines the state dynamics

s tð Þ ¼ ∑
J

j¼1
vj tð ÞCj

s t � 1ð Þ þ w tð Þ ð1Þ

The model for the observed BOLD responses is a linear convolution model

xm tð Þ ¼ sm tð Þsm t � 1ð Þ¼ :smðt � Lþ 1Þ
� �0

ð2Þ

ym tð Þ ¼ bmΦxm tð Þ þ em tð Þ ð3Þ

In Eq. (1), s(t) is a M × 1 vector of latent signals at time t of M regions, Cj is
task-specific M ×M connection matrix and vj(t) is the j-th experimental condition
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at time t. Cj(m,n) denotes the strength of causal connection from n-th region to m-
th region for the j-th task. w(t) is an M × 1 state noise vector that is assumed to be
Gaussian distribution with covariance matrix Q(w(t) ~N(0,QI)), where I is an
identity matrix of size M ×M. In addition, state noise vector at time instances 1, 2,
…., T (w(1), w(2), …w(T)) are assumed to be identical and independently
distributed (iid). Equation (1) represents the time evolution of latent signals in M
brain regions. The latent dynamics modeled in Eq. (1) gives rise to the observed
fMRI time series represented by Eq. (3).

We model the fMRI time series in region “m” as a linear convolution of HRF
and latent signal sm(t) in that region. To represent this linear convolution model as
an inner product of two vectors, the past L values of sm(t) are stored as a vector.
xm(t) in Eq. (2) represents an L × 1 vector with L past values of latent signal at m-th
region.

In Eq. (3), ym(t) is the observed BOLD signal at time instance t for m-th region.
Φ is a p × L matrix whose rows contain bases for hemodynamic response function
(HRF). Here, we use the canonical HRF and its time derivative as bases, as is
common in most fMRI studies. bm is a 1 × p coefficient vector representing the
weights for each basis function in explaining the observed BOLD signal ym(t).
Therefore, the HRF in m-th region is represented by the product bmΦ. The BOLD
response in this region is obtained by convolving HRF (bmΦ) with the L past values
of the region’s latent signal (xm(t)) and is represented mathematically by the vector
inner product bmΦxm(t). Uncorrelated observation noise em(t) with zero mean and
variance σ

2
m is then added to generate the observed signal ym(t). em(t) is also

assumed to be uncorrelated with w(t), at all t.
Equations (1–3) together represent a state-space model for estimating the causal

interactions in latent signals based on observed multivariate fMRI time series. This
model can be seen as an extension of GCA wherein VAR model for latent, rather
than BOLD-fMRI, signals are used to model the causal interactions among brain
regions. Furthermore, the MDSI model also takes into account variations in HRF
while estimating causal interactions between the brain regions.

Estimating causal interactions between M regions specified in the model is
equivalent to estimating the parameter Cj. In order to estimate Cj the other

unknown parameters, Q, fbmg
M
m¼1 and fσ2mg

M
m¼1 and the latent signal fsðtÞgTt¼1 based

on the observations fysmðtÞg
M;S
m¼1;s¼1; t ¼ 1; 2::T , where T is the total number of time

samples and S is number of subjects, needs to be estimated.
We modeled 2-back (high load) and 0-back (low-load) trials to estimate load-

dependent causal interaction between brain networks. MDSI estimated strength of
dynamic causal interaction per connection per task. A paired t-test was used to
examine whether the strength of dynamic causal interaction between task
conditions is different and multiple comparison correction was implemented using
false discovery rate (FDR) correction (p < 0.01, Fig. 1).

Identification of causal hubs. We used the causal directed connectivity matrix
estimated by MDSI to determine outflow and inflow hubs in each participant13. We
computed the weighted node degree of each node by averaging outflow weights (all
the input connections from a node to all other nodes) and then subtracting the
average inflow weights (all the input connections to a node from all other nodes).
Causal outflow and inflow hubs were identified as the nodes with the highest net
positive, or net negative, node degree, respectively. This analysis was first con-
ducted using MDSI-estimated connectivity matrices for the 2-back and 0-back
conditions and then contrasting the 2- and 0-back conditions. We then determined
whether outflow-inflow weights of each node in each condition were significantly
different from zero and whether outflow-inflow weights of each node were sig-
nificantly different between 2-back and 0-back conditions. Multiple comparisons
were corrected using FDR (p < 0.05).

Supplementary Fig. 17 illustrates ROIs with their sizes proportionally scaled to
their node degrees in a 3D brain and Supplementary Fig. 18 illustrates dynamic
causal interactions between ROIs in a 3D brain.

Modular structure of causal interactions. We determined the community
structure of dynamic causal interactions in the 2-back and 0-back working-
memory task conditions using the Louvain algorithm106, as implemented in the
Brain Connectivity Toolbox107. The group-averaged context-dependent signed
directed weighted connectivity matrices, estimated by MDSI, were entered into the
analysis, with the resolution parameter gamma set to 1108,109. We used a
consensus-based approach with 1000 iterations to handle potential degeneracy of
community assignments110. In each iteration, a co-classification matrix in which
each element contained 1 if two nodes were part of the same module and 0
otherwise was generated. We then averaged the resulting 1000 co-classification
matrices to generate a co-occurrence matrix indicating the probability of two nodes
being in the same module across 1000 iterations, which was then used to determine
a consensus partition.

Network controllability. Dynamic control processes related to functional brain
network organization were modeled as a linear, discrete, time-invariant systems of
the form

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ ð4Þ

where x denotes the state vector, A is the weighted task condition-specific
connectivity matrix (Cj) estimated by MDSI, with elements of the matrix A
describing causal directed connectivity between SN, FPN, and DMN nodes. The
input matrix B identifies nodes controlled with input u.

Classical results from control theory suggest that a system is controllable if and
only if there exists a unique positive definite solution W to the “Lyapunov
equation”

AWþWA0 þ BB0 ¼ 0 ð5Þ

The trace of controllability Gramian Wt was used as our quantitative metric of
controllability57 and the influence of each node on network dynamics. Details of
our mathematical formulation are in the Supplementary Methods.

Classification analysis. To determine whether patterns of dynamic causal inter-
actions can differentiate between 0-back and 2-back conditions, we conducted
classification analysis using the linear support vector machine (SVM) algorithm
from an open-source library, LIBSVM (for Library for Support Vector Machines;
http://www.csie.ntu.edu.tw/cjlin/libsvm/). The MDSI weights used as a feature to
predict 0-back or 2-back task conditions of each subject. The model was evaluated
using the 10-fold cross-validation. Each time, one data fold was selected as a test set
and the rest of the data were used as a training set. The training set was then used
to train a SVM model, which was then applied to the test set for classification. This
procedure was repeated 10 times with each data fold used exactly once as a test set.
The significance of classification accuracy was evaluated using permutations (100
times).

Brain-behavior analysis. We applied canonical correlation analysis (CCA)111 to
explore the relation between dynamic causal interactions and working-memory
performance. CCA is a statistical method for examining the relationships between
two multivariate sets of variables, and has been shown to be a powerful tool for
investigating brain-behavior relationships112. CCA finds the optimal linear com-
bination of subjects’ multivariate behavioral measures that maximize the relation
between behavioral and brain measures. Specifically, brain features included
dynamic causal interaction weights of connections in 0-back or 2-back conditions
(110 connections in each task condition), and behavioral features included accu-
racy and RT in 0-back or 2-back conditions (1 score per condition). The sig-
nificance of the canonical relationship was tested using Pillai’s trace test with 5000
permutations.

Stability analysis. To evaluate robustness of MDSI findings, we conducted sta-
bility analysis using a bootstrapping procedure46.

Stability analysis for multivariate dynamic causal interaction patterns was
performed using the following steps:

(1) Randomly select a subset of samples from 737 participants without
replacement.

(2) Apply t-test on each connection per condition or paired t-test on each
connection between task conditions.

(3) Threshold dynamic causal interaction matrix at p= 0.01 (FDR correction).
(4) Repeat steps 1–4 500 times.
(5) Compute averaged thresholded dynamic causal interaction matrices.
(6) Compute the correlation between the averaged thresholded dynamic causal

interaction matrix and that the matrix from the original full sample.
(7) Change subsample size from 20 to 600 and repeat steps (1)–(6). The

subsample sizes include 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300,
400, and 600.

(8) Generate stability graph by plotting correlation coefficients from step (6)
over subsample size.

Stability analysis for the outflow hub of the rAI, the inflow hub of the rMFG, the
load effect of network controllability, and high controllability in SN used the
following steps:

(1) Randomly select a subset of samples from 737 participants without
replacement.

(2) Apply paired t-test to determine whether the rAI has significantly higher
outflow degree than other ROIs, whether the rMFG has significantly higher
inflow degree than other ROIs, whether the controllability is significantly
different between 2-back and 0-back across all the ROIs, and whether the
controllability of the SN is significantly greater in 2-back than 0-back
conditions (p < 0.05).

(3) Repeat steps (1) and (2) 500 times.
(4) Compute the probabilities that the rAI has significantly higher outflow

degree than other ROIs, the rMFG has significantly higher inflow degree
than other ROIs, the controllability is significantly different between 2-back
and 0-back across all the ROIs, and the controllability of the SN is
significantly greater in 2-back than 0-back conditions.

(5) Change subsample size from 20 to 600 and repeat steps (1)–(4). The
subsample sizes include 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300,
400, and 600.
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(6) Generate stability graph by plotting the probabilities from step (5) over
subsample size.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The n-back working-memory task fMRI data is

accessible from the HCP database (https://db.humanconnectome.org/). Simulation data

are available in the Source data file. Source data are provided with this paper.

Code availability
Functional MRI data preprocessing and statistical analyses were performed on the SPM12,

FSL 6 (https://fsl.fmrib.ox.ac.uk/fsl/), Brain Connectivity Toolbox (https://sites.google.com/

site/bctnet/), and Matlab 2020 (https://www.mathworks.com/products/matlab.html).

MDSI, Network degrees and functional controllability scripts used in the study can be

accessed at Github (https://github.com/scsnl/Cai_HCP_WM_MDSI_Controllability_2021)

and Zenodo (https://doi.org/10.5281/zenodo.4706053)113.

Received: 14 May 2020; Accepted: 30 April 2021;

References
1. Baddeley, A. D. Working Memory (Clarendon Press; Oxford University Press,

1986).
2. D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory.

Annu. Rev. Psychol. 66, 115–142 (2015).
3. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485

(1995).
4. Miller, E. K., Lundqvist, M. & Bastos, A. M. Working Memory 2.0. Neuron

100, 463–475 (2018).
5. Bull, R. & Scerif, G. Executive functioning as a predictor of children’s

mathematics ability: Inhibition, switching, and working memory. Dev.
Neuropsychol. 19, 273–293 (2001).

6. Gathercole, S. E. & Pickering, S. J. Working memory deficits in children with
low achievements in the national curriculum at 7 years of age. Brit J. Educ.
Psychol. 70, 177–194 (2000).

7. Park, S., Holzman, P. S. & Goldman-Rakic, P. S. Spatial working memory
deficits in the relatives of schizophrenic patients. Arch. Gen. Psychiatry 52,
821–828 (1995).

8. Park, S., Puschel, J., Sauter, B. H., Rentsch, M. & Hell, D. Spatial working
memory deficits and clinical symptoms in schizophrenia: a 4-month follow-up
study. Biol. Psychiatry 46, 392–400 (1999).

9. Martinussen, R., Hayden, J., Hogg-Johnson, S. & Tannock, R. A meta-analysis of
working memory impairments in children with attention-deficit/hyperactivity
disorder. J. Am. Acad. Child Adolesc. Psychiatry 44, 377–384 (2005).

10. Rapport, M. D. et al. Working memory deficits in boys with attention-deficit/
hyperactivity disorder (ADHD): the contribution of central executive and
subsystem processes. J. Abnorm. Child Psychol. 36, 825–837 (2008).

11. Yamashita, M. et al. A prediction model of working memory across health and
psychiatric disease using whole-brain functional connectivity. Elife 7, e38844
(2018).

12. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition
perspective. NeuroImage 62, 2222–2231 (2012).

13. Cai, W. D. et al. Causal interactions within a frontal-cingulate-parietal
network during cognitive control: convergent evidence from a multisite-
multitask investigation. Cereb. Cortex 26, 2140–2153 (2016).

14. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends
Cogn. Sci. 17, 683–696 (2013).

15. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6,
8414 (2015).

16. Leitold, D., Vathy-Fogarassy, A. & Abonyi, J. Controllability and observability
in complex networks—the effect of connection types. Sci. Rep. 7, 151 (2017).

17. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and
algorithms for complex networks. IEEE T Control Netw. 1, 40–52 (2014).

18. Summers, T. H., Cortesi, F. L. & Lygeros, J. On submodularity and
controllability in complex dynamical networks (vol. 3, p. 91, 2016). IEEE T
Control Netw. 5, 1503–1503 (2018).

19. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a
network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

20. Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E. N-back working
memory paradigm: a meta-analysis of normative functional neuroimaging
studies. Hum. Brain Mapp. 25, 46–59 (2005).

21. Taghia, J. et al. Uncovering hidden brain state dynamics that regulate
performance and decision-making during cognition. Nat. Commun. 9, 2505
(2018).

22. Wang, H. et al. A coordinate-based meta-analysis of the n-back working
memory paradigm using activation likelihood estimation. Brain Cogn. 132,
1–12 (2019).

23. Funahashi, S., Bruce, C. J. & Goldmanrakic, P. S. Mnemonic coding of visual
space in the monkeys dorsolateral prefrontal cortex. J. Neurophysiol. 61,
331–349 (1989).

24. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term
memory. Science 173, 652–654 (1971).

25. Goldman-Rakic, P. S. Regional and cellular fractionation of working memory.
Proc. Natl Acad. Sci. USA 93, 13473–13480 (1996).

26. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J. D.
The distributed nature of working memory. Trends Cogn. Sci. 21, 111–124
(2017).

27. Funahashi, S. Working memory in the prefrontal cortex. Brain Sci. 7, 49
(2017).

28. Lara, A. H. & Wallis, J. D. The role of prefrontal cortex in working memory: a
mini review. Front Syst. Neurosci. 9, 173 (2015).

29. Nee, D. E. & D’Esposito, M. The representational basis of working memory.
Curr. Top. Behav. Neurosci. 37, 213–230 (2018).

30. Emch, M., von Bastian, C. C. & Koch, K. Neural correlates of verbal working
memory: an fMRI meta-analysis. Front Hum. Neurosci. 13, 180 (2019).

31. Daniel, T. A., Katz, J. S. & Robinson, J. L. Delayed match-to-sample in
working memory: a BrainMap meta-analysis. Biol. Psychol. 120, 10–20 (2016).

32. Dosenbach, N. U. et al. A core system for the implementation of task sets.
Neuron 50, 799–812 (2006).

33. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-
insular cortex in switching between central-executive and default-mode
networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

34. Leech, R., Kamourieh, S., Beckmann, C. F. & Sharp, D. J. Fractionating the
default mode network: distinct contributions of the ventral and dorsal
posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224
(2011).

35. Anticevic, A., Repovs, G., Shulman, G. L. & Barch, D. M. When less is more:
TPJ and default network deactivation during encoding predicts working
memory performance. NeuroImage 49, 2638–2648 (2010).

36. Bluhm, R. L. et al. Default network connectivity during a working memory
task. Hum. Brain Mapp. 32, 1029–1035 (2011).

37. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T.
Brain connectivity related to working memory performance. J. Neurosci. 26,
13338–13343 (2006).

38. Arsenault, J. T., Caspari, N., Vandenberghe, R. & Vanduffel, W. Attention
shifts recruit the monkey default mode network. J. Neurosci. 38, 1202–1217
(2018).

39. Crittenden, B. M., Mitchell, D. J. & Duncan, J. Recruitment of the default
mode network during a demanding act of executive control. Elife 4, e06481
(2015).

40. Gazzaley, A., Rissman, J. & D’Esposito, M. Functional connectivity during
working memory maintenance. Cogn. Affect Behav. Neurosci. 4, 580–599
(2004).

41. Galeano Weber, E. M., Hahn, T., Hilger, K. & Fiebach, C. J. Distributed
patterns of occipito-parietal functional connectivity predict the precision of
visual working memory. NeuroImage 146, 404–418 (2017).

42. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal
cortex represents sensory history and mediates its effects on behaviour. Nature
554, 368–372 (2018).

43. Wasmuht, D. F., Spaak, E., Buschman, T. J., Miller, E. K. & Stokes, M. G.
Intrinsic neuronal dynamics predict distinct functional roles during working
memory. Nat. Commun. 9, 3499 (2018).

44. Nee, D. E. & D’Esposito, M. The hierarchical organization of the lateral
prefrontal cortex. Elife 5, e12112 (2016).

45. Nee, D. E. & D’Esposito, M. Causal evidence for lateral prefrontal cortex
dynamics supporting cognitive control. Elife 6, e28040 (2017).

46. Ryali, S. et al. Multivariate dynamical systems-based estimation of causal brain
interactions in fMRI: Group-level validation using benchmark data,
neurophysiological models and human connectome project data. J. Neurosci.
Methods 268, 142–153 (2016).

47. Ryali, S. et al. Combining optogenetic stimulation and fMRI to validate a
multivariate dynamical systems model for estimating causal brain interactions.
NeuroImage 132, 398–405 (2016).

48. Ryali, S., Supekar, K., Chen, T. & Menon, V. Multivariate dynamical systems
models for estimating causal interactions in fMRI. NeuroImage 54, 807–823
(2011).

49. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E.
Evidence for hubs in human functional brain networks. Neuron 79, 798–813
(2013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23509-x

14 NATURE COMMUNICATIONS |         (2021) 12:3314 | https://doi.org/10.1038/s41467-021-23509-x | www.nature.com/naturecommunications

https://db.humanconnectome.org/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk/fsl/
https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
https://www.mathworks.com/products/matlab.html
https://github.com/scsnl/Cai_HCP_WM_MDSI_Controllability_2021
https://doi.org/10.5281/zenodo.4706053
www.nature.com/naturecommunications


50. Tomasi, D. & Volkow, N. D. Functional connectivity hubs in the human brain.
NeuroImage 57, 908–917 (2011).

51. Chen, A. C. et al. Causal interactions between fronto-parietal central executive
and default-mode networks in humans. Proc. Natl Acad. Sci. USA 110,
19944–19949 (2013).

52. Hespanha, J. P. Linear Systems Theory (Princeton Press, 2009).
53. Liu, Y. Y., Slotine, J. J. & Barabasi, A. L. Controllability of complex networks.

Nature 473, 167–173 (2011).
54. Lombardi, A. & Hornquist, M. Controllability analysis of networks. Phys. Rev.

E 75, 056110 (2007).
55. Ruths, J. & Ruths, D. Control profiles of complex networks. Science 343,

1373–1376 (2014).
56. Tang, E. & Bassett, D. S. Colloquium: control of dynamics in brain networks.

Rev. Mod. Phys. 90, 031003 (2018).
57. Liu, Y. Y. & Barabasi, A. L. Control principles of complex systems. Rev. Mod.

Phys. 88, 035006 (2016).
58. Yan, G. et al. Network control principles predict neuron function in the

Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).
59. Tu, C. et al. Warnings and caveats in brain controllability. NeuroImage 176,

83–91 (2018).
60. Bernal-Casas, D. et al. Multi-site reproducibility of prefrontal-hippocampal

connectivity estimates by stochastic DCM. NeuroImage 82, 555–563 (2013).
61. Dima, D., Jogia, J. & Frangou, S. Dynamic causal modeling of load-dependent

modulation of effective connectivity within the verbal working memory
network. Hum. Brain Mapp. 35, 3025–3035 (2014).

62. Harding, I. H., Yucel, M., Harrison, B. J., Pantelis, C. & Breakspear, M.
Effective connectivity within the frontoparietal control network differentiates
cognitive control and working memory. NeuroImage 106, 144–153 (2015).

63. Ma, L. et al. Working memory load modulation of parieto-frontal connections:
evidence from dynamic causal modeling. Hum. Brain Mapp. 33, 1850–1867
(2012).

64. Makuuchi, M. & Friederici, A. D. Hierarchical functional connectivity between
the core language system and the working memory system. Cortex 49,
2416–2423 (2013).

65. Nielsen, J. D. et al. Working memory modulation of frontoparietal network
connectivity in first-episode schizophrenia. Cereb. Cortex 27, 3832–3841 (2017).

66. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D.
Decoding subject-driven cognitive states with whole-brain connectivity
patterns. Cereb. Cortex 22, 158–165 (2012).

67. Smith, S. M. et al. Correspondence of the brain’s functional architecture during
activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

68. Power, J. D. et al. Functional network organization of the human brain.
Neuron 72, 665–678 (2011).

69. Cai, W. et al. Hyperdirect insula-basal-ganglia pathway and adult-like
maturity of global brain responses predict inhibitory control in children. Nat.
Commun. 10, 4798 (2019).

70. Cai, W., Ryali, S., Chen, T., Li, C. S. & Menon, V. Dissociable roles of right
inferior frontal cortex and anterior insula in inhibitory control: evidence from
intrinsic and task-related functional parcellation, connectivity, and response
profile analyses across multiple datasets. J. Neurosci. 34, 14652–14667 (2014).

71. Rottschy, C. et al. Modelling neural correlates of working memory: a
coordinate-based meta-analysis. NeuroImage 60, 830–846 (2012).

72. Smith, R. et al. Maintaining the feelings of others in working memory is
associated with activation of the left anterior insula and left frontal-parietal
control network. Soc. Cogn. Affect Neur. 12, 848–860 (2017).

73. Leung, H. C., Oh, H., Ferri, J. & Yi, Y. Load response functions in the human
spatial working memory circuit during location memory updating.
NeuroImage 35, 368–377 (2007).

74. Koelsch, S. et al. Functional architecture of verbal and tonal working memory:
an fMRI study. Hum. Brain Mapp. 30, 859–873 (2009).

75. Zhu, J. et al. Transient delay-period activity of agranular insular cortex
controls working memory maintenance in learning novel tasks. Neuron 105,
934–946 e935. (2020).

76. Eickhoff, S. B., Laird, A. R., Fox, P. T., Bzdok, D. & Hensel, L. Functional
segregation of the human dorsomedial prefrontal cortex. Cereb. Cortex 26,
304–321 (2016).

77. Rushworth, M. F., Walton, M. E., Kennerley, S. W. & Bannerman, D. M.
Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8,
410–417 (2004).

78. Floden, D. & Stuss, D. T. Inhibitory control is slowed in patients with right
superior medial frontal damage. J. Cogn. Neurosci. 18, 1843–1849 (2006).

79. Cai, W., George, J. S., Verbruggen, F., Chambers, C. D. & Aron, A. R. The role
of the right presupplementary motor area in stopping action: two studies with
event-related transcranial magnetic stimulation. J. Neurophysiol. 108, 380–389
(2012).

80. Kaminski, J. et al. Persistently active neurons in human medial frontal and
medial temporal lobe support working memory. Nat. Neurosci. 20, 590–601
(2017).

81. Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by
monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).

82. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity
in the resting brain: a network analysis of the default mode hypothesis. Proc.
Natl Acad. Sci. USA 100, 253–258 (2003).

83. Greicius, M. D. & Menon, V. Default-mode activity during a passive sensory
task: uncoupled from deactivation but impacting activation. J. Cogn. Neurosci.
16, 1484–1492 (2004).

84. Mason, M. F. et al. Wandering minds: the default network and stimulus-
independent thought. Science 315, 393–395 (2007).

85. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38,
433–447 (2015).

86. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of
autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208
(2006).

87. Mayer, J. S., Roebroeck, A., Maurer, K. & Linden, D. E. Specialization in the
default mode: task-induced brain deactivations dissociate between visual
working memory and attention. Hum. Brain Mapp. 31, 126–139 (2010).

88. Tomasi, D., Ernst, T., Caparelli, E. C. & Chang, L. Common deactivation
patterns during working memory and visual attention tasks: an intra-subject
fMRI study at 4 Tesla. Hum. Brain Mapp. 27, 694–705 (2006).

89. Ho, T. C. et al. Emotion-dependent functional connectivity of the default
mode network in adolescent depression. Biol. Psychiat. 78, 635–646 (2015).

90. Landin-Romero, R. et al. Failure of deactivation in the default mode network:
a trait marker for schizophrenia? Psychol. Med. 45, 1315–1325 (2015).

91. Gates, A. J. & Rocha, L. M. Control of complex networks requires both
structure and dynamics. Sci. Rep. 6, 24456 (2016).

92. Sojoudi, S. & Doyle, J. Study of the brain functional network using synthetic
data. in 2014 52nd Annual Allerton Conference on Communication, Control,
and Computing (Allerton) 350–357 (IEEE, 2014).

93. Srighakollapu, M. V., Kalaimani, R. & Pasumarthy, R. Optimizing average
controllability of networked systems. in 2019 IEEE 58th Conference on
Decision and Control (CDC) 2066–2071 (IEEE, 2019).

94. Das, A. & Menon, V. Spatiotemporal integrity and spontaneous nonlinear
dynamic properties of the salience network revealed by human intracranial
electrophysiology: a multicohort replication. Cereb. Cortex 30, 5309–5321 (2020).

95. Supekar, K. & Menon, V. Developmental maturation of dynamic causal
control signals in higher-order cognition: a neurocognitive network model.
PLoS Comput Biol. 8, e1002374 (2012).

96. Badre, D. & D’Esposito, M. Functional magnetic resonance imaging evidence
for a hierarchical organization of the prefrontal cortex. J. Cogn. Neurosci. 19,
2082–2099 (2007).

97. Duncan, J. The multiple-demand (MD) system of the primate brain: mental
programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

98. Button, K. S. et al. Power failure: why small sample size undermines the
reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

99. Szucs, D. & Ioannidis, J. P. Empirical assessment of published effect sizes and
power in the recent cognitive neuroscience and psychology literature. PLoS
Biol. 15, e2000797 (2017).

100. Cai, W. D., Chen, T. W., Ide, J. S., Li, C. S. R. & Menon, V. Dissociable fronto-
operculum-insula control signals for anticipation and detection of inhibitory
sensory cues. Cereb. Cortex 27, 4073–4082 (2017).

101. Frassle, S. et al. Test-retest reliability of dynamic causal modeling for fMRI.
NeuroImage 117, 56–66 (2015).

102. Nee, D. E. fMRI replicability depends upon sufficient individual-level data.
Commun. Biol. 2, 130 (2019).

103. Mehler, D. M. A. & Kording, K. P. The lure of misleading causal statements in
functional connectivity research. Preprint at https://arxiv.org/abs/1812.03363
(2018).

104. Das, A. & Fiete, I. R. Systematic errors in connectivity inferred from activity in
strongly recurrent networks. Nat. Neurosci. 23, 1286–1296 (2020).

105. Barch, D. M. et al. Function in the human connectome: task-fMRI and
individual differences in behavior. NeuroImage 80, 169–189 (2013).

106. Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
communities in large networks. J. Stat. Mech-Theory E 2008, P10008 (2008).

107. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
uses and interpretations. NeuroImage 52, 1059–1069 (2010).

108. Newman, M. E. J. Fast algorithm for detecting community structure in
networks. Phys. Rev. E 69, 066133 (2004).

109. Newman, M. E. J. Modularity and community structure in networks. Proc.
Natl Acad. Sci. USA 103, 8577–8582 (2006).

110. Lancichinetti, A. & Fortunato, S. Consensus clustering in complex networks.
Sci. Rep. 2, 336 (2012).

111. Hotelling, H. Relations between two sets of variates. Biometrika 28, 321–377
(1936).

112. Smith, S. M. et al. A positive-negative mode of population covariation links
brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567
(2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23509-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3314 | https://doi.org/10.1038/s41467-021-23509-x | www.nature.com/naturecommunications 15

https://arxiv.org/abs/1812.03363
www.nature.com/naturecommunications
www.nature.com/naturecommunications


113. Cai, W., Ryali, S., Pasumarthy, R., Talasila, V. & Menon, V. Dynamic brain
circuits during working memory and their functional controllability (Code).
Zenodo https://doi.org/10.5281/zenodo.4706053 (2021).

Acknowledgements
We thank the Human Connectome Project (http://www.humanconnectome.org/) for

making the data publicly available. The work is supported by grants from the National

Institutes of Health MH105625 (W.C.), HD074652 (S.R.), EB022907 (V.M.), NS086085

(V.M.), and MH121069 (V.M. and W.C.), and Indo-US Science and Technology Forum

(IUSSTF) IUSSTF/JC-110/2019 (R.P. and V.M.). We thank Drs. Yuan Zhang, Tianwen

Chen, and Carlo de los Angeles for assistance with data analysis.

Author contributions
Conceptualization: W.C. and V.M.; methodology: W.C., S.R., R.P., V.T., and V.M.;

investigation: W.C., S.R., R.P., V.T., and V.M.; writing: W.C. and V.M.; review and

editing: W.C., S.R., R.P., V.T., and V.M.; funding acquisition: W.C., S.R., and V.M.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41467-021-23509-x.

Correspondence and requests for materials should be addressed to W.C. or V.M.

Peer review information Nature Communications thanks Shi Gu, Simon Jacob with

Xiaoxiong Lin, Derek Nee and the other, anonymous, reviewer(s) for their contribution

to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23509-x

16 NATURE COMMUNICATIONS |         (2021) 12:3314 | https://doi.org/10.1038/s41467-021-23509-x | www.nature.com/naturecommunications

https://doi.org/10.5281/zenodo.4706053
http://www.humanconnectome.org/
https://doi.org/10.1038/s41467-021-23509-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Dynamic causal brain circuits during working memory and their functional controllability
	Results
	Behavior during the 2- and 0-back working-memory conditions
	Dynamic causal interaction patterns during the 2- and 0-back working-memory conditions
	rAI is the outflow hub and rMFG is the inflow hub during both the 2-back and 0-back working-memory conditions
	Dynamic causal interaction patterns differentiate 2- and 0-back working-memory conditions
	DMPFC and PCC are dominant load-dependent outflow and inflow nodes, respectively
	Dynamic causal interaction patterns predict working-memory performance
	Network controllability differs between the 2-back and 0-back task conditions
	Working-memory load effects on outflow and inflow
	Reproducibility of findings in subsamples
	Hierarchy of network controllability with respect to left and right FPN
	Robustness of network controllability with respect to normalized causal interaction weights
	Robustness of findings with respect to ROI selection

	Discussion
	Dynamic causal interactions in the SN–nobreakFPN–nobreakDMN cognitive control system distinguish high and low-load working-memory conditions
	Causal outflow and inflow hubs during working memory
	Working-memory load-dependent net outflow and inflow
	Dynamic causal interactions predict working-memory performance
	Network controllability during working-memory performance
	Robust mechanisms underlying triple network model of dynamic cognitive control
	Reproducibility and detection of stable dynamic causal connectivity patterns during working memory
	Note on interpreting causality and the effects of unobserved variables

	Methods
	Ethics statement
	HCP data selection
	HCP n-back working-memory task
	fMRI data acquisition
	fMRI preprocessing
	General linear model and contrasts of interest
	Networks and regions of interest (ROI)
	ROI activation analysis
	Time series extraction
	Multivariate dynamical systems identification of causal interactions
	Identification of causal hubs
	Modular structure of causal interactions
	Network controllability
	Classification analysis
	Brain-behavior analysis
	Stability analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


