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Abstract

Spontaneous fluctuations (SF) in skin conductance are often used to index sympathetic arousal and emotional states.

SF are caused by sudomotor nerve activity (SNA), which is a direct indicator of sympathetic arousal. Here, we describe

a dynamic causal model (DCM) of how SNA causes SF, and apply variational Bayesianmodel inversion to infer SNA,

given empirically observed SF. The estimated SNA bears a relationship to the number of SF as derived from con-

ventional (semi-visual) analysis. Crucially, we show that, during public speaking induced anxiety, the estimated

number of SNA bursts is a better predictor of the (known) psychological state than the number of SF. We suggest

dynamic causal modeling of SF potentially allows a more precise and informed inference about arousal than purely

descriptive methods.

Descriptors: SCR, Galvanic skin responses, GSR, Electrodermal activity, EDA

Changes in skin conductance are common indicators of sympa-

thetic arousal whose proximal cause is changing activity of sweat

glands innervated by the sympathetic branch of the autonomic

nervous system (ANS). The number of spontaneous fluctuations

(SF) in skin conductance is among the most widely used measures

of tonic ANS activity (for an overview, see Boucsein, 1992) and is

thought to reflect variations in arousal stemming from a variety of

cognitive and emotional processes. SF are sensitive to small changes

in arousal (Boucsein, 1992), and play an important role in inferring

stress (Boucsein, 1992) and anxiety (Erdmann & Baumann, 1996).

SF occur in the absence of external events, and are preceded

by firing bursts of sudomotor nerve activity (SNA), innervating

the respective skin region (Macefield &Wallin, 1996; Nishiyama,

Sugenoya, Matsumoto, Iwase, & Mano, 2001; Ogawa &

Sugenoya, 1993). On this basis, a facility to directly assess

SNA instead of SF should provide a closer approximation to

underlying autonomic states. In the absence of invasive methods

this can, in principle, be realized using model inversion methods

that map observed fluctuations in skin conductance to under-

lying SNA. This approach is now frequently employed in ne-

uroimaging within the framework of dynamic causal modeling

(DCM) (Friston, Harrison, & Penny, 2003). At the heart of

DCM is a causal model, also referred to as a generative or for-

ward model, which describes a mapping from underlying causes

(i.e., neural states) to empirical observations (e.g., BOLD re-

sponse, EEG waveform, or SF).

In the case under consideration here, themodel predicts observed

SF, given SNA. Inverting the causal model yields the reverse map-

ping from observations to the (most likely) underlying causes; in our

case, the inversion SF 7! SNA describes the (most likely) generative

sudomotor nerve activity, given observed skin conductance. The key

difference between previously proposed models for event-related

skin conductance changes where event timing is known (Bach,

Flandin, Friston, & Dolan, 2009; Lim et al., 1997) and the model

considered here is that both timing and amplitude of SNA bursts

have to be estimated from the data. Deconvolution methods afford

such estimates, as they try to recover the precise SNA time series

from the skin conductance data (Alexander et al., 2005; Benedek &

Kaernbach, 2009). Our approach represents an informed Bayesian

deconvolution, which rests on parameterizing the SNA in away that

allows a quantitative description of the underlying state. This pa-

rameterization places constraints on inferred SNA and decreases the

degrees of freedom of the model, which increases the precision of

model parameter estimates, especially when analyzing noisy data.

In this paper, we describe a DCM for SF, with two goals.

First, we wanted to show that a DCM for skin conductance can

explain data from different individuals and experiments and

to motivate further research into the underlying physiology.
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Second, we sought to establish external validity of the model. We

hypothesized that estimates of the underlying autonomic state

based on DCM predict (known) psychological states more ac-

curately than estimates from conventional methods. To allow

other researchers to perform similar evaluations, the method is

included as function scr_sf_dcm.m in the software suite

SCRalyze, which is freely available under the GNU general

public license from http://scralyze.sourceforge.net.

Methods

Forward Neural Model

The duration and shape of SNA firing bursts is not well de-

scribed; one study reported a duration of 637 � 37ms (Macefield

& Wallin, 1996), although from figures in this and other reports

(Nishiyama et al., 2001; Ogawa & Sugenoya, 1993) it seems that

burst duration can extend up to 1.5–2 s. The number of SNA

bursts differs between these studies, from 3 � 0.5 per minute

(Nishiyama et al., 2001) to 22 � 4 per minute (Macefield &

Wallin, 1996). In the absence of precise knowledge about SNA

bursts, we make the simplifying assumption that they differ in

amplitude but have a fixed temporal profile, and modeled them

as Gaussian bump functions with a standard deviation of 0.3 s

and a maximum frequency of 30 bursts per minute. Figure 1A

shows a burst with unit amplitude (i.e., that would cause an SF

with amplitude of 1 mS).

Forward Response Model

No simultaneous recordings of SF and SNA have addressed how

the shape of the ensuing SF relates to bursting, but there is some

indirect evidence that SF have a largely constant shape (Bach,

Friston, & Dolan, 2010) and that overlapping skin conductance

DCM of skin conductance fluctuations 253

Figure 1. (A) Modeled sudomotor nerve firing burst of unit amplitude that is assumed to cause a spontaneous fluctuation of 1 mS amplitude. (B) Green:

canonical response function for a single spontaneous fluctuation, derived from the first dataset by using an uninformed finite impulse response model and

specifying SF onsets using conventional (semi-visual) analysis. Blue: analytical approximation to this function obtained by optimizing the parameters of a

third-order ordinary differential equation using aBayesian inversion scheme. (C) Estimated SNA for a sample epoch. (D)Empirical skin conductance for this

epoch, and estimated skin conductance obtained by DCM using the estimated SNA shown in panel C and the SF function shown in panel B.

(E) Correlation between the number of responses revealed by conventional analysis and DCM as a function of the threshold for detecting a response.

(F) External validity for the number of responses revealedby conventional analysis andDCMinversion as a function of the threshold for detecting a response.

http://scralyze.sourceforge.net


changes build up in a linear fashion (Bach, Flandin, Friston, &

Dolan, 2010), such that SF can be regarded as a product of a

linear time-invariant system, although this needs to be validated

in physiological experiments. The former paper also describes an

impulse response function or convolution kernel reflecting the

canonical shape of an individual SF at a phenomenological level

(i.e., not derived from a biophysical model, but from physiolog-

ical observations). Note that this canonical SF function (shown

in Figure 1B) has a slightly biphasic decay, in line with a recent

model of event-related skin conductance responses (Bach, Flan-

din, Friston, & Dolan, 2010). This biphasic response is predicted

by the qualitative pore valve model (Edelberg, 1993), where the

steep rise and fall of the skin conductance are caused by rapid

opening and closing of sweat duct pores, while a slower recovery

is afforded by evaporation of remaining sweat on the skin.

Our DCMmodels the relationship between SNA and SF as a

linear time-invariant convolution (Bach, Flandin, Friston, &

Dolan, 2009). This was specified in terms of an impulse response

function for SF developed previously (Bach, Friston, & Dolan,

2010) and modeled here with a third-order ordinary differential

equation (ODE). Figure 1B shows the empirically derived ca-

nonical function and its analytic ODE approximation; see the

Appendix for details. This ODE is formally equivalent to a

biphasic exponentially decaying convolution kernel and there-

fore captures the biphasic effects described above.

The assumed (Gaussian) form of SNA firing bursts and the

subsequent ODE convolution that generates observed SF con-

stitute the DCM. The resulting generative model assumes that, in

the absence of any SNA, the skin conductance returns to zero,

which is not normally the case in SF recordings. We were not

interested in this baseline, or its slow drifts, because they are

determined not only by SNA but also by peripheral factors

(Boucsein, 1992). To remove this confounding data feature, we

apply our models to skin conductance time-series that are high-

pass filtered during recording (where the lowest value of each

segment is subtracted). Sustained SF are modeled by repeated,

low-amplitude SNA bursts. This is biophysically plausible, but

can lead to discrepancies between the estimated number of bursts

and the SF number assessed by (semi-)visual methods.

Datasets

We reanalyzed one previously published (Bach & Erdmann,

2007, 2008) and one unpublished (for a review, see Erdmann &

Janke, 2008) dataset from the same laboratory, both ofwhich are

based upon a similar paradigm. Dataset 1 served as a training

dataset, which we used to optimize the parameters of the ODE

that determine the shape of the implicit convolution kernel (see

Appendix), and the amplitude threshold for counting responses.

Dataset 2 served as an independent validation dataset, which was

analyzed using the parameters from the first dataset.

Dataset 1 contained four measurements from each of 40

healthy male university students (18–35 years) who participated

in a public speaking anticipatory anxiety paradigm with a re-

peated-measures factorial design. The main focus of this exper-

iment was the interaction of habitual and situational symptom

focusing, operationalized as attention towards neck muscle ten-

sion. The main experimental manipulation had no effect on in-

dices of skin conductance, and data from the different

experimental groups were combined for the present analysis,

where we focus on the effect of the public speaking treatment.

There were two baseline measurements, one measurement after

the announcement of a public speech, and another after dis-

closure of the speech topic. This manipulation was carried out in

order to separate effects of anxiety and cognitive load.

Dataset 2 included four measurements for each of 32 healthy

female university students (19–29 years) who underwent a similar

public speaking experiment in a between-subjects design. That is

to say, half of the participants were to deliver a public speech, and

the other half a speech without an audience. There was one

baseline measurement, one measurement after announcement of

the speech, and another after disclosure of the topic. Fourteen of

128 epochs contained motion artefacts and were excluded.

Apparatus

After skin cleansing with propanol, skin conductance was re-

corded on thenar/hypothenar of the non-dominant hand using 8

mm Ag/AgCl cup electrodes (Coulbourn, Whitehall, PA) and

0.5% NaCl electrode gel (Par, Berlin, Germany) on thenar/hy-

pothenar of the non-dominant hand; 0.5 Vconstant voltage was

provided by a S77-21 coupler (Coulbourn). The signal was band

pass filtered (0.015 and 5 Hz), digitally converted with 10 Hz

(Dataset 1) or 100 Hz (Dataset 2) sampling rate (DI-205, Dataq,

Akron, OH) and recorded (Windaq, Dataq). Each 60-s epoch

was analyzed using a semi-automatic method (Event Detection

and Analysis, Trosiener &Kayser, 1993) with a threshold of 0.25

mS. This analysis had already been performed in the context of

the original experiments, before the present method was devel-

oped, and the corresponding results can be regarded as unbiased.

Data Pre-Processing

Data analysis was carried out in Matlab (MathWorks, Natick,

MA) using custom code that is available from the authors. After

import of the 60-s segments into Matlab, the data were again

low-pass filtered with a bidirectional first-order Butterworth fil-

ter at a cut-off frequency of 5 Hz, and re-sampled to 10 Hz

(Dataset 2). No high-pass filtering was applied at this stage (note

that data were high-pass filtered during recording).

Statistical Analysis

The correspondence between conventional and DCM data an-

alyses were summarized with Pearson correlation coefficients

between the numbers of detected responses from both methods.

Predictive validity was assessed as the correlation between the

(known) psychological state and the estimated sympathetic

arousal based on the number of responses. This number is es-

timated by thresholding the continuous estimates of SNA

(DCM) or SF (conventional analysis).

For the trainingDataset 1, the psychological statewas defined

for each epoch as either baseline or anticipation, and the esti-

mated arousal as number of SNA responses for each epoch. For

Dataset 2, which employed a between-subject design (anticipa-

tion of public versus anticipation of a non-public speech), psy-

chological state was defined as public or non-public speech with

arousal estimated by the mean number of responses in anticipa-

tory epochsminus the number of responses in the baseline epoch.

In one participant, the baseline epoch had been excluded such

that n5 31 for this analysis.

Relative sensitivity and specificity of the conventional and

DCM analyses were quantified using receiver operator charac-

teristics (ROC) curves. Predicting a discrete psychological state

from a continuous variable can be reframed by drawing on signal

detection theory (Macmillan & Creelman, 2005). Here we tried

to classify a given state based on the total number of SF from the

conventional analysis and the number of bursts estimated with
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DCM (both at an amplitude threshold of 0.1 mS). This allowed us
to predict the true psychological state (and calculate specificity

and sensitivity of that prediction) given the estimated number of

responses. Finally, to test whether DCM estimates of autonomic

arousal explain more variance in the psychological state than

conventional estimates, we computed an F-statistic and its as-

sociated p-value by comparing two simple regression models for

the two predictor variables. This F-statistic represents the

amount of variance in psychological states that is explained by

DCM above and beyond the conventional estimates.

Results

As described previously, we analyzed the training dataset using

an uninformed simple finite impulse responsemodel to estimate a

canonical response function (CRF). This requires knowing the

onsets of the underlying bursts, which we approximated using a

conventional semi-automated analysis of the SF time series

(Bach, Friston, & Dolan, 2010). The ensuing CRF was used to

optimize the parameters of the DCM so that its implicit convo-

lution kernel matched the CRF (see Appendix). The resulting

DCMwas then used to deconvolve the time series. Figure 1C and

D show DCM inversion for an exemplar epoch and give an

overview of data fit and the estimated SNA generating the data.

Figure 1E shows the correspondence between the estimated

number of (above-threshold) SNA bursts and the SF number

estimated by conventional analysis as a function of the threshold

used to detect bursts. The correspondence between the two mea-

sures increases with increasing threshold and plateaus from a

value of about 0.1 mS upwards.

In Figure 1F, we depict predictive (external) validity of both

methods as the Pearson correlation between the number of es-

timated responses and the class (baseline or anticipation) to

which the epoch belongs. The conventional analysis has better

predictive validity at low thresholds. This probably reflects the

fact that sustained responses (which could be due to peripheral

factors alone) are modeled as sustained SNA. However, from

around a threshold of 0.1 mS, validity of DCM response

estimates is higher than that of the conventional method. For

illustrative purposes, results from both methods for a threshold

of 0.1 mS are shown separately for the four measurement periods

in Figure 2A.

The ROC curves illustrating the trade-off between sensitivity

and specificity at a threshold of 0.1 mS are shown in Figure 2C.

An ROC curve that is closer to the upper left corner of the

diagram indicates better prediction. Thus, the ROC curves point

to higher validity of the DCM estimates.

We next validated the model using an independent dataset

(Dataset 2) using the optimized parameters from Dataset 1. This

is important since the CRF used to optimize the DCM param-

eters was derived from the same dataset to which the DCM was

applied. Although the CRF was based on a large number of

responses (1153 SF), its generalizability has to be confirmed.

Across the second dataset, the correlation between the num-

ber of responses (at a threshold of 0.1 mS) detected by conven-

tional analysis andDCMwas r5 .67. Predictive validity (i.e., the

ability to predict whether an individual was subjected to public

speech anticipation or non-public speech anticipation) was

r5 .29 for the conventional and r5 .50 for the DCM method.

Thus, DCM estimates explained a higher proportion of variance

than results from the conventional method (F(1,30)5 6.6;

po.05). Results from both methods are depicted in Figure 2B

for illustrative purposes, and Figure 2D corroborates the higher

validity for DCM inversion in terms of ROC curves for this

dataset.

Discussion

In this paper, we present a dynamic causal model of skin con-

ductance fluctuations SF and demonstrate that its inversion can

be used to predict known psychological states. Crucially, our

method showed a significantly higher predictive validity than

that afforded by a conventional analysis. This advantage reflects

the fact that sudomotor nerve firing is more closely related to the

underlying psychological state than the ensuing SF, and suggests

that SNA can be inferred from SF, using variational Bayesian

inversion of our generative model.

We note a high correlation between both methods in the

training dataset; an unsurprising observation given that the re-

sponse function used to optimize theDCMwas developed from a

conventional analysis. This correspondence between the two

methods was much lower in the second dataset, while at the same

time the predictive validity of model inversion was relatively

higher. Note that, in contradistinction to previously proposed

approaches, our goal was not to emulate conventional analysis or

perfectly fit the data, but to extract meaningful information

about psychological states from the data.1 We were successful in

this aim for both datasets, which necessarily led to a lower cor-

relation with conventional methods.

Two factors may account for an enhanced predictive validity

of our method: one is that any subjective element is removed

from analysis, and the other is a suppression of noise through

model constraints (i.e., parameterization of the unknown SNA).

This contrasts with previous deconvolution approaches that try

to recover unconstrained SNA estimates (Alexander et al., 2005;

Benedek & Kaernbach, 2009), an approach that might be more

susceptible tomeasurement noise. An interesting extension of the

model presented here would be to estimate the parameters of the

DCM from the data being analyzed (as opposed to optimizing

them using some estimated or assumed CRF, as in this paper).

This might enhance the model fit, but possibly reduce the pre-

cision of the estimators of the neural states.

While inverting a DCM is computationally expensive, the

ensuing quantification of the autonomic state is more precise

than that afforded by previously proposed simple methods (i.e.,

area under the curve, Bach, Friston, & Dolan, 2010). Our DCM

rests on physiological observations, which in part relate to bio-

physical models but are not entirely explained by such models.

This means that the physiological realism of the DCM could be

much improved. Nevertheless, our model can be generalized to

any independent dataset acquired from healthy young popula-

tions with similar experimental set-ups. The generalizability to

qualitatively different populations (e.g., patients) and measure-

ment methods needs to be tested further. We have shown for

event-related responses that one canonical response function can

fit data from different recording sites (Bach, Flandin, Friston, &

Dolan, 2010) and this might even be more tenable for SF, in

which response latency is not an issue. On the other hand, since
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1Actually, it is well known in the statistical community that overfit-
ting, i.e., the tendency to fit both the signal and the noise in the data, leads
to strongly biased estimation and inference (see, e.g., Carlin & Louis,
2000).



filtering influences the shape of the response, it seems crucial to

use similar constant voltage measurement and filter settings as

the ones applied here, in order to use our DCM parameters. In

addition, when quantifying autonomic states from the DCM, the

(arbitrary) amplitude threshold used here needs validation for

different recording sites andmeasurement equipment. In general,

we would like to encourage other researchers to refine the for-

ward model. Different models can easily be compared in this

framework by their likelihood, given the data, and by their pre-

dictive validity.

To our knowledge, this is the first report of a biophysically

motivated generative model for peripheral physiological param-

eters of psychological states. Such dynamic causal modeling

(Daunizeau, Friston, & Kiebel, 2009; Friston et al., 2003) is

becoming standard in neuroimaging, with applications for the

analysis of fMRI, EEG/MEG (Chen, Kiebel, & Friston, 2008;

Daunizeau, Kiebel, & Friston, 2009; David et al., 2006; Kiebel,

Garrido, Moran, Chen, & Friston, 2009; Penny, Litvak, Fu-

entemilla, Duzel, & Friston, 2009), and electrophysiological

data (Moran et al., 2009). The power of such approaches lies in

the estimation of causes and unknown (hidden) states by inver-

sion of a mapping from causes to observations. This mapping

enables one to place key biophysical constraints on the models

and its associated estimators. Furthermore, the parameters and

states of these models have a direct and useful biological inter-

pretation. Thus, DCM allows for a wide range of possible im-

plementation in psychophysiology, which we hope to exploit

with this work.
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APPENDIX

Our generative model comprises the following elements:

(1) Each of n SNA bursts is modeled as a Gaussian function

with a standard deviation of s5 0.3 s, while the amplitude a

and the time of maximum firing t are estimated from the

data. The sum of these bursts is evaluated at each time point t

and forms the parameterized input u(t, y) to the skin

conductance function:

uðt; yÞ ¼
Xn
i¼1

ai e
�ðt�ti Þ

2

2s2

y ¼ fti; aig : i ¼ 1; . . . ; n

We assumed a fixed number of n5 30 SNA bursts per minute.

This is therefore the maximumnumber of detectable responses in

the data. If there are fewer than n SN bursts in the data, the

amplitude of any extra bursts would be estimated as zero.

(2) The skin conductance time series is thought to result from a

double convolution operation applied on the sudomotor nerve

activity u(t, y). This is modeled as a third-order ordinary

differential equation (ODE) with parameters Wi : i 2 1; 2; 3

x
:::þW1€xþ W2 _xþ W3x� u yð Þ ¼ 0 ð1Þ

where we have dropped explicit time notation, and x is related

to the measured skin conductance time series y using the fol-

lowing (trivial) observation function:

y ¼ xþ e ð2Þ

Here, e is a residual error term. The parameters Wwere optimized

so that they reproduced the canonical SF response function de-

scribed previously (Bach, Friston, & Dolan, 2010), using the

variational Bayes scheme described below: i.e., treating the ca-

nonical response function as data y(t)5CRF(t) and Wi as un-

known parameters with input u(t)5 d(0). The ensuing posterior

estimates of these parameters are:

W1 ¼ 2:1594
W2 ¼ 3:9210
W3 ¼ 0:9236

8<
:

Then, the model was inverted using a variational Bayesian

inversion scheme described in Friston, Mattout, Trujillo-Bar-

reto, Ashburner, and Penny (2007). In brief this entails:

� Using Gaussian assumptions about the residual errors in the

observation process, Equations 1 and 2 are compiled to de-

rive a likelihood function p(y|y), which measures the like-

lihood of a set of observed SF y, given parameters y.
� Defining priors p(y) on the model parameters, which enable

one to derive the posterior probability density function (pdf)

over the evolution parameters:

p y yjð Þ / p y yjð Þp yð Þ: ð3Þ

The posterior pdf p(y|y) measures how likely any particular value

of the unknown parameter y is, given the measured times-series

of SF.

� Having estimated the unknown parameters of the model, we

can then define an estimator û of the unknown time-series of

sudomotor nerve activity:

û ¼ E u yð Þ yj½ �: ð4Þ
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