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Abstract: The mechanical response characteristics of mudstone from the ingate roadway of the west
ventilation shaft in Yuandian No. 2 coal mine, Huaibei City, Anhui Province, China to dynamic
loads were quantified in single- and cyclic-impact compression tests, using the split-Hopkinson
pressure bar test device. The dynamic stress–strain relationships and the failure characteristics of
mudstone samples under different impact loads were analyzed systematically. Considering the
“rate effect” of the mudstone dynamic strength, the dynamic strength criterion of mudstone was
proposed, and the dynamic damage constitutive model of mudstone was established, based on the
statistical damage theory. In response to single-impact loads, with increasing impact pressure, the
mudstone peak stress and strain gradually increased, and the peak stress and average strain rate
increased nonlinearly. In response to cyclic-impact loads, with an increasing number of impacts, the
mudstone peak stress first increased and then decreased, and the peak strain increased gradually.
With increasing impact pressure, the number of impacts to the samples’ failure decreased gradually.
By parameter identification and comparative analysis of the test results, the proposed dynamic
damage constitutive model of mudstone was validated. The model can be used for stability analysis
of roadway-surrounding rock under dynamic loads.

Keywords: mudstone; impact test; strain rate; dynamic strength criterion; dynamic damage
constitutive model

1. Introduction

Recently, with deeper coal mining, the instability of soft rock roadways with difficult
support has been increasing [1,2]. Studies suggest that the stability of soft rock roadways
depends on the in situ stress, lithology, support form, mining, and other factors, while the
blasting dynamic load owing to drilling and blasting construction of soft rock roadways
also significantly affects the surrounding rock stability [3–6]. For example, the ingate and
connecting chamber groups of deep coal mines are mostly located in the coal measure
stratum with interbedded sandstone, argillaceous sandstone, and mudstone. During the
chamber group construction, the dynamic load owing to drilling and blasting increases the
frequency and intensity of repeated disturbances to its surrounding rock, endangers the
stability of the surrounding rock, and occasionally destabilizes the surrounding rock, lead-
ing to support failures [7–9]. Therefore, studying the dynamic characteristics of mudstone
in response to impact loads is important for formulating corresponding damping technical
measures, improving the impact of drilling and blasting construction dynamic loads on
the surrounding rock stability of soft rock roadways in deep coal mines, and ensuring the
roadway support safety.

The strength of rock under dynamic loads is significantly correlated with the strain
rate [10–12]. Scholars worldwide have performed theoretical and experimental studies on
the dynamic characteristics of hard rock types such as sandstone and granite under blast
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loading and impact loading, obtaining significant insights. For the research on the dynamic
characteristics of rock under blast loading, Xu et al. [13] studied the dynamic response of
deep rock mass under blast loading, considered that deep rock mass is more vulnerable to
damage than shallow rock mass under blast loading, and put forward a new safety criterion
for blasting vibration of deep rock mass. Yilmaz et al. [14] studied the behavior of rock mass
under blast loading by using three-dimensional finite difference numerical modelling, and
proposed the dynamic compressive strength equation of rock material under blast loading.

For the research on the dynamic characteristics of rock under impact loading, Mishra
et al. [15] analyzed the mechanical response law of rock tunnel under impact loading by
using the finite element software. Chakraborty et al. [16] studied the dynamic stress–strain
response, peak stress, elastic modulus, and force equilibrium at the incident and transmis-
sion bar ends of three Himalayan rocks under impact loading by using a split-Hopkinson
pressure bar. Li et al. [17] conducted uniaxial compression tests on green sandstone under
repeated impact loads and studied the deformation characteristics and microstructural
evolution characteristics of green sandstone. Ping et al. [18] carried out impact compres-
sion tests on coal-mine sandstone samples under different loading rates, and the analysis
showed that the dynamic compressive strength, dynamic elastic modulus, and strain rate of
sandstone were positively correlated with the incident energy. Braunagel et al. [19] used an
improved split-Hopkinson compression bar to study the effect of cyclic-impact loads on the
dynamic compressive strength of westerly granite. The dynamic strength and deformation
characteristics of rock under impact loading can be comprehensively described using a dy-
namic constitutive model. Yu et al. [20] established a dynamic constitutive equation of rock
based on the modified overstress model, which can better describe the dynamic mechanical
behavior of rock under impact loading. Shan et al. [21] considered the influence of the rock
dynamic deformation process on its mechanical parameters, and a time-dependent damage
constitutive model for the dynamic failure of rock was established by combining a statistical
damage model with a viscoelastic model. Xie et al. [22] considered the influence of the ma-
terial damage under dynamic loads, and established a simplified constitutive equation of
the damage overstress model based on a dimensional analysis method. Yang et al. [23–26]
established a rock dynamic damage model by the parallel connection of an elastic damaged
body and viscous body based on the rock static Drucker–Prager criterion and viscoplastic
theory. In summary, up to the present, research on the mechanical properties of rock mass
under cyclic-impact loads has mainly focused on granite, sandstone, and other hard rock
types, while relatively little attention has been given to the coal-mine mudstone.

Therefore, taking the mudstone at the floor of the ingate horizontal roadway in the
west ventilation shaft of the Yuandian No. 2 mine as the research object, a single-impact
test under different impact pressures and a cyclic-impact test assuming a fixed impact
pressure were carried out on the mudstone samples, using the split-Hopkinson pressure
bar (SHPB) test device. Considering the rate correlation of the dynamic deformation
process, the rock dynamic strength criterion was established, and the dynamic damage
constitutive model of mudstone under different impact loads was established based on
the statistical damage theory, to improve the theory and the method of rock dynamic
deformation process simulations.

2. Impact Compression Test of Mudstone
2.1. Preparation and Microanalysis of Mudstone Samples
2.1.1. Sample Preparation

The rock samples were extracted from the mudstone of the Permian Upper Shihezi
formation at the 431.8 m depth of ingate in the west ventilation shaft of Yuandian No. 2 mine,
Huaibei City, Anhui Province. The sizes and the test processes of the extracted rock samples
were in accordance with the standards of engineering rock mass test methods (GB/T 50266-
2013). As shown in Figure 1, the rock triaxial test sample was cylindrical (diameter, 50 mm;
height, 100 mm), and the split-Hopkinson Pressure Bar (SHPB) impact test sample was
cylindrical as well (diameter, 50 mm; height, 25 mm). The measured basic mechanical
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parameters of mudstone were as follows: the average unit weight was 2590 kg/m3, the
average longitudinal wave velocity was 3820 m/s, and the uniaxial compressive strength
was 35.85 MPa.

Figure 1. Mudstone samples and the static load test device.

2.1.2. Microstructure and Mineral Composition of Mudstone Samples

The microstructure and mineral composition of the mudstone samples were examined
using scanning electron microscopy (SEM, Hitachi high-resolution cold field emission
scanning electron microscope Regulus8100, Tokyo, Japan), energy-dispersive X-ray spec-
troscopy (EDS, Hitachi high-resolution cold field emission scanning electron microscope
Regulus8100, Tokyo, Japan), and X-ray powder diffraction (XRD, Rigaku Corporation
smartlab-9kw rotating target X-ray powder diffractometer, Tokyo, Japan), respectively.
The test and analysis results showed that the particle sizes of the mudstone samples were
different, and flocculent cements dominated by clay minerals were attached to the particles’
surface. Mudstone particles in general exhibited accumulation, with many microscopic
defects such as cracks and holes (Figure 2). The main elements in the samples were Si,
Al, Na, and O (Figure 3). The main components of the mudstone samples were quartz,
kaolinite, halloysite, and albite, among which quartz accounted for approximately 41.7%,
kaolinite accounted for approximately 28.9% of the total composition, and the proportions
of halloysite and albite were 15.5% and 13.9%, respectively (Figure 4).

Figure 2. SEM image of a mudstone sample.

2.2. Test Device and Scheme

The SHPB test device of the Impact Dynamics Laboratory of the Anhui University of
Science and Technology in Huainan City, Anhui Province, China was used for testing the
dynamic characteristics of the mudstone samples (Figure 5). The diameter of the SHPB
device’s pressure bar was 50 mm, the punch was a spindle, the impact waveform was
rectangular, the pressure bar and the punch were made of alloy steel (density, 7800 kg/m3;
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elastic modulus, 210 GPa; longitudinal wave velocity, 5190 m/s). The data acquisition
system consisted of a strain gauge (Aifute SDY2107A ultra-dynamic strain gauge, Qin-
huangdao, China) and an oscilloscope (Yokowaga-DL850E oscilloscope, Tokyo, Japan).

Figure 3. EDS results for mudstone samples.

Figure 4. XRD diffraction pattern of mudstone.

Figure 5. SHPB test device system. (a) Test equipment; (b) Monitoring equipment; (c) Test principle.

The mudstone samples were divided into two groups, for single-impact tests and
cyclic-impact tests at the same impact pressure (impact repeated in triplicate, same loading
conditions). Five different impact pressures of 0.2, 0.25, 0.3, 0.4, and 0.6 MPa were used
in the single-impact load tests. According to the pre-test results, it is found that 0.2 MPa
is a threshold value of test block impact. When this load is exceeded, the sample will
appear obvious cracking or crushing under single impact, and the second impact cannot be
repeated. Hence, three different fixed impact pressures of 0.15, 0.175, and 0.20 MPa were
used in the cyclic-impact pressure tests for better experimental results.
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3. Test Results and Discussion
3.1. Test Results

Combined with the waveform characteristics obtained from the mudstone SHPB
impact tests, the “simplified three wave method” [27] was used for processing the test data.
The “simplified three wave method” is a calculation method combining the respective
advantages of the “three wave method” and the “two wave method”, that is, the “three
wave method” is used to calculate the strain rate and strain, and the “two wave method” is
used to calculate the stress. Tables 1 and 2 list the test results for the samples subjected to
single- and cyclic-impact loads, respectively.

Table 1. Results of single-impact tests.

Number L/mm D/mm ρ/kg·m−3 Wave Velocity m/s P/MPa •
ε εf σf

1 25.98 49.7 2562 3821 0.20 30.00 0.0042 28.17
2 23.48 49.5 2575 4891 0.25 58.49 0.0073 50.53
3 24.74 49.43 2577 5623 0.30 81.34 0.0088 74.75
4 23.57 49.28 2576 4907 0.40 108.70 0.0149 94.95
5 25.32 49.36 2566 4522 0.60 111.17 0.0165 102.69

Notes: L is the length of the sample, D is the diameter of the sample, ρ is the sample density, P is the impact

pressure,
•
ε is the average strain rate, ε f is the dynamic peak strain, and σf is the dynamic peak stress.

Table 2. Results of cyclic-impact tests.

Number L/mm D/mm ρ/kg·m−3 Wave Velocity m/s P/MPa n •
ε εf σf

1 25.24 49.7 2537 3712 0.15

1 23.74 0.0028 22.45
2 30.48 0.0042 32.67
3 19.59 0.0048 37.81
4 34.85 0.0054 29.31
5 39.01 0.0055 20.83
6 35.56 0.0056 14.39

2 25.16 49.77 2547 3310 0.175

1 48.54 0.0040 24.49
2 53.54 0.0046 35.68
3 35.54 0.0059 45.72
4 63.87 0.0062 31.60

3 25.98 49.7 2562 3821 0.20
1 30.00 0.0042 28.17
2 35.70 0.0050 51.18
3 36.11 0.0060 49.09

Note: n is the number of cyclic impacts.

3.2. Stress–Strain Curve Analysis
3.2.1. Single-Impact Test, Different Impact Pressures

The stress–strain curves for the mudstone samples subjected to single impacts at
different impact pressures are shown in Figure 6. Evidently, with increasing impact pressure,
the peak stress and peak strain of the mudstone samples gradually increased, the peak
stresses are 28.17 MPa, 50.53 MPa, 74.75 MPa, 94.95 MPa, and 102.69 MPa, respectively.
At the impact pressure of 0.6 MPa, the dynamic peak stress of the mudstone samples
was approximately 2.86 fold the uniaxial compressive strength of the mudstone samples
subjected to static loads. This phenomenon occurred because, compared with the static-load
results, many microscopic cracks were formed in the samples subjected to impact loads,
and the deformation and the energy absorbed and dissipated by the samples increased
significantly, increasing the peak stress of the samples relative to the static-load results.
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Figure 6. Stress–strain curves of mudstone samples, for different impact pressure.

The dynamic stress–strain curve of a mudstone sample can be roughly divided into
three regions: (1) the linear elastic stage; (2) the plastic deformation stage; and (3) the failure
stage. In the elastic stage, the stress increases linearly with increasing strain. Under an
impact load, the microscopic cracks in the sample continue to sprout and develop. The
plastic deformation stage occurs after reaching the elastic limit, and the slope of the curve
gradually decreases to zero. When the peak stress is reached, the internal cracks in the
stressed sample expand, forming a macroscopic fracture surface. The strain increase in
the sample is small, the stress decreases sharply, and the mudstone sample enters the
failure stage.

The relationship between the peak stress and the average strain rate for the mudstone
samples subjected to single impacts, for different impact pressures, is shown in Figure 7.
The average strain rate is the average of all strain rates on the strain rate versus time curve.
Evidently, the peak stress of mudstone increases gradually with increasing the average
strain rate, which is manifested as an exponential relationship, indicating that the dynamic
strength of rock has an obvious rate correlation and is nonlinearly positively correlated to
the strain rate.

Figure 7. Relationship between peak stress and average strain rate.

3.2.2. Cyclic-Impact Test, Fixed Impact Pressure

The stress–strain curves for the mudstone samples subjected to cyclic impacts are
shown in Figure 8. Comparing the cyclic-impact times for the mudstone samples subjected
to different impact pressures, it is observed that the number of impacts until failing the
sample decreases gradually with increasing impact pressure, which are 6 times, 4 times,
and 3 times, respectively. Compared with the dynamic stress–strain curves for the mud-
stone samples subjected to the same impact pressure, as the number of impacts increases,
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the peak stress of mudstone increases first and then decreases, while the peak strain
increases gradually.

Figure 8. Stress–strain curves for the mudstone samples subjected to the cyclic-impact loading:
(a) 0.15 MPa; (b) 0.175 MPa; (c) 0.20 MPa.

As shown in Figure 8a, at the impact pressure of 0.15 MPa, the dynamic mechanical
characteristics of mudstone exhibit “a strengthening effect combined with a softening
effect” [28]. The peak strength reaches a maximum after the third impact, and then the
“softening effect” of mudstone becomes more obvious with increasing the number of im-
pacts. As shown in Figure 8b, at the impact pressure of 0.175 MPa, the dynamic mechanical
characteristics of mudstone exhibit an obvious “strengthening effect”. During the first three
impacts, the peak strength increases gradually until it reaches a maximum, and the strength
reduction in mudstone during the fourth impact shows a “softening effect”. As shown
in Figure 8c, at the impact pressure of 0.20 MPa, the “strengthening effect” of mudstone
becomes more obvious in the process of three impacts.

Figure 9 shows the relationship between the cyclic-impact time and peak stress, for the
studied mudstone samples, for three different impact pressures. Evidently, the peak stress
first increases and then decreases with increasing the number of impacts. At the impact
pressure of 0.15 MPa, owing to the low impact pressure, no serious damage is inflicted on
the sample after the first impact, the compaction is dominant, and the microscopic cracks
inside the sample are compacted, which increases the mudstone strength. The peak stress
of the mudstone following the second impact is much higher than that following the first
impact. The peak stress of mudstone reaches a maximum after the third impact. As the
number of impacts continues to increase, the peak stress decreases slowly and reaches
a minimum after the sixth impact. Analysis suggested that, after each impact load, part
of the energy is applied toward aggravating the damage to the sample; thus, the peak
strength gradually decreases. As the number of impacts increases, more microscopic cracks
are generated in the sample, and the continuous accumulation of internal damage leads
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to a continuous decrease in the rock bearing capacity. After a certain number of impacts,
the peak stress of the mudstone sample suddenly decreases, which is manifested as the
deterioration of its bearing capacity.

Figure 9. Peak stress vs. the number of cyclic impacts, for different impact pressures.

3.3. Failure Morphology of Samples under Impact Loads
3.3.1. Single-Impact Scenario, Different Impact Pressures

The failure morphology of the studied mudstone samples subjected to a single impact
is shown in Figure 10, for different impact pressures. For low impact pressures, the sample
deformation is small, and the samples are in the state of large block crushing. As the impact
pressure increases, the crushing range of the sample gradually expands from the edge to
the center, the crushing degree of the sample increases, from large block crushing to small
block crushing, the number of fragments increases, and the volume of fragments decreases
gradually. At the impact pressure of 0.2 MPa, the mudstone samples reveal no obvious
macroscopic failure patterns. At the impact pressure of 0.25 MPa, the mudstone samples
feature macroscopic cracks and break into two large blocks. At the impact pressure of
0.60 MPa, the mudstone samples break into many small-size blocks. This phenomenon
shows that with a further increase in the impact pressure, the distribution of cracks inside
the mudstone samples increases, the cracks’ width gradually increases, and the cracks span
the entire sample volume. In response to continuous stress, the cracks in the samples further
develop and lead to the onset of cross, tensile failure, as well as compression shear failure.

Figure 10. Failure morphology of the mudstone samples subjected to single-impact loads.
(a) 0.20 MPa; (b) 0.25 MPa; (c) 0.30 MPa; (d) 0.40 MPa; (e) 0.60 MPa.

3.3.2. Cyclic-Impact Scenario, Fixed Impact Pressure

The failure morphology of the mudstone samples subjected to cyclic impacts at fixed
impact pressures is shown in Figure 11. As the impact pressure increases, the number of
impacts until macroscopic failure decreases, and the samples mainly exhibit tensile failure
in response to the cyclic-impact loading. For the impact pressure of 0.15 MPa, the mudstone
sample remains basically intact after the first impact. As the number of impacts increases,
the internal damage to the mudstone sample continues to accumulate, and microscopic
cracks are generated and propagate through the sample. Finally, the sample splits into
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three pieces along the axial loading direction. For the impact pressure of 0.20 MPa, cracks
appear on the surface of the mudstone sample after the second impact. During the third
impact, the internal damage to the mudstone sample becomes serious, the distribution of
microscopic cracks increases, the propagation rate increases, the cracks’ width gradually
increases, and they propagate through the sample. The bearing capacity of the sample
decreases rapidly, the degree of fragmentation increases, and the annular failure surface
covers the sample along the axial loading direction.

Figure 11. Failure morphology of the mudstone samples subjected to cyclic-impact loads: (a) 0.15 MPa;
(b) 0.175 MPa; (c) 0.20 MPa.

4. Establishment and Discussion of Dynamic Damage Constitutive Model
4.1. Rock Dynamic Strength Criteria

The above experimental studies demonstrate an obvious “rate effect” in rock samples
subjected to impact loads. Therefore, the strain rate is introduced into the static yield
function, for developing the rock dynamic yield criterion [29–32].

The rock static Drucker–Prager criterion is expressed in terms of the first invariant of
the stress tensor I1 and the second invariant of the stress deviation J2, as follows:

a0 I1 +
√

J2 = k (1)

I1 = σ1 + σ2 + σ3 (2)

J2 =
1
6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]

(3)

a0 =
sin ϕ√

9 + 3 sin2 ϕ
(4)

k =
3c cos ϕ√

9 + 3 cos2 ϕ
(5)

where c, ϕ are the static cohesion and internal friction angle of the rock sample, respectively,
a0, k are the material parameters, respectively, and σ1, σ2, σ3 are the first, second, and third
principal stresses of the rock sample, respectively.

The results by Zhao et al. [33,34] and by Song [35] show that a change in the rock
dynamic strength in response to a dynamic load is mainly owing to a change in its cohesion,



Materials 2022, 15, 1128 10 of 16

while the internal friction angle changes insignificantly. Thus, the influence of the change
in the internal friction angle on the rock dynamic strength can be ignored. The following
relationship between the rock dynamic cohesion and static cohesion can be formulated:

cd
cs

= 1.0 + βlg
•
εd
•
εs

(6)

where cd, cs are the dynamic cohesion and static cohesion parameters of the rock sample,
respectively,

•
εd,
•
εs are the dynamic strain rate and static strain rate of the rock sample,

respectively, and β is the material constant.
Substituting Equation (6) into the static Drucker–Prager criterion, the rock dynamic

strength criterion reflecting the rate effect is obtained as follows:

a0 I1 +
√

J2 = k
(•

ε
)

(7)

k
(•

ε
)
= k ·

(
1.0 + βlg

•
εd
•
εs

)
(8)

For the one-dimensional stress state, σ2 = σ3 = 0, and the expression for the rock
dynamic strength criterion becomes:(

a0 +
1√
3

)
σ1 − k ·

(
1.0 + βlg

•
εd
•
εs

)
= 0 (9)

The above shows that in the proposed rock dynamic strength criterion the rock dy-
namic strength nonlinearly depends on the strain rate.

4.2. Establishment of the Dynamic Damage Constitutive Model of Mudstone
4.2.1. Dynamic Damage Model

Basic assumptions:

(1) Mudstone is isotropic;
(2) On the microscopic level, mudstone obeys Hooke’s law before damage;
(3) On the microscopic level, the element strength of mudstone is described by a normal

distribution.

The rock sample under a dynamic load is abstracted into damaged and undamaged
materials, and the load on the rock sample is borne by undamaged materials. According
to Lemaitre’s [36] strain equivalence principle, the damage constitutive relationship for a
rock sample can be obtained by replacing the nominal stress in the material constitutive
relationship with the effective stress, as follows:

σi = σ∗i (1− D) (i = 1, 2, 3) (10)

where σi is the nominal stress of rock, D is the damage variable, and σ∗i is the effective
stress of the rock sample.

According to the above basic assumptions, the stress–strain relationship of undamaged
materials obeys Hooke’s law; then, for the one-dimensional stress state:

σ∗i = Eεi (11)

where E is the dynamic elastic modulus of rock, E = σ2−σ1
ε2−ε1

, and subscripts 1 and 2 corre-
spond to the two points of 40% and 60% of the peak value of the dynamic stress–strain
curve, respectively.
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4.2.2. Statistical Damage Evolution Model

Based on the basic assumption that on the microscopic level the element strength of
mudstone follows a normal distribution, the probability density function of the microscopic
element strength of mudstone is given as follows:

P(F) =
1

S0
√

2π
exp

[
−1

2

(
F− F0

S0

)2
]

(12)

where F is the strength parameter of the mudstone microscopic elements, while F0 and S0
are the normal distribution’s mean and spread parameters.

For a gradually increasing load, the number of failing microscopic elements in the
rock sample is:

N f = N
∫

P(F)dF = N
∫ 1

S0
√

2π
exp

[
−1

2

(
F− F0

S0

)2
]

dF (13)

where N f is the number of failing microscopic elements, and N is the total number of
microscopic elements.

The statistical damage variable of mudstone is the ratio of the failed microscopic
elements to the total number of microscopic elements:

D =
∫ F

−∞
P(x)dx =

∫ F

−∞

1
S0
√

2π
exp

[
−1

2

(
x− F0

S0

)2
]

dx (14)

This can be simplified as:

D = ϕ

(
F− F0

S0

)
(15)

where ϕ
(

F−F0
S0

)
is the standard normal distribution function.

The above expression shows that the damage variable is related to the micro-element
strength of the rock sample, and the strength of the rock sample’s micro-elements is related
to its stress state. Based on the above rock dynamic strength criterion, a rock dynamic
micro-element strength measurement method is proposed, which is expressed as follows:

F = f (σ∗) =
(

a0 +
1√
3

)
σ∗1 − k ·

(
1.0 + βlg

•
εd
•
εs

)
(16)

Substituting Equation (15) and Equation (11) into Equation (10), we obtain:

σd = Eε(1− D) = Eε

[
1− ϕ

(
F− F0

S0

)]
(17)

The above equation is the dynamic damage constitutive model of mudstone under an
impact load. The rock micro-element strength measurement method adopted in the model
reflects the dynamic deformation characteristics of rock and the rate effect of dynamic
strength, and can better characterize the nonlinear relationship between dynamic stress
and strain in the process of rock dynamic deformation.

4.3. Identification of Model Parameters

According to the dynamic damage constitutive equation of mudstone, the key to
establishing the constitutive model is the identification of the model parameters F0 and
S0. Because the peak stress σf and peak strain ε f of the dynamic stress–strain curve are
easy to obtain from impact tests, according to the extreme value characteristics of the rock
dynamic full stress–strain curve, the two boundary conditions are determined according to
the extreme value method of multivariate functional analysis, as follows:
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(a) when ε = ε f , σ = σf

(b) dσ
dε

∣∣∣ σ = σf
ε = ε f

= 0

Substituting condition (a) into Equation (17), we obtain:

σf = Eε f

[
1− ϕ

( Ff − F0

S0

)]
(18)

From Equation (18), we obtain:

ϕ(X) = ϕ

( Ff − F0

S0

)
= 1−

σf

Eε f
(19)

From Equation (19), we obtain:

X =
Ff − F0

S0
, then, F0 = Ff − XS0 (20)

By taking the derivative of Equation (18):

dσ

dε
= E(1− D)− Eε · P(F)

(
∂F
∂ε

)
(21)

According to condition (b):

E(1− D)− Eε · P(F)
(

∂F
∂ε

)
= 0 (22)

where:

P
(

Ff

)
=

1
S0
√

2π
exp

[
−1

2

( Ff − F0

S0

)2
]

(23)

By taking the derivative of Equation (16):

∂F
∂ε

=

(
a0 +

1√
3

)
E (24)

Substituting Equations (23) and (24) into Equation (22), we obtain:

P
(

Ff

)
=

1− ϕ(X)

Eε f

(
a0 +

1√
3

) (25)

From Equation (23), we obtain:

S0 = exp
{
−1

2
X2 − ln

[√
2πP

(
Ff

)]}
(26)

In conclusion, for the dynamic impact compression test, the values of S0 and F0
can be determined by substituting Equations (20) and (26) according to the peak point(

σf , ε f

)
of the dynamic stress–strain curve, elastic modulus E, internal friction angle ϕ,

and strain rate
•
ε.

4.4. Verification of the Constitutive Model

To verify the applicability and rationality of the mudstone dynamic damage consti-
tutive model proposed in this study, parameter identification was carried out according
to the single impact compression, the cyclic impact compression test data, respectively, as
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shown in Tables 3 and 4. The model curve was compared with the test curve, for different
impact pressures, and the results are shown in Figures 12–15.

Table 3. Parameters of the single-impact dynamic constitutive model of mudstone.

Number P/MPa E/GPa ϕ/◦ c/MPa •
εf S0 F0 β

1 0.20 11.0 29 21.47 39.95 21.74 28.04 −0.045
2 0.25 12.2 29 21.47 67.42 45.21 59.63 −0.032
3 0.30 10.1 29 21.47 68.87 18.10 45.82 0.177
4 0.40 7.1 29 21.47 93.97 13.17 45.34 0.271
5 0.60 6.5 29 21.47 77.89 7.71 38.81 0.400

Table 4. Parameters of the cyclic-impact dynamic constitutive model of mudstone.

Number P/MPa n •
εf E/GPa S0 F0 β

1 0.15

1 23.98 9.0 3.91 14.99 −0.080
2 21.79 9.4 9.13 20.33 −0.006
3 12.47 13.0 9.01 23.70 0.013
4 32.20 6.5 7.84 18.35 −0.017
5 42.74 6.1 12.77 19.62 −0.073
6 42.12 3.5 2.33 8.68 −0.097

2 0.175

1 69.46 7.9 11.30 20.85 −0.054
2 66.01 8.2 9.24 21.14 0.020
3 29.16 8.5 6.33 23.60 0.044
4 73.40 6.2 7.95 18.20 0.003

3 0.20
1 38.80 11.0 21.74 28.04 −0.046
2 30.75 12.0 26.44 45.55 0.045
3 30.57 10.5 17.15 36.53 0.054

Figure 12. Comparison between the single-impact test results and the theoretical results for mudstone.

It can be seen from Figures 12–15 that, although there is some discrepancy between
the model curve and the test curve, the overall concordance is high. For example, the
model curve cannot accurately reflect fluctuations in the test curve, especially in the initial
loading stage. Under the action of a single-impact load (Figure 12), there is a certain
discrepancy between the model curve and the test curve for small impact pressures. This
phenomenon is mainly owing to the large dispersion of mudstone failures across impact
loads, the stochasticity associated with the underlying normal distribution, and the loading
pressure’s instability. As the impact pressure increases, the concordance between the test
and model curves gradually increases, and the relative standard deviation is only 9% for
the impact pressure of 0.6 MPa. It can be seen from Figure 15 that for the cyclic-impact
pressure of 0.20 MPa, there is a small discrepancy between the test and model curves after
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the first impact, while the concordance increases after the second and third impacts, and
the relative standard deviation after the third impact is only 15%. In conclusion, the model
curve can better reflect the relationship between the dynamic strength, strain, and strain
rate for mudstone, which validates the rationality of the dynamic damage constitutive
model of mudstone for single- and cyclic-impact loading scenarios.

Figure 13. Comparison between the 0.15 MPa-pressure cyclic-impact test results and the theoretical
results for mudstone.

Figure 14. Comparison between the 0.175 MPa-pressure cyclic-impact test results and the theoretical
results for mudstone.

Figure 15. Comparison between the 0.20 MPa-pressure cyclic-impact test results and the theoretical
results for mudstone.
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5. Conclusions

(1) According to the stress–strain curves under impact loads, in the single-impact load
scenario, the peak stress and peak strain of the studied mudstone samples gradually
increased with increasing impact pressure, and the peak stress and the average strain
rate were nonlinearly and positively correlated. In the cyclic-impact loading scenario
with fixed impact pressure, the peak stress of the mudstone samples increased first
and then decreased with the number of impacts, while the peak strain increased
gradually with the number of impacts;

(2) Through the analysis of the failure mode of mudstone under impact loads, it can be
seen that in the single-impact load scenario, as the impact pressure increased, the
fragmentation of the mudstone samples gradually decreased, and the number of
broken blocks gradually increased. In the cyclic-impact load scenario, the failure
mode of the mudstone samples changed significantly with the increase in impact
times. There was no obvious macroscopic failure mode during the previous impact
tests, and the tensile failure occurred due to the penetrating cracks of the sample in
the last impact;

(3) Based on the rock dynamic strength criterion, combined with the statistical damage
theory, a dynamic damage constitutive model of mudstone was established, to de-
scribe the mudstone response to various impact load scenarios. The model behavior
agreed well with the corresponding experimental results, validating the rationality
of the model established in this study. The model provides a theoretical basis for the
future stability analysis of roadway-surrounding rock subjected to dynamic loads.
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