
Dynamic Coalescing for 16-Bit Instructions

ARVIND KRISHNASWAMY and RAJIV GUPTA
The University of Arizona

In the embedded domain, memory usage and energy consumption are critical constraints.
Embedded processors such as the ARM and MIPS provide a 16-bit instruction set, (called Thumb
in the case of the ARM family of processors), in addition to the 32-bit instruction set to address
these concerns. Using 16-bit instructions one can achieve code size reduction and instruction cache
energy savings at the cost of performance. This paper presents a novel approach that enhances
the performance of 16-bit Thumb code. We have observed that throughout Thumb code there ex-
ist Thumb instruction pairs that are equivalent to a single ARM instruction. We have developed
enhancements to the processor microarchitecture and the Thumb instruction set to exploit this
property. We enhance the Thumb instruction set by incorporating Augmenting eXtensions (AX).
A Thumb instruction pair that can be combined into a single ARM instruction is replaced by an
AXThumb instruction pair by the compiler. The AX instruction is coalesced with the immediately
following Thumb instruction to generate a single ARM instruction at decode time. The enhanced
microarchitecture ensures that coalescing does not introduce pipeline delays or increase cycle time
thereby resulting in reduction of both instruction counts and cycle counts. Using AX instructions
and coalescing hardware we are also able to support efficient predicated execution in 16-bit mode.

Categories and Subject Descriptors: C.1 [Computer Systems Organization]: Processor Archi-
tectures; D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Embedded processor, 32-bit ARM ISA, 16-bit Thumb ISA, code
size, energy, performance, AX instructions, instruction coalescing

1. INTRODUCTION

More than 98% of all microprocessors are used in embedded products the most
popular among them being the ARM family of embedded processors [Intel 2002].
The ARM processor core is used both as a macrocell in building application
specific system chips and standard processor chips [Furber 1996] (e.g., ARM810,
StrongARM SA-110 [Intel 2000b], XScale [Intel 2000a]). In the embedded

This work is supported by grants from Intel, IBM, Microsoft, and NSF grants CCR-0324969, CCR-
0220334, CCR-0208756, CCR-0105355, and EIA-0080123 to the University of Arizona.
Authors’ address: A. Krishnaswamy and R. Gupta, Department of computer science, The University
of Arizona, Gould-Simpson Bldg., 1040 E. Fourth St., Tucson, AZ 85721; email: gupta@cs.
arizona.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1539-9087/05/0200-0003 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005, Pages 3–37.

4 • A. Krishnaswamy and R. Gupta

Fig. 1. ARM versus Thumb code.

domain, in addition to having good performance, applications must execute
under constraints of limited memory and low energy consumption. Dual in-
struction set processors, such as the ARM and MIPS, provide a unique oppor-
tunity for code size reduction by supporting a 16-bit instruction set along with
the 32-bit instruction set. The 16-bit instruction provides a subset of the func-
tionality provided by the 32-bit instruction set. Hence, one can achieve good
code size reduction using 16-bit code. However, we pay a performance penalty
since, for a given program, the number of 16-bit instructions executed is much
more than the corresponding number of 32-bit instructions executed. Tradition-
ally, ISAs have fixed width (e.g., 32-bit SPARC, 64-bit Alpha) or variable width
(e.g., x86, StarCore, IBM Elite). Fixed width ISAs give good performance at the
cost of code size, and variable width ISAs give good performance at the cost of
added decode complexity. Neither of the above are good choices for embedded
processors where code size and power are critical. Dual width ISAs are simple
to implement and provide a trade-off between code size and performance, mak-
ing them a good choice for embedded processors. In this paper, we describe a
technique, based on the ARM architecture, that reduces the performance gap
between 16-bit and 32-bit code.

1.1 32-Bit ARM Code versus 16-Bit Thumb Code

To motivate our approach, we illustrate the trade-offs present in the 32-bit ARM
and 16-bit Thumb instruction sets. The data in Figure 1 compares the ARM and
Thumb codes along four metrics: instruction count, code size, I-cache energy,
and cycle count. The processor has a fixed fetch bandwidth of 32-bits and is
an in-order single-issue processor. As we can see, the number of instructions
executed by Thumb code is significantly higher even though the Thumb code
size is significantly smaller. The increase in instruction counts ranges from

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 5

3% to 98%, while code size reduction ranges from 29.83% to 32.45% (Segars
et al. [1995] also report a 30% code size reduction). In prior work, it is shown
that this substantial increase in the number of instructions executed by the
Thumb code more than offsets the improved I-cache behavior of the Thumb
code [Krishnaswamy and Gupta 2002]. Therefore, the net result is higher cycle
counts for the Thumb code in comparison to the ARM code. While we observe
that by using Thumb code we nearly always save I-cache energy as a result of
fewer fetches, the increase in instruction counts increases the energy consumed
in other parts of the processor.

On further analysis, we were able to determine that the dynamic instruc-
tion count increase is mainly due to increase in three categories of instructions:
branches, ALU operations, and MOVs. The reasons for increase in these cate-
gories are elaborated in our discussion of the AX instructions. In the above sit-
uations, we are able to find short sequences of Thumb instructions that can be
easily replaced by shorter sequences of ARM instructions. One could generate a
mixed binary using both ARM and Thumb instructions; however, the overhead
of explicit switching between 16-bit mode and 32-bit mode for short sequences
negates the benefit of mixed code, as will be shown later in Section 3.1.

1.2 Contributions

This paper presents a novel approach that enhances the Thumb instruction
set to enable it to perform like ARM code. These enhancements allow pat-
terns of Thumb instructions to be translated into ARM equivalents at runtime
without requiring explicit switching of processor mode. We enhance the Thumb
instruction set by incorporating Augmenting eXtensions (AX). Augmenting in-
structions are a new class of instructions which are entirely handled in the
decode stage of the processor and do not go through the remaining stages of the
pipeline. Each AX instruction is coalesced with the following non-AX instruc-
tion in the program, in the decode stage of the processor where the translation of
Thumb instructions into ARM instructions takes place. The compiler replaces
patterns of Thumb instructions by equivalent sequences of AXThumb instruc-
tions. The decode stage is redesigned to detect augmenting instructions and
perform coalescing to generate more efficient ARM instructions for execution.
The distinctive characteristics of our approach include the following:

—Coalescing without Pipeline Delays. When coalescing is performed, no addi-
tional pipeline bubbles are introduced as instruction fetching does not fall
behind. When two instructions are coalesced during execution of AXThumb
code, two additional Thumb instructions are available for decoding in the
very next cycle.

—Simple Coalescing Hardware. By placing the responsibility of identifying
instruction coalescing opportunities on the compiler, AX enables us to achieve
coalescing using simple modifications to the decode stage. While a compiler
can easily recognize coalescing opportunities, and appropriately mark them
using AX instructions, the hardware cannot do so either easily or safely.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

6 • A. Krishnaswamy and R. Gupta

—Supporting Predication in Thumb. AX not only incorporates predicated ex-
ecution into the Thumb instruction set, but simple support in the decode
stage allows an implementation of predication which is more efficient than
the ARM implementation of predication.

—Avoiding Mode Switching. Our approach does not require explicit switching
of processor modes since the fetched instructions are always 16-bit AXThumb
instructions.

The remainder of the paper is organized as follows. In Section 2, we describe
the concept of augmenting instructions and the coalescing mechanism for han-
dling these instructions. We also show how this novel coalescing mechanism
can with a minor modification allow us to incorporate a highly effective method
for executing predicated code. We also provide details of the set of augment-
ing instructions we have developed. In Section 3, we describe a coarse-grained
mixed code generation technique, which we use for comparison with instruction
coalescing. In Section 4 we present the results of our evaluation. In Section 5
we present some related work, and we conclude in Section 6.

2. INSTRUCTION COALESCING

To illustrate the key concepts of our approach we use a simple example. In
the code below we show an ARM instruction which shifts the value in reg2
before subtracting it from reg1. Since the shift cannot be specified as part
of another Thumb ALU instruction, two Thumb instructions are required to
achieve the effect of one ARM instruction. We would like to coalesce the two
16-bit instructions into one 32-bit instruction. While coalescing is relatively
easy to carry out, detecting a legal opportunity for coalescing by examining the
two Thumb instructions is in general impossible to carry out at runtime with
simple hardware. In our example, the Thumb code uses a temporary register
rtmp. If instruction coalescing is performed, rtmp is no longer needed; therefore
its contents will not be changed. Hence, at the time of coalescing, the hardware
must also determine that the contents of register rtmp will not be used after
the Thumb sequence. Clearly this is in general impossible to determine since
the next read or write reference to register rtmp can be arbitrarily far away.

ARM: sub reg1, reg2, lsl #2
Thumb: lsl rtmp, reg2, #2

sub reg1, rtmp
AXThumb: setshift lsl #2

sub reg1, reg2

Since the coalescing opportunity cannot be detected in hardware, we rely
on the compiler to recognize such opportunities and communicate them to the
hardware through the use of Augmenting eXtensions (AX). In the AXThumb
code shown above, the first instruction is an augmenting instruction which
is not executed; it is always coalesced in the decode stage with the instruction
that immediately follows it, to generate a single ARM instruction for execution.
In the above example, the augmenting instruction setshift merely carries the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 7

shift type and shift amount, which is incorporated in the subsequent instruction
to create the required ARM instruction for execution.

We make the design choice that each Thumb instruction can be augmented
only by a single AX instruction. As a result we are guaranteed that an AX
instruction is always preceded and followed by a Thumb instruction. While it is
possible to support a more flexible mechanism which allows an instruction to be
augmented by multiple AX instructions, this is not useful as it does not speed
up the execution of the Thumb code. The reason for this claim will become clear
when we discuss the microarchitecture design in greater detail.

It should be noted that the code size of all three instruction sequences is the
same (i.e., 32 bits). However, only the AXThumb sequence satisfies the desired
criteria as it results in the execution of a single equivalent ARM instruction
and is made up of 16-bit instructions. Thus, the AXThumb code is 16-bit code
that runs like the ARM code.

We have introduced the basic idea behind our approach. Next, we describe
in detail the realization of this idea. First, we describe the modified microar-
chitecture that is capable of executing AXThumb code in a manner such that
coalescing does not introduce additional pipeline delays. Second, we describe
the complete set of AX instructions and the rationale behind the design of these
instructions.

2.1 Microarchitecture

Our work is based upon the StrongARM SA-110 pipeline which consists of five
stages: (F) instruction fetch; (D) instruction decode and register read; branch
target calculation and execution; (E) Shift and ALU operation, including data
transfer and memory address calculation; (M) data cache access; and (W) result
write-back to register file. It performs in-order execution and does not employ
branch prediction. The Thumb instruction set is easily incorporated into an
ARM processor with a few simple changes. The basic instruction execution
core of the pipeline remains the same as it is designed to execute only ARM
instructions. A Thumb instruction decompressor, which translates each Thumb
instruction to an equivalent ARM instruction, is added to the instruction decode
stage. Since the decoder is simple and does little work, this addition does not
increase the cycle time.

2.1.1 Instruction Coalescing. Before we describe our design of the decode
stage, let us first review the original design of the decode stage, which allows
the ARM processor to execute both ARM and Thumb instructions. As shown
in Figure 2, the fetch capacity of the processor is designed to be 32 bits per
cycle so that it can execute one ARM instruction per cycle. In the ARM state,
a 32-bit instruction is directly fed to the ARM decoder. However, in the Thumb
state, the 32 bits are held in an instruction buffer. The two Thumb instruc-
tions in the buffer are selected in consecutive cycles and fed into the Thumb
decompressor, which converts the Thumb instruction into an equivalent ARM
instruction and feeds it to the ARM decoder. Every time a word is fetched we get
two Thumb instructions. Hence, fetch needs to be carried out only in alternate
cycles.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

8 • A. Krishnaswamy and R. Gupta

Fig. 2. Thumb implementation.

The key idea of our approach is to process an AX instruction simultaneously
with the processing of the immediately preceding Thumb instruction. What
makes this achievable is the extra fetch capacity already present in the
processor.

The overall operation of the hardware design shown in Figure 3 is as follows.
The instruction buffer in the decode stage is modified to exploit the extra fetch
bandwidth and keep at least two instructions in the buffer at all times. Two
consecutive instructions, one Thumb instruction and a following AX instruc-
tion, can be simultaneously processed by the decode stage in each cycle. The
AXThumb instruction is processed by the AX processor which updates the sta-
tus field to hold the information carried by the AX instruction for augmenting
the next instruction in the following cycle. The Thumb instruction is processed
by the AXThumb decompressor and then the ARM decoder. The decompressor
is enhanced to use both the current Thumb instruction and the status field
contents modified by the immediately preceding AX instruction in the previous
cycle, if any, to generate the coalesced ARM instruction. The status field is read
at the beginning of the cycle for use in generation of the coalesced ARM instruc-
tion and overwritten at the end of the cycle if an AX instruction is processed
in the current cycle. The status field can be implemented as a 28-bit register.
Hence, during a context switch it is sufficient to save the state of this status
register along with other state to ensure correct execution when this context re-
sumes. The format of this status register is described along with the encodings
of AX instructions in Section 2.2.4.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 9

Fig. 3. AXThumb implementation.

There are three important points to note about the above operation. First,
as shown by the pipeline timing diagram in Figure 3, in the above operation no
extra cycles are needed to handle the AX instructions. Each sequence (pair) of AX
and Thumb instructions complete their execution one cycle after the completion
of the preceding Thumb instruction. Second the above design ensures that there
is no increase in the processor cycle time. The AX processor’s handling of the AX
instruction is entirely independent of handling of the Thumb instruction by the
decode stage. In the pipeline diagram Thumb-D and AX-D denote handling of
Thumb and AX instructions by the decode stage, respectively. In addition, the
path taken by the Thumb instruction is essentially the same as the original
design: the Thumb instruction is first decompressed and then decoded by the
ARM decoder. The only difference is the modification made to the decompressor
to make use of the status field information and carry out instruction coalescing.
However, this modification does not significantly increase the complexity of the
decompressor as the generation of an ARM instruction through coalescing of
AX and Thumb instructions is straightforward. An AX instruction essentially
predetermines some of the bits of the ARM instruction generated from the
following Thumb instruction. This should be obvious for the setshift example
already shown. The other AX instructions that are described in detail in the
next section are equally simple. Finally it should now be clear why we do not
allow two AX instructions to augment a Thumb instruction. Only a single AX
instruction can be executed for free. If two consecutive AX instructions are

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

10 • A. Krishnaswamy and R. Gupta

Table I. Different Buffer States

State ib1 ib2 ib3

S1 — — —
S2 T — —
S3 T T —
S4 T A —
S5 T T T
S6 T A T

allowed, their execution will add a cycle to the program’s execution. Moreover,
one AX instruction is sufficient to augment one Thumb instruction as it can
carry all the required information. Hence, even in the case where we have
more bandwidth (e.g., 64 bits), using more than one AX instruction to augment
a Thumb instruction is not useful.

The instruction buffer and the filling of this buffer by the instruction fetch
mechanism are designed such that, in the absence of taken branches, the in-
struction buffer always contains at least two instructions. The buffer can hold
up to three consecutive instructions. Thus, it is expanded in size from 32 bits
(ib1 and ib2) in the original design to 48 bits (ib1, ib2, and ib3). As shown later,
this increase in size is needed to ensure that at least two instructions are
present in the instruction buffer. Of the three consecutive program instruc-
tions held in ib1, ib2, and ib3, the first instruction is in ib1, second is in ib2,
and third one is in ib3. The instruction in ib1 is always a Thumb instruction
which is processed by the Thumb decompressor and the ARM decoder. The in-
struction in ib2 can be an AX or a Thumb instruction and it is processed by
the AX processor. If this instruction is an AX instruction then it is completely
processed, and at the end of the cycle, instructions in both ib1 and ib2 are
consumed; otherwise only the instruction in ib1 is consumed. The remaining
instructions in the buffer, if any, are shifted by 1 or 2 entries so that the first
unprocessed instruction is now in ib1. The fetch deposits the next two instruc-
tions from the instruction fetch queue into the buffer at the beginning of the
next cycle if at least two entries in the buffer are empty. Therefore, essentially
there are two cases: either the two instructions are deposited in (ib1, ib2) or in
(ib2, ib3).

We summarize the above operation of the instruction buffer using a state
machine. Table I describes the various states of the buffer depending upon its
contents—a T indicates a Thumb instruction and an A indicates an AX instruc-
tion. The states are defined such that they distinguish between the number of
instructions in the buffer—S1, S2, S3/S4, and S5/S6 correspond to the pres-
ence of 0, 1, 2, and 3 instructions in the buffer, respectively. Pairs of states
(S3, S4) and (S5, S6) are needed to distinguish between the absence and pres-
ence of an AX instruction in ib2. This is needed because the presence of an AX
instruction results in coalescing while its absence means that no coalescing will
occur. Given these states, it is easy to see how the changes in the buffer state
occur as instructions are consumed and a new instruction word is fetched into
the buffer whenever there is enough space in it to accommodate a new word.
The state diagram is summarized in Figure 4.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 11

Fig. 4. State transitions of the instruction buffer.

Fig. 5. Delivering instructions to decode ahead for overlapped execution.

Now we illustrate the need to expand the instruction buffer to hold up to three
instructions. In Figure 5(a), we show a sequence in which the AX instruction(s)
cannot be processed in parallel with the preceding Thumb instruction(s) as only
after the preceding Thumb instruction(s) are processed can the instruction fetch
deposit an additional pair of instructions into the buffer. Therefore, the advan-
tage of providing AX instructions is lost. On the other hand, in Figure 5(b),
when we expand the buffer to 48 bits, the instructions are deposited by the
fetch sooner, thereby causing the AX instruction(s) and the preceding Thumb
instruction(s) to be simultaneously present in the buffer. Hence, the AX instruc-
tions are now handled for free.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

12 • A. Krishnaswamy and R. Gupta

Next, we show how it is ensured that whenever an instruction is found in
ib1, it is always a Thumb instruction. If the instruction was shifted from ib2 it
must be a Thumb instruction as the AX processor has concluded that it is not
an AX instruction. If the instruction was shifted from ib3, it must be a Thumb
instruction. This is because in the preceding cycle the instruction in ib2 must
have been successfully processed, meaning that it was an AX instruction which
implies the next instruction, (i.e., the one in ib3), must be a Thumb instruction.
The final case is when the fetch directly deposits the next two instructions into
(ib1, ib2). Clearly the instruction in ib1 is not examined by the AX processor in
this case. Therefore, it must be guaranteed that whenever the instruction buffer
is empty at the end of the decode cycle, the next instruction that is fetched is a
Thumb instruction.

In the absence of branches the above condition is satisfied. This is because at
the beginning of the decode cycle the buffer definitely contains two instructions.
For it to be empty the two instructions must be simultaneously processed. This
can only happen if the instruction in ib2 was an AX instruction which implies
that the next instruction is a Thumb instruction.

In the presence of branches, following a taken branch, the first fetched in-
struction is also directly deposited into ib1. We assume that the instruction at
a branch target is a Thumb instruction; hence, it can be directly deposited into
ib1 as examination of the instruction by the AX processor is of no use. The com-
piler is responsible for generating code that always satisfies this condition. The
reason for making this assumption is that there is no advantage of introducing
an AX instruction at a branch target. Only an AX instruction that is preceded
by another Thumb instruction can be executed for free. If the instruction at a
branch target is an AX instruction, and control arrives at the target through
a taken branch, then the processing of the AX instruction by the AX processor
can no longer be overlapped with the immediately preceding instruction that
is executed, that is, the branch instruction. This is because the AX instruction
can only be fetched after the outcome of the branch is known.1 Therefore, the
execution of the AX instruction actually adds a cycle to the execution. In other
words, the benefit of introducing the AX instruction is lost. When an AXThumb
pair replaces a Thumb pair, the second Thumb instruction in the AXThumb
pair need not be the same as the second Thumb instruction in the Thumb in-
struction pair. Hence, one cannot allow an AX instruction in ib1 by issuing a
nop when an AX instruction is found in ib1. We rely on the compiler to schedule
code in a manner that avoids placement of an AX instruction at a branch target.
If this cannot be achieved through instruction reordering, the compiler uses a
sequence of two Thumb instructions instead of using a sequence of an AX and
Thumb instructions at the branch target.

2.1.2 Predicated Execution in AXThumb. While the original Thumb in-
struction set does not support predicated execution, we have developed a very
effective approach to carry out predicated execution using AXThumb code which

1Note that the ARM processor does not support delayed branching and therefore an AX instruction
cannot be moved up and placed in the branch delay slot.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 13

Fig. 6. Predication in AXThumb.

requires only a minor modification to the decode stage design just presented.
Like instruction coalescing, this method also takes advantage of the extra fetch
bandwidth already present in the processor. We rely on the compiler to place
the instructions from the true and false branches in an interleaved manner as
shown in Figure 6. Since the execution of a pair of instructions is mutually ex-
clusive, that is only one of them will be executed, in the decode stage we select
the appropriate instruction and pass it on to the decompressor while the other
instruction is discarded.

A special AX instruction precedes the sequence of interleaved instructions.
This instruction communicates the predicate in form of a condition flag which
is used to perform instruction selection from an interleaved instruction pair.
If the condition flag is set, the first instruction belonging to each interleaved
pair is executed; otherwise the second instruction from the interleaved pair
is executed. Therefore, the compiler must always interleave the instructions
from the true path in the first position and instructions from the false path
in the second position. The special AX instruction also specifies the count of
interleaved instructions pairs that follow it. The AX processor uses this count to
continue to stay in the predication mode as long as necessary and then switches
back to the normal selection mode. The selection of an instruction from each
instruction pair is carried out by using a minor modification to the original
design as shown in Figure 6. Instead of directly feeding the instruction in ib1
to the decompressor, the multiplexer selects either the instruction from ib1 or
ib2 depending upon the predicate as shown in Figure 6. The select signal is
generated by the AX processor. For correct operation, when not in predication
mode, the select signal always selects the instruction in ib1.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

14 • A. Krishnaswamy and R. Gupta

For this approach to work, each interleaved instruction pair should be com-
pletely present in the instruction buffer so that the appropriate instruction
can be selected. This condition is guaranteed to be always true as the inter-
leaved sequence is preceded by an AX instruction. Following the execution of
the AX instruction there will be at least two empty positions in the instruc-
tion buffer which will be immediately filled by the fetch. It should be noted
that the setpred instruction essentially performs the function of setting bits
in a predicate register which is part of the status register. The setpred in-
struction is slightly different from other AX instructions in that it does not
enable any sort of instruction coalescing. As a result, it does not require the
extra buffer length. Hence, this style of predication could be implemented in-
dependent of the rest of AX processing, by suitably modifying the fetching of
instructions.

The above approach for executing predicated code is more effective than do-
ing so in the ARM state. In ARM state the 32-bit instructions from the true and
false paths are examined one by one. Depending on the outcome of the predicate
test, instructions from one of the branches are executed while the instructions
from the other branch are essentially converted into nops. Therefore, the
number of cycles needed to execute the instructions is at least equal to the sum
of the instructions on the true and false paths. In contrast the number of cycles
taken to execute the AXThumb code is equal to the number of interleaved in-
struction pairs. Note that this advantage is only achievable because in Thumb
state instructions arrive in the decode stage early while the same is not true for
ARM.

2.2 AX Extensions to Thumb

The AX extension to Thumb consists of eight new instructions. These instruc-
tions were chosen by studying ARM and Thumb codes of benchmarks and
identifying commonly occurring sequences of Thumb instructions which were
found to correspond to shorter ARM sequences of instructions. We descri-
be these instructions and illustrate their use through examples of typical
situations that were encountered. We categorize the AX instructions according
to the types of instructions whose counts they affect the most. The following dis-
cussion will also make clear the differences in the ARM and Thumb instruction
sets that lead to poorer quality Thumb code. We then show how we use exactly
one free instruction in the free opcode space of the Thumb instruction set to
implement AX instructions. We also give the format of the 28-bit status regis-
ter that is used during AX processing. A brief description of the ARM/Thumb
instructions used here is shown in Table II.

2.2.1 ALU Instructions. There are specific differences in the ARM and
Thumb instruction sets that cause additional ALU instructions to be generated
in the Thumb code. There are three critical differences we have located, and to
compensate for each of three weaknesses in the Thumb instruction set we have
designed a new AX instruction. ARM instructions are able to specify negative
immediates, shift operations that can be folded into other ARM instructions,
and certain kind of compares that can be folded with other ARM instructions.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 15

Table II. Description of ARM/Thumb Instructions Used

Name Description

str Store to memory
ldr Load from memory
push Push contents onto stack
pop Pop contents from stack
b Unconditional branch
b[cond] Conditional branch e.g., beq
and Logical AND
neg Negates value and stores in destination
mov Move contents between registers
add Arithmetic add
sub Arithmetic subtract
lsl Logical shift left

None of these three features are available in the Thumb instruction set. The
new AX instructions are as follows.

Negative Immediate
setimm #constant

Folded Shift
setshift shifttype shiftamount

Folded Compare
setsbit

Negative Immediate Offsets. The example shown below, which is taken from
versions of the ARM and Thumb codes of a function in adpcm coder, illustrates
this problem. The constant negative offset specified as part of the str store
instruction in ARM code is placed into register r1 using the mov and neg in-
structions in the Thumb mode. The address computation of rbase + r1 is also
carried out by a separate instruction in the Thumb state. Therefore, one ARM
instruction is replaced by four Thumb instructions.

Original ARM
str rsrc, [rbase, -#offset]

Corresponding Thumb
mov rtmp, #offset
neg rtmp
add rtmp, rbase
str rsrc, [rtmp, #0]

AXThumb
setimm -#offset
str rsrc, [rbase,]

Coalesced ARM
str rsrc, [rbase, -#offset]

The AX instruction setimm is used to specify the negative operand of the in-
struction that immediately follows it. For our example, the setimm is generated
immediately preceding the str instruction. When an str instruction immedi-
ately follows a setimm instruction, the constant offset is taken from the setimm
and whatever constant offset that may be specified as part of str is ignored. In
the decode stage the setimm and str are coalesced to generate the equivalent
ARM instruction as shown above.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

16 • A. Krishnaswamy and R. Gupta

Shift Instructions. The setshift instruction has been shown through our
example at the beginning of Section 2. We describe one more use here. A shift
operation folded with a MOV instruction is often used in ARM code to generate
large immediate constants. An immediate operand of a MOV instruction is a
12-bit entity which is divided into an 8-bit immediate constant and a 4-bit
rotate constant. The 8 bit entity is expanded to 32 bits with leading zeroes and
rotated by the rotate amount to generate a 32-bit constant. In Thumb state, the
immediate operand is only 8 bits and therefore the rotate amount cannot be
specified. An additional ALU instruction is used to generate the large constant
as shown below. In the AXThumb code setshift is used to eliminate the extra
shift instruction through coalescing.

Original ARM
mov reg1, #imm8.rotate4

Corresponding Thumb
mov reg1, #imm8
lsl reg1, #rotate4′, where
rotate4’ = 32 − 2 * rotate4.

AXThumb
setshift #rotate4
mov reg1, #imm8

Coalesced ARM
mov reg1, #imm8.rotate4

Compare Instructions. In the ARM instruction set MOV and ALU instruc-
tions contain an s-bit. If the s-bit is set, following the MOV or ALU operation,
the destination register contents are compared with the constant value zero
and certain flags are set which can later be tested. Thus, in ARM certain types
of compares can be folded into other MOV and ALU instructions. As illustrated
below, since Thumb does not support the s-bit, it must perform the compari-
son in a separate instruction. To overcome the above drawback, we introduce
the setsbit instruction which indicates that the s-bit of the instruction that
immediately follows should be set when translation of Thumb into ARM takes
place.

Original ARM
movs reg1, reg2

Corresponding Thumb
mov reg1, reg2
cmp reg1, #0

AXThumb
setsbit
mov reg1, reg2

Coalesced ARM
movs reg1, reg2

2.2.2 Predication—Branch Instructions. Lack of predication in Thumb is
the reason for more branches in Thumb code compared to ARM code, as il-
lustrated by the example below. The ARM code performs the compare; if r3
contains zero then the two subne instructions turn into nops while the other
two addeq instructions are executed. The reverse happens if r3 does not con-
tain zero. In the corresponding Thumb code explicit branches are introduced to
achieve conditional execution of instructions.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 17

Original ARM
cmp r3, #0
addeq r6, r6, r1
addeq r5, r5, r2
subne r6, r6, r1
subne r5, r5, r2

Corresponding Thumb
cmp r3, #0
beq .L13
sub r6, r1
sub r5, r2
b .L14

.L13: add r6, r1
add r5, r2

.L14: ...

AXThumb
cmp r3, #0
setpred eq, #2
add r6, r1
sub r6, r1
add r5, r2
sub r5, r2

Coalesced ARM
cmp r3, #0
sub r6, r6, r1
sub r5, r5, r2
OR
cmp r3, #0
add r6, r6, r1
add r5, r5, r2

The new setpred instruction we introduce enables conditional execution
of Thumb instructions. This instruction specifies two things. First it spec-
ifies the condition involved in predication (e.g., eq, ne and so on). Second
it specifies the count of predicated instruction pairs that follow. Follow-
ing the setpred instruction are pairs of Thumb instructions—the number
of such pairs is equal to count. If the condition is true, the first instruc-
tion in each pair is executed; otherwise the second instruction each pair is
executed.

setpred condition, #count

In our example, when we examine the AXThumb code, we observe that the
condition in this case is eq and count is two since there are two pairs of instruc-
tions that are conditionally executed. If eq is true the first instruction in each
pair (i.e., the add instruction) is executed; otherwise the second instruction in
each pair (i.e., the sub instruction) is executed. Therefore, after the AXThumb
instructions are processed by the decode stage the corresponding ARM instruc-
tion sequence generated consists of three instructions. The sequence contains
either the add instructions or the sub instructions depending upon the eq flag.
Clearly the sequence of instructions generated using our method is shorter
than the original ARM sequence since it does generate nops for the two in-
structions that are not executed. Note that this form of predication is restricted
to small length branch hammocks due to the lack of encoding space in the
setpred instruction.

This form of predication could also reduce the number of fetches from the
I-cache. In the case shown next Thumb requires one more fetch than AXThumb
code for every iteration of the outer loop L0. Also note that use of predication
reduces the size by one instruction.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

18 • A. Krishnaswamy and R. Gupta

Thumb Code
L0: I0
beq L1
I1
b L2
L1: I2
L2: beq L0

AXThumb
L0: I0
setpred EQ 1
I1
I2
beq L0

2.2.3 MOV Instructions. We have identified three distinct reasons due to
which extra move instructions are required in Thumb code. First most ALU
Thumb instructions cannot directly reference values held in higher order (r8–
r11) registers. Second while ARM supports three address instruction format,
Thumb uses a two address format and therefore requires additional move in-
structions. Finally in Thumb ADD/MOV instructions the result register can be
a higher order register but in this case an immediate operand is not allowed.
Therefore, the immediate operand must be moved into a register before it can
be used by the high register based Thumb ADD/MOV instruction. The following
AX instructions are used to overcome the above drawbacks.

High Register Operand
setsource Hreg
setdest Hreg
setallhigh

Third Operand
setthird reg

Immediate Operand
setimm #constant

High Register Operands. Consider the example of a load below in which the
base address is in a higher order register. While the ARM load instruction can
directly reference this register, the Thumb code requires the base address to
be moved to lower order register which can be directly referenced by a Thumb
load instruction.

Original ARM
ldr reg, [Hreg, #offset]

Corresponding Thumb
mov Lreg, Hreg
ldr reg, [Lreg, #offset]

AXThumb
setsource Hreg
ldr reg, [, #offset]

Coalesced ARM
ldr reg, [Hreg, #offset]

The instruction setsource Hreg is used to handle the above situation. The
Thumb instruction that follows the setsource Hreg instruction makes use of
Hreg as its source operand. After coalescing, the resulting ARM instruction is
identical to the ARM instruction used in the ARM code. The setdest Hreg is
used in a similar way.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 19

The push instruction is used to carry out saving of registers at function bound-
aries. The ARM push instruction provides a 16-bit mask which indicates which
registers should be saved and which are not to be saved. The corresponding
Thumb push instruction provides a 8-bit mask which corresponds to lower or-
der registers. As a consequence, saving of higher order registers requires ad-
ditional move instructions in Thumb code as illustrated by the example given
below. While ARM code can use a single push instruction to save both lower or-
der registers (r4–r7) and higher order registers (r8–r11), the Thumb code uses
one push to save lower order registers, then moves contents of higher order
registers into lower order registers, and then uses another push to save their
contents.

Original ARM
push {r4,.., r11}
Corresponding Thumb
push {r4, r5, r6, r7}
mov r7, r11
mov r6, r10
mov r5, r9
mov r4, r8
push {r4, r5, r6, r7}

AXThumb
push {r4, r5, r6, r7}
setallhigh
push {r0, r1, r2, r3}
Coalesced ARM
push {r4, r5, r6, r7}
push {r8, r9, r10, r11}

To address this problem we provide the setallhigh AX instruction. When
this instruction precedes a Thumb push instruction, the 8-bit mask is inter-
preted to correspond to higher order registers. In the absence of preceding
setallhigh instruction, the 8 bit mask in the Thumb push instructions cor-
responds to the lower order registers. The bit positions of registers r0 through
r7 in the mask correspond to that of r8 through r15, respectively. The AX-
Thumb code for the above example contains two push instructions, the first
one saves the contents of lower order registers and the second one preceded by
setallhigh saves the contents of higher order registers. The move instruc-
tions present in the Thumb code have been eliminated. The difference be-
tween original ARM code and coalesced ARM code is that original ARM re-
quires only a single push instruction, while the coalesced ARM code contains
two push instructions. setallhigh can similarly be used for restoring registers
in combination with pop. Note that the AXThumb code has fewer 16 bit in-
structions, reducing both the code size and I-cache fetches compared to Thumb
code.

Third Operand. Additional move instructions are required to compensate
for the lack of three address instruction format in Thumb. We introduce the
setthird reg AX instruction to avoid the extra move instruction. When a
Thumb instruction is a preceded by a setthird reg instruction, then reg is
treated as the third address for the Thumb instruction as shown below. Follow-
ing coalescing the impact of extra move instruction is entirely eliminated.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

20 • A. Krishnaswamy and R. Gupta

Original ARM
add reg1, reg2, reg3

Corresponding Thumb
mov reg1, reg2
add reg1, reg3

AXThumb
setthird reg3
add reg1, reg2

Coalesced ARM
add reg1, reg2, reg3

Immediate Operand. The Thumb ADD/MOV instructions can directly ref-
erence higher order registers. However, in these cases if the operand cannot be
an immediate constant, requiring an an extra move as shown below.

Original ARM
add Hreg1, Hreg1, #imm

Corresponding Thumb
mov rtmp, #imm
add Hreg1, rtmp

AXThumb
setimm #imm
add Hreg1,
OR
setdest Hreg1
add , #imm

Coalesced ARM
add Hreg1, Hreg1, #imm

We can use the setimm instruction already introduced earlier to avoid the
move instruction as shown above. The immediate operand is incorporated into
the Thumb instruction that follows the setimm instruction by the coalescing
actions of the decode stage resulting in a single ARM instruction. Alternatively
the setdest instruction can be used as shown above. In either case the coalesced
ARM instruction is the same.

Original ARM
and reg1, reg1, #imm

Corresponding Thumb
mov rtmp, #imm
and reg1, rtmp

AXThumb
setimm #imm
and reg1,

Coalesced ARM
and reg1, reg1, #imm

Another situation where extra move instructions are generated due to the
presence of immediate operands is when bitwise Boolean operations are used.
Instructions for these operations cannot have immediate operands generating
an extra move.

2.2.4 Encoding of AX Instructions. Not surprisingly there are very few
unused opcodes available in Thumb. We have chosen one of these avail-
able opcodes to incorporate the AX instructions. Bits 10..15 are taken up
by this unused opcode 101110 which now refers to AX. The remaining bits
0..9 are available for encoding the various AX instructions. Since there are
eight AX instructions, three bits are needed to differentiate between them—
we use bits 7..9 for this purpose. The operands are encoded in the remaining
bits 0..6.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 21

Unimplemented Thumb Instruction
101110 xxxxxxxxxx
[10..15] [0..9]

AX Instructions
101110 AX opcode AX operands
[10..15] [7..9] [0..6]

The details of how operands are encoded for the various instructions are
given next. Depending upon the number of bits available, the constant fields in
various instructions are limited in size. The immediate constant in setimm is
7 bits, shift amount in setshift 4 bits, and count in setpred is 3 bits. Finally,
registers are encoded using 4 bits so we can refer to both higher and lower order
registers in AX instructions.

Encodings
101110 setimm #constant
[10..15] [7..9] [0..6]

101110 setshift shifttype shiftamount
[10..15] [7..9] [4..6] [0..3]

101110 setsbit -
[10..15] [7..9] [0..6]

101110 setpred condition count
[10..15] [7..9] [3..6] [0..2]

101110 setsource Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setdest Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setallhigh -
[10..15] [7..9] [0..6]

101110 setthird reg -
[10..15] [7..9] [3..6] [0..2]

The format of the status register used in AX processing is shown below.
The state set by the various AX instructions is saved in this register in the
appropriate field depending on the AX instruction. During a context switch,
the whole register is saved and upon restoration, AX processing can continue
as before.

Status Register Format
enable AX setpred ctr register operand imm shamt shtype S bit setallhigh

[27] [24..26] [20..23] [16..19] [9..15] [5..8] [2..4] [1] [0]

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

22 • A. Krishnaswamy and R. Gupta

2.3 Compiler Support: AX Postpass

AXThumb transformations are performed as a postpass, after the compiler has
generated object code. The transformation that involves detecting and replacing
sequences of Thumb code with corresponding AXThumb code consists of three
phases. Each of the three phases deals with a particular kind of AXThumb
transformation. The first phase handles predication of Thumb code using the
setpred AX instruction. The second phase handles the generic case for AX
transformations like the example used to describe instruction coalescing. The
third phase handles the setallhigh AX instruction used to eliminate unneces-
sary moves at function prologues and epilogues. While we present a postpass
approach to generate AXThumb code, it should be noted that AXThumb code
generated at compile time could potentially improve the performance further.
There are two primary reasons for performance improvement. One, as a result
of using AX instructions, registers get freed, allowing the register allocator to
take advantage of more free registers. The allocation would occur after instruc-
tion selection. Since AX instructions enable the use of higher order registers
(r8–r12), the register allocator would have to treat AXThumb pairs as a special
case (like mov instructions in existing Thumb code—the Thumb mov instruction
can access higher order registers). Two, the instruction scheduler could sched-
ule instructions so as to increase the number of AXThumb pairs generated.
Thus, our postpass approach provides a baseline for performance improvement
using AX instructions. The algorithms for each of the three phases in the post-
pass approach, along with code examples, are described in detail next.

2.3.1 Phase 1. The code segment shown below illustrates how Thumb code
can be predicated using the setpred instruction.

Thumb Code
(1) cmp r3, #0
(2) beq (6)
(3) sub r6, r1
(4) sub r5, r2
(5) b (8)
(6) add r6, r1
(7) add r5, r2
(8) mov r3, r9

AXThumb Code
(1) cmp r3, #0
(2) setpred EQ, #2
(3) add r6, r1
(4) sub r6, r1
(5) add r5, r1
(6) sub r5, r2
(7) mov r3, r9

The original Thumb code has to execute explicit branch instructions to
achieve conditional execution, choosing between the subtract and add oper-
ations. Using the setpred instruction we can avoid this explicit branching.
This instruction specifies two things. First it specifies the condition involved
in predication (e.g., eq, ne and so on). Second it specifies the count of predi-
cated instruction pairs that follow. Following the setpred instruction are pairs
of Thumb instructions—the number of such pairs is equal to count. If the condi-
tion is true, the first instruction in each pair is executed; otherwise the second
instruction each pair is executed.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 23

Algorithm 1: SetPredicated

input : A CFG for a function
output : A modified CFG with ‘set’predicated code
for all siblings (n1, n2) in the BFS Traversal of the CFG do

/* Check for a hammock in the CFG */
PredEQ = SuccEQ = FALSE;
if numPreds(n1) == numPreds(n2) == 1 then

if Pred(n1) == pred(n2) then
PredEQ = TRUE;

end
end
if numSuccs(n1) == numSuccs(n2) == 1 then

if Succ(n1) == Succ(n2) then
SuccEQ = TRUE;

end
end
/* SetPredicate if hammock found */
if SuccEQ and PredEQ then

DeleteLastIns (Pred(n1));
InsertIns (Pred(n1), setpred, cond);
for each pair of instructions in1, in2 from n1 and n2 do

InsertIns (Pred(n1), in1);
InsertIns (Pred(n1), in2);

end
MergeBB (Pred(n1), Succ(n1));
DeleteBB (n1);
DeleteBB (n2);

end
end

The examples shown above is the same as the one described in Section 2.2.2.
Although each setpred instruction can only predicate upto eight pairs of in-
structions, longer blocks of code can be predicated by multiple setpred instruc-
tions with the same condition for each portion of the large block.

This method of predication is more effective than ARM predication because,
in the case of ARM, nops are issued for predicated instructions whose condition
is not satisfied. Remember, in the case of ARM, every fetch only fetches one
32-bit instructions. Hence, when the predicate is not satisfied, the instruction
fetched is not executed and that cycle is wasted. In the case of Thumb, since two
16-bit instructions from both paths are available, the one that satisfies the pred-
icate is executed while the other is discarded. However, this form of predication
can be applied only to simple single branch hammocks corresponding to a sim-
ple if-then-else construct. Hence, the algorithm described here (algorithm 1),
first detects such branch hammocks in the CFG for the function, then interleaves
the instructions from the two branches, merging them with the parent basic
block. We consider pairs of sibling nodes during a Breadth-First Traversal of
the CFG for hammock detection. A hammock is detected when (i) the predecessor
of both siblings is the same, (ii) there is exactly one predecessor, and (iii) both
siblings have the same successor. Once a hammock is detected, it is predicated
by inserting a setpred instead of the branch instruction and interleaving the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

24 • A. Krishnaswamy and R. Gupta

Fig. 7. Predication.

code from the two branches as shown in Figure 1. The CFGs for the code example
described above, before and after the transformation, are shown in Figure 7.

2.3.2 Phase 2. The code segment shown next illustrates the general case
for AX Transformations which captures the majority of AX instructions. This
example uses the setshift and setsource AX instructions. The setshift in-
struction specifies the type and amount of the shift needed by the following
instruction. The setsource instruction specifies the high register needed as
the source for the following instruction. While the Thumb code requires the ex-
ecution of five instructions, the AXThumb code only executes three instructions.

Thumb Code
(1) mov r2, r5
(2) lsl r4, r2, #2
(3) mov r3, r9
(4) sub r1, r4
(5) ldr r5, [r3, #100]

AXThumb Code
(1) mov r2, r5
(2,4) setshift lsl #2

sub r1, r2
(3,5) setsource high r9

ldr r5, [-,#100]

Since these transformations are local to a basic block, the algorithm shown
in Figure 2 uses the basic block dependence DAG as its input. Since AXThumb
pairs replace dependent Thumb instructions, it is sufficient to examine adja-
cent nodes along a path in the DAG. We traverse the DAG in Breadth-First
Order and examine each node with its predecessor. AXThumb pairs have to

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 25

Algorithm 2: DAG Coalescing for generic AX instructions

input : Basic Block DAG D with nodes numbered according to the topological
order and register liveness information

output : Basic Block DAG D with Coalesced Nodes to indicate AXThumb
instruction pairs

for each n ε nodes in BFS order of D do
for each p εPred(n) do

Let dependence between n and p be due to register r.
if r is not live following instructions (n,p) then

/* Check if nodes n and p are coalescable */
if CandidateAXPair (n,p) then

G ← ∅
G ← Coalesce (n,p)
/* Check if coalesced Graph is a DAG */
isDAG = TRUE
for each e ε edges in G do

If Source (e) > Destination (e) then
isDAG = FALSE

end
end
if isDAG then

D ← G
end

end
end

end
end

be instructions adjacent to each other in the instruction schedule. While re-
placing Thumb pairs with equivalent AXThumb pairs, in order to ensure that
this property is maintained, we coalesce the nodes of the candidate Thumb
pairs into one node representing the AXThumb pair. However to maintain the
acyclic property of the DAG, we have to ensure that this coalescing of candidate
Thumb instructions does not introduce a cycle. The nodes in the DAG are num-
bered according to the topological sorted order of the instruction schedule. By
checking for back edges from higher numbered nodes to lower numbered nodes
during coalescing, we make sure that the acyclic property is maintained. The
final instruction schedule is the ordering of nodes according to increasing node
id where for coalesced nodes, the node id is the id of the first instruction in the
node.

For our example, instructions 3 and 5 are candidates and instructions 2 and 4
are candidates. The CandidateAXPair function takes in two Thumb instructions
and checks to see if they are candidates for replacement. This involves a liveness
check. Using liveness information, in our example one can say that register r4,
in instruction 2, is a temporary register. Since the two dependent instructions
(subtract and shift) can be replaced using a setshift instruction and register
r4 is not live after instruction 3, the CandidateAXPair function returns the
AXThumb pair that could replace instructions 2 and 4. Since coalescing nodes
2 and 4 does not introduce a cycle, the replacement is legal. The algorithm for

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

26 • A. Krishnaswamy and R. Gupta

Fig. 8. Phase 2.

phase 2 is shown in Figure 2 and the DAG for our example, before and after
the transformation is shown in Figure 8.

2.3.3 Phase 3. The third phase handles the specific case of the setallhigh
instruction, where a whole sequence of Thumb instructions is converted to
an AXThumb pair. The code segment shown next illustrates the need for a
setallhigh instruction. Since only low registers can be accessed in Thumb
state, the saving and restoring of context at function boundaries results in the
use of extra move instructions. In the example above, first the low registers are
pushed onto the stack, the high registers are then moved to the low registers
before they are pushed onto the stack. Using the setallhigh instruction we
can avoid the extra moves, indicating that the next instruction accesses high
registers.

Thumb Code
(1) push [r4, r5, r6, r7]
(2) mov r4, r8
(3) mov r5, r9
(4) mov r6, r10
(5) mov r7, r11
(6) push [r4, r5, r6, r7]

AXThumb Code
(1) push [r4, r5, r6, r7]
(2,3) setallhigh

push [r4, r5, r6, r7]

This transformation, like phase 2, is local to a basic block and uses the basic
block DAG as its input. The algorithm detects such sequences during a Breadth-
First traversal of the DAG. The dependence in the DAG is between the push
instructions and the move instructions as shown in Figure 9. The move instruc-
tions are siblings with predecessor and successors as the push instructions in
the DAG. This condition is checked for as shown in Figure 3. The PushorPopList
functions find instructions that push/pop a list of registers and performs the
liveness check on these registers. The movLoHi function makes sure the regis-
ter being used in the mov instruction is in the list of registers in the push/pop
instruction encountered before. Once such a pattern is detected all the sibling

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 27

Fig. 9. SetAllHigh AX transformation.

Algorithm 3: DAG Coalescing for setallhigh AX instructions

input : Basic Block DAGs (with nodes in the topological sorted order of the instruction
schedule) for the basic block predecessors of the exit node and successors of
the entry node in the CFG and register liveness information

output : Reduced Basic Blocks with setallhigh AX instructions
for each DAG D ε set of basic blocks B do

for each n ε BFS order of nodes in D do
if PushOrPopListLo (n) then

/* Check for the replaceable mov instructions */
isReplacable = TRUE
for each m ε Succ (n) do

Let r be the destination register in m.
if r is not live following Succ (m) then

if not movLoHi (m) |
not PushOrPopListHi (Succ (m)) | numSuccs (m) �= 1
then

isReplacable = FALSE
end

end
end
/* Remove MOVs and insert a setallhigh */
if isReplacable then

for each m ε Succ (n) do
Save ← Succ (m)
Remove (m)

end
Succ (n) ← Save
SettoLo (Save)
Coalesce (setallhigh, Succ (n))

end
end

end
end

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

28 • A. Krishnaswamy and R. Gupta

nodes are replaced with one single node containing the setallhigh instruction.
This node is then coalesced with the successor node which is the push/pop
instruction to ensure that two instructions are adjacent to each other in the
instruction schedule.

3. PROFILE-GUIDED APPROACH FOR MIXED CODE

In this section, we provide a description of the profile-guided approach for the
generation of mixed code [Krishnaswamy and Gupta 2002]. First we describe,
the instruction support already available in the ARM/Thumb instructions set
that allows such mixed code generation. We show why generating mixed code
at fine granularity (i.e., for sequences of instructions like those we described
in Section 2.2) results in poorer code. We briefly describe the best heuristic
from [Krishnaswamy and Gupta 2002] Heuristic 4 (H4), called PGMC from
here on, which generates mixed code at coarser granularity next. We present
experimental results comparing AX to PGMC approach along with other ex-
perimental results in Section 4. There has been recent work on mixed code
generation at compile time, which generates mixed code at a finer granularity
than the approach described in Krishnaswamy and Gupta [2002]. The reader
is pointed to Lee et al. [2003] for details on this approach.

3.1 BX/BLX Instructions

The ARM/Thumb ISA supports the Branch with eXchange (BX) and Branch
and Link with eXchange instructions. These instructions dictate a change in
the state of the processor from the ARM state of execution to the Thumb state
or vice versa. When the target register in these instructions (Rm) has its 0th
bit (Rm[0]) set the state changes to Thumb otherwise it is in ARM state. These
instructions change the Thumb bit of the CPSR (current program status register),
indicating the state of the processor.

Using the BX instruction at finer granularity, we could generate a mixed
binary that targets the specific sequences that AX targets. However this
technique is ineffective as we show in Figure 10. As we can see from the code
transformation shown, when the longer Thumb sequence is replaced by a shorter
ARM sequence, we introduce three additional instructions. Moreover, the align-
ment of ARM code at word boundary may cause an additional nop to be intro-
duced preceding the first BX instruction. Hence, for the small sequences that are
targeted by AX, this method introduces too much overhead due to the extra in-
structions leading to a net loss in performance and code size. Therefore, this ap-
proach is ineffective when applied at fine granularity. On the other hand if this
transformation were applied at coarser granularity, the overhead introduced
by the extra instructions can be acceptable. In the next section we describe a
heuristic that carries out mixed code generation at coarser granularity.

3.2 Profile-Guided Mixed Code Heuristic (PGMC)

A profile-guided approach is used to generate a mixed binary, one that has
both ARM and Thumb instructions. This heuristic chooses a coarse granularity
where some functions of the binary are ARM instructions, while the rest is

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 29

Fig. 10. Replacing thumb sequence by ARM sequence.

Thumb. The compiler inserts BX instructions at function boundaries to enable
the switch from ARM to Thumb state and vice versa as required. Heuristics
based on profiles determine which functions use ARM instructions allowing
the placement of BX instructions at the appropriate function boundaries. The
basic approach that we take for generating mixed code consists of two steps.
First, we find the frequently executed functions once using profiling (e.g., using
gprof). These are functions which take up more than 5% of total execution time.
Second, we use heuristics for choosing between ARM and Thumb codes for these
frequently executed functions. For all other functions, we generate Thumb code.
The above approach is based upon the observation that we should use Thumb
state whenever possible. For all functions within a module (file of code), we
choose the same instruction set. This approach works well because when closely
related functions are compiled into mixed code, optimizations across function
boundaries are disabled, resulting in a loss in performance.

PGMC uses a combination of instruction counts and code size collected on
a per function basis. We use the Thumb code if one of the following conditions
hold: (a) the Thumb instruction count is lower than the ARM instruction count;
or (b) the Thumb instruction count is higher by no more than T1% and the
Thumb code size is smaller by at least T2%. We choose T1 = 3 and T2 = 40 for
our experiments. We determined these settings through experimentation across
a set of benchmark as discussed in Krishnaswamy and Gupta [2002]. The idea
behind this heuristic is that if the Thumb instruction count for a function is
slightly higher than the ARM instruction count, it still may be fine to use Thumb
code if it is sufficiently smaller than the ARM code as the smaller size may lead
to fewer instruction cache accesses and misses for the Thumb code. Therefore,
the net effect may be that the cycle count of Thumb code may not be higher
than the cycle count for the ARM code.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

30 • A. Krishnaswamy and R. Gupta

Table III. Benchmark Description

Name Description

rtr Routing Lookup Algorithm
crc Cyclic Redundancy Check Algorithm
adpcm Adaptive Differential Pulse Code Modulation (Encode/Decode)
pegwit Elliptical Curve Public key Encryption Algorithm
frag IP Packet Header Fragmentation
reed Reed Solomon Forward Error Correction Algorithm
drr Deficit Round Robin Scheduling

4. EXPERIMENTAL RESULTS

The primary goal of our experiments is to determine how much of the perfor-
mance loss experienced by the use of Thumb code, as opposed to ARM code,
can be recovered by using the AX instruction set and instruction coalescing.
To carry out this experimentation we implemented the described techniques in
our simulation and compilation environment. Then we ran the ARM, Thumb,
and AXThumb versions of the programs and compared their performance. We
describe the experimental setup followed by a discussion of the results.

4.1 Experimental Setup

A modified version of the Simplescalar-ARM [Burger and Austin 1997]
simulator was used for experiments. It simulates the five-stage Intel’s SA-1
StrongARM pipeline [Intel 2000b] with an 8-entry instruction fetch queue. The
I-Cache configuration for this processor is 16 Kb cache size, 32b line size, and
32-way associativity, and miss penalty of 64 cycles (a miss requires going off-
chip). The simulator was extended to support both 16-bit and 32-bit modes, the
Thumb instruction set, and the system call conventions followed in the newlib
c library. This is a lightweight C library used on embedded platforms that does
not provide explicit network, I/O and other functionality typically found in li-
braries such as glibc. CACTI [Reinman and Jouppi 1999] was used to model
I-cache energy. The xscale-elf gcc version 2.9 compiler used was built to
create a version that supports generation of ARM, Thumb as well as mixed
ARM and Thumb code. Code size being a critical constraint, all programs were
compiled at -O2 level of optimization, since at higher levels code size increas-
ing optimizations such as function inlining and loop unrolling are enabled. The
benchmarks used are taken from the Mediabench [Lee et al. 1997], Commbench
[Wolf and Franklin 2000], and NetBench [Memik et al. 2001] suites as they
are representative of a class of applications important for the embedded do-
main. The benchmark programs used do not require functionality not present
in newlib. A brief description of the benchmarks is given in Table III.

4.2 Performance of AXThumb

4.2.1 Instruction Counts. The use of AX instructions reduces the dynamic
instruction count of 16-bit code by 0.4% to 32%. Figure 11 shows this reduction
normalized with the counts for 32-bit ARM code. The difference in instruc-
tion count between ARM and Thumb code is between 3% and 98%. Using AX

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 31

Fig. 11. Normalized instruction counts.

instructions we reduce the performance gap between 32-bit and 16-bit code.
For cases such as crc and adpcm where there is substantial difference between
ARM and Thumb code, we see improvements between 25% and 30% bridging
the performance gap between ARM and Thumb by one third in the case of crc
and more than one half in the case of adpcm. For cases such as drr where Thumb
code is not much worse than ARM code (3%), we see little improvement using
AX instructions. In the other cases we see an improvement over Thumb code
of about 10% on an average. The difference in the instruction counts between
ARM and Thumb code indicates the room for possible improvement of 16-bit
code due to constraints present in 16-bit code. Using AX instructions we are
able to considerably bridge this gap between 32-bit and 16-bit code.

4.2.2 Cycle Counts. Figure 12 shows the cycle count data for Thumb and
AXThumb code relative to the ARM code. The use of AX instructions gives
varying cycle count changes between −0.2% and 20% compared to Thumb code.
We see reduction of 15% to 20% in cycle counts for crc and adpcm compared to the
Thumb code, reducing the difference between ARM and Thumb by half in the
case of crc and about 66% with the adpcm programs. In the other three cases
where Thumb cycle counts are higher than ARM, namely frag reed.encode,
reed.decode, and rtr, we see that there is a moderate reduction in cycle counts
compared to Thumb. However the difference between the ARM and Thumb
codes itself being moderate, in the cases of rtr and reed.encode, AXThumb code
gives a lower cycle count compared to even ARM code. The improved I-cache
behavior of the Thumb and AXThumb codes compared to ARM code makes this
possible. In the other cases, where Thumb code already outperforms ARM code
we see little improvement as there is little scope for the use of AX instructions.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

32 • A. Krishnaswamy and R. Gupta

Fig. 12. Normalized cycle counts.

Fig. 13. Normalized code size.

4.2.3 Code Size and I-Cache Energy. The code sizes of Thumb and AX-
Thumb are almost identical. This is because in all cases where AXThumb
instructions replace Thumb instructions, the size is only decreased if at all
changed. The decrease occurs due to the introduction of setallhigh or setpred
instructions as mentioned before. In all other cases the size does not change.
The code sizes relative to ARM are shown in Figure 13. Figure 14 shows the I-
cache energy for Thumb and AXThumb codes relative to ARM code. In the three
cases where Thumb has higher I-cache energy, namely crc and the two adpcm

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 33

Fig. 14. Normalized I-cache energy.

programs, we see that AXThumb reduces the I-cache energy making them al-
most as little as ARM. In the other cases we see AX always has lower I-cache
energy compared to Thumb, making it even better compared to ARM. Lower
I-cache energy results from fewer fetches from the I-cache. Fewer fetches could
result from code size reducing AX transformations such as, setpred, setallhigh,
and negative immediate offset examples shown in section 2.2. Additionally, the
number of fetches into the instruction queue depends on the utilization of the
queue. AXThumb consumes instructions at a faster rate from the instruction
queue compared to Thumb, filling up the queue slower compared to Thumb.
Hence, on taken branches when the queue is flushed, there are fewer instruc-
tions that are flushed, which account for the extra fetches performed by Thumb.
Since the instruction count is reduced, energy spent during instruction execu-
tion, in other parts of the processor is also reduced. The addition of the AX
processor in the decode stage is a very small increase in energy spent since
the operations of the AX processor are very simple involving detection of the
AX opcode and setting the status if the instruction is an AX instruction. How-
ever, this small amount of energy is spent by every cycle. The I-cache consumes
a significant portion of the total energy (upto 25% in some implementations
[Segars 2001]), while the decode stages consume little energy. Hence, savings
in I-cache energy translate into significant overall energy savings. Thus, while
more energy is spent in the decode stage, there is a significant savings from the
I-cache. An accurate estimation of energy would require an energy model for
all parts of the processor during our simulation. Currently, our infrastructure
only models I-cache energy behavior.

4.2.4 Usage of AX Instructions. In Table IV we show a weighted distri-
bution of the AX instructions executed by each benchmark. Each benchmark

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

34 • A. Krishnaswamy and R. Gupta

Table IV. Usage of Different AX Instructions

Benchmark setallhigh setpred setsbit setshift setsource setdest setthird setimm

rtr 11.77% 0.00% 82.34% 5.88% 0.00% 0.00% 0.00% 0.00%

crc 0.00% 0.00% 0.27% 99.72% 0.00% 0.00% 0.00% 0.00%

adpcm.rawcaudio 0.00% 36.30% 36.30% 14.52% 0.00% 7.26% 0.00% 5.59%
adpcm.rawdaudio 0.00% 34.47% 34.47% 13.79% 3.44% 10.34% 3.44% 0.00%

pegwit.gen 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%
pegwit.encrypt 0.19% 0.00% 80.22% 5.01% 6.23% 0.00% 8.32% 0.00%
pegwit.decrypt 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%

frag 4.44% 0.00% 0.00% 6.66% 13.33% 4.44% 66.66% 4.44%

reed.encode 0.01% 0.00% 3.81% 0.00% 68.45% 0.00% 27.71% 0.00%
reed.decode 0.01% 0.00% 1.09% 0.63% 88.29% 0.00% 9.95% 0.00%

drr 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

uses a different set of AX instructions, and all AX instructions have been used
by at least two benchmarks. Instructions that made an impact in almost all
benchmarks were setsbit, setshift, setsource, and setthird. Predication
was found to be useful only in adpcm as in other benchmarks small branch
hammocks capable of being predicated were not found. In crc, a small set of
setsbit instructions in the hotspots of the code gave very good performance im-
provement. drr had little opportunity for insertion of AX instructions resulting
in the use of a few setsbit instructions which did not give much of an im-
provement. The use of setallhigh in rtr resulted in smaller code as a result of
removing unnecessary moves, which was also the reason for reduced instruction
count.

4.3 Comparison with Profile-Guided Mixed Code

4.3.1 Cycle Counts. Figure 12 also shows the cycle counts for PGMC nor-
malized with ARM cycle counts. crc is the only benchmark where AX cycle
counts are considerably more than PGMC. For most of the other benchmark
the AX and PGMC counts are very close. In some cases such as adpcm, frag,
and reed.decode, PGMC has lower cycle counts; while in other cases such as
rtr, pegwit, and reed.encode, AX has lower cycle counts. In some cases for
PGMC such as rtr, crc, and adpcm, the heuristic chooses all modules to be com-
piled into ARM code. In the case of drr, PGMC chooses to compile all modules
into Thumb code. The cycle counts for these benchmarks reflect these decisions.

4.3.2 Code Size. Figure 13 also shows the code size for PGMC normalized
with respect to the ARM code sizes. We see that for quite a few benchmarks,
PGMC is significantly worse than AX. Also notice how AX always has smaller
code size compared to PGMC. As indicated above, the reason for larger code size
in PGMC is due to the choice of using only ARM code. The amount of memory
required for AX is in general lesser than PGMC.

4.3.3 I-Cache Energy. Figure 14 also shows the I-Cache energy for PGMC
normalized with I-cache energy for ARM code. PGMC has I-cache energy
for all but three benchmarks. This is significant in benchmarks such as

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 35

pegwit.gen and rtr, and less significant in other benchmarks such as reed and
frag. In the other three programs we notice AX is marginally worse than PGMC.

From the above results we see that AX and PGMC, each have some advan-
tages over the other. PGMC has better performance in general while AX has
smaller code size. With the support of more AX type of instructions, one could
possibly further improve performance. From an energy perspective, with our
current infrastructure, it is hard to estimate accurately which is superior. In-
struction coalescing, if carried out with more AX style of instructions, could
possibly remove the need to support the 32-bit ISA and still achieve perfor-
mance of 32-bit code.

5. RELATED WORK

Most closely related work can be classified broadly into two areas: code compres-
sion and coalescing techniques. Previous work in the area of code compression
consists of techniques to compact code, keeping performance loss to a minimum.
The technique we describe in this paper improves the performance of already
compact code. Coalescing techniques have been employed at various stages:
compile time, binary translation time, and dynamically using hardware at run-
time. All of the techniques were applied in the context of wide issue superscalar
processors, using a considerable amount of hardware resources. Our technique,
uses a limited amount of hardware resources, making it viable for an embedded
processor. Let us look at specific schemes, in the above-mentioned areas.

Wolfe and Chanin [1992] proposed a compressed code RISC processor, where
cache lines are Huffman encoded and decompressed on a cache miss. The core
processor is oblivious to the compressed code, executing instructions as usual.
Compression ratios of 70% were reported. Lekatsas and Wolf [1998] used the
above model and proposed new schemes for compression by splitting the instruc-
tion space into streams to achieve better compression ratios. A dictionary-based
compression scheme was proposed by Lefurgy et al. [1997]. The technique as-
signs shorter encodings for common sequences of instructions. These encodings
and the corresponding sequences are stored in a dictionary. At runtime, the
decoder uses the dictionary to expand instructions and execute them. Debray
and Evans [2002] describe a purely software approach to achieving compact
code. Profiles are used to find the frequently executed portions of the program.
The infrequently executed parts are then compressed, making decompression
overhead low while achieving good compression ratios.

We now turn to previous approaches to instruction coalescing. Qasem et al.
[2001] describe a compile time technique to coalesce loads and stores. They
use a special swap instruction that swaps the contents of memory and reg-
isters. As a result they execute fewer instructions and also reduce memory
accesses. The picojava processor [McGhan and O’Connor 1998] implements in-
struction folding to optimize certain operations on the stack. A stack cache
holds the top 64 values of the stack enabling random access to any of the 64 lo-
cations. For instructions that can be folded, like arithmetic operations with
operands in the stack cache, the processor performs instructions folding by

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

36 • A. Krishnaswamy and R. Gupta

generating a RISC like instruction. This avoids unnecessary stack operations.
Hu and Smith [2004] recently proposed instruction fusing for the x86, where
they fuse micro-instructions generated by x86 instructions. The dynamic trans-
lator fuses two dependent instructions if possible, reducing the number of slots
occupied in the scheduling window and improving ILP as a result. Instruction
coalescing/preprocessing has been used for trace caches where the stored traces
are optimized at runtime by the hardware. Friendly et al. [1998] described an
optimization that combined dependent shift and add instructions. Jacobson and
Smith [1999] describe instruction collapsing where a small chain of dependent
instructions is collapsed into one compound instruction. Both of the above tech-
niques optimize the traces stored in the trace cache.

Finally researchers have recognized the advantages of augmenting instr-
uction sets. Given an instruction set and an application, it is often the case
that one can identify additional instructions that would help improve the per-
formance of the application. Razdan and Smith [1994] proposed an approach
for enabling introduction of such instructions by providing programmable
functional units. In contrast, our approach to augmenting Thumb instruction
set is not application specific or adaptable. It is rather specifically aimed at
reintroducing instructions that had been eliminated from the ARM instruction
set in order to create the Thumb instruction set.

6. CONCLUSIONS

The design of dual instruction width processors like ARM poses an important
challenge. Some of the functionality of the 32-bit ARM instructions must be
sacrificed to obtain a more compact 16-bit encoding for Thumb instructions.
We have demonstrated an approach which very effectively compensates for the
weaknesses of the 16-bit code bridging the performance gap between 16-bit and
32-bit codes without detriment to the code size and energy reducing properties
of 16-bit code. A new class of AX instructions is carefully designed so that
extra Thumb instructions can be eliminated at runtime through instruction
coalescing performed in the processor’s decode stage. These instructions were
implemented using exactly one unused opcode in the 16-bit encoding space.
The compiler is responsible for identifying Thumb instructions that can be
eliminated and replacing them with appropriate AX instructions. The hardware
extensions are simple and by handling the AX instructions in parallel with other
instructions we avoid any increase in the processor’s cycle time.

REFERENCES

BURGER, D. AND AUSTIN, T. 1996. The Simplescalar Toolset. Technical Report CS-TR-96-1308,
University of Wisconsin-Madison.

DEBRAY, S. AND EVANS, W. 2002. Profile-guided code compression. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation. ACM, New York,
95–105.

FRIENDLY, D. H., PATEL, S. J., AND PATT, Y. N. 1998. Putting the fill unit to work: Dynamic optimiza-
tions for trace cache microprocessors. In Proceedings of the 31st Annual International Symposium
on Microarchitecture. IEEE/ACM, Piscataway, NJ/New York, 173–181.

FURBER, S. 1996. ARM System Architecture. Addison-Wesley, Reading, MA.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Dynamic Coalescing for 16-Bit Instructions • 37

HU, S. AND SMITH, J. 2004. Using dynamic binary translation to fuse dependent instructions. In
Proceedings of the IEEE/ACM International Symposium on Code Generation and Optimization.
IEEE/ACM, Piscataway, NJ/New York, 213–224.

INTEL 2000a. The Intel Xscale Microarchitecture Technical Summary. ftp://download.intel.
com/design/intelxscale/XScaleDatasheet4.pdf.

INTEL 2000b. Sa-110 Microprocessor Technical Reference Manual. ftp://download.intel.com/
design/strong/applnots/27819401.pdf.

INTEL 2002. A white paper on The Intel pxa250 applications processor.
JACOBSON, Q. AND SMITH, J. E. 1999. Instruction pre-processing in trace processors. In Proceed-

ings of the International Symposium on High-Performance Computer Architecture. IEEE-CS,
Piscataway, NJ, 125–129.

KRISHNASWAMY, A. AND GUPTA, R. 2002. Profile guided selection of arm and thumb instructions.
In Proceedings of the ACM SIGPLAN Joint Conference on Languages Compilers and Tools for
Embedded Systems & Software and Compilers for Embedded Systems, Berlin, Germany. ACM,
New York, 55–64.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1997. Mediabench: A tool for evaluating and
synthesizing multimedia and communications systems. In Proceedings of the 30th Annual Inter-
national Symposium on Microarchitecture. IEEE/ACM, Research Triangle Park, NC, 330–335.

LEE, S., LEE, J., MIN, S. L., HISER, J., AND DAVIDSON, J. W. 2003. Code generation for a dual instruc-
tion set processor based on selective code transformation. In Proceedings of the 7th International
Workshop on Software and Compilers for Embedded Systems, Vienna, Austria. LNCS, vol. 2826,
Springer, Berlin, 33–48.

LEFURGY, C., BIRD, P., CHEN, I.-C., AND MUDGE, T. 1997. Improving code density using compression
techniques. In Proceedings of the 13th Annual International Symposium on Microarchitecture.
IEEE/ACM, Research Triangle Park, NC, 194–203.

LEKATSAS, H. AND WOLF, W. 1998. Code–compression for embedded systems. In Proceedings of the
Design Automation Conference. IEEE/ACM, 516–521.

MCGHAN, H. AND O’CONNOR, M. 1998. Picojava: A direct execution engine for java bytecode. IEEE
Comput. 31, 10 (Oct.), 22–30.

MEMIK, G., MANGIONE-SMITH, W. AND HU. 2001. Netbench: A benchmarking suite for network pro-
cessors. In Proceedings of the IEEE International Conference on Computer-Aided Design. IEEE,
Piscataway, NJ, 39–42.

QASEM, A., WHALLEY, D., YUAN, X., AND VAN ENGELEN, R. 2001. Using a swap instruction to coalesce
loads and stores. In Proceedings of the European Conference on Parallel Computing. 235–240.

RAZDAN, R. AND SMITH, M.D. 1994. A high-performance microarchitecture with hardware-
programmable functional units. In Proceedings of the 27th Annual International Symposium
on Microarchitecture. IEEE/ACM, San Jose, CA, 172–180.

REINMAN, G. AND JOUPPI, N. 1999. An integrated cache timing and power model. Technical Report,
Western Research Lab.

SEGARS, S., CLARKE, K., AND GOUDGE, L. 1995. Embedded control problems, thumb and the
arm7tdmi. IEEE Micro 15, 5 (Oct.), 22–30.

SEGARS, S. 2001. Low power design techniques for microprocessors. Tutorial Notes, International
Solid-State Circuits Conference. IEEE, Piscataway, NJ.

WOLF, T. AND FRANKLIN, M. 2000. Commbench—A telecommunications benchmark for network
processors. In Proceedings of the International Symposium on Performance Analysis of Systems
and Software. IEEE, Piscataway, NJ, 154–162.

WOLFE, A. AND CHANIN, A. 1992. Executing compressed programs on an embedded risc archi-
tecture. In Proceedings of the 25th Annual International Symposium on Microarchitecture.
IEEE/ACM, Portland, OR, 81–91.

Received October 2003; revised April 2004; accepted July 2004

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

