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This paper presents a dynamic model of endogenous coalition formation in cooperative games with

transferable utility. The players are boundedly rational. At each time step, a player decides which

of the existing coalitions to join, and demands a payo�. These decisions are determined by a

best{reply rule, given the coalition structure and allocation in the previous period. Further, the

players experiment with myopically suboptimal strategies whenever there are potential gains from

trade. We establish an isomorphism between the set of absorbing states of the process and the set

of core allocations, and show that the process converges to one of these states with probability one

whenever the core is non{empty. These results do not require superadditivity of the characteristic

function, and they carry over to the case of coalitional values depending on the coalition structure.
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1 Introduction

Most equilibrium concepts in games, both cooperative and non{cooperative, are

static by de�nition. For example, the core of a cooperative game is the set of feasi-

ble allocations that cannot be blocked by any coalition of players. This implies that

core allocations are stable in the sense that, once a core allocation is achieved, no

subset of players can gain by deviating from it. However, the theory fails to explain

how the players arrive at a core allocation, or at equilibrium in general. Reaching a

certain allocation (core or otherwise) requires the completion of two a priory unre-

lated processes on the part of the players: Coalition formation and bargaining about

how to split the surplus within each of the coalitions. Once coalitions have formed,

the surplus, or payo� accruing to each coalition, is determined by the characteristic

function of the game. However, the concept of the core relies on allocations, i. e. in-

dividual payo�s, rather than coalitional surplus. The link between the two concepts,

�We wish to thank Andreas Blume for his suggestions and comments, and we are grateful to the

participants of the workshop Coalition Formation and Applications to Economics, Bilbao, April

1999, for helpful comments and discussions.
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the characteristic function on the one hand and the core on the other, is an implicit

bargaining process that detemines the division of the coalitional payo� between the

members of the coalition. The theory of cooperative games ignores both the issue

of coalition formation and the bargaining process.

The present paper addresses these issues. We are interested in questions like: How

do coalitions form, and how do the players decide on the division of the coalitional

payo�? How do coalition structures change over time? Which of the possible coali-

tion structures will the players eventually arrive at, and what will be the resulting

allocation?

Dynamic learning models provide a framework for analysing these questions. These

models are based on the assumption that players are only boundedly rational, and

follow simple adaptation rules which are based on myopic optimization. While dy-

namic learning models have been widely applied to non{cooperative games (Ellison

(1993), Kandori, Mailath, and Rob (1993), Young (1993) are among the most sem-

inal works), relatively little research in this �eld has been done with respect to

cooperative games.

This paper provides a dynamic model of endogenous coalition formation. The setup

is similar to models of dynamic learning in non{cooperative games with local in-

teraction and player mobility (e. g. Dieckmann 1999). In these models, players can

move freely between several locations at each time step, and interaction, i. e. the

play of a game, takes place only between players inhabiting the same location. A

strategy for each player thus consists of a location choice and an action for the game.

Similarly, in the context considered here, a player's strategy consists of a coalition

choice and a demand for his share of the coalitional payo�. That is, at each time

step, a player decides which of the existing coalitions to join, and demands a share

of the payo�, which is determined by the characteristic function. A player will join

(or quit) a coalition if and only if he believes it is in his own best interest to do so.

Therefore, these decisions are determined by a (non-cooperative) best{reply rule: A

player switches coalitions only if his expected payo� in the new coalition exceeds his

current payo�, and he demands the most he can get conditional on feasibility. More

precisely, the player observes the prevailing coalition structure and the demands of

the other players. Expectations are adaptive in the sense that each player expects

the present coalition structure and demand to prevail in the next period. The player

then chooses the coalition in which he can demand the highest possible payo�, given

the demands of the other members of that coalition, and subject to feasibility. As

time goes to in�nity, the process generated by all players' adopting the best{reply

rule converges to an absorbing state (or set of states). Under the pure best{reply

process, absorbing states do not necessarily involve core allocations. However, if we

allow the players to experiment, i. e. deviate from the best{reply rule with a small

probability whenever there exists a potentially better outcome, all absorbing states

will be identi�ed with core allocations.

Despite the fact that there have been several experimental studies on coalition forma-

tion (e.g. Sauermann (1978), Rapoport, Kahan, Funk, Horowitz (1979)), there are
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only very few theoretical papers dealing with the problem of coalition formation in

a dynamic context. These are the works by Shenoy (1979,1980), Packel (1981), and,

most closely related to this paper, Agastya (1997, 1999). Agastya (1997) presents a

dynamic model of social learning where, in each period, each player observes a ran-

dom sample of demand vectors drawn from a �nite history, and adjusts his demand

according to a best{reply rule. This rule di�ers from the one used in the present

paper in that players maximize their expected payo�s, conditional on the probability

that their demand is compatible with a feasible allocation. Agastya assumes that,

whenever there exists any coalition structure for which a player's demand is feasible,

given the other players' demands, the player receives the payo� he demands with

probability one. The process of coalition formation is not modeled. Agastya derives

an isomorphism between the set of absorbing states of the learning process and the

core of the game. Agastya (1999) extends the model by introducing \mistakes" on

the part of the players, and �nds that the set of stochastically stable states is a

subset of the set of core states.

Our model departs from Agastya in several respects. First, Agastya entirely ab-

stracts from coalition formation, and focuses on allocations. The bargaining process

considered by Agastya is simple: Each player announces his demand, i. e. the payo�

he asprires to get. If there exists a coalition structure such that the vector of all

players' demands is feasible, then each player will get his demand with probability

one. Agastya (1999) writes: \it is reasonalbe to assume that eventually, a maximal

coalition (in terms of set inclusion) whose demands are feasible forms."1 Indeed, for

the class of superadditive games considered by Agastya, this assumption is reason-

able. Our model, however, is not restricted to superadditive games. We allow for

the case that, e. g. large organizations may operate less e�ciently than the sum of

their constituent parts. In this case, it is not reasonable to assume that a maximal

coalition will form. Instead, we model the coalition formation process explicitly, by

the players' choosing both a demand and a coalition in each period. The coalition

structure in each period is thus endogenously determined, which allows us to study

how coalitions of players evolve over time. Further, letting the players choose their

coalitions makes our model applicable to a wider range of economic problems, such

as local public good economies, or clubs2, where individuals care not only about

allocations but also about the number and/or the characteristics of people in their

coalition.

A further advantage of our approach is that it allows us to extend the model to the

case of coalition structure dependent payo�s, which we do in section 6. In many

economic situations, a coalition's payo� is not independent of other coalitions, e. g.

duopoly, or public good games where coalitions can free ride on other coalitions'

contributions to the provision of a public good.

A model of endogenous coalition formation in a dynamic context is provided by

1Agastya (1999), p. 215.
2For a survey of the literature, see Wooders (1999); for an application of adaptive learning to

local public good economies see Dieckmann (1999).
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Packel (1981). He de�nes a Markov process on the set of outcomes, i. e. payo�

allocations. Given the individual preferences over all outcomes, the transition prob-

ability from one state to another is proportional to the number of minimal coalitions

that prefer the new state to the old one. The core is then de�ned by the union of the

absorbing states of the process. The stochastic solution of the process is the proba-

bility distribution obtained by letting time go to in�nity. It follows that, whenever

the core in non{empty, the stochastic solution places probability one on the set of

core allocations. Moreover, Packel shows that, if the strong core (i. e. the singleton

set of undominated outcomes that can be reached from every other outcome with

positive probability) is non{empty, the stochastic solution places probability one on

that state. The main di�erence between Packel's model and our own is that Packel

abstracts from behaviour rules on the individual level, while we explicitly model the

players' coalition choice and demands with respect to payo�.

For the sake of completeness, we would like to mention other strands of the literature

concerned with bargaining and coalition formation, which are (albeit somewhat re-

motely) related to our model. These approaches come under the heading of \endoge-

nous coalition formation", e. g. Raj and Vohra (1996, 1997), or \non{cooperative

models of coalition formation", e. g. Perry and Reny (1994). This literature provides

models of bargaining that lead to some kind of stable coalition structure. However,

these models are entirely di�erent in spirit since they focus on a one{shot game,

i. e. the process ends once a stable coalition structure has emerged. In contrast,

our model is inherently dynamic: Coalition choice and bargaining are carried out

repeatedly according to a predetermined adaptation process, the best{reply rule,

which never ends. To illustrate this di�erence by an example, consider the model

of Perry and Reny (1994). Building on a model by Kalai, Postlewaite and Roberts

(1978), Perry and Reny use a continous time model where at each point in time a

player can make a proposal consisting of a coalition to which the player would like

to belong and a payo� allocation for the members of that coalition. If the proposal

is accepted by the members of the coalition, these players drop out of the game and

the remaining players continue bargaining. In e�ect, Perry and Reny associate with

every cooperative game with transferable utility a noncooperative sequential game,

and show that the stationary subgame perfect equilibria of this game conincide with

the core allocations of the cooperative game, thus providing a non{cooperative mo-

tivation for core allocations. However, this approach is static rather than dynamic:

One notion of equilibrium, the core, is justi�ed by another, the Nash equilibrium.

The model does not provide an explanation of how such an equilibrium is reached,

or if it is reached at all. While models of non{cooperative foundations of the core

are interesting in their own right, they are conceptually di�erent from our dynamic

approach.

The remainder of the paper is organized as follows. The next section introduces

the basic model. We provide a de�nition of the core for non{superadditive games,

and describe the adaptation process. Section 3 shows the existence of absorbing

states. In section 4, we modify the process by introducing noise. Section 5 provides
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our main result, namely that the modi�ed process converges to a state involving a

core allocation with probability one as time tends towards in�nity, regardless of the

initial state in which the process starts. Section 6 extends the model to the case of

coalition structure dependent payo�s, and section 7 concludes.

2 The Model

Let N = f1; : : : ; ng denote the set of players. Any subset S � N is called a

coalition. The set of all nonempty coalitions 2N n f;g is denoted by N . A game

in characteristic function form with transferable utility (or for short a TU{game)

is de�ned by a mapping v : N ! R, the characteristic function. This function v

associates with any nonempty coalition the maximal total payo� for that coalition.

Note that the payo� for a coalition does not depend on the behaviour of other

coalitions. A vector of payo�s x = (x1; : : : ; xn), one for each player, is called an

allocation. An allocation is feasible for coalition S if
P

i2S xi � v(S).

Usually, cooperative game theory makes several assumptions on the characteristic

function, e. g. superadditivity or convexity of v. A characteristic function is su-

peradditive if for any two disjoint coalitions S and T the following relation holds:

v(S)+v(T ) � v(S[T ), i. e. if the members of S and T unite, they can do at least as

well as by remaining separate. Convexity, an even stronger assumption, is de�ned

as follows: A characteristic function is convex if for any two coalitions S and T :

v(S) + v(T ) � v(S [ T ) + v(S \ T ).

If the cooperative game is superadditive, an allocation is called feasible if
P

i2N xi
� v(N), and it is e�cient if equality holds. Assume that an allocation x has been

proposed. If a group of players can form a coalition which can secure its members

a higher payo� than the proposed allocation, this coalition will block the proposal.

Formally, the allocation x will be blocked by a coalition S if
P

i2S xi < v(S). This

idea is employed by the solution concept of the core of a game, which is de�ned by

the set of all feasible allocations that cannot be blocked by any coalition. That is,

an allocation x is in the core ifX
i2N

xi = v(N) and
X
i2S

xi � v(S) 8S � N:

However, superadditivity or convexity of the characteristic function are quite re-

strictive requirements. As an example, consider the following simple production

economy. Suppose that each player is endowed with capital ei, and endowments are

transformed into a single good by a real valued production function f . If we de�ne

the characteristic function by v(S) = f(
P

i2S ei), superadditivity of the character-

istic function implies non{decreasing returns to scale.

In order to be able to deal with non-superadditive characteristic functions, we re-

de�ne the concepts of feasibility and the core in the following way. Let C denote

the set of all possible coalition structures, i. e. the set of all partitions of N , where

a typical coalition structure is denoted by C. We say that an allocation is feasible
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if the total payo� to the players does not exceed the highest possible outcome, i. e.

the outcome that can be achieved under the most favourable coalition structure: x

is feasible if
P

i2N xi � maxC2C
P

S2C v(S).

De�nition 1 For any TU{game v, an allocation x 2 Rn is a core allocation if

(i)
P

i2N
xi = maxC2C

P
S2C

v(S), and

(ii)
P

i2S xi � v(S) 8 S � N .

In words: The allocation x is feasible and e�cient, and there are no blocking coali-

tions.

Note that, if v is superaditive, maxC2C
P

S2C v(S) is equal to v(N), such that con-

dition (i) of the de�nition reduces to the familiar expression
P

i2N xi = v(N).

In order to exclude trivial games, we assume that no single player can do better on

his own than as a member of any coalition.

Assumption 1 For all coalitions S:
P

i2S
v(fig) � v(S).

We now turn to the best{reply process by which coalitions evolve. Each player i's

strategic variables are his coalition choice and his demand di, i. e. the share of the

surplus generated by v he aspires to get.

Time is discrete. In each period t, all players announce their respective demands,

and the allocation is determined in a way to be described shortly. Realized payo�s

depend on the compatibility of the individual demands in each coalition. The allo-

cation in period t+ 1 is determined as follows. If the demands within a coalition S

are feasible, each member of S will receive his demand. Otherwise, each i 2 S gets

his reservation payo� v(fig). That is, for each i 2 S,3

xi =

(
di if

P
i2S di � v(S)

v(fig) otherwise.
(1)

Thus, a player's reservation payo� can be interpreted as a disagreement outcome:

If negotiations fail in the sense that the members of a coalition are unable to agree

upon the division of the surplus, each has to fall back upon his own resources.

Assumption 1 ensures that the allocation xi = v(fig) for all i 2 S is feasible.

We say that the demand vector d = (di)i2N is feasible given coalition structure C ifP
i2S di � v(S) for all S 2 C.

A players opportunity to revise his strategy arises at random. In each period t, each

player independently takes a random draw from a Bernoulli trial. With probability


 2 (0; 1), the draw produces the outcome \adjust".4 If this happens, the player

adjusts his current strategy as follows. He observes the prevailing coalition structure

3In what follows, the superscript t is omitted in order to simplify notation.
4N�oldeke and Samuelson (1993) refer to this event as \receiving the learn draw".
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Ct 2 C, as well as the demand vector dt = (dt1; : : : ; d
t
n). On the basis of this

information, the player decides whether to join any of the existing coalitions S 2 Ct

or to form a singleton coalition, and simultaneaously announces his demand dt+1i .

This determines the coalition structure and the demand for the next period. The

state of the game at each point in time is therefore characterized by the the tuple

!t = (Ct; dt).

For reasons of mathematical tractability, we restrict the players' demands to be

chosen from a �nite set. Suppose there is a smallest accounting unit � with 0 < � < 1,

and � su�ciently small.

Assumption 2 Each player's demand is restricted to the �nite set Di of all integral

multiples of � in the closed intervall [v(i);maxC2C
P

S2C v(S)].

Given any coalition structure C, the strategies available to player i are

�i(C) := f(Si; di)jSi = S [ fig for some S 2 C [ f;g; di 2 Dig:

Player i's strategy set is then

�i = [C2C�i(C):

As the number of possible coalitions and coalition structures as well as the possible

demands are all �nite, we are dealing with a �nite strategy space. Thus, the notions

of feasibility and e�ciency, and therefore the de�nition of a core alloction, have to

be modi�ed.

De�nition 2 For any TU{game v, an allocation x 2 Rn is a core allocation if

(i) xi 2 Di 8 i 2 N ,
P

i2N xi � maxC2C
P

S2C v(S), and if the inequality is strict,

then
P

i2N xi + � > maxC2C
P

S2C v(S),

(ii)
P

i2S xi � v(S) 8 S � N .

In what follows, the term \core allocation" will refer to de�nition 2.

The players are myopic. A player who is selected to move seeks to maximize his

expected payo� for the next period, conditional on feasibility. Further, the players

have adaptive expectations. Each player, when it is his turn to adjust his strategy,

expects the current coalition structure and the demands of the other players to

prevail in the next period. Note that, if 
, the probability of getting the opportunity

to adjust, is small, these expectations are \almost" rational: If 
 is small, the

probability that two players revise their strategies at a time is close to zero.

The players' choice of coalition membership is restricted by the current coalition

structure. Given any coalition structure C, the player faces three options: (i) he

can stay in his present coalition, (ii) he can join any of the other coalitions S 2 C,

or (iii) he can form the singleton coalition fig (if this is di�erent from (i)). At this

point, coordination problems may arise due to incompatibility of players' plans. For
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instance, suppose in some period t, player i is forming the singleton coalition fig,
but plans to join some coalition S in t+1, while another player, j, plans to join fig
in t + 1. Now, if both i and j get the chance to adjust their strategies at the same

time, their plans will be incompatible. To solve this problem, we assume that each

player, when he gets the chance to move, can always leave his current coalition and

join the coalition of his choice, but no player can be forced to stay in any coalition.

That is, player i will join S, and j will end up in the singleton coalition fjg. If

coalitions are interpreted as �rms, the assumption implies that employees can quit

(and join another �rm) without notice. An alternative interpretation would be to

imagine that coalitions form at certain \meeting points", i. e. di�erent locations, or

clubs, where all players assembled at the same location form a coalition. A player

who wants to join a coalition has to go to that coalition's meeting point. In the

above example, this means that i would go to the meeting point of coalition S, and

at the same time j would go to the location formerly occupied by i, which he will

�nd deserted. This assumption ensures that the coalition structure in each period

is always well de�ned.

As a myopic maximizer, the player chooses that coalition which promises him the

highest feasible payo�. His demand is then determined by his maximum expected

payo� given the other players' demands, i. e.

di(!) = max
S2C[f;g

v(S [ fig)�
X
j 6=i
j2S

dj s.t. di 2 Di;(2)

and the chosen coalition Si(!) is one in which di can be achieved, given the demands

of its members, i. e.

Si(!) 2

8><
>:arg max

S2C[f;g
v(S [ fig)�

X
j 6=i
j2S

dj

9>=
>; :(3)

If this coalition is not unique, the player randomizes, choosing each of the maximizing

coalitions with positive probability. However, we assume that a player switches

coalitions only if his maximum expected payo� from doing so strictly exceeds his

current payo�, i. e. if di(!) > xi.

Given the �nite strategy space, the individual adaptation rules de�ne a �nite Markov

chain with state space 
 = f! = (C; d)jC 2 C; d 2 �i2NDig. Let S(i) denote the

coalition player i belongs to in any state !. The transition probability from state !

to !0 with demand d0i and coalition S 0(i) is then

p!!0 = �i2N
�i(!
0j!);

where �i is de�ned by the best{reply rule, i. e. �i(!
0j!) > 0 if and only if d0i = di(!)

as de�ned in (2), and S 0(i) is a maximizer of (3). In what follows, we will refer to

this Markov chain as the best{reply process.

8



As coalition structures evolve over time, it is interesting to analyse under what

conditions the process will settle down to a stable coalition structure, where no

player has an incentive to switch anymore. To this purpose, we employ the concept

of ergodic sets.

De�nition 3 A set E � 
 is ergodic if for any ! 2 E , !0 =2 E, p!!0 = 0, and

no nonempty proper subset of E has this property. Singleton ergodic sets are called

absorbing states, i. e. ! 2 
 is absorbing if p!! = 1.

Ergodic sets are thus minimal sets with the property that, once the process has

entered such a set, it will remain in that set forever after, and the process will per-

petually vacillate between the states in the ergodic set. A stable coalition structure

will evolve if the process reaches a singleton ergodic set, an absorbing state. In an

absorbing state, no player has an incentive to revise his strategy, given the prevailing

coalition structure. The following lemma characterizes absorbing states.

Lemma 1 A state ! = (C; d) is an absorbing state of the best{reply process if and

only if the following three conditions are met:

(i) di = xi � v(fig) 8 i 2 N ,

(ii) 8 S 2 C :
P

i2S di � v(S), and if the inequality is strict, thenP
i2S di + � > v(S),

(iii) 8 i 2 N :6 9S 2 C : v(S [ fig)�
P

j 6=i
j2S

dj > xi.

Proof. Condition (i) states that the allocation corresponding to the state equals

the demand vector. This is the case if and only if demands are feasible, clearly a

necessary condition for the state being absorbing. Further, each player must get at

least his reservation payo�, or else he would deviate from the state by forming a

singleton coalition.

Condition (ii) states that the allocation within each coalition is feasible and e�cient.

If the sum of the demands fell short of v(S), at least one member of the coalition

could increase his demand without a�ecting feasibility, unless the di�erence between

v(S) and the total demand is smaller than the smallest accounting unit �.

Finally, (iii) ensures that no player has an incentive to switch coalitions. While

each of these conditions is necessary for an absorbing state, the three conditions

together are su�cient: If all three conditions are met, no player can possibly gain

by deviating from that state. 2

Absorbing states thus represent individually stable equilibria in the de�nition of

Greenberg (1994).
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3 Absorbing States

Absorbing states represent stable strategy con�gurations in the sense that no player

wants to revise his strategy. Assumption 1 provides a su�cient condition for the

existence of absorbing states.

Theorem 1 If assumption 1 holds, the best{reply process has at least one absorbing

state.

Proof. Assumption 1 implies v(N) �
P

i2N v(fig). An absorbing state is constructed
as follows: Assume that the grand coalition fNg has formed and each player receives
a payo� xi � v(fig) with

P
i2N xi = v(N). As payo�s are individually rational, no

player has an incentive to form the singleton coalition. Further, as all players are

members of the grand coalition, there is no other coalition to join. Finally, as

the demands sum up to v(N), no player can increase his demand. Thus, under

the condition of the theorem, each element of the set 
N (v) := f! = (C; d)jC =

fNg; di � v(fig) 8 i 2 N;
P

i2N di = v(N)g is an absorbing state. 2

The set 
N is the set of states involving the grand coalition where all players'

demands are indiviually rational, and the demand vector is feasible and e�cient

given fNg. That is, the set of allocations associated with 
N is the set of all

e�cient imputations achievable by the grand coalition. Stated otherwise, a su�cient

condition for an absorbing state to exist is that the game is essential in the de�nition

X.2.6 of Owen (1995).

It is well known from the theory of �nite Markov chains that, as time tends towards

in�nity, the process converges to an ergodic set with probability one, irrespective of

the initial state.5 However, the best{reply process considered here typically exhibits

multiple absorbing states and/or ergodic sets, and which of these will eventually be

reached depends on the initial state in which the process starts. As the title of this

paper suggests, we are interested in deriving conditions under which the process

converges towards states involving core allocations. We are now going to explore

the relationship between absorbing states and the core of a game.

Clearly, if x is a core allocation, every state ! = (C; d) with d = x where d is

feasible given C must be absorbing: Condition (i) of de�nition 1 implies (i) and (ii)

of lemma 1, and the non{existence of blocking coalitions (condition (ii) of de�nition

1) implies condition (iii) of lemma 1.

However, the converse is not true, as the following examples show.

Example 1: Let N = f1; 2; 3g,and v(fig) = 2 for all i 2 N , v(S) = 5 for jSj = 2,

and v(N) = 8. The state ! = (fNg; (4; 2; 2)) is absorbing, but the allocation

x = (4; 2; 2) is not in the core since it is blocked by the coalition f2; 3g.
Example 2: The 3{player majority game. N = f1; 2; 3g, v(fig) = 0 for all i 2 N ,

and v(S) = 10 for jSj � 2. The core is empty, but any state ! = (fNg; d) withP
i2N di = 10 is absorbing. In addition to absorbing states, this example exhibits

5E. g. Kemeny and Snell (1976), Theorem 3.1.1 on p. 43.
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non{singleton ergodic sets. This is the case if the process starts in a state where

one of the players receives the entire surplus of 10, e. g.

!1 = (ff1; 2g; f3gg; (10; 0; 0))

!2 = (ff1g; f2; 3gg; (10; 10; 0))

!3 = (ff1g; f2; 3gg; (0; 10; 0))

!4 = (ff1; 3g; f2gg; (0; 10; 10))

!5 = (ff1; 3g; f2gg; (0; 0; 10))

!6 = (ff1; 2g; f3gg; (10; 0; 10))

!7 = !1:

The transitions between the states are e�ected as follows. In !1, only player 2 is

not playing a best reply. Thus, if player 2 gets the chance to adjust, he will join

player 3 to form the coalition f2; 3g, and demand d22 = 10. If any of the other two

players get the chance to adjust, they will not change their strategies. Therefore, !2

is constructed from !1 by player 2's strategy adjustment. In !2, player 1's demand

is not feasible for the coalition f1g. Player 1's best reply is to adjust his demand to

zero, and stay in the singleton coalition. Players 2 and 3 are playing best replies in

!2. The new state !3 is thus obtained from !2 by adjusting player 1's demand. In

!3, the only player who does not play a best reply is player 3. If he gets the chance

to adjust, he will join player one to form the coalition f1; 3g, and demand d43 = 10.

This leads to !5, and so forth.

Once this set is entered, the process will forever \cycle", i. e. visit the states !1 to !6

in a �xed order. However, due to the stochastic nature of the adjustment process,

the states are not visited at regular intervals of time. For instance, switching from

!1 to !2 requires that player 2 gets the opportunity to adjust his strategy, an event

that occurs with probability 
. As a consequence, the process might remain in state

!1 for several periods, until player 2 is able to adjust, and the number of periods

the process stays in each state is random.

Thus, using the pure best{reply rule described above, the process might get trapped

in a dominated allocation, or in a \cycle". Similar phenomena have been observed

in other contexts, e. g. in the theory of conventions where it could be shown (cf.

Berninghaus and Schwalbe (1996), Young (1993)) that a population of players will

adopt an ine�cient convention, in problems concerning the choice of a technology as

in Arthur (1989), or in the theory of the core of an exchange economy when trade is

restricted to a bilateral exchange as in Feldman (1973). We will now slightly mod-

ify the players' adaptation rule by allowing them to experiment with (myopically)

suboptimal strategies.
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4 Best Reply with Experimentation

The result that the set of absorbing states may comprise ine�cient or non{equilibrium

states is not new, as the literature on evolutionary models of non{cooperative games

shows (e. g. Kandori et al. (1993), Young (1993)). A solution to this problem is to

introduce noise to the dynamics by allowing the players to pick myopically subop-

timal strategies with a small probability, which is supposed to model evoultionary

mutations, or \trembles", that are interpreted as mistakes in the socio{economic

context. The limit distribution of this stochastic process is then derived by letting

the probability of mistakes go to zero, and the states that receive positive probability

under the limit distribution are called stochastically stable. The set of stochastically

stable states is a subset of the set of absorbing states of the model with no noise.

Thus, stochastic stability can be regarded as a \re�nement" of the concept of ab-

sorbing states, in the sense that some of these states are singled out.

While Agastya (1999) adopts this method to narrow down the set of absorbing states,

we pursue a di�erent approach. Instead of allowing for mistakes, we introduce

experiments on the part of the players. To motivate the idea of experimenting,

suppose the system has entered an absorbing state that is not in the core. That is,

there exists a blocking coalition which cannot be realized due to the current coalition

structure. For instance, in example 1, players 2 and 3 could secure themselves a

payo� of 5, but the coalition f2; 3g cannot be realized because, according to the

rules of the game, the players can switch only between existing coalitions, or form

a singleton coalition.

Now, if we assume that the characteristic function is common knowledge among the

players, each player is aware of the fact that a blocking coalition exists. While players

2 and 3 would want to form this coalition, the absence of communication possibilities

prevents them from doing so. The only way to enable the coalition f2; 3g to form

would be for one of the two players to form a singleton coalition, say f2g, and player
3 to join in the next period. This, however, contradicts our assumption that players

switch coalitions only if they expect a strictly higher payo�. We now modify the

model by allowing the players to switch to myopically suboptimal strategies (with

a small probability) whenever they are a member of a potentially blocking coalition

that cannot be reached under the prevailing coalition structure.

Assumption 3 In any state ! = (C; d), whenever there exists a coalition S 0 =2 C

with v(S 0) >
P

i2S0 di, each player i 2 S 0 chooses a best reply with probability 1� �,

and takes each strategy (Si; di) 2 �i(C) with probability �=j�i(C)j when he gets the

opportunity to revise his strategy. The probability � is independent across players

and states.

In words, a player chooses any combination of coalition and demand with positive

but small probability. Experimenting enables a player to destabilize a state involving

a dominated allocation, at the cost of a temporary loss in payo�. Experimenting

di�ers from the concept of \trembles" or \mutations" mentioned above in that
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experimenting is done deliberately: the players experiment if and only if there exists

an outcome that is potentially better for them, whereas mutations occur in any state

with uniform probability. We believe it is reasonable to assume that players will be

inclined to experiment only if there is a chance that the outcome of the experiment

may eventually improve their situation.

Note that experimenting requires a slightly higher degree of rationality than the

simple best{reply rule, since the players have to be able to look two periods ahead,

not just one. However, they are still far from being fully rational, which would

require choosing a strategy in each period that maximizes their expected payo� for

all future periods, taking into account the entire history of the game. In contrast,

experimenting requires to look forward only two periods, and to take only the current

state into account.

We will refer to the best{reply process modi�ed by assumption 3 as the best{reply

process with experimentation. Clearly, states involving dominated demand vectors

cannot be absorbing states of this process, since there is a positive probability that

a player experiments. As a result, we get the following theorem.

Theorem 2 The set of demand vectors associated with an absorbing state of the

best{reply process with experimentation coincides with the set of core allocations:

(i) If x is a core allocation, then all ! = (C; d) with d = x and d being feasible

given C are absorbing states.

(ii) If ! = (C; d) is an absorbing state, then d is a core allocation.

Proof. Part (i) is obvious: If x = d is in the core, no player can gain either by

switching coalitions or by changing his demand. Moreover, as no blocking coalitions

exist, no player experiments. Thus, the state is absorbing.

Part (ii): Suppose ! = (C; d) is absorbing, but d is not in the core. If d is not a core

allocation, there exists a coalition S with v(S) >
P

i2S di. Assumption 3 implies

that all i 2 S experiment with probability �. Thus, there is a positive probability

that the state is left, a contradiction to ! being absorbing. 2

It is clear that the set of absorbing states of the process with experimentation is a

subset of the set of absorbing states of the pure best{reply process. The following

example illustrates the theorem.

Example 3: Suppose the number of players n is even, v(fig) = 0, and v(S) = jSj+2
for all S � N with jSj � 2. Here the optimal coalition size, i. e. the number of

members that maximizes the (average) per capita payo� is jSj = 2. The unique core

allocation is xi = 2 for all i 2 N .

Note that, if a player's current payo� is less than one, and there are at least two coali-

tions, his best reply will be to switch coalitions and demand a payo� of one. Thus,

the set of absorbing states of the best{reply process is 
N (v) [ f! = (C; d)jjSj �
2;
P

i2S di = v(S) 8 S 2 C; di � 1 8 i 2 Ng, where 
N (v) is de�ned as in the

proof of theorem 1. The set of absorbing states of the process with experimentation
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is the subset of states where players form pairwise coalitions and demand 2, i. e.

f! = (C; d)jjSj = 2 8 S 2 C; di = 2 8 i 2 Ng. The common demand vector of these

states coincides with the core allocation of the game.

5 Convergence to Absorbing States

Theorem 2 states that, if the core is non{empty, each core allocation can be reached

in an absorbing state, and any absorbing state can be associated with a core alloca-

tion. However, the theorem does not guarantee that a core allocation will actually

be reached by the process. While the theory of Markov chains provides a result

that ensures convergence towards an ergodic set, it does not guarantee that such a

set be singleton, i. e. an absorbing state (see example 2). The following theorem

excludes the possibility that the process gets \trapped" in an ergodic set other than

an absorbing state.

Theorem 3 If the core is non{empty, the best{reply process with experimentation

will converge to an absorbing state with probability one as time tends towards in�nity.

Proof. We prove the result by showing that all ergodic sets are singletons. Suppose

that there exists an ergodic set E � 
 with jEj � 2. We establish a contradiction by

showing that E contains a state from which there is a path to an absorbing state.

Theorem 2 ensures that none of the states in E involve a core allocation. (This

follows from the fact that all core allocations are reached in an absorbing state, and

ergodic sets are minimal, i. e. cannot contain other ergodic sets.) As a consequence,

each state ! = (C; d) 2 E is characterized by the existence of a coalition S =2 C

with v(S) >
P

i2S di. That is, there are some players who will experiment with

suboptimal strategies if they get the chance to adjust their strategies. There is a

positive probability that all these players get the chance to adjust in some period t,

and no other player gets this chance. Moreover, there is a positive probability that

all players who experiment form the singleton coalition and demand their reservation

payo�, i. e. they pick the strategy (fig; v(fig)). Thus, all states resulting from any

! 2 E by replacing S(i) with Snfig and adding fig in C and replacing di with v(fig)
for all players i who experiment with the singleton coalition can be reached with

positive probability from !. Denote the set of all such states by R(!). It follows

that [!2ER(!) � E , since all states in that set are reached with positive probability.

By the same argument as above, elements of R(!) cannot involve core allocations.

Repeating the same procedure as before, replacing E by R(!) for each ! 2 E in the

argument, we get a set R2(!) for each ! 2 E . Again, the union of all the R2(!)

must be in E .
It is clear that, after repeating this procedure a �nite number k of times, the set

[!2ER
k(!) contains the state where either (a) each player forms the singleton coali-

tion, or (b) some players form singleton coalitions, and those who are not in a
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singleton coalition have no incentive to experiment. That is, for players in non{

singleton coalitions, there is no potentially blocking coalition that would give one of

them a higher payo� than the current xi. However, it could be that these players'

demands sum up to less than v(S). In this case, there is a positive probability that

some of these players get the opportunity to adjust their demands, and no other

player gets this opportunity. The resulting state satis�es v(S)� � <
P

i2S xi � v(S)

for all non{singleton coalitions S. Thus, E contains a state !0 = (C 0; d0) with the

following property: Either S 0(i) = fig and di = v(fig) for all i 2 N , or, if there are

coalitions S 0 2 C 0 with jS 0j � 2, then there exists an absorbing state !c = (Cc; dc)

such that S 0 = Sc for some Sc 2 Cc, and d0i = dci for all i 2 S 0, for all S 0 with

jS 0j � 2. (As the core is non{empty, an absorbing state exists. Further, as members

of S 0 play best replies and do not experiment, their demands must be part of a core

allocation.)

Starting from !0, an absorbing state !c = (Cc; dc) can be reached in one step. For

each i 2 N , we denote by Sc(i) the coalition i belongs to in the absorbing state.

Suppose the process is in state !t = !0. We now construct a vector of moves on the

part of the players that yields !t+1 = !c. Assumption 1 ensures that, in state !0,

for each player who forms the singleton coalition, there exists a potentially better

coalition, and thus each i with S(i) = fig experiments with probability �. Further,

all players who are in a non{singleton coalition in !0 do not experiment. Now !c

can be reached as follows. For each T c 2 Cc, �x one player i with Sc(i) = T c.

Call this player i(T c). Now suppose all players who are in a singleton coalition get

the opportunity to adjust their strategies, and that all these players experiment.

This happens with probability (
�)m, where m is the number of singleton coalitions

in !0. The experimenting players choose the following strategies. Each player i

experiments with Si = Sc(i) and di = dci : For every coalition T c 2 Cc, the player

i(T c) stays in the singleton coalition fi(T c)g and demands dci . All other players

j 2 T c join the coalition fi(T c)g, and demand dcj. The resulting state is !c. That

probability p!0!c is equal to (
�=j�i(C
0)j)m, where j�i(C

0)j = jCcjjDij is the number
of strategies available to player i in state !0 (there are jCcj coalitions to choose

from). Thus, there is a positive probability that an absorbing state is reached when

the system starts in state !0. This is a contradiction to !0 being an element of an

ergodic set. It follows that all ergodic sets are singletons, which completes the proof.

2

Theorems 2 and 3 together ensure that, if the core of a game is non{empty, the best{

reply process with experimentation will reach a core allocation with probability one

as time goes to in�nity, no matter where the process starts.

6 Coalition Structure Dependent Payo�s

The characteristic function form of a game is based on the assumption that the

value of a coalition is independent of the coalition structure. In many economic
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situations, however, this is not the case. For instance, consider a Cournot{oligopoly

model where the �rms have the option to form binding coalitions, i. e. cartels. Then,

the payo� to each coalition depends on the entire coalition structure in the industry.

Our model can easily be extended to allow for this case.

The idea of coalitional payo�s depending on the underlying coalition structure is

captured by the concept of a partition function introduced by Raj and Vohra (1996).

A partition function � : N �C ! R assigns to each coalition S in coalition structure

C a value �(S;C).

The concept of a blocking coalition has to be rede�ned. Given a coalition struc-

ture C and allocation x, let CS be the coalition structure resulting from C by

removing all members of S from C and adding coalition S. For instance, if C =

ff1; 2; 3g; f4; 5; 6gg and S = f2; 4g, then CS = ff1; 3g; f2; 4g; f5; 6gg.
Coalition S can block x if �(S;CS) >

P
i2S xi. That is, S can block x if its value

under the new coalition structure, i. e. the one resulting from the deviation of S,

exceeds their payo� under x. The blocking of an allocation thus depends on the

coalition structure.

De�nition 4 A state (C; x) is stable if

(i)
P

i2N xi = maxC2C
P

S2C �(S;C), and

(ii)
P

i2S xi � �(S;CS) 8S � N .

The �rst condition states that the allocation in a stable state is feasible and e�cient.

The second condition ensures that no blocking coalitions exist.

As the players' payo�s depend on the coalition structure, a player's reservation payo�

is not uniquely de�ned, since the payo� a player can get as a singleton coalition fig
depends on the prevailing partition of Nnfig. We de�ne player i's reservation payo�

by the minimum payo� he can possibly get under any coalition structure.

De�nition 5 Player i's reservation payo� under partition function � is de�ned by

ri(�) = min
C2C;C�fig

�(fig; C):

Given this de�nition, assumption 1 can be rewritten as follows.

Assumption 4 For all coalition structures C and all S 2 C :
P

i2S ri � �(S;C).

In the special case of a coalition structure independent characteristic function, i. e.

�(S;C) = �(S;C 0) =: v(S) for all C, C 0 containing S, ri = v(fig), such that

assumption 4 is equivalent to the original assumption 1.

Given any state ! = (C; d), the allocation in this state is determined by player i in

coalition S receiving

xi =

(
di if

P
i2S di � �(S;C)

ri otherwise.
(4)
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The best{reply rule has to be slightly modi�ed. When choosing a coalition, a player

has to take into account the fact that coalitional payo�s vary with the coalition

structure. Given any state ! = (C; d), a player, when it is his turn to move,

picks that coalition for which the surplus �(S [ fig; �) �
P

j2S dj is maximized for

the coalition structure resulting from i's strategy adjustment. More precisely, his

coalition choice is determined by

Si(!) 2

(
arg max

S2C[f;g
�(S [ fig; Cfig)�

X
j2S

dj

)
;(5)

where Cfig is the coalition structure resulting from C by player i's strategy adjust-

ment, keeping all other players' strategies �xed.

Similarly, a players demand is given by

di(!) = max
S2C[f;g

�(S [ fig; Cfig)�
X
j2S

dj s.t. di 2 Di:(6)

It is immediately obvious that any stable state (C; d) must be absorbing under the

best{reply rule without experimentation. Assume that, in any state (C; d), if there

exists a coalition S 2 CS with �(S;CS) >
P

i2S di, all members of S experiment,

i. e. pick a best reply with probability 1 � � and any other strategy with proba-

bility �. Arguments analogous to the proofs of theorems 2 and 3 can be used to

establish an isomorphism between absorbing states and stable allocations, and en-

sure convergence to an absorbing state with probability one as time tends towards

in�nity.

7 Conclusion

This paper proposed a dynamic process of endogenous coalition formation in coop-

erative games. Coalition membership and the allocation of payo�s in each period

are determined by a simple adaptation rule that is based on myopic best replies on

the part of the players, and players experiment with suboptimal strategies when-

ever there is a chance that this might lead to a preferred coalition structure. Under

a very mild condition concerning the characteristic function, absorbing states are

shown to exist. Moreover, if the core is non{empty, the process will converge to a

state involving a core allocation with probability one.

The idea to apply dynamic learning processes to cooperative games is quite novel.

The new aspect introduced in the present paper is the explicit formulation of a

bargaining process that simultaneously determines the coalition structure and the

allocation in each time period. This formulation allows us to dispense with restric-

tive assumptions on the characteristic function such as superadditivity or convexity,

which in turn ensures that our model is applicable to a large class of games. What

is more, our results carry over to the case of coalition structure dependent payo�s.
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