
ue
r-
er
m
ur

r-
at
ed
th
d
a

he
g
+
-

re
l
ur
e
m
ch
to
e
ca
A
le
a
s/
ol

o
it

si

ns.
it
d
st
he
g
e

er
int
w
e

ed
ad
an
of
to
he
ot
re
ss
e

ad
of
e
to

rs.
e

ch
he
ff
nd
w
is

rms
e

al

Dynamic Code Partitioning for Clustered Architectures

Ramon Canal, Joan-Manuel Parcerisa, Antonio González

Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

Cr. Jordi Girona, 1-3 Mòdul D6
08034 Barcelona, Spain

{rcanal,jmanel,antonio}@ac.upc.es
Abstract

Recent works [14] show that delays introduced in the iss
and bypass logic will become critical for wide issue supe
scalar processors. One of the proposed solutions is clust
ing the processor core. Clustered architectures benefit fro
a less complex partitioned processor core and thus, inc
in less critical delays.

In this paper, we propose a dynamic instruction stee
ing logic for these clustered architectures that decides
decode time the cluster where each instruction is execut
The performance of clustered architectures depends on
inter-cluster communication overhead and the workloa
balance. We present a scheme that uses run-time inform
tion to optimise the trade-off between these figures. T
evaluation shows that this scheme can achieve an avera
speed-up of 35% over a conventional 8-way issue (4 int
4 fp) machine and that it outperforms other previous pro
posals, either static or dynamic.

1. Introduction

It is well known that current superscalar organisations a
approaching a point of diminishing returns. It is not trivia
to change from a 4-way issue to an 8-way issue architect
due to its hardware complexity and its implications in th
cycle time. Nevertheless, the instruction level parallelis
(ILP) that an 8-way issue processor can exploit is mu
beyond that of a 4-way issue one. One of the solutions
this challenge is clustering. Clustering offers th
advantages of the partitioned schemes where one
achieve high rates of ILP and sustain a high clock rate.
partitioned architecture tends to make the hardware simp
and its control and data paths faster. For instance, it h
fewer register file ports, fewer data bus source
destinations, and fewer alternatives for many contr
decisions.

Current processors are partitioned into tw
subsystems (the integer and the floating point one). As
has been shown [15, 17], the FP subsystem can be ea
-

.
e

-

e

e

n

r
s

ly

extended to execute simple integer and logical operatio
For instance, both register files nowadays hold 64-b
values, and simple integer units (no multiplication an
division) can be embedded within a small hardware co
due to today's transistor budgets. Furthermore, t
hardware modifications required of the existin
architectures are minimal. This work focuses on this typ
of clustered architecture with two clusters, one for integ
calculations and another one for integer and floating-po
calculations. The advantage of this architecture is that no
its floating-point registers, data path and mainly, its issu
logic are used 100% of the time in any application.

There are two main issues concerning cluster
architectures. The first one is the communication overhe
between clusters. Since inter-cluster communications c
easily take one or more cycles, the higher the number
communications the lower the performance will be due
the delay introduced between dependent instructions. T
second issue is the workload balance. If the workload is n
optimally balanced, one of the clusters might have mo
work than it can manage and the other might be le
productive than it can be. Thus, in order to achieve th
highest performance we have to balance the worklo
optimally and, at the same time, minimise the number
communications. The workload balance and th
communication overhead depend on the technique used
distribute the program instructions between both cluste
Programs can be partitioned either at compile-tim
(statically) or at run-time (dynamically). The latter
approach relies on a steering logic that decides in whi
cluster each decoded instruction will be executed. T
steering logic is responsible for maximising the trade-o
between communication and workload balance a
therefore, it is a key issue in the design. In this work, a ne
steering scheme is proposed and its performance
evaluated. We show that the proposed scheme outperfo
a previously proposed static approach for the sam
architecture [17]. Moreover, compared to a convention

for
e

al
ne

or
n
ire
y
s.

sed
nd

r
h
re,
er,
er
n
ic

e
ed
g

py
er
ch
n.
ion
ly
an
d
s
ths

an
ed
e
e
e

ld
ed
is
s)
al
ter
not

ne
er
an

on
architecture, it achieves an average speed-up of 35% for the
SpecInt95 and two Mediabench programs.

The rest of the paper is organised as follows. Section
2 presents the architecture and several approaches for the
steering logic. Section 3 describes the experimental
framework, the evaluation methodology, and it presents the
performance improvements resulting from the architecture
and steering logic described in Section 2. In Section 4 some
related work is presented and we conclude in Section 5.

2. Clustered Architecture

Clustered architectures have shown to be very effective to
reach high issue rates with low hardware complexity and
therefore they can take advantage of the ILP of the
applications [3, 9, 14, 15]. Although integer programs seem
not to have much parallelism, there is a growing number of
integer applications with high ILP such as multimedia
workloads (i.e. real-time video and audio). At the same
time, cluster organisations can operate at a higher clock
rate than the superscalar designs with an equivalent issue-
width. This work, focuses on a cost-effective clustered
architecture that requires minimal modifications of a
conventional superscalar organisation. This architecture is
based on the proposal made by Sastry et al. [17], which is
extended with dynamic steering of instructions. However,
the steering schemes proposed in our study can be applied
to any other cluster architecture.

2.1.Microarchitecture

The processor consists of two clusters, each of which
contains a register file and some basic integer and logic
functional units (see Figure 1). Moreover, one cluster
contains complex integer functional units (multiplier and
divider) and the other contains the floating-point functional

units. Local bypasses within a cluster are responsible
forwarding result values produced in the cluster to th
inputs of the functional units in the same cluster. Loc
bypassing is accomplished in effective 0 cycles, so o
output in cyclei can be the input of a FU the following
cycle (i+1). Inter-cluster bypasses are responsible f
forwarding values between functional units residing i
different clusters. Because inter-cluster bypasses requ
long wires, it is likely that these bypasses will be relativel
slower and take one cycle or more in future technologie
With an adequate steering logic, local bypasses are u
much more frequently than inter-cluster bypasses, a
therefore the penalty of long bypasses is reduced.

The processor implements dynamic registe
renaming by means of a physical register file in eac
cluster and a single register map table. In this architectu
most integer instructions may be steered to either clust
therefore their destination may be mapped to eith
physical register file. When a source operand of a
instruction resides in the remote cluster, the dispatch log
inserts a "copy" instruction. This instruction will read the
register when it is available and it will send the valu
through one of the inter-cluster bypasses. The forward
value will be copied to a physical register in the requestin
cluster for future reuse. Therefore, each time a co
instruction is dispatched, the forwarded logical regist
becomes mapped in two physical registers, one in ea
cluster, until it is remapped by a subsequent instructio
This scheme maintains some degree of register replicat
(on average, 8 registers per cycle) which dynamical
adapts to the program requirements and is lower th
replicating the whole integer register file [7]. Compare
with a full replication scheme, it has also les
communication requirements, and thus, less bypass pa
and less register file write ports.

The renaming table is managed as follows: when
instruction is decoded, a new physical register is allocat
for its output (if any) in the cluster it is sent to, and th
register map table entry is updated accordingly. At th
same time, the instruction keeps the old value of th
renaming entry till it is committed. If the instruction is
flushed from the pipeline (it was mis-speculated) the o
value of the renaming entry is restored, and the allocat
register is released. On the other side, if the instruction
committed, the old renaming physical register (or register
is released. One logical register will only have two physic
registers if its value has had to be copied from one clus
to the other. This scheme ensures that both clusters do
have different values of the same logic register.

Loads and stores are divided into two operations. O
of them calculates the effective-address and the oth
accesses memory. The effective-address is computed in
adder and then its value is forwarded to the disambiguati

STEERING
LOGIC

C1
Instr.
Queue

C2
Instr.
Queue

 Register
File 1

 Register
File 2

INT FUs Simple INT
FP FUs

CLUSTER 1 CLUSTER 2

Figure 1: Processor architecture

g

l
e
ere
. A
een

a

ed
re
the
he
ch
e
n
ot

ch
e
the
e
e

e,
he
is
n
th,
her
the
in
he

rk
le
s.
ge

h
h
he
ce
We
e
re
s
he

he
d.
hardware. Since both clusters have adders both clusters can
execute effective-address computations. In the common
disambiguation hardware, a load is issued when a memory
port is available and all prior stores know their effective-
address. If the effective address of a load matches the
address of a previous store, the store value is forwarded to
the load. Stores are issued at commit time.

2.2. Steering Logic

There are two options on how to distribute the instructions
between the two clusters: at compile -time (statically) or at
run-time (dynamically). A static partitioning means that the
compiler tags each instruction according to the cluster in
which it will be executed. The main advantage is that it
requires minimal hardware support. The drawbacks of this
scheme are that the ISA of the processor has to be extended
(for example, with one bit that indicates the cluster in
which the instruction will be executed) and this implies that
all the applications that run on this processor have to be
recompiled. The second drawback is that deciding where
an instruction will be executed long before it is in the
pipeline is not as effective as taking this decision inside the
processor. In the dynamic scheme on the other side, the
ISA has not to be changed and therefore the clustering of a
processor is transparent to the applications running on it.
The dynamic scheme is also more adaptable to the state of
the pipeline since it can decide where an instruction will be
executed according to the actual state of the pipeline.
Therefore the dynamic approach can minimise the number
of communications and can balance the workload better
than the static approach since the information used to
perform the steering is obtained straight from the pipeline
and not from an estimation of the compiler.

Clustered architectures introduce a trade-off between
communication and workload balancing. On one side, we
would like to have all dependent instructions in the same
cluster in order to minimise the communications between
clusters. On the other, we would like to have the same
number of instructions in each cluster in order to maximise
the use of the functional units. A good steering algorithm
has to find the optimal trade-off between communication
and workload balance.

2.2.1 Communication Criteria

All the communications are due to the fact that one of the
operands (or both) is in the other cluster than the one where
the instruction is executed. In order to minimise the
communications between clusters, the steering logic sends
dependent instructions to the same cluster. Furthermore,
some communications can be hidden if the instruction

waiting for it is not just waiting for this operand to arrive
from the other cluster (e.g. the other operand is still bein
calculated or being loaded from memory).

2.2.2 Workload Balance Criteria

Workload balancing should be performed with minima
impact on the communication overhead. A first naiv
approach is a random assignment to either cluster wh
both clusters have the same probability of being selected
second approach tends to balance the workload betw
both clusters and therefore, it can potentially achieve
higher performance.

There are many alternatives on how the least load
cluster can be determined at run-time. In other words, the
are several figures that can be used to measure
workload balance between both clusters. One figure is t
difference in the number of instructions steered to ea
cluster (we refer to this metric as I1). Another metric is th
difference in the number of instructions in the instructio
queue of each cluster. However, these metrics do n
consider the amount of parallelism present in ea
instruction queue at a given time. In other words, if on
cluster has many instructions but each depends on
previous one, it will be quite idle and it could accept mor
workload. Thus, a better estimation of the workload is th
number of ready instructions in the instruction queu
which depends on both the number of instructions and t
parallelism among them. A refinement of the later metric
to consider that there is a workload imbalance only whe
one cluster has more ready instructions than its issue wid
and the other has less than its issue width, since in any ot
scenario, the processor can execute the instructions at
maximum possible rate.We define I2 as the difference
the number of ready instructions of each cluster when t
condition above applies; otherwise I2 is zero.

The load balancing mechanism presented in this wo
considers the two metrics I1 and I2, by maintaining a sing
integer balance counter that combines both information
Each cycle, the counter is updated according to the avera
of I2, computed along N cycles. It is also updated wit
metric I1, by incrementing or decrementing it for eac
instruction steered, so every instruction decoded in t
same cycle sees a different value of the workload balan
and thus, massive steerings to one cluster are avoided.
have empirically observed that metric I1 is more effectiv
than the I2 to balance the workload when both a
considered isolated. In fact, metric I1 alone give
performance figures quite close to those produced by t
combination of I1 and I2.

To determine whether there is a strong imbalance, t
value of this counter is compared to a given threshol
Actually, when implementing it, we just need the

a
nt
m

e
d
on
s

one
of
er
is

s

as
the
is

the

lo
ne
ed
e

is
e,
ht

the
e
g

ic
e
r
ks
n
h
r

accumulated value of the counter since comparing the
average to a certain threshold is the same as comparing the
accumulated value to a threshold N times bigger. Adequate
values of N (number of cycles used to average the balance
figure I2) and the balance threshold are empirically
determined in Section 3.

2.2.3. Steering Schemes

The first steering scheme we have considered is quite
simple (Simple Register Mapping Based Steering -RMBS).
This scheme tries to keep the communications to a
minimum since it sends the instructions to the cluster in
which they have their register source operands. No
consideration of balance is taken relying on the fact that the
random steering that is used when the communication
overhead is the same for both clusters is good enough to
keep the balance steady. The algorithm works as follows:

• If the instruction has no register source operands it is

randomly assigned to a cluster.1

• If the instruction has one register source operand it is
assigned to the cluster in which the operand is mapped.

• If the instruction has two register source operands and
both are in the same cluster it is sent to the same cluster,
otherwise it is randomly sent to one of the clusters.

This scheme tries to minimise the number of
communications since it always sends the instructions
where its operands are mapped. Communications are
needed just in the case when one instruction has one
operand in each cluster.

The second scheme (Balanced RMBS) includes some
balance considerations. Whenever there is no preferred
cluster from the point of view of communication overhead,
the balance is taken into account and the instruction is sent
to the least loaded cluster.

• If the instruction has no register source operands it is
assigned to the least loaded cluster.

• If the instruction has one register source operand it is
assigned to the cluster in which the operand is mapped.

• If the instruction has two register source operands and
both are in the same cluster it is sent to the same cluster;
otherwise it is assigned to the least loaded cluster.

This scheme will improve significantly the workload
balance while trying to keep the communications to
minimum since the balance is just taken into accou
whenever both clusters are considered equally good fro
the communications point of view.

The last steering scheme (Advanced RMBS) is th
Balanced RMBS with a higher emphasis in the workloa
balance. This approach may decide that an instructi
executes in a different cluster from the one in which it ha
its operands due to the poor balance at that moment. On
hand, this scheme might increase the number
communications between the clusters but on the oth
hand, it improves the workload balance. The algorithm
the following:

• If the there is significant imbalance the instruction i
assigned to the least balanced cluster.

• Otherwise, it does the same as the Balanced scheme.
This scheme checks whether the imbalance value h
exceeded a given threshold and in this case it sends
instruction to the cluster that most favours the balance. Th
scheme tries to achieve a higher workload balance at
cost of some extra communications.

For comparison purposes we introduce the modu
steering. This scheme consists of sending alternatively o
instruction to each cluster if the instruction can be execut
in both clusters. If it can just be executed in one of th
clusters (integer multiplication/division or a FP
computation) it is steered to that cluster. This scheme
simple and very effective regarding workload balanc
there is also no consideration on communication so it mig
enforce many communication overhead.

3. Performance Evaluation

3.1. Experimental Framework

We have used a cycle-based timing simulator based on
SimpleScalar tool set [1] for performance evaluation. W
extended the simulator to include register renamin
through a physical register file and the steering log
described in Section 2. We used programs from th
SpecInt95 [20] and Mediabench [10] to conduct ou
evaluation (see Table 1 and Table 2). All the benchmar
were compiled with the Compaq-DEC C compiler for a
AlphaStation with the -O5 optimization level. For eac
benchmark, 100 million instructions were run afte

1. Recall that memory instructions are split into two
operations (see Section 2.1). The memory access of a
load is considered as an instruction without source
registers.
Benchmark go li gcc compress m88ksim vortex ijpeg perl

Input bigtest.in *.lsp insn-recog.i 50000 e 2231 ctl.raw, dcrand.lit vortex.raw pengin.ppm primes.pl

Table 1: Benchmark programs SpecInt95

Benchmark
adpcm epic

encode decode compresion decompresion

Input clinton.pcm clinton.adpcm test_image.pgm test_image.E

Table 2: Benchmark programs MediaBench

res

at
der
e

e
r

ll
th

of
nt

he
the
as

e
is
ce
e
is

nt
is

ks
nd
ce
a
In

on
S
to its
his
re
UB
s.
e

skipping the first 100 million; the Mediabench programs
were run till completion. Six configurations have been
simulated. First, the base architecture in which there are
two conventional 4-way issue clusters where one executes
integer operations and the other just floating-point
operations. The second is the clustered architecture
presented in this work with a modulo steering. The next
three configurations are also based on this clustered
architecture with the three proposed steering schemes:
Simple RMBS, Balanced RMBS and Advanced RMBS.

The main architectural parameters for these architectu
are shown in Table 3

Finally, as an upper bound of the performance th
can be achieved by the clustered architecture we consi
an architecture (UB architecture) that is the bas
architecture with twice the issue width and twice th
number of functional units. That is 8-way issue for intege
plus 8-way issue for fp. This architecture will execute a
integer instructions in the 8-way issue integer datapa
without incurring in any communication penalty.

3.2. Results

In this section, we present results for the effectiveness
the steering algorithms and the performance improveme
over the base architecture. In addition, we compare t
results of the proposed steering schemes to the ones of
upper-bound architecture. The results are presented
follows: first a general overview of the performance of th
different architectures except from the advanced RMBS
shown. Then, the reasons for the different performan
levels are analysed. Afterwards, a motivation for th
advanced algorithm is presented and its performance
determined. At the end, the performance of floating-poi
programs is evaluated and the advanced RMBS
compared to a static approach.

Figure 2 shows the IPC for each of the benchmar
and the harmonic mean for the SpecInt95, Mediabench a
both together. The modulo scheme has no performan
improvement (2% average slow-down) although it has
maximum speed-up of 17% in one of the benchmarks.
contrast, the Simple RMBS has significant wins (22%
average speed-up) due to its much lower communicati
overhead, as we will see in short. The Balanced RMB
steering scheme reaches a 27% average speed-up due
balance considerations. However, the speed-up of t
scheme is significantly under that of the UB architectu
(44% speed-up over the base architecture) since the
architecture does not have communication penaltie
Below, we analyse the factors that influence th

Parameter Configuration

Fetch width 8-instructions

I-cache 64KB, 2-way set-associative. 32 byte lines, 1 cycle hit
time, 6 cycle miss penalty

Branch Predictor
Combined predictor of 1K entries with a Gshare with

64K 2-bit counters, 16 bit global history, and a
bimodal predictor of 2K entries with 2-bit counters.

Decode/Rename width 8 instructions

Instruction queue size 64 64

Max. in-flight
instructions 64

Retire width 8 instructions

Functional units

3 intALU
+ 1 mul/div

3 intALU + 3 fpALU + 1
fp mul/div

1 comm/cycle to C2 1 comm/cycle to C1

Communications consume issue width

Issue mechanism

4 instructions 4 instructions

Out-of-order issue
Loads may execute when prior store addresses are

known

Physical registers 96 96

D-cache L1

64KB, 2-way set-associative. 32 byte lines, 1 cycle hit
time, 6 cycle miss penalty

3 R/W ports

I/D-cache L2

256 KB, 4-way set associative, 64 byte lines, 6 cycle
hit time.

16 bytes bus bandwidth to main memory, 16 cycles
first chunk, 2 cycles interchunk.

Table 3: Machine Parameters (separating cluster 1 and cluster 2 if not
common)
Figure 2: Performance results

go

gc
c

co
m

pr
es

s li

pe
rl

vo
rte

x

ijp
eg

m
88

ks
im

ad
pc

m

ep
ic

A
vg

. S
pe

cI
nt

95

A
vg

. M
ed

ia
Be

nc
h

A
vg

. b
en

ch
m

ar
ks

1

2

3

4

5

IP
C

Base Arch.
Modulo
Simple RMBS
Balanced RMBS
UB Arch.

pe
th
o
th
r
ny

e
w
n
e
of
ic
le

h
t
n
e
h
5

o

d
e
rs

or
a

ha
o

s
th
o

a
ns
lo,
ly
al

ng
cle
n
ct
ce
e
),
n
the
).

ms
h it
re

me
use
r
is
en

ce
,

performance of the three steering schemes presented
Figure 2.

3.2.1. Inter-Cluster Communication

Figure 3 shows the average number of communications
executed instruction. As expected, we can see that
modulo scheme has a much larger number
communications than the other schemes (almost 23% of
instructions executed require inter-cluste
communications), because it does not have a
communication locality criterion. This huge
communication overhead explains why it performs wors
than the other schemes (see Figure 2). The other t
schemes produce a similar number of communicatio
since they use very similar communication criteria. W
conclude that it is important to reduce the number
communications, since they cause overheads wh
significantly reduce performance, even for a 1-cyc
communication latency.

The communication overhead depends also on t
number of buses between the clusters. This paper shows
results for one bus each way (one from C1 to C2, and o
from C2 to C1). We have also simulated the sam
architecture with 3 busses each way. The results show t
the modulo scheme achieves an average speed-up of
over the base architecture, and that the other schemes
not change their performance (due to the low number
communications).

3.2.2. Workload Balance

Figure 4 presents the distribution function of the workloa
balance figure for a particular program (ijpeg). Rememb
that the figure is an average and that it only conside
imbalance as the situation where one cluster has m
ready instructions than the issue width and the other h
fewer. The peak at zero is the percentage of cycles t
there was not imbalance and the rest is the distribution
the figure for the remaining cycles. This distribution i
similar in all the benchmarks examined. We can see that
least balanced is the Simple RMBS since it does n

0.00

0.05

0.10

0.15

0.20

0.25

0.30
co

m
m

. /
 in

st
r

Modulo
Simple RMBS
Balanced RMBS

Figure 3: Average number of communications per dynamic
instruction
in

r
e
f
e

o
s

h

e
he
e

at
%
do
f

r

e
s
t
f

e
t

implement any balance policy. The Balanced RMBS has
better workload balance due to the balance consideratio
it implements. The most balanced scheme is the modu
since it sends one instruction to each cluster alternative
(see Section 2), and this policy produces a near optim
balance.

Figure 5 shows the average IPC of the three steeri
schemes plus the base and UB architectures for a 0-cy
communication latency. Since there is no communicatio
overhead in this scenario, this Figure illustrates the impa
on performance of the workload balance. In accordan
with the results in Figure 4, the Simple RMBS has th
lowest performance (13% lower than the UB architecture
the Balanced RMBS performs better (just 7% lower tha
the UB architecture), and the modulo scheme achieves
best performance (just 4% lower than the UB architecture
Overall, we can conclude that the modulo scheme perfor
worse than the others (see Figure 2) because, althoug
has a better workload balance, it enforces many mo
communications. At the same time, the Balance sche
performs better than the Simple one (see Figure 2) beca
it has a better workload balance while having a simila
number of communications. We can conclude that th
scheme achieves the best trade-off betwe
communication and workload balance.

3.2.3. Improving the Workload Balance

In Figure 2, we can see that the speed-up of the Balan
RMBS is 27% while that of the UB architecture is 44%

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

FP - INT

0

5

10

%
 of

 cy
cle

s

Modulo
Simple RMBS
Balanced RMBS

Modulo: 77.16%
Simple: 46.85%
Balanced: 54.87%

<=

>=

Figure 4: Workload balance figure distribution (ijpeg)

1

2

3

4

IP
C

Base Arch.
Modulo
Simple RMBS
Balanced RMBS
UB Arch.

Figure 5: IPC for a 0-cycle communication latency

al
w
to
id

nc
to

t
d
a
st
ns
y,
ds
to
h
e
h
i

ie
he
f

ha
e
th
he
ie

d
ws

the
e to
en
ch

ill
e
he
he
of
he
he

e is
ter
ot

ur
he

go

gc
c

co
m

pr
es

s li

pe
rl

vo
rte

x

ijp
eg

m
88

ks
im

ad
pc

m

ep
ic

A
vg

. S
pe

cI
nt

95

A
vg

. M
ed

ia
B

en
ch

A
vg

. b
en

ch
m

ar
ks

1

2

3

4

5

IP
C

Base Arch.
Simple RMBS
Balanced RMBS
Advanced RMBS
UB Arch.

Figure 7: Performance o
which suggests that there is still some potenti
improvement. This figure motivated the proposal of a ne
scheme (Advanced RMBS, see Section 2) that tries
improve the workload balance. This scheme tries to avo
strong imbalances. In consequence, when the bala
exceeds a certain threshold, the scheme will give priority
optimising the balance rather than the communications.

Some experiments have been conducted in order
find out the best parameters that define the workloa
balance measure. As explained in Section 2, the worklo
balance is measured as the average imbalance for the la
cycles (history size). We have tried several configuratio
with different thresholds and history sizes. Experimentall
it has been found that mid-range (6 to 10) threshol
perform better since low boundaries (below 6) tend
increase the number of communications and hig
thresholds (above 10) tend to diminish the effect of th
technique. Consequently, the threshold for the rest of t
experiments is assumed to be eight instructions. Th
experiments also shows that the performance mainly var
with the history size. Figure 6 shows the performance of t
Advanced scheme compared to the Balanced scheme
several history sizes. From Figure 6, we can observe t
having extra balance considerations, as the Advanc
scheme does, improves performance. We can also see
the longer the history the better the performance, for t
range considered. This is due to the fact that long histor
minimise the effect of eventual imbalances.

2 4 8 16

History Size (cycles)

2

3

IP
C Balanced RMBS

Advanced RMBS (threshold=8)

Figure 6: Performance of the Advanced RMBS (average)
e

o

d
N

e
s
s

or
t
d
at

s

Figure 7 shows the performance of the Advance
RBMS compared to the other schemes. This scheme sho
the best performance (35% average speed-up) of
steering schemes presented. Its speed-up is very clos
that of the upper bound architecture (44% average), ev
though the Advanced RMBS has one cycle penalty for ea
communication.

3.2.4. Impact of the Communication Latency

In future architectures, communications latencies w
likely be longer than 1 cycle [12]. Therefore, we hav
analysed the impact of the communication latency on t
performance. Figure 8 shows the performance of t
schemes presented in this work for a range
communication latencies between 0 and 10 cycles. T
results for a 0 cycle latency and 1 cycle latency are t
same as those in Figure 5 and Figure 7 respectively.

First, we can observe that as latency increases ther
a growing performance loss and this loss is much grea
for the modulo scheme than for the others since it does n
take into account the communications. This behavio
stresses the increasing importance of minimising t

0 1 5 10

latency of communications

0

1

2

3

IP
C

Modulo
Simple RMBS
Balanced RMBS
Advanced RMBS

Base Arch.

UB Arch.

Figure 8: Performance for different communication latencies (avg.)

f the Advanced RMBS

a

en
ed
me
nd
th

re
ed
ral
ries
d
y,
of

ers
to
t

a
d
ed
on
h
h
s
ly
ng
O

s
s in
en

sed

e
g
ge,
number of communications. On the other side, the impact
of a higher latency in the other three schemes is very
similar since they have similar criteria to avoid
communication. However, we can see significant
differences among them for small latencies due to the
different balance considerations they implement (as shown
in the previous section).

For high latencies, the performance of all the schemes
presented in this work is quite below the UB architecture.
In this scenario, the steering schemes should make more
emphasis in reducing the number of communications, even
at the expense of a worse workload balance. In the future,
we plan to investigate steering schemes oriented to this
scenario.

3.2.5. Applicability to Floating-Point Programs

We have evaluated whether sending integer instructions to
the FP cluster might degrade the performance of floating-
point programs due to the sharing of resources in that
cluster. We have measured the performance of the
Advanced RMBS and the base architecture for several
SpecFP95 [20] benchmarks. Figure 9 shows the speed-ups
relative to the base architecture.

We can see that none of the programs is slowed down
and even in some of them the speed up is significant (7% in
turb3d). On average, floating point programs perform a
3.2% better. When the FP cluster has a high workload (its
resources are heavily demanded by FP instructions), the
balance mechanism will refrain the steering logic from
sending integer instructions to that cluster, so that they do
not compete for the FP resources. On the other hand, in
periods of few FP calculations, the balance mechanism will
send some integer instructions to the FP cluster and we
could expect some speed-ups in this case.

3.2.6. Dynamic vs. Static Steering

In Figure 10, the performance of the Advanced RMBS is
compared with the results presented by Sastry, Palacharla

and Smith [17]. In that work, the authors presented
compile-time partitioning algorithm for a similar
architecture to the one of this paper. The results have be
obtained with the same experimental framework describ
in that paper (SimpleScalar based simulator with the sa
architectural parameters, benchmarks, compiler a
inputs). Figure 10 depicts the speed-ups of bo
architectures.

In this case, the dynamic approach is much mo
effective than the static one (the improvement achiev
over the base architecture is 10 times bigger) for seve
reasons. First, because the dynamic approach not only t
to reduce inter-cluster communication but also workloa
imbalance, which was already reported by Sastr
Palacharla and Smith to be one of the main drawbacks
their approach. Second, since the Advanced RMBS ste
instructions dynamically, it adapts more accurately
many run-time conditions that are difficult to estimate a
compile time.

3.2.7 Comparison to Another Dynamic Scheme

Palacharla, Jouppi and Smith [14] recently proposed
dynamic partitioning approach for a different clustere
architecture that could be also applied to our assum
architecture. The basic idea is to model each instructi
queue as if it was a collection of FIFO queues wit
instructions capable of issuing from any slot within eac
individual FIFO. Instructions are steered to FIFO
following some heuristics that ensures that a FIFO on
contains dependent instructions, each instruction bei
dependent on the previous instruction in the same FIF
(for more details refer to the original paper [14]). In thi
case, the FIFO approach has been implemented (8 FIFO
each cluster and each 8-deep); and thus, it has be
simulated with the same architecture and benchmarks u
for the schemes presented in this work.

Figure 11 shows that the performance of th
Advanced RMBS significantly outperforms the steerin
scheme based on FIFOs for all the programs. On avera

sw
im

m
gr

id

ap
pl

u

ap
si

tu
rb

3d

A
vg

. b
m

ar
ks

0

1

2

3

4

5

6

7

8

9

10
P

er
f.

 I
m

p
ro

ve
m

en
t(

%
)

Advanced RMBS

Figure 9: Performance of the SpecFP95

p
er

l g
o

g
cc li

co
m

p
re

ss

ij
p
eg

m
8
8
k
si

m

A
v
g
.

0

10

20

30

40

50

60

70

80

P
er

f.
 i

m
p

ro
ve

m
en

t
(%

)

Adv. Sch Sastry et al.
Advanced RMBS

Figure 10: Speed-up over the base architecture

w,
ent
no
y

is
f
es
on
h

ite
er
the
ch
n

of
his

e
m

r
e
re
d a
ad
st
g
st

e
he
o a
is
y

g
are
rs
6,
]).

ol-
they
es.
,

e.
e
re
is
s.
ith
s
ny
the FIFO-based steering increases the IPC of the
conventional microarchitecture by 13% whereas the
Advanced RMBS achieves a 36% improvement.

This difference in performance is explained by the
fact that both schemes result in quite similar workload
balance but the FIFO-based approach generates a
significantly higher number of communications. On
average, the Advanced RMBS produces 0.042 inter-cluster
communications per dynamic instruction whereas the
FIFO-based approach results in 0.162 communications. In
these simulations, unlike the rest of the work, we have
assumed to have 3 communication buses each-way.

4. Related Work

The steering schemes presented in this paper are targeted
for a specific superscalar microarchitecture inspired in the
proposal of Sastry, Palacharla and Smith [17]. Our work
differs in that they proposed a static partitioning scheme,
based on an extension of the concept of the “load/store
slice” (which consists of all the instructions that compute
addresses, and their predecessors in the register
dependence graph [15]). Another difference is that our
architecture does not constrain address computations to be
dispatched to a specific cluster, so it allows a more flexible
partitioning. While borrowing the main advantages of their
architecture, our steering scheme largely outperforms their
partitioning approach.Other steering schemes for the same
architecture are presented in [2].

Other closely related approaches are the
Dependence-based [14], the Pews [9] and the Multicluster
[3] architectures. In these proposals, the microarchitecture
partitions datapaths, functional units, issue logic and
register files into symmetrical clusters. Our work, instead,
is based on a slight modification of a conventional
architecture that converts the FP unit in a second cluster
available for integer computations. Their steering schemes
are also different as outlined below.

In the Dependence-based paradigm, analysed in
section 3.2.7, instructions are steered to several instruction

FIFO queues instead of a conventional issue windo
according to a heuristic that ensures that two depend
instructions are only queued in the same FIFO if there is
other instruction in between. This heuristic lacks of an
explicit mechanism to balance the workload, which
instead adjusted implicitly by the allocation algorithm o
new free FIFO queues. This allocation algorithm generat
many communications when it assigns a FIFO to a n
ready instruction, since it does not consider in whic
cluster the operands are to be produced.

In the Pews architecture, the steering scheme is qu
simple, since it always places an instruction in the clust
where the source operand is to be produced, except if
operands are to be produced in different clusters, in whi
case the algorithm tries to minimize the communicatio
overhead (which is a function of the forwarding distance
the operands, in this ring-interconnected architecture). T
algorithm also lacks of a workload balance mechanism.

In the Multicluster architecture, the register nam
space is also partitioned into two subsets, and progra
partitioning is done at compile time without any ISA
modification, by the appropriate logical registe
assignment of the result of each instruction. Both th
workload balance and inter-cluster communication a
estimated at compile time. The same authors propose
dynamic scheme [4] that adjusts run-time excess worklo
by re-mapping logical registers. However, they found mo
heuristics to be little effective since the re-mappin
introduces communication overheads that offset almo
any balance benefit.

Another related architecture is the decoupled on
[18]. In this case, the partitioning is based on sending t
effective address calculation of the memory accesses t
cluster and the remaining instructions to the other. Th
partitioning is similar to the load/store slice proposed b
Palacharla et al. [15].

Clustering is also present in some multithreadin
architectures. These architectures execute threads that
generated either at compile-time (Multiscalar processo
[6, 19] among others) or at run-time (Trace Processors [1
21], Clustered Speculative Multithreaded Processors [11
The criteria used to partition programs is based on contr
dependences instead of data dependences. Besides,
make extensive use of data speculation techniqu
Clustering can also be applied to VLIW architectures [5
13], but they perform cluster assignment at compile-tim

There are several techniques to improve th
performance of multimedia programs. The architectu
presented in this article is not targeted especially to th
kind of programs but to general purpose one
Nevertheless, the performance improvement achieved w
this architecture is significant in this kind of application
and has the advantage of improving the performance in a

 Figure 11: Adv. RMBS versus FIFO-based steering [14]

go

gc
c

co
m

pr
es

s li

ij
pe

g

vo
rt

ex

pe
rl

m
88

ks
im

H
-m

ea
n

0

5

10

15

20

25

30

35

40

45

50

P
er

f.
 m

pr
ov

em
en

t
(%

)

FIFO-based
Advanced RMBS

r

,

d

,

,

e

r

y-

n

ith,

le
n

r

r
r

r
c

program, not just in the multimedia ones (as multimedia
extensions do). There is also a parallelism between some
early MMX extensions [8] and the presented architecture
since the fp cluster is extended with integer instructions in
both clusters. Nevertheless, MMX extensions include a
SIMD execution model that is applied to vectorizable code.

5. Conclusions

In current superscalar processors, all floating-point
resources are idle during the execution of integer programs.
This problem can be alleviated if the floating-point cluster
is extended to execute integer instructions and these are
dynamically sent to one cluster or the other. The required
modifications are minor and the resultant microarchitecture
stays very similar to a conventional one. Furthermore, no
change in the ISA is required. However, in this architecture
there is a trade-off between workload balance and inter-
cluster communication overhead and the steering logic is
responsible for optimising it. We presented three steering
schemes and evaluated them. The performance figures
showed an average speed-up of 35% over a conventional 8-
way issue (4 int + 4 fp) machine. Hence, with minimal
hardware support and no ISA change, idle floating-point
resources on current superscalar processors can be
profitably exploited to speed-up integer programs.

Acknowledgments

This work has been supported by the Ministry of Education
of Spain under contract CYCIT TIC98-0511-C02-01 and
by the European Union through the ESPRIT program under
the MHAOTEU (EP 24942) project. The research
described in this paper has been developed using the
resources of the CEPBA. Ramon Canal would like to thank
his fellow PBCs for their patience and precious help.

References

[1] D. Burger, T.M. Austin, S. Bennett. “Evaluating Future
Microprocessors: The SimpleScalar Tool Set”,Technical
Report CS-TR-96-1308, University of Wisconsin-
Madison, 1996.

[2] R. Canal, J.M. Parcerisa and A. Gonzalez, “Dynamic
Cluster Assignment Mechanisms”,Proc. of the 6th Int.
Symp. on High Performance Comp. Arch., January 2000,
pp. 133-142.

[3] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. “The
Multicluster Architecture: Reducing Cycle Time
Through Partitioning”, inProc of the 30th. Ann. Symp.
on Microarchitecture, December 1997, pp. 149-159.

[4] K.I.Farkas. “Memory-system Design Considerations fo
Dynamically-scheduled Microprocessors”,PhD thesis,
Department of Electrical and Computer Engineering
Univ. of Toronto, Canada, January 1997.

[5] M.M. Fernandes, J.Llosa and N.Topham, “Distribute
Modulo Scheduling”, inProc of the 5th. Int. Symp. on
High Performance Comp. Arch., January 1999, pp. 130-
134.

[6] M. Franklin, “The Multiscalar Architecture”,Ph.D.
Thesis, Technical Report TR 1196, Computer Sciences
Department, Univ. of Wisconsin-Madison, 1993.

[7] L. Gwennap. “Digital 21264 Sets New Standard”
Microprocessor Report, 10 (14), Oct. 1996.

[8] L. Gwennap. “Intel’s MMX Speeds Multimedia
Instructions”, Microprocessor Report,10(3), March
1996.

[9] G.A.Kemp, M.Franklin, “PEWs: A Decentralized
Dynamic Scheduler for ILP Processing”, inProc. of the
Int. Conf. on Parallel Processing, August 1996, pp. 239-
246.

[10] C. Lee, M. Potkonjak and W. H. Mangione-Smith
“Mediabench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”,Proc. of the
IEEE/ACM Int. Symposium on Microarchitecture(Micro
30), December 1997, pp. 330-335.

[11] P. Marcuello and A. González, “Clustered Speculativ
Multithreaded Processors”,Proc of the 13th ACM Int.
Conf. on Supercomputing, June 1999, pp. 365-372.

[12] D.Matzke, "Will Physical Scalability Sabotage
Performance Gains",IEEE Computer Vol. 30, num. 9,
September 1997, pp. 37-39.

[13] E.Nystrom and A.E.Eichenberger, “Effective Cluste
Assignment for Modulo Scheduling”, inProc of the 31st.
Ann. Symp. on Microarchitecture, pp. 103-114.

[14] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexit
Effective Superscalar Processors” inProc of the 24th.
Int. Symp. on Comp. Architecture, June 1997, pp. 1-13.

[15] S.Palacharla, J.E.Smith “Decoupling Integer Executio
in Superscalar Processors”, inProc. of the 28th. Ann.
Symp. on Microarchitecture, November 1995, pp. 285-
290.

[16] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Sm
“Trace Processors”, inProc of the 30th. Ann. Symp. on
Microarchitecture, December 1997, pp. 138-148.

[17] S.S.Sastry, S.Palacharla, J.E.Smith, “Exploiting Id
Floating-Point Resources For Integer Execution”, i
Proc. of the Int. Conf. on Programming Lang. Design
and Implementation, June 1998, pp. 118-129.

[18] J.E. Smith, “Decoupled Acces/Execute Compute
Architectures”, ACM Transactions on Computer
Systems, 2(4), November 1984, pp. 289-308.

[19] G.S.Sohi, S.E.Breach, and T.N.Vijaykumar, “Multiscala
Processors”, inProc. of the 22nd Int. Symp. on Compute
Architecture, June 1995, pp. 414-425.

[20] Standard Performance Evaluation Corporation,SPEC
Newsletter, September 1995.

[21] S. Vajapeyam and T. Mitra, “Improving Superscala
Instruction Dispatch and Issue by Exploiting Dynami
Code Sequences”, inProc. of the Int. Symp. on Computer
Architecture, June 1997, pp. 1-12.

	Abstract
	1. Introduction
	2. Clustered Architecture
	2.1.Microarchitecture
	2.2. Steering Logic
	2.2.1 Communication Criteria
	2.2.2 Workload Balance Criteria
	2.2.3. Steering Schemes

	3. Performance Evaluation
	3.1. Experimental Framework
	Table 3: Machine Parameters (separating cluster 1 and cluster 2 if not common)

	3.2. Results
	3.2.1. Inter-Cluster Communication

	Figure 3: Average number of communications per dynamic instruction
	3.2.2. Workload Balance

	Figure 4: Workload balance figure distribution (ijpeg)
	Figure 5: IPC for a 0-cycle communication latency
	3.2.3. Improving the Workload Balance

	Figure 6: Performance of the Advanced RMBS (average)
	3.2.4. Impact of the Communication Latency

	Figure 8: Performance for different communication latencies (avg.)
	3.2.5. Applicability to Floating-Point Programs

	Figure 9: Performance of the SpecFP95
	3.2.6. Dynamic vs. Static Steering

	Figure 10: Speed-up over the base architecture
	3.2.7 Comparison to Another Dynamic Scheme

	Figure 11: Adv. RMBS versus FIFO-based steering [14]
	4. Related Work
	5. Conclusions
	Acknowledgments
	References
	[1] D. Burger, T.M. Austin, S. Bennett. “Evaluating Future Microprocessors: The SimpleScalar Tool...
	[2] R. Canal, J.M. Parcerisa and A. Gonzalez, “Dynamic Cluster Assignment Mechanisms”, Proc. of t...
	[3] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. “The Multicluster Architecture: Reducing Cycle Ti...
	[4] K.I.Farkas. “Memory-system Design Considerations for Dynamically-scheduled Microprocessors”, ...
	[5] M.M. Fernandes, J.Llosa and N.Topham, “Distributed Modulo Scheduling”, in Proc of the 5th. In...
	[6] M. Franklin, “The Multiscalar Architecture”, Ph.D. Thesis, Technical Report TR 1196, Computer...
	[7] L. Gwennap. “Digital 21264 Sets New Standard”, Microprocessor Report, 10 (14), Oct. 1996.
	[8] L. Gwennap. “Intel’s MMX Speeds Multimedia Instructions”, Microprocessor Report, 10(3), March...
	[9] G.A.Kemp, M.Franklin, “PEWs: A Decentralized Dynamic Scheduler for ILP Processing”, in Proc. ...
	[10] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Mediabench: A Tool for Evaluating and Synthe...
	[11] P. Marcuello and A. González, “Clustered Speculative Multithreaded Processors”, Proc of the ...
	[12] D.Matzke, "Will Physical Scalability Sabotage Performance Gains", IEEE Computer Vol. 30, num...
	[13] E.Nystrom and A.E.Eichenberger, “Effective Cluster Assignment for Modulo Scheduling”, in Pro...
	[14] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity- Effective Superscalar Processors” i...
	[15] S.Palacharla, J.E.Smith “Decoupling Integer Execution in Superscalar Processors”, in Proc. o...
	[16] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Smith, “Trace Processors”, in Proc of the 30th. ...
	[17] S.S.Sastry, S.Palacharla, J.E.Smith, “Exploiting Idle Floating-Point Resources For Integer E...
	[18] J.E. Smith, “Decoupled Acces/Execute Computer Architectures”, ACM Transactions on Computer S...
	[19] G.S.Sohi, S.E.Breach, and T.N.Vijaykumar, “Multiscalar Processors”, in Proc. of the 22nd Int...
	[20] Standard Performance Evaluation Corporation, SPEC Newsletter, September 1995.
	[21] S. Vajapeyam and T. Mitra, “Improving Superscalar Instruction Dispatch and Issue by Exploiti...

	Dynamic Code Partitioning for Clustered Architectures
	Ramon Canal, Joan-Manuel Parcerisa, Antonio González
	Departament d’Arquitectura de Computadors
	Universitat Politècnica de Catalunya
	Cr. Jordi Girona, 1-3 Mòdul D6
	08034 Barcelona, Spain
	{rcanal,jmanel,antonio}@ac.upc.es
	Table 1: Benchmark programs SpecInt95
	Table 2: Benchmark programs MediaBench
	Figure 2: Performance results
	Figure 7: Performance of the Advanced RMBS

