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Abstract—Research of detecting dynamic communities from 

network stream has attracted increasingly attention recently due 

to its broad applications on social media, e-commence, intelligent 

security, healthcare and more. Some of the previous techniques 

employed a two-stage approach to detect communities within 

each time epoch and then identify the evolutionary relationships 

between communities from adjacent time epochs. However, since 

the two-stage approaches detect communities within each epoch 

independently, the identified communities usually have high 

temporal variation. Another restriction of the previous 

techniques is the requirement of predefining the number of 

hidden communities by a fixed value or within a very narrow 

range.  To overcome these limitations, we propose the Dynamic 

Stochastic Blockmodel with Temporal Dirichlet Process, which is 

able to detect communities and track their evolution 

simultaneously from a network stream. The number of 

communities is automatically decided by a Recurrent Chinese 

Restaurant Process without human intervention. In addition, the 

identified communities exhibit a rich-gets-richer effect and other 

appealing properties. The experiment results on both simulated 

dataset and Flickr dataset showed that our proposed algorithm 

outperformed the baseline algorithm and achieved promising 

results. 

Keywords-temporal dirichlet process; recurrent chinese 

restaurant process; community detection; stochastic blockmodel 

I.  INTRODUCTION 

In the recent years, online social networking sites have 
drawn significant attention and achieved unanticipated 
success. For instance, MySpace, Facebook and Twitter attract 
millions of daily visits and their number of registered users is 
growing incessantly. In addition, attribute to the advance of 
Web 2.0 technologies, the number of websites with embedded 
social networking functions, including Flickr, Delicious and 
YouTube, is also growing substantially. As a result, network 
data has become the richest and the most valuable information 
on the Web. Among several research topics of social network 
analysis, community detection has drawn substantial attention 
due to its broad range of applications. For example, 
identifying groups of users with similar interest can foster 
sharing of resources (in Flickr or Delicious), detecting 
potential gang or terrorist group in suspicious online forums is 
helpful in security informatics, identifying active and 
influential users in communities of online consumer reviews 
can be helpful to target potential customers and promoting 
business (especially in online shopping site). In addition, we 

can further broaden these applications by extending the static 
social network analysis techniques to detect evolving 
communities from dynamic social networks.  For example, we 
can analyze the dynamic online social media to predict 
developing common interest groups for marketing and 
business intelligence purpose.  We can monitor the evolving 
social movements to ensure the public safety. 

In light of the benefit of community detection, a large body 
of research works has been focusing on this topic. Many of 
these works detected communities from a static network based 
on modularity, clique, betweenness, graph spectrum, or 
generative model [1-5]. However, none of them have taken 
timestamp into account, and therefore, they are not applicable 
to dynamic network. A few other works represented dynamic 
network by a stream of static networks [6-9]. They employed a 
two-stage approach which identifies communities from the 
static network of each time epoch, and then examines 
communities in adjacent epochs to identify their evolutionary 
relationships. However, since two-stage approaches detect 
communities of each epoch independently, they often result in 
communities with high temporal variation [10]. Lately, several 
research groups proposed novel approaches to detect 
community and identify evolutionary relationship 
simultaneously [10-13]. However, these works have another 
limitation: the number of communities is either fixed or 
restricted within a narrow range.   

In light of these limitations, we anticipate that a good 
community detection algorithm should include the following 
characteristics. Firstly, it must be able to detect robust 
communities dynamically. Community detection and 
evolutionary relationship identification should be conducted in 
a unified framework . Secondly, the number of communities in 
the dynamic social network should be estimated automatically 
without human intervention. Thirdly, nodes in dynamic graphs 
appear and disappear over time, so that a good community 
detection algorithm should be able to handle node addition and 
node attrition naturally. Last but not least, rich-gets-richer 
effect is a typical phenomenon in social network. Detected 
communities should exhibit this phenomenon.   

To achieve all of these goals, we extended the stochastic 
blockmodel by incorporating the Recurrent Chinese 
Restaurant Process in this paper. Recurrent Chinese 
Restaurant Process not only enables our model to handle 
dynamic network but also determines the number of 



communities at each time epoch automatically. Our proposed 
technique possesses all the desired characteristics mentioned 
above. The major contributions of this work include: (1) 
synthesizing Recurrent Chinese Restaurant Process and 
stochastic blockmodel to detect evolving communities; (2) 
deriving the Dynamic Stochastic Blockmodel with Temporal 
Dirichlet Process and proposing an efficient Gibbs Sampling 
algorithm to infer community assignments and model 
parameters; (3) conducting a rigorous experiment to test our 
model thoroughly on both large-scale Flickr dataset and 
simulated dataset. The experiment results indicated the 
effectiveness and validity of our model. 

II. RELATED WORKS 

Community detection has been widely studied in various 
research domains for many years. For instance, Scott [14] 
employed hierarchical clustering approach to discover 
communities in a social network. Girvan and Newman [3] 
developed heuristic algorithm to detect community structures 
in a biological network with strong modularity. Dhillon, Guan 
and Kulis [2] proposed spectral clustering algorithms to divide 
a graph into multiple sub-graphs with specific applications of 
image segmentation. Recently, another group of research 
works [1, 4, 5] proposed probabilistic model-based techniques 
to estimate communities based on user interaction. However, 
all of them neglected the time feature of network. 

Recently, there has been a growing body of work taking 
the time feature into account to analyze evolutionary networks 
[6-9]. Asur et al. detected communities within each time 
epoch, and then employed similarity metrics to identify 
evolutionary relationship between communities in adjacent 
time epochs[7, 8]. Sun developed a parameter-free algorithm 
to mine time-evolving networks using information theoretic 
principles[9]. Berger-Wolf proposed an optimization-based 
approach which formulated the community detection problem 
as a coloring problem in network stream[6]. These works 
adopted a two-stage approach where community detection and 
community evolution are conducted separately. However, this 
two-stage approach did not make use of the community 
information of the previous epoch to detect communities of 
the current epoch.  As a result, there was a high variation of 
the detected communities in different epochs. 

To address this problem, some recent studies worked on 
dynamic social network analysis by detecting community and 
identifying evolutionary relationship under a unified 
framework. Yang et al. extended the stochastic blockmodel 
and proposed a dynamic stochastic blockmodel which can 
detect communities and their evolution concurrently [12]. 
Miller and Eliassi-Rad extended the cDTM model to cDTM-G 
model which allows the communities to evolve as Brownain 
motion[13]. Fu, Song and Xing extended Airoldi’s work [1] to 
model the evolution of mixed membership blockmodel [11]. 
However, the number of communities is fixed over time in all 
these works. It is difficult to predefine the number of 
communities in real-world application. Lin et al. extended the 
graph-factorization clustering technique and proposed  the 
FacetNet algorithm for analyzing dynamic communities, 
which relaxed the restriction of the number of communities 
within each time epoch by setting a range of candidates and 

searching the best number of communities by multiple trials 
[10], and was computationally expensive. In order to allow 
countable infinite community theoretically and to find the 
optimal number of communities naturally, we propose to 
incorporate Recurrent Chinese Restaurant Process into a 
dynamic stochastic blockmodel to detect communities and 
their evolution in a unified framework. In addition, our model 
enables the number of communities of each epoch to be 
determined automatically. 

III. PROBLEM STATEMENTS AND NOTATIONS 

In this section, we formulate the research problem and 
present the notations that are used throughout this paper. Let      denotes a social network at time   where                

 

and      equals to the number of nodes in      at time  . It is 

important to note that, in real-world application,      can  be a 
network with one component or multiple components. Our 
proposed technique handles a network with any number of 
components in the same way. To make it simple, we only 
consider undirected graphs with binary edges in this study but 
it can be easily extended to weighted directed graph with 
minor modification. Given an undirected graph with binary 
edges only, if there is an edge between node   and node   in     , then                  . Otherwise,                   . We 

assume that      contains some hidden communities, which 
are treated as latent variables in our model. Each node in E

(t)
  

belongs to one hidden community. Any two nodes of the same 
hidden community have a larger probability to interact with 

one another. Let      denote the total number of hidden 

communities at time   , and         
 denote the parameter of a 

Bernoulli distribution upon which an edge between 

community a and b is drawn, where                   
 and           . Moreover, we represent the community 

assignment of node   at time   by      . We let          
 denote the 

community assignments from node 1 to node     at time t,       
 denote the community assignments of all nodes except 

node   at time t, and      denote the community assignments 

of all nodes of     . We further denote        
 as the number of       for     that are assigned to community k, and        

 

equal to the total number of nodes that are assigned to 
community k at time    . 

In this paper, given a stream of social networks over T 

epochs,                        }, the objective of our 
proposed technique is to determine the optimal number of 
hidden communities at each time epoch automatically 

({                  }), uncover the community assignment 

for nodes of each network snapshot (                   }), 
and track the evolution of these communities over time.   

IV. PRELIMINARIES 

In this section, we briefly review the Dirichlet Process 
Mixture Model and the Stochastic Blockmodel which serves 
as the foundation of our proposed model. 



A. Dirichlet Process Mixture Model 

Finite Mixture Model is a frequently used model in 
clustering which assumes that each observation    is generated 
by one of K fixed unknown distributions parameterized by K 
different parameters,           . However, the number of K 
in Finite Mixture Model is fixed and difficult to be specified 
appropriately without prior knowledge. To determine K 
flexibly, Dirichlet Process Mixture Model (DPM) is proposed 
assuming that the parameter   is drawn from a distribution G, 
denoted as           In DPM, the distribution G is considered 
to be generated by a Dirichlet Process (DP) with a base 
measure    and a concentration parameter   , denoted 
as             . Formally speaking, the DPM model can be 
expressed in an equivalent way which is easier for 
understanding and sampling[15]. Given a Finite Mixture 
Model with K components with the following form:                                       

                                                 

                                                                  (1)                         

where    indicates the latent component that is associated 
with observation   , the DPM model can be obtained by 

considering the limit of the model as K  ∞. By integrating   

and considering K  ∞, the conditional probabilities of    in 
Eq.(1) become:                             

                                                                            

with      is the number of    for     that are assigned to 

component k. Taking one step further, Eq.(2) can be well 
explained by a Chinese Restaurant Process (CRP) metaphor. 
In the CRP, we assume that there is a Chinese restaurant with 
an unbounded number of tables. When a customer    enters 
this restaurant, he can either choose a new table with 

probability 
       and order a new dish, or pick a table   which 

already has      customers with probability 
          and share 

their dishes. From the CRP metaphor, DPM not only can 
determine the final number of mixture models flexibly but also 
reflects a rich-gets-richer effect. 

B. Stochastic Blockmodel 

Stochastic blockmodel is a generative model which is 
widely studied to analyze a static social network. A major 
assumption of the stochastic blockmodel is that each node   of 
the network belongs to one of K hidden communities with 

probabilities                   , where K is predefined. Then, 

assuming that node   belongs to community   and node   
belongs to community  , the probability of observing an edge 
between these two nodes is generated by a Bernoulli 

distribution with parameter      , where           and        . By following this problem definition, Nowicki 
and Snijders [4] proposed a technique which discovered the 
community assignment for each node of a social network with 
the maximum posterior probability given the observed edges. 

V. DYANMIC COMMUNITY DETECTION 

Given the research problem defined in section III, the focus 
of this work is to develop an algorithm to detect communities 
and their evolutions from a network stream. Another research 
focus is to provide flexibility to the model in determining the 
number of communities automatically. Since stochastic 
blockmodel can detect hidden communities from a static 
network and DPM is good at deciding the number of hidden 
components, there is an advantage to integrate DPM with 
stochastic blockmodel to detect unbounded number of hidden 
communities from a network. However, DPM is incapable to 
handle network evolution. To address this problem, we extend 
CRP to Recurrent Chinese Restaurant Process (RCPR) 
which can be considered as a Temporal Dirichlet Process, 
and then synthesis RCRP and stochastic blockmodel to model 
community evolution. 

A. Recurrent Chinese Restaurant Process 

The Chinese Restaurant Process (CRP) introduced in 
section IV can be generalized to the Recurrent Chinese 
Restaurant Process (RCRP), which operates in discrete time 
epochs, i.e. days. The major difference is that both the popular 
dishes and the seating plan of the current time epoch will 
influence the customers’ selections in the next epoch, leading 
to a rich-gets-richer phenomenon not only within an epoch but 
also in adjacent epochs. Formally speaking, let’s consider the 
generative process for a finite dynamic mixture model with K 
components. Within a given epoch  , the generation process 
for each observation   is defined as follows:                                                                                

                                                                      (3)                                     

 By integrating      and considering the limit of the model 

as K  ∞, the conditional probabilities of       in Eq.(3) can be 

derived as:                                                                                                                                        
   

                                                                                            
Similarly, Eq.(4) can be well explained by the Recurrent 

Chinese Restaurant Process (RCRP) metaphor. In the RCRP, 
customers enter the restaurant in a given day are not allowed to 
stay beyond this day. At the end of day    , the owner of the 
restaurant records on each tale the dish served in this table and 
the number of customers who shared it, since he believes that 
popular dishes will remain popular in the next day [16]. Given 

these information, When a customer       enters this restaurant 

at day t, he can pick a non-empty table   that already has        
 

on day t, and share their dish with probability 
                           . If 

this table does not exist on day    ,        
 equals to 0. 



Otherwise,        
 equals to the number of customers who sit at 

this table on day    . Alternatively, he can pick an empty 

table that nobody is sitting at on day   but        
 customers sit 

on at day     with probability                              where        
 equals 

to 0. Finally, he can pick an empty new table with probability               and then order a new dish. By putting these 

alternatives together, we arrive at Eq. (4). The table in this 
metaphor corresponds to community. 

B. Dynamic Stochastic Blackmodel with Temporal Dirichlet 

Process 

To model dynamic social networks, we propose the 
Dynamic Stochastic Blockmodel with Temporal Dirichlet 
Process (DBTDP) which incorporates the Recurrent Chinese 
Restaurant Process into the Stochastic Blockmodel to detect 
community evolution in network stream. The DBTDP model 

is defined in a recursive way. In the initial network      when    , assuming     nodes have been assigned to   
communities by following the CRP, we either assign the i

th
 

node to one of the   existing communities with probability          , or add a new community and then assign the i
th

 node  to 

this new community with probability 
      . Since CRP is 

exchangeable, the order of assigning nodes to communities 

can be permuted without affecting the probability of     . 

Given the community assignments      is available, the edges 

between nodes in      are generated stochastically by 

probabilities      . Similarly, assuming the community 

assignments        is available, in network      of time  , 
assuming     nodes have been assigned to   communities by 
following the RCRP, for the i

th 
node, we either assign it to one 

of   existing communities with probability 
                           , or 

add a new community and then assign it to this new 

community with probability 
             . Given the 

community assignments    is available, the edges between 

nodes in      are decided stochastically by probabilities     . 
The generative process of the DBTDP is shown as follows. 

For time    : 

      Draw each      
 based on          

 by CRP 

      For each edge       of     : 
 Draw each                                    

For    : 

     Draw each       based on          
 and        by RCRP 

     For each edge       of     : 
  Draw each                                     

To illustrate the DBTDP model, we present a graphical 
model representation of DBTDP in figure 1. In figure 1, at the 

first time epoch, parameters      are generated based on the 
concentration parameter   . For the following time epochs   

when    , parameters      are generated based on both the 
concentration parameter   and the community assignments of 

latest time epoch       . The community assignments of 

current time epoch are decided by     . Similarly, parameters 

     are decided by both the base measure    and the        of 
previous time epoch. Within each time epoch, once the 
community assignments for all nodes are determined, each 

edge         is generated based on      
,       and     . The shaded 

nodes in Fig. 1 represent the observed edges while the white 
nodes represent hidden variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical Model Representation of DBTDP 

C. Likelihood Of The Complete Data 

Based on the intuitions and observations, we can then 
introduce three reasonable independent assumptions, which 
can be useful to derive the likelihood of the data: 

A1. For the initial network where t=1, community assignment 

of a node, say i, in       is determined by the community 

assignments of all other nodes except i in     , denoted as: 

                                                                    (5) 

A2. Similarly, for the networks where time t>1, community 

assignment of a node, say i, in       is determined by the 

community assignments of all other nodes except i in      and 

the community assignments of all nodes in       , denoted as:                                                                  (6) 

A3. Any edge (i,j) in       is generated independently from the 
other nodes/edges given the community assignments of node i 
and j. The generation process follows a Bernoulli distribution: 

                                                                       
   

                                                                                          (7)              

where                                                       (8) 

                                                                         

                                                                              (9) 
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     equals to 1 if condition A is satisfied, and 0 otherwise. 
With the above assumptions, the Dynamic Stochastic 
Blockmodel with Dirichlet Process is then given by the joint 
distribution of         

                                                          (10) 

                                                                      

VI. GIBBS SAMPLING ALGORITHM 

A. Model Inference 

Given Eq.(10), the objective of this section is to identify 
the most likely variables that can maximize the likelihood of 
the data. One intuitive approach is to estimate the most likely 
values of {       } which can maximize Eq. (10). However, 
in DBTDP, the community assignments    are unknown. A 
typical Bayesian treatment for this case is to estimate the 
posterior probability instead of maximizing the likelihood of 
data. Since    is generated by a Bernoulli distribution, we 
define a Beta distribution and incorporate it into the model as 

the conjugate prior of                   :                                                                                                                                                 (11) 

Given this beta prior, the probability of generating      given 

the community assignments      is represented as:                                                         
                                                               

                                                                (12) 

Secondly, we employ Maximum A Posteriori Probability 
estimation (MAP) to uncover the community assignments     

                 =                                        (13) 

Finally, we determine the greedy optimization community 

assignments      based on previous community assignments       . Since this is a stream of social networks, it is logical to 
consider the networks one after one instead of analyzing all 
networks simultaneously and estimating the global 
configuration of   . The objective posterior probabilities is 
derived as: 

                                                                                             (14) 

B. Gibbs Samping Algorithm 

Given the construction for the DBTDP model, to maximize 
the posterior probabilities, we derive the collapsed Gibbs 
sampling algorithm: 

Step 1 Initialization: For the input network     , we initialize 

the model by creating         empty communities, and then 

assigning each node into one of         communities 

randomly. With the network      where t>1 and the nodes 

appeared in       , we initialize the model by maintaining 

their community assignment according to the sampling result 

of       . For the nodes that do not appear in       , we 

assign them to one of        communities randomly. 

Step 2 Community Assignment Estimation: For each node, 
we repeat the following two steps until reach iteration number. 

Step 2.1: Compute/Update                         for           ,        
 for                         , and        

 

for            with t>1. 

Step 2.2: Sample each of the objects into existing 
communities or new community, following the posterior 
probabilities:                                                                   (15.1)                                                                                                                    

when t>1 and                                                                                                                 (15.2)                                                                                                                               

when t>1 and                                         
OR                                                                      (16.1)                                                                                                         

when t=1 and                                                                                                 (16.2)                                                                                                            

when t=1 and                      
The Gibbs Sampling algorithm is summarized as follow: 

Input: Network stream                      },          

Output: Community Assignments                        
Initialize the community assignment by following step 1; 

Repeat 

 1. Update statistics in step 2.1 incrementally 

 2. Compute the posterior probability for each node by 
 following step 2.2 

 3. Assign this node to one of existing communities or 
 create an empty community and then assign this node 
 to it according to the posterior probabilities. 

Until reaches iteration number 

 



VII. EXPERIMENT 

We conducted two experiments to evaluate our proposed 
model extensively. We first tested our model in two simulated 
datasets with different noise levels. We also tested our model 
on a dynamic Flickr user network with 2.5M nodes and 33M 
edges. The experiments demonstrated the scalability and 
effectiveness of our model. 

A. Evaluation Metrics 

In this study, we adopted the metrics of previous works 
[12, 17] to measure the performance of our model.  These 
metrics are normalized mutual information (NMI) and 
robustness (Robust). Normalized mutual information is used 
when there is a ground truth, e.g. in simulated dataset. 
Formally speaking, given a true community partition, denoted 
as                where    is a group of users of 
community   , also given the estimation of community 

partition                    , the normalized mutual 
information is defined as: 

                                                                                       (17) 

where      and       are the entropies of         . 
According to Eq. (17), NMI is a value between 0 and 1. The 
higher the NMI score, the more similar the ground truth and 
the estimation is. 

When the ground truth is not available, e.g. in the real-
world dataset, robustness will be employed for measuring 
community partitions[18]. We didn’t use Modularity as 
measurement given its limitation as depicted in [18]. Formally 
speaking, we first employ a method to divide a network into K 
communities, denoted as                . Secondly, we 
perturb the network by randomly reassigning a number of its 
links according to a rewiring parameter  , which determines 
the fraction of links rewired. Then, the same method is applied 
on this perturbed network to gain another partition                    , and the variation of information is 
computed between the two community assignments as: 

                                                           (18) 

where         is the conditional entropy. We normalized this 
score by 1/Log(N). According to Eq. (18), if two community 
assignments are still similar to each other after network 
perturbation, the robustness score will be low, which indicates 
that the detected community structures are able to withstand 
small perturbations so that they are believable. 

B. Experiments on Simulated Datasets 

1) Data Generator:  Yang et al. [12] proposed a procedure 

to automatically generate evolving social networks each of 

which contains 128 nodes and 4 communities. In their 

procedure, when time t=1, each node was randomly assigned 

to one community. Each community contained 32 nodes. 

Yang predefined two probability value     and     , and the 

average degree of nodes in the network as 16. To generate 

edges for the network, for each pair of nodes of the same 

community, an edge was created by the probability     . 

Similarly, for each pair of nodes of different communities, an 

edge was created by the probability     . At each time epoch 

after time epoch 1, they randomly chose 10% of the nodes to 

leave their original community and joined the other three 

communities at random. Edges of the network were 

determined by probability     and       as before after 

reassigning the nodes. They generated the networks with 

evolution in this way for 10 time steps. 
However, Yang’s procedure only generated evolving 

networks with constant number of community. To study the 
network evolution with different number of communities, we 
further modified Yang’s procedure by randomly adding one 
community, deleting one community, or keeping the same 
number of communities with the probability of   ,    and    
respectively at each time epoch (          ). If a new 
community was added, we randomly chose P% of the nodes 
from each old community to join this new community (P is 
computed to make sure that each community has the roughly 
same number of nodes), and then chose 10% of the nodes 
from each existing communities to leave their original 
community and join the other communities randomly. If an 
old community was deleted, we randomly assigned the nodes 
of that community to the other communities, and then chose 
10% of the nodes to leave their original community and join 
the other communities randomly. If the number of community 
did not change, we randomly chose 10% of the nodes to leave 
their original community and join the other communities 
randomly. Edges of the network were determined by the 
probabilities     and       after reassigning the nodes. We 
generated the evolving networks in this way for 10 iterations. 
We tested our algorithm under two different noise levels by 
setting the ratio of          approximately equals to 4 and 3, 
respectively. 

 

(a) Noise Level 1 (        =4) 

 

(b) Noise Level 2 (        =3) 

Figure 2: Algorithms’ performance with respect to the ground truth on 
datasets with different noise levels over 10 epochs. 
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2) Comparison with baseline algorithm: In this paper, 
we compare the performance of our proposed DBTDP 
algorithm with the online version of DSBM algorithm 
proposed by Yang et al. [12], since DSBM outperformed all 
other state-of-the-art algorithms, such as FacetNet [10] and 
EvolSpect [19]. It is important to note that DSBM algorithm 
needs a predefined number of communities as input and this 
number remains unchanged. To compare DBTDP with DSBM 
fairly, we fed DSBM with different number of communities, 
from 3 to 6, and then compared DBTDP with all of them. For 
the DBTDP model, we empirically set     =200,     = 40,     =1,     =30, and    . DBSM-3 represents DBSM 

model with the predefined number of communities equaled to 
3. DBSM-4 represents DBSM model with the predefined 
number of communities equaled to 4 and so forth. Since we 
have the ground truth of the community assignments for all 
nodes over these 10 epochs, we employed Normalized Mutual 
Information (NMI) to evaluate them.  

 

Figure 3: Number of communities of the ground truth and the number of 
estimated communities by DBTDP 

Figure 2 presents the performance of DBTDP, DBSM-3, 
DBSM-4, DBSM-5 and DBSM-6 with respect to the ground 
truth on the two datasets with different noise levels over 10 
epochs. Figure 2 (a) corresponds to a lower noise level while 
Figure 2 (b) corresponds to a higher noise level. Both of them 
demonstrated that DBTDP algorithm achieves the highest 
NMI score most of the time. In addition, DSBM algorithm 
performed well only when the true number of communities is 
close to the predefined number of communities, while DBTDP 
can automatically adjusted the number of communities and 
maintained a relatively high NMI score. In figure 3 we plot the 
number of communities in the ground truth over 10 epochs 
along with the number of communities estimated by DBTDP 
of both datasets. T1 and E1 represent the true number of 
communities and the estimated number of communities of the 
dataset with the noise level 1. T2 and E2 represented the true 
number of communities and the estimated number of 
communities of the dataset with the noise level 2. 

 
Figure 4: The number of detected communities by DBTDP model from 

Flickr dataset on different time epoch 

 

(a) Epoch 1  

 

(b) Epoch 2 

 

(c) Epoch 3 

 

(d) Epoch 4 

Figure 5: The performance of the DBTDP model on Flickr dataset evaluated 

by robustness. 
 

C. Experiments on Flickr Datasets 

1) Data Description: In the second experiment, we use 
the Flickr dataset mentioned in [20] to test the scalability of 
our proposed model. Cha [20] crawled the Flickr social 
network graph once per day for the period of 104 consecutive 
days from November 2

nd
 –December 3

rd
 , 2006 and February 

3
rd

 – May 18
th

, 2007. 2.5 million Flickr users and 33 million 
edges were observed during these two periods. We aggregated 
the historical data from November 2

nd
 –December 3

rd
 to form 

the social network of time epoch 1. Similarly, we aggregated 
the data from February 3

rd
 – March 3

rd
, March 4

th
 – April 4

th
 

and April 5
th

 – May 18
th

 to form the social networks of epoch 
2, 3 and 4 respectively. Our proposed model was applied on 
these networks to identify hidden communities. It is worth to 
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mention that, due to the power law, most of the Flickr users 
have very low degree centrality. In this study, we removed the 
nodes that had low degree centrality and kept the core nodes 
(11K nodes) and their relationships (6.3M edges). 

2) Performance of DBTDP on Flickr Dataset: Due to 
the limited space, we cannot plot the result of our proposed 
algorithm with different parameters settings. According to our 
experience on large scale dataset, comparing to the small scale 
experiment on simulated dataset, DBTDP is not so sensitive to 
the parameters when the number of nodes of the networks is 
large, we empirically set           and         in this 

experiment. Figure 4 demonstrates the number of detected 
communities by DBTDP algorithm, which started from 2 and 
quickly converged to 7 at the first epoch and then maintained 
stable (epoch 2 & 3 are thus covered by epoch 4 in this 
figure).. To compare DBTDP with DBSM, we predefined the 
number of communities to 7 and 8 (7 was the number of 
detected communities by DBTDP) and compared DBTDP 
with DBSM-7 and DBSM-8, as shown in Figure 5 (a-d). 
Figure 5 demonstrates that in all 4 time epoch, DBTDP always 
achieved the lowest robustness score which showed that the 
communities detected by DBTDP were more robust and 
believable. 

VIII. CONCLUSION 

In this paper, we propose the Dynamic Stochastic 
Blockmodel with Temporal Dirichlet Process to detect 
communities and their evolution from dynamic networks. The 
DBTDP model considers networks arriving as a stream. We 
incorporate the Recurrent Chinese Restaurant Process with the 
stochastic blockmodel to adapt our model for network 
evolution. In particular, no prior knowledge is required to 
predefine the number of communities in our model. The 
communities in our proposed model can split, merge, retain, 
disappear or grow depending on the evolution. Furthermore, 
the Gibbs Sampling algorithm is proposed to optimize the 
posterior probability and determine the most probable value of 
the community assignments of nodes. The experiment results 
on simulated dataset shows that our proposed DBTDP model 
outperforms the state-of-art benchmark algorithm, especially 
when the number of communities changes with the data. The 
experiment results on the Flickr dataset also demonstrated the 
effectiveness and validity of our model. 
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