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Abstract. Generic programming using the C++ template facility has been a successful method for creating high-performance,

yet general algorithms for scientific computing and visualization. However, adding template code tends to require more template

code in surrounding structures and algorithms to maintain generality. Compiling all possible expansions of these templates

can lead to massive template bloat. Furthermore, compile-time binding of templates requires that all possible permutations be

known at compile time, limiting the runtime extensibility of the generic code. We present a method for deferring the compilation

of these templates until an exact type is needed. This dynamic compilation mechanism will produce the minimum amount of

compiled code needed for a particular application, while maintaining the generality and performance that templates innately

provide. Through a small amount of supporting code within each templated class, the proper templated code can be generated

at runtime without modifying the compiler. We describe the implementation of this goal within the SCIRun dataflow system.

SCIRun is freely available online for research purposes.

1. Problem description

SCIRun1 is a scientific problem solving environment

that allows the interactive construction and steering of

large-scale scientific computations [1–3]. A scientific

application is constructed by connecting computational

elements (modules) to form a program (network). This

program may contain several computational elements

as well as several visualization elements, all of which

work together in orchestrating a solution to a scientific

problem. Geometric inputs and computational param-

eters may be changed interactively, and the results of

these changes provide immediate feedback to the inves-

tigator. SCIRun is designed to facilitate large-scale sci-

entific computation and visualization on a wide range

of machines from the desktop to large shared-memory

and distributed-memory supercomputers.

At the heart of any general visualization system is

the data model. The data model is responsible for rep-

resenting a wide range of different data representation

schemes in a uniform fashion. In the case of SCIRun,

the core piece of our data model is the field library [4,

1Pronounced “ski-run.” SCIRun derives its name from the Sci-

entific Computing and Imaging (SCI) Institute at the University of

Utah.

5], where a field is simply a function represented over

some portion of 3D space. In most cases, that function

is represented by some discrete approximation, such

as a tetrahedral grid (i.e. a Finite Element Mesh) or

a 3D rectangular grid (i.e. a Finite Difference mesh,

or the product of a 3D medical scan such as Com-

puted Tomography or Magnetic Resonance Imaging).

Representing each of these fields in the most general

form possible would lead to a number of inefficiencies,

including a massive data explosion.

Therefore, we turn to C++ for mechanisms of pro-

viding access to these different field types in a uniform

way. Typical operations include computing the mini-

mum or maximum value in the field, iterating over dis-

crete data points, and interpolating the value at a spec-

ified point in space. In C++, we can use inheritance

and virtual functions to maintain a uniform interface to

these disparate representations.

We compared the runtime performance in a simple

yet representative test program. The test times virtual

method calls vs. template method calls of an identi-

cal function. The results demonstrate the widely-held

knowledge that there can be a significant performance

penalty to using a virtual interface. On Linux, the vir-

tual method timed at 30.43 seconds, and the template

version at 10.1 seconds, on Irix the same test ran at
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10.21 seconds, and 2.84 seconds respectively. These

results have led us away from a virtual interface in

many cases. Instead, we turn to generic programming.

Table 1 shows these results in tabular form.

The C++ template facility has been used by numer-

ous researchers to create high-performance, yet gen-

eral algorithms for scientific computing and visualiza-

tion [6–8]. Generic programming relies on the com-

piler to generate specialized instances of particular al-

gorithms that are tailored to the underlying data repre-

sentation. However, the use of templated code typically

leads to propagation of more template code. Compil-

ing all possible expansions of these templates can lead

to massive template bloat. Furthermore, compile-time

binding of templates requires that all possible permu-

tations be known at compile time, limiting the runtime

extensibility of the generic code.

As an example, consider the following realistic ex-

ample from the SCIRun field library. Consider the set

of different field classes: TetVol (Tetrahedral Volume

Grid), LatticeVol (3D Rectangular Lattice Grid), Con-

tourField (A set of countour lines), and TriSurf (A 3D

triangulated surface). On each of these fields, we can

hold several different types of data, such as double, int,

char, unsigned char, unsigned short, short, bool, Vec-

tor (3 doubles indicating a direction), and Tensor (6

doubles).

For these four field types, and these nine primitive

types, the compiler would be required to generate a

total of 36 different field combinations. Now consider

these 36 types that are used with a computational or vi-

sualization algorithm that is parameterized on one field

type. The compiler would also generate 36 versions

of this algorithm. However, if the algorithm required

two fields, and was therefore parameterized on two dif-

ferent field types, the compiler would be required to

generate 36
2

= 1296 different versions of that algo-

rithm. For an algorithm with three different field types,

36
3

= 46656 fully instantiated classes would be gen-

erated. These numbers grow as more field types, data

types, and algorithms are supported.

Our compilers did indeed have problems compiling

a fully instantiated version of our code. The compiler

itself ran out of 32 bit address space during a global

optimization pass. At this point, the template bloat

moved from an annoyance to a critical bug.

Since SCIRun is an interactive system, any of these

combinations could be used at any time. However, a

typical user will use only a handful of different field

types while using SCIRun. SCIRun is also extensible

at run-time through the dynamic loading of new mod-

ules. In particular, new field types can be created by

loaded modules, and these fields can be sent to other,

pre-compiled modules. With a pure template-based ap-

proach, modules that were compiled without support

for the new field would not be able to operate.

A different design of the field classes could easily

solve this problem, but would have other weaknesses.

If we used virtual functions instead of generic program-

ming to access the different types of fields, the system

would not suffer from the combinatoric explosion of

templated types. However, this design would suffer a

different drawback, namely performance. Virtual func-

tion calls are costly, and therefore prohibit fine-grained

access to data elements. Furthermore, virtual functions

thwart many of the optimizations performed by compil-

ers, leading to substantially reduced performance over

the template-based approach. As SCIRun is designed

for computation and visualization of large-scale scien-

tific datasets, we have found the virtual function solu-

tion to be unacceptable in many design situations.

2. Proposed solution

Through the use of C++ templates, the compiler cre-

ates multiple versions of the code specific to particular

data structures, primitive types, and algorithms. Each

module that needs to work on one of the above men-

tioned classes, implements an algorithm templated on

the exact field type. It is this algorithm that gets com-

piled when it is needed. For the purposes of illustration,

consider templates of this form:

template<class Field1, class

Field2> class Algorithm;

The system operates in the following simple steps:

1. Use C++ RTTI and additional run-time informa-

tion to determine which field classes are in use.

The calling module also specifies which algo-

rithm is to be applied to these fields.

2. Generate a small amount of C++ code to instanti-

ate the correct algorithm with the discovered field

types.

3. Fork a process to compile the C++ code into a

shared library.

4. Dynamically link this shared library into the run-

ning process, and locate the function that will

create the instantiated object.

5. Call this function to create an instance of the

specialized algorithm.
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Table 1

Performance comparison for typical visualization queries using virtual functions and templates

Machine Compiler Processor Virtual function time Template time

SGI Origin 2000 MIPSPro 7.3.1.2 250 Mhz R10000 10.21 s 2.84 s

Linux PC Pentium III GNU g++ 3.0 750 Mhz 30.43 s 10.1 s

6. Make a single virtual function call to the algo-

rithm, passing Field1 and Field2 and a generic

base class.

7. Since the algorithm knows the concrete type of

Field1 and Field2, it uses dynamic cast to get a

pointer to the specific type.

8. Finally, the algorithm performs its operation on

the data.

To accomplish this, the algorithm, and the templated

classes need to provide some information to the Dy-

namicLoader so that it can create the C++ file that needs

to be compiled. Below we explain the mechanisms that

are necessary in the code to support these operations.

3. Related work

Kennedy and Syme [9] describe their implementa-

tion of generics in the .NET Common Language Run-

time. Their work provides a similar solution to the

problem of bloat. They use JIT compilation to produce

the object at run time, an option enabled by control

over the virtual machine. This control enables a faster

compile time, as well as the fact that the mechanism

is hidden from the user. Essentially we have imple-

mented a crude JIT compilation mechanism for C++.

Our compilation/link/load takes longer, but since future

runs need not compile and link, the cost is amortized

over multiple executions of the SCIRun environment.

POOMA [10] is a high-performance C++ toolkit for

parallel scientific computation that depends heavily on

C++ templates for achieving high performance code.

However, with POOMA, all required templates are in-

stantiated at compile/link time instead of dynamically.

Since POOMA is not an interactive system, it does not

suffer from some of the same problems as SCIRun; the

compiler only generates template instantiations that are

required by the scientific program instead of every pos-

sible combination. Nevertheless, many POOMA com-

piles can take considerable time, and some of the tem-

plate instantiations may never get executed. POOMA

does provide constructs beyond what are required for

SCIRun, including semi-automatic data parallelism for

array expressions and other features. It is possible that

our mechanisms could be combined with the expres-

sion template engine (PETE) from POOMA in order

to provide dynamic compilation of complex scientific

simulations.

Veldhuizen [11] describes five different models for

compiling C++ template code. Four of these models

allow for template instantiation at run-time. However,

these mechanisms require compiler and language run-

time support not yet found in commercial compilers. In

constrast, our system uses commericial and free com-

pilers without modification.

4. Implementation

Through a small amount of supporting code within

each templated class, the proper templated code can be

generated at runtime. The system generates a small

amount of C++ code that includes:

– All C++ header files required to compile the algo-

rithm.

– Any required “using namespace” statements.

– A creation function with “C” linkage that returns

an instance of the desired algorithm.

An example of such code is shown in Fig. 1.

4.1. Algorithm structure

A templated algorithm inherits from an algorithm

base class. This class defines the interface that the al-

gorithm should have. Each templated algorithm pro-

vides the underlying implementation for the pure vir-

tual functions from the base class. The interface has

no restrictions, save that it be virtual. All access to

the interface happens at the algorithm base class level.

Typically the interface is a single pure virtual method

with arguments that satisfy the passing of data from

the calling module. This allows the entire algorithm

to be executed with a single virtual method call. All

such algorithm base classes inherit from a common

base class that the DynamicLoader maps to the string

representation of the exact type for an algorithm.

An example of the algorithm structure is shown in

Fig. 2.
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// This is an automatically generated file, do not edit!

#include "../src/Core/Datatypes/TetVol.h"

#include "../src/Core/Algorithms/Visualization/RenderField.h"

using namespace SCIRun;

extern "C" {

RenderFieldBase* maker() {

return scinew RenderField<TetVol<double> >;

}

}

Fig. 1. An example of the small automatically generated C++ code to instantiate the proper templated class. This will generate the RenderField

algorithm, with the field of type TetVol<double>.

class TransformScalarDataAlgo : public DynamicAlgoBase

{

public:

virtual FieldHandle execute(FieldHandle src, Function *f) = 0;

//! support the dynamically compiled algorithm concept

static CompileInfo *get_compile_info(const TypeDescription *fsrc,

const TypeDescription *lsrc);

};

template <class FIELD, class LOC>

class TransformScalarDataAlgoT : public TransformScalarDataAlgo

{

public:

//! virtual interface.

virtual FieldHandle execute(FieldHandle src, Function *f);

};

template <class FIELD, class LOC>

FieldHandle

TransformScalarDataAlgoT<FIELD, LOC>::execute(FieldHandle field_h,

Function *f)

{

FIELD *ifield = dynamic_cast<FIELD *>(field_h.get_rep());

FIELD *ofield = ifield->clone();

typename FIELD::mesh_handle_type mesh = ifield->get_typed_mesh();

typename LOC::iterator itr, eitr;

mesh->begin(itr);

mesh->end(eitr);

while (itr != eitr)

{

typename FIELD::value_type val;

ifield->value(val, *itr);

double tmp = (double)val;

val = (typename FIELD::value_type)(f->eval(&tmp));

ofield->set_value(val, *itr);

++itr;

}

return ofield;

}

Fig. 2. An example of an algorithm that applies a function to all the scalar data within a field.

4.2. The TypeDescription object

Each object that supports dynamic compilation, must

provide a TypeDescription object. This object holds

strings that describe its type, the namespace that it be-

longs to, and the path to the .h file that declares it.

The latter is frequently provided by simply returning

the value of the standard FILE preprocessor macro.
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Most of this internal type information is not avail-

able through the standard C++ RTTI facility, so Type-

Description provides that augmented internal informa-

tion. This object can also recursively contain the Type-

Descriptions for sub types. For example a foo<bar,

foobar<int> > has a TypeDescription that has a both

bar, and foobar TypeDescriptions. The foobar Type-

Description, has the int TypeDescription. A recursive

traversal of this object allows us to output a string that

matches the exact type for the object.

4.3. The CompileInfo object

Instantiated algorithms have the form Alg<T>,

where Alg is the generic algorithm and T a type param-

eter. A module that wants to create such an algorithm

can not have an instance of the algorithm until after

dynamic compilation. For this reason, the Compile-

Info object is needed. It provides information similar

to the TypeDescription, but without the mapping to an

underlying object. This object is also the structure that

ultimately holds the strings that get written to the .cc

file in preparation for compilation. The CompileInfo

gets filled with its information when it is passed along

to each TypeDescription object that makes up the data

type, as well as to the algorithm. The completed Com-

pileInfo object is passed to the DynamicLoader when

the calling module requests an instance of the special-

ized algorithm.

4.4. The DynamicLoader object

The DynamicLoader is the interface for a module to

get a handle for the algorithm it needs. Its interface

is simple: A module builds up a CompileInfo for the

module, and asks the DynamicLoader for a handle to

algorithm object. The DynamicLoader then looks up

the algorithm in an internal cache. If it does not exist,

it uses the CompileInfo to write a small C++ file to disk

in a predefined directory. This directory has a makefile

that knows how to build a shared library from that C++

file. The DynamicLoader then forks a shell and builds

the desired library. Once the shared library is compiled,

it is loaded and stored in the internal cache. Each dy-

namically compiled library has a uniformly named cre-

ation function, maker(), which returns a pointer to the

algorithm base class. This function pointer is stored in

the hash table, and called each time an algorithm is re-

quested by a module, giving each module a separate in-

stance of the algorithm, including unique state for each

algorithm instance. Since SCIRun is a multi-threaded

program, the DynamicLoader has synchronization code

designed such that threads block waiting for a unique

type, but it can compile an unlimited number of distinct

algorithms concurrently.

4.5. Calling module

The calling module knows of the DynamicLoader,

and has a concrete Field instance for which an algorithm

template must be instantiated. The algorithm base type

is known, as it is integral to the module’s function. The

exact algorithm will be templated on the exact Field

type. This is only known to the module through strings,

not types. The module fetches the CompileInfo from

the algorithm base class, by feeding it the input Field’s

TypeDescription object, then asks the DynamicLoader

for an algorithm that matches the CompileInfo. No

instance of the exact types are instantiated until runtime

when they are asked for by the module.

An example of how a module gets and calls an algo-

rithm is shown in Fig. 3.

4.6. Performance

SCIRun is currently supported on Irix and Linux.

The runtime compilation and linking depends of course

on the code size of the algorithm, but it is typically on

the order of seconds. For a user who is not modifying

the code that the algorithm depends upon, this is a one

time operation. The library remains on disk, so that

upon the next run the library can simply be reloaded

after a makefile-based dependency check, skipping the

compile step.

For a commonly used library in the SCIRun system,

the initial compile and link step takes about 7 seconds

on Linux, and about 40 seconds on Irix. It should be

noted that the longer Irix compilation and linking often

produces better optimized code.

Since the compilation only happens once, the system

rapidly amortizes the cost of the compilation from the

increased performance during execution of the algo-

rithm. Furthermore, the system facilitates more rapid

development cycles, as the typical developer does not

need to wait for the compiler to instantiate a multitude

of template classes at link time.



326 M.J. Cole and S.G. Parker / Dynamic compilation of C++ template code

const TypeDescription *ftd = ifieldhandle->get_type_description();

const TypeDescription *ltd = ifieldhandle->data_at_type_description();

CompileInfo *ci = TransformScalarDataAlgo::get_compile_info(ftd, ltd);

DynamicAlgoHandle algo_handle;

if (! DynamicLoader::scirun_loader().get(*ci, algo_handle))

{

error("Could not compile algorithm.");

return;

}

TransformScalarDataAlgo *algo =

dynamic_cast<TransformScalarDataAlgo *>(algo_handle.get_rep());

if (algo == 0)

{

error("Could not get algorithm.");

return;

}

// Create a FieldHandle from the Field pointer returned from algo.

FieldHandle ofieldhandle(algo->execute(ifieldhandle, function));

Fig. 3. An example from a calling module. It builds up a CompileInfo, and asks for an algorithm of the appropriate type from the DynamicLoader.

After error checking it calls into the newly loaded algorithm.

4.7. Disadvantages

This system is not built into the language, so it re-

quires source code, and a C++ compiler on the system.

There is additional code maintenance required. We re-

quire information that the standard C++ RTTI facility

lacks. This information (include files, template param-

eter types, etc) needs to be added to each new field

type or algorithm that is added to the system. This is

typically only a few lines of simple code, and is not a

major burden.

There are other also a few other minor disadvan-

tages with the current implementation. The libraries

are all created in a single directory, so users sharing

a build must have write permissions in the directory.

The runtime compilation step can be time consuming

for a large network of modules the first time through.

Developers may not see compile errors until runtime,

when the actual instantiation of the exact algorithm gets

compiled.

5. Future work

The SCIRun dynamic compilation framework has

been used for instantiating classes that could have been

known at compile time. We could achieve higher per-

formance in some cases by using even more run-time

information in the dynamic compilation phase. For ex-

ample, array dimensions or repeatedly used constant

values could be compiled into the template instance to

achieve higher performance.

The current system does not provide a mechanism

for specifying special libraries that an algorithm or field

class may need. As a result, the makefiles link the

shared object against several known libraries, many of

which may not be needed. This deficiency could be

overcome by requiring the developer to specify required

libraries in the TypeDescription and CompileInfo ob-

jects, or by assuming that the libraries have previously

been loaded into the running program

SCIRun operates under a shared-memory parallel

environment. In this case, we are only required to syn-

chronize demand-compilation within a single process.

Future versions of SCIRun will operate in a distributed-

memory parallel environment, which will require that

multiple processors synchronize to avoid race condi-

tions when generating code on a single shared filesys-

tem. In this case, the locking mechanism mentioned

above will be extended to use filesystem-based locks.

6. Summary

We have provided a mechanism for compiling only

the template instantiations that are needed as opposed to

compiling all possible combinations of instantiations.

This solution minimizes the biggest problem with using

template code, namely bloat: compiling all possible

combinations of template code, increases total space

and compilation time requirements. This reason has

been enough to overshadow the benefits that templates

provide in generality and execution time. The deferred

compilation scheme makes the use of templates prac-

tical for an interactive, general purpose system such as
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SCIRun. This mechanism also allows SCIRun modules

to operate on data types that it knows nothing about at

the time the module is compiled.
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