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ABSTRACT

DYNAMIC COMPOSITION OF FUNCTIONS FOR MODULAR

LEARNING

FEBRUARY 2020

CLEMENS G. B. ROSENBAUM

B.Sc., TECHNISCHE UNIVERSITÄT DARMSTADT

MAGISTER ARTIUM, J.W. GOETHE UNIVERSITÄT FRANKFURT

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

Compositionality is useful to reduce the complexity of machine learning models and

increase their generalization capabilities, because new problems can be linked to the com-

position of existing solutions. Recent work has shown that compositional approaches can

offer substantial benefits over a wide variety of tasks, from multi-task learning over visual

question-answering to natural language inference, among others. A key variant is functional

compositionality, where a meta-learner composes different (trainable) functions into com-

plex machine learning models. In this thesis, I generalize existing approaches to functional

compositionality under the umbrella of the routing paradigm, where trainable arbitrary

functions are ‘stacked’ to form complex machine learning models.

v
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CHAPTER 1

INTRODUCTION

When we think about Artificial Intelligence, we think about advances in gameplaying

– from Backgammon over chess to Go – traditionally thought to be a domain of human

reasoning. We think about the incredible progress in searching through huge amounts of

data, progress in language translation, and video recognition. We might even think about

advances in medicine and other areas of science. All of these advances share a reliance on

machine learning, on automatically discovering the rules guiding a particular problem and

to generalize to new examples. If we look more closely, though, we can see that machine

learning played a different role in advances 20 years ago than in more recent ones. Mostly

limited by the availability of affordable computation, it was oftentimes cheaper in the 1990s

to hire human experts to hard code rules guiding the machine learning algorithms – as

was done for Deep Blue, the chess computer famously beating the acting world champion.

Twenty years later, and with trillions of computations per second more, Alpha Zero became

the strongest chess player in history, without having to rely on any human supervision

whatsoever. A similar story happened with machine translation, when Google translate

shifted to primarily rely on machine learning in 2016.Many similar stories could be told –

from self-driving cars to fraud detection.

These stories are huge successes for AI and machine learning. What they do not tell,

at least not immediately, are the challenges that machine learning faces, and where we, as

machine learning researchers, still have a long way to go. These challenges include (but are

not limited to): learning from few examples, transferring skills and knowledge to different

problems, remembering old skills and knowledge after the arrival of new information
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and knowledge, abstracting reasoning skills across domains, and jointly learning to solve

multiple problems. We know, however, that these skills should be achievable because

human beings are able to do them with ease. And while an intelligent program should not

necessarily model human cognition, it oftentimes pays off to consider insight the cognitive

sciences have reached.

One of these insights is the core concept of this thesis: compositional modularity.

Playing a central role in research on human cognition since the 1970s, it assumes that

human cognition divides labor by being decomposed into specialized subsystems, each

one performing specific subtasks. The arguments for modularity, especially in learning,

are so persuasive that they have also played a role in machine learning research since the

early 1990s. On a high level, they can be subsumed under the umbrella of specialization.

Intuitively, it makes sense to have specialized submodules, because this ‘divide-and-conquer’

idea should be able to break down a problem into simpler subparts. Additionally, the

solutions to each of these parts may be usable over a variety of problems, allowing for faster

adaptation to new problems, by simply recomposing already learned skills.

In the context of neural networks, modular and compositional learning is a special case

of conditional computation, a machine learning strategy where different tasks of arbitrary

granularity – different samples, contexts, or problems and datasets – will be solved by the

same model, with a possibly unique set of active parameters for each task. Conditional

computation shares several advantages with modular and compositional learning: (1) Such

approaches allow a system to scale better, because they allow huge (in terms of parameter

count) implicit models where only a small number of parameters is actually required

to be active in any single computation. (2) They should allow a system to have more

specialized ‘parts’, each encompassing a special skill. While many modern architectures, in

particular deep architectures, should in theory be able to achieve such compartmentalization,

they generally do not do so in practice. (3) Depending on the degree of freedom in the

composition, a system may be able to create a great many different latent models, thereby
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generalizing over a wider variety of tasks. (4) The same strategy could allow the system

to maintain every learned skill, as long as the adequate composition is stored. (5) Because

the system may be able to avoid learning interference, and group similar samples to similar

parameters, it should be able to train faster and to better performance.

In this thesis, I will argue for a special case of modular and compositional learning:

functional composition. For functional composition, entire parameterized and trainable

functions are ‘stacked’ to form a complete machine learning model. In many ways, functional

compositionality reflects our human intuitions the closest, because complete functions are a

good approximation of the subskills we attribute to ourselves when solving a problem. In

particular, I will advocate for an approach I call routing, where a centralized router (the

composition strategy) iteratively selects modules (trainable functions) and applies them to

the input, until some stopping criterion is met. The result of the final application can then

either be forwarded to other, (non-routed) functions or interpreted as the composite model’s

prediction. Importantly, and distinguishing this approach from the slightly different research

area of architecture search, this composition happens for each sample anew, forming possibly

different compositions for different samples. Additionally, the model is updated immediately

after receiving feedback for the model’s prediction. If the applied modules are artificial

neural networks, such a model is called a routing network, and is depicted in Figure 1.1.

input x

t1 t2 t3

t1 t2 t3

t1 t2 t3

π(h)

router

h1

h2

h3

output y = t3(t2(t1(x)))
h4

Figure 1.1: A routing network. The router consists of a parameterized

decision maker that iteratively selects modules (i.e., trainable func-

tions). Each selected function is then applied to the latest activation,

resulting in a new activation, which can then again be transformed.

The training of a routing network happens online, i.e., the output of

the model is used to train the transformations using backpropagation

and Stochastic Gradient Descent (SGD), and is simultaneously used

to provide feedback to the decision maker.
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These will form the focus of this investigation, because they have already proven to be very

successful for several domains, from multi-task learning to language inference.

The most important aspect to routing networks (and arguably, to any kind of routed

model) is the training of the modules and the training of the router. For routing networks,

the modules can be trained using the highly performant and highly efficient backpropa-

gation algorithm, which (arguably) is the main reason for the recent successes of neural

architectures. Because the router, on the other hand, needs to learn to make decisions from

purely evaluative, and not instructive, feedback, we need to consider different optimization

strategies. While there are several other training algorithms possible for the router, I will

focus on two that I believe to be the most principled. The first is reinforcement learning (RL),

which is the most impactful and best investigated area of research for sequential decision

making. Reinforcement learning only learns from a scalar reward provided to the agent (the

router, in our case), provided as a feedback to each action (module selection, in our case).

The second training algorithm for the router uses recently introduced reparameterization

techniques for discrete stochastic distributions. These are, on a first glance, much more

fitting solutions because they can also be trained with backpropagation, allowing for a

seamless integration into routing networks.

While learning hard selections is always difficult, routing adds even more complexity

to the training of both modules and router. The main problem is the mutual non-stationary

nature of either training process: From the perspective of the router, the learning problem

is non-stationary, because the parameters of the modules constantly change. From the

perspective of the modules, the composition and thus their role in the composed model may

change whenever the router changes the routing path. I will dedicate a separate chapter

to this problem and some of its consequences, highlighting some of the interplay between

composition and modules and analyzing the problem to derive better solutions.
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Outline & Contributions

This thesis can roughly be separated into two separate parts, conceptual and empirical.

In the second chapter, I will relate routing to existing approaches and paradigms in the

literature. In the third chapter, I will re-introduce routing (networks) in detail. This will

mainly focus on explaining the routing algorithm, as well as going over a multitude of

different design decisions and their potential benefits. The fourth chapter will exclusively

concentrate on the already hinted at challenges that the training of a routing network may

encounter. These challenges also allow me to derive additional metrics under which routing

may be evaluated.

As the most successful strategy to mitigate the problems of training a routing network is

to provide meta-information (or any other form of low-dimensional projection), the empiri-

cal analysis of routing networks will be three-fold. In chapter five, I will start by presenting

routing networks that rely on meta-information, and will explain why routing can become so

much easier when combined with meta-information. In chapter six, I will describe different

approaches of routing without meta-information, and will illustrate a procedure that can

learn to emulate meta-information of the kind helpful to training a routing network. Finally,

in chapter seven, I will do a thorough empirical analysis of other open questions for the

successful implementation of routing networks.

Each chapter in this thesis corresponds to a contribution: In Chapter 2, when discussing

related work, I will explain how routing generalizes existing approaches. In Chapter 3, I will

introduce routing, a general framework for functional composition, as a major contribution.

In Chapter 4, I will contribute an analysis of conditional computation approaches and why

they are difficult to train. I will exemplify this on routing. In Chapter 5, I will introduce

my contribution of conditioning routing on low-dimensional abstractions. In Chapter 6, I

will discuss a relaxation of relying on low-dimensional abstractions, which is a contribution

on its own. In Chapter 7, I will provide another contribution, a detailed empirical analysis
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of numerous design and hyperparameter choices for routing. Many of the results in this

chapter are negative, and I hope to give sufficient explanations and intuitions for when

routing succeeds and for when it fails.

As most of this work was collaborative, I will use the scientific ‘we’ for the remainder

of this thesis.
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Definitions and Notation

We will now give an overview over the most relevant terms and the most relevant notation

used throughout this thesis. First, some general terminology:

Architecture An architecture is a description of the parameterized function that takes

an input and produces a prediction, without specifying the parameter

values.

Model A model is an instantiated architecture, i.e., one specific architecture

with specific parameter values. For this thesis, a model is generally

composed of multiple modules.

Modules Modules are parameterized functions that take an activation and pro-

duce a new activation. Interchangeable terms are transformations,

layers, and function block.

Activations Activations are any kind of intermediary result computed by a machine

learning model. We may use them to also include the input to and the

output of the model in certain contexts.

Downstream task As routing has nested optimization problems, the downstream task

is the highest level task, which generally is the one we are actually

interested in solving.

Tasks A task is one particular problem that we try to solve. For supervised

learning, this is generally a dataset with tuples containing the input and

the desired output.

Now, some notation:

〈x, y〉 A dataset for supervised learning consists of input and output pairs,

〈x, y〉, where x generally refers to the input and y to the ground truth

target output.
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ŷ ŷ describes the output of a model, an estimation of the target.

L L will always be used for loss or objective functions. To specify, losses

will be subscripted. For supervised learning, they will be a function

between the model output and the target: L(ŷ, y). However, other

losses can be defined (e.g., the REINFORCE loss for reinforcement

learning).

π As common in reinforcement learning, π describes a policy, i.e., a

conditional distribution over actions. It is generally a function of the

state s and it may be parameterized by parameters θ, written as πθ(s).

h h will always be an activation (for hidden). This may include the 0th

activation, i.e., the input, and the final activation, i.e., the output.

a As common in reinforcement learning, all actions (i.e., module selec-

tions) will be specified by a.

E(·) The function E always described the expected value of its argument,

which needs to be a random variable.

θ When either the router or the modules are parameterized, their parame-

ters are referred to as θ.

P (·) P (·) is the probability function. P (a|s, π) describes the probability of

taking action a given state s and policy π.

1d(k) The 1d(k) function is the indicator (or one-hot) function. It will produce

a vector of dimensionality d that equals 0 everywhere, except for index

k, where it equals 1.
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CHAPTER 2

RELATED WORK

“Suitably designed modular architectures should learn faster than single

networks because similar functions can be learned by the same network of the

modular architecture, resulting in the benefits of positive transfer of training,

whereas dissimilar functions can be learned by different networks, thereby

avoiding the detrimental effects of negative transfer of training.”

Jacobs, Jordan and Barto 1991 [Jacobs et al., 1991a]

This quote from 1991 describes the motivation for “task-decomposition modular net-

works” [Jacobs et al., 1991a], arguably the first direct ancestor to routing networks. However,

task-decomposition modular networks were not the only modular architecture introduced in

the early 90s, and not even the most influential. The most influential were, and are, mixtures

of experts architectures (MoE) [Jacobs et al., 1991b, Jordan and Jacobs, 1994], which are

“soft” versions of routing networks. As such, they do not make exclusive hard selections,

but instead learn weights (so-called ‘gates’) over the output of different modules. This

simplifies their training immensely, because these gates retain differentiability and can thus

be trained with backpropagation. However, they are not truly modular, because they do

not use separate components for different problems. We will describe these and modern

variations in more detail in Section 2.2.

Another, more recent line of research closely related to routing is “meta-learning”.

The “meta” in meta-learning describes a second learning process on top of the original

model. This optimizes for the same target, but modifies some meta-level property of the
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underlying process. These can include hyperparameters, gradient update procedures, and

model structure and architecture. In this sense, routing is a generalization of meta-learning

based architecture search, because it generalizes the assumption that all samples should

be treated identically. This research will be described and related to routing in detail in

Section 2.5.

As will become clear throughout this thesis, routing has a strong relationship to multi-

task learning, partially because it was originally designed to navigate transfer between

multiple tasks. In this context, the earliest work related to routing networks are, “task-

decomposition modular networks” [Jacobs et al., 1991a], and arguably Richard Caruana’s

PhD thesis [Caruana, 1997], where he describes the benefits of sharing (and not sharing)

parameters for transfer and interference of learning. While multi-task learning is not per se

related to routing, it is certainly an application that has produced many different approaches

with similar intent. We will therefore explore some of the more related ideas in Section 2.6.

This chapter starts with an overview of modular and compositional architectures outside

of computer science, as the idea of modularity is a dominant paradigm in research into

human cognition. After describing related work, some of which described above, it will

finish with a section (Section 2.7) reviewing work on routing by other researchers.

2.1 Modular and Compositional Learning in Other Disciplines

The earliest debate with a direct impact on modular computation was probably in the

cognitive sciences, because human learning relies on similar notions of modularity and

compositionality. Of particular relevance is the work of Jerry Fodor [Fodor, 1975, 1983,

Fodor and Pylyshyn, 1988], who postulated that human reasoning and learning are roughly

structured along the structure-content divide of natural language [Fodor, 1975]. For him,

specific areas of the brain encapsulate specific skills, while other areas have the more general

task of assigning stimuli and intentions to their respectively specialized areas. Partially as
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a consequence of the impact of his work, this remains a major paradigm in the cognitive

sciences until today (Bechtel and Richardson [2010] provide a thorough overview over these

developments until the late 2000s).

Additionally, studies in neurophysiology appear to confirm these beliefs, because deficits

in high-level cognitive functions are regularly associated with impairments of particular

regions of the brain that are regarded as modules, typically under the assumptions that

these modules operate independently and, to varying degrees, that their effects are local

[Farah, 1994, Shallice, 1988, Bechtel and Abrahamsen, 2002]. This relates to two more

fundamental aspects of the organization of the brain: functional segregation of neural

populations and anatomic brain regions as specialized and independent cortical areas, and

functional integration, the complementary aspect that accounts for coordinated interaction

[Tononi et al., 1994]. Recently, Kell et al. [2018] have been able to replicate human cortical

organization in the auditory cortex using a neural model with two distinct, task-dependent

pathways corresponding to music and speech processing. When evaluated in real world

tasks, their model performs as well as humans and makes human-like errors. This model is

also able to predict with good accuracy fMRI voxel responses throughout the auditory cortex,

which suggest certain correlation with brain-like representational transformations. Kell et al.

[2018] use these promising results to suggest that the tripartite hierarchical organization of

the auditory cortex commonly found in other species may also become evident in humans

once more data is available and more realistic training mechanisms are employed. In

particular, their results suggest that the architectural separation of the processing of the

streams is compatible with functional segregation observed in the non-primary auditory

cortex [Kell et al., 2018, and references therein].
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2.2 Mixtures of Experts and ‘Soft’ Routing

The aforementioned Mixtures of Expert (MoE) architectures [Jacobs et al., 1991b, Jordan

and Jacobs, 1994] do not make hard selections, but instead compute a weighted sum over

the outputs of all the modules. While original work only focused on a single layer to be

computed, modern approaches allow for a sequence of models to be selected, making them

yet more similar to routing networks. (Which is why, they have been referred to as ‘soft’

routing models). That is, given a fixed set of modulesM, they compute the following output

for a given activation h:

fMoE(M, h) =
∑

m∈M

w(h)m(h) (2.1)

Where w(h) is a learned weight (or gate) to the modules’ output. For top-k MoE architec-

tures, we have:

fMoEk
(M, h) = w1(h)m1(h) + w2(h)m2(h) + ...+ wk(h)mk(h) (2.2)

with the constraint that m1 6= m2 6= ... 6= mk, and with w1(h)...wk(h) generally as the k

highest valued weights. This differs from routing, which computes

frouting(M, h) = m(h) (2.3)

where m is oftentimes chosen as the highest-valued model for input h. Even though routing

could be considered an MoE architecture where all except one weight equals zero, this

greatly distorts routing conceptually. If the focus remains on making a single hard decision,

it allows the principled investigation of problems common to decision making, such as credit

assignment and exploration.

This critique extends to several recent approaches that do not simultaneously compute

the output over all modules, but instead only over a subset. As a result, sparse or ‘top-k’
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mixtures of experts architectures [Shazeer et al., 2017, Ramachandran and Le, 2019] must

include special procedures for adding noise to the system and load balancing to achieve

strong performance [Shazeer et al., 2017]. Consequently, it makes sense even with a sparse

system to model the selection of a subset of experts as an explicit reinforcement learning

problem. For example, in [Bengio et al., 2015] each “expert” is gated by a Boolean routing

decision that is modeled as a reinforcement learning problem.

2.2.1 Conditional Activations of Neurons

Other related work for neural architectures includes what we might term “conditional

computation on a per-neuron basis”, of which there are two types. In ‘uninformed’ condi-

tional computation, the inclusion of a neuron in the computation does not depend on the

input sample. This includes regularization approaches, such as L0 regularization [Louizos

et al., 2017], where the network is regularized to only use the same subset of neurons for

all samples. It also includes random regularization approaches such as Dropout [Srivastava

et al., 2014], where the network only uses a random subset of samples.

The second group can be called ‘informed’ conditional computation, as the function

triggering a single neuron depends on the current sample. One example is [Bengio et al.,

2015], where each neuron can be masked by having a per-neuron input-dependent trigger

function, to merge networks for different tasks. Another interesting example of conditional

computation that falls into this group are activation functions, in particular ReLUs [Nair and

Hinton, 2010], because these condition local composition based on the input to the model.

However, these are only a special limited case of modular and compositional computation,

as they do not allow for a separation of the interpretation of each module, and the module

composition. But this can be one of the greatest advantages of compositional approaches

such as routing networks. As an example, consider routed visual question answering

approaches such as [Andreas et al., 2015] or [Wu et al., 2019]. There, the composition of the

modules is determined by the question, but the interpretation of the images is determined by
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the modules. This is also true for multi-task routing approaches [Rosenbaum et al., 2017,

Cases et al., 2019] and multi-task per-neuron compositional approaches [Bengio et al., 2015],

because the composition is decided by the task information, but the module interpretation is

decided by the visiual aspects of the samples.

2.3 Other forms of Conditional Computation

Conditional computation describes a property of a deep learning model in which not all

neurons are required for all activations. Instead, each neuron will only be activated for some

inputs. This was theorized first in [Bengio, 2013], and introduced in [Bengio et al., 2013].

Functional composition, i.e., routing, is both more general and more specific. Because it

delimiters the exact set of active parameters by setting them module-wise, it is more specific.

But routing is more general in that it allows for a flexible ordering of the neurons. However,

routing can be seen as a model of recursive conditional computation. A similar idea was

applied in a reinforcement learning context in [Bengio et al., 2015].

Another semi-modular approach that combines intuitions behind conditional computa-

tion on a neuron level and on a module level is ‘Pathnet’ [Fernando et al., 2017]. Similar

to routing, pathnet also relies on complete modules in the form of neural network layers.

Similar to a top-k MoE architecture and models of conditional computation on a neuron

level, several of these models are then combined to form the new output. Dissimilar to rout-

ing, the ordering of these models is fixed. These paths are trained using genetic algorithms,

while the modules are trained with SGD.

2.4 Numerical Analysis

Machine learning has a very close relationship to numerical analysis, and many con-

cepts of one have corresponding concepts in the other. This includes a specific application

to routing and related approaches in modular computation, because they are strongly re-
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lated to the concept of local approximations in numerical analysis. Local approxima-

tion techniques are those that find a different approximation for a different subset of

samples, as depicted in Figure 2.1. This makes the entire approximation, composed

by the sum of its local parts, highly non-linear, which is an oftentimes desireable trait.

Figure 2.1: A dataset with two subsets,

each approximated by a different func-

tion.

In this sense, routing is a local approximation tech-

nique, as it also finds different approximations for

different subsets of samples. More precisely, it is

a local approximation technique where the clusters

are found dynamically, and the number of clusters is

limited by the number of combinations determined

by the width and depth of the router design. Addi-

tionally, each approximation may share a different

amount of parameters with other approximations.

2.5 Meta-learning and Architecture Search

Routing networks are an extension of a popular line of recent research focused on

automated architecture search, or more generally, architecture-based meta-learning. General

meta-learning augments the learning process with additional learning processes that optimize

for the same target by modifying the underlying learning process. This modification may

occur on several levels.

For gradient-based meta-learning (obviously only applicable to differential machine

learning models), the gradient direction or size is in itself another optimization problem.

There are several kinds of motivation for this line of work. One is that regular stochastic

gradient descent may not sufficiently accommodate the structure of the given problem, so

that task-specific gradient steps will yield superior learning performance [Andrychowicz

et al., 2016]. Another motivation may be taking gradient steps that yield parameter states
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that can be easily adapted for few-shot learning [Finn et al., 2017, Nichol and Schulman,

2018].

Another very important line of work is the automated learning of optimal hyperparame-

ter values. While naïve solutions, i.e., hyperparameter-sweeps, are possible (and probably

the de facto standard for most published work), the process of searching for optimal hy-

perparameters can itself form an optimization problem [Feurer et al., 2015, Snoek et al.,

2012].

This brings us to architecture search. Here, the search space of the optimization problem

is the exact configuration of the model. The goal is to reduce the burden on the algorithm

designers by automatically learning black box algorithms that search for optimal architec-

tures. The search space may be simple and only contain different values for the hidden

dimension of an architecture, or range to complex properties such as the choice and order of

parameterized transformations (layers, in the context of neural architectures). This line of

meta-learning in particular is very relevant to routing.

Architecture search automatically finds the optimal architecture of a model for an entire

dataset, while routing finds the optimal architecture for privileged subsets, possibly even

for each individual sample. The first research along this line was a very straightforward

search utilizing reinforcement learning: Construct an architecture, train it until convergence,

evaluate its performance and use that (accuracy) score as a reward, then repeat [Zoph and

Le, 2017, Baker et al., 2017]. The problem with this approach is its computational cost,

because even training one model to convergence can take a powerful computer several days.1

Other approaches rely on evolutionary algorithms [Miikkulainen et al., 2017, Fernando

et al., 2017], approximate random simulations [Brock et al., 2017], and adaptive growth

[Cortes et al., 2016]. Liang et al. [2018] even introduced an evolutionary algorithm approach

1Zoph and Le [2017] in particular were famous for a while for relying on an unprecedented amount of
computation.

16



targeting multi-task learning that comes very close to the original formulation in [Rosenbaum

et al., 2017].

Formally, both routing and architecture search define so-called bilevel optimization prob-

lems, as one optimization problem is nested in another one. The architecture search bilevel

optimization problem can be defined as (with M as the set of possible models/architectures

µ∗ as the optimal architecture, Θ the possible values of the parameterization, θ∗ the optimal

set of parameter values, L the downstream loss function, and DS as a given dataset):

µ∗ =
m∈M

argmin
〈x,y〉∈DS

E (L(mθ(x), y)) (2.4)

subject to: θ =
t∈Θ

argmin
〈x,y〉∈DS

E (L(mt(x), y)) (2.5)

While routing can be defined as:

θ∗ =
θ∈Θ

argmin
〈x,y〉∈DS

E (L(µθ(x), y)) (2.6)

subject to: µθ =
m∈M

argminL(mθ(x), y) (2.7)

The main differences are: (1) The order or the nesting. For architecture search, optimizing

the parameters is nested in searching over architectures. For routing, optimizing over models

(and not architectures, as they are conditioned on specific θ) is nested in optimizing the

parameters of the modules. (2) While architecture search optimizes the parameters over the

entire dataset, routing optimizes the choice of model for each sample individually.

One-shot neural architecture search [Brock et al., 2017, Pham et al., 2018, Bender

et al., 2018] tries to simplify the costly search process of full architecture search by jointly

evaluating large groups of models that share parameters. In this, it becomes even closer to

routing, as all routing models also share parameters, as the model parameters are optimized

in the outer optimization process (equation 2.6). However, one-shot architecture search

still constraints the search space by having more restrictive choices of which modules are
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available at a given step. Additionally, it still works under the assumption that all samples

in a dataset should work on the same model. Routing, not having these restrictions, can

consequently be seen as a generalization of one-shot architecture search [Ramachandran

and Le, 2019].

2.6 Multi-task Learning

As will become clear throughout this thesis, routing has the ability to pick up on local

modes of multi-modal distributions, and learning different routing paths for each. This can

be seen as an implicit multi-task approach, because multi-task learning is a special case of

multi-modal learning when the different modes are known, and labeled, a priori. The general

motivation behind this is already articulated in “task-decomposition modular networks” in

1991 [Jacobs et al., 1991a], as illustrated by the introductory quote.

Consequently, there are parallels between routing and several lines of research in multi-

task deep learning. In fact, routing was first proposed to learn paths for different tasks,

balancing positive and negative transfer [Rosenbaum et al., 2017].

Because modular architectures generally offer solutions to balancing positive and neg-

ative transfer, many approaches related to routing have been applied to it. These include

mixtures of experts models, or more generally soft parameter sharing models. While these

have been considered in the multi-task and lifelong learning setting [Stollenga et al., 2014,

Aljundi et al., 2016, Misra et al., 2016, Ruder et al., 2017, Rajendran et al., 2017], they do

not allow for nearly the level of specialization of those based on routing. This is because

they do not eliminate weight sharing across modules and instead only gate the sharing. In

practice, this still leads to significant interference across tasks as a result of a limited ability

to navigate the transfer-interference trade-off [Riemer et al., 2019] in comparison to models

that make hard routing decisions.
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2.7 Existing Work on Routing

Routing networks as a general paradigm of composing trainable transformations were

first introduced in [Rosenbaum et al., 2017]. Since then, there have been several approaches

extending them.

Chang et al. [2019] show that a vanilla routing network can learn to generalize over

patterns and thus to classes of unseen samples if it is trained with curriculum learning. Their

experiments include cases of simple formula parsing and image rotation. They show that, if

trained correctly, routing can generalize to length k + 2 formulas after only being trained on

length k formulas. Similarly, they show that routing can generalize to rotating images by

more than some angle α, after only being trained to rotate images up to a rotation of α.

Kirsch et al. [2018] identify one of the challenges of compositional computation, collapse,

and develop a new policy gradient-based routing algorithm that utilizes EM techniques to

alternately group samples to transformations, and then applies them. This allows the model

to learn non-collapsing distributions over the different model selections.

Ramachandran and Le [2019] investigate another challenge to routing, architectural

diversity over transformations. Although they are using a top-k routing approach, and thus

strictly speaking a “soft” version of routing, they make several compelling arguments as

to how diversity can help a routing network learn more expressive configurations. They

investigate their technique on Omniglot, reaching impressive state of the art performance.

Cases et al. [2019], which is our work and is presented in detail in Section 5.3, shows

how routing can be paired with high quality linguistic annotations to learn compositional

structures that maximize utilization of task-specific information. Departing from the original

multi-task learning approach, this work also introduces the first successful application of a

‘dispatcher’.

Alet et al. [2018] combine a routing-like approach with other meta-learning approaches,

to allow for quick adaptation to new tasks. However, this approach relies on pre-trained

composable transformations.
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Because the most successful applications of routing depend on the availability of meta

information to cluster the data, we investigated alternative clustering approaches in [Rosen-

baum et al., 2019a]. This ‘dispatching’ was originally introduced in [Rosenbaum et al.,

2017], but complicated the training too much to allow for stable architectures. In [Rosen-

baum et al., 2019a], we develop techniques to stabilize the training.
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CHAPTER 3

ROUTING

Routing describes a general framework of repeatedly selecting trainable function modules

with a trainable router. As such, arbitrary components of a machine learning model can

be routed, as long as the model is composed of a sequential application of functions in a

set of (compatible) functions. We will focus here on routing networks, where the learnable

function modules are neural networks and parts thereof. The router receives the state of the

computation, the current activation – the input x at step 0 – and evaluates it to select the best

function. This produces a new activation, which then triggers a new recursion through the

router and possibly the modules. If the router decides that the result has been processed

sufficiently, the last activation will be handed to other computations or interpreted as the

output of the model. This result will then be used to jointly train the function modules and

the router.

input: x

f1 f2 f3 ⊥

f1 f2 f3 ⊥

f1 f2 f3 ⊥

router(x,m)

router(f3(x),m)

router(f2(f3(x)),m)

ŷ = f2(f3(x))

Figure 3.1: Routing (forward) Example including a termination action ⊥.
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Algorithm 3.1: Routing Forward. The router function computes an action from the
state, and can thus be any kind of hard decision-making algorithm. ⊥ is a termination
action, and modulek is the selected module or function from the set of available
modules. This algorithm may be modified to accommodate constrains on the subset of
modules applicable to the current activation.

1

input : x ∈ R
d, d the representation dim; m possible metainformation;

output :h - the tensor fa1 ◦ fa2 ◦ ... ◦ fat(x)
1 h← x

2 while True do

3 a← router(h,m)
4 store tuple 〈h,m, a〉
5 if a = ⊥ then

6 return h

7 else

8 h←modulea(h)

Because routing relies on hard decisions to select the modules (as opposed to ‘soft’

decisions, where several modules are activated and combined in different ways), training

algorithms for the router are limited. While other approaches are conceivable (in particular

genetic algorithms and other stochastic training techniques), we focus on reinforcement

learning (RL) and Stochastic Reparameterization in this work. The main part of this chapter

was introduced in Rosenbaum et al. [2017], with some additional work introduced in Cases

et al. [2019], Rosenbaum et al. [2019b].

3.1 Reinforcement Learning

Reinforcement learning describes a general machine learning paradigm in which an

agent that makes a series of hard decisions is trained by providing simple scalar feedback,

the reward. Applied to routing, the general outline is that the output of the model ŷ has to be

translated to a reward r which is then used to improve the router’s policy π.
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3.1.1 Routing MDPs

Markov decision processes (MDPs) are a common model for formally describing sequen-

tial decision-making problems. While we will argue in Section 4.6 that existing attempts to

model compositional computation are problematic, we will still adopt a simple formalism to

permit discussion of some relevant concepts.

Given a routing MDP M = 〈S,A,R, P, γ〉, a set of applicable modules F , a termination

module⊥(x) = x that terminates the routing trajectory but that otherwise acts as the identity

function, the space of samples X , the space of activations H (i.e., the space of applications

of members of M to X), and the space of possibly available meta-information I , we can

define:

the states S = (X ∪H)× I

the actions A = F ∪ {⊥}

the transition probability P (s, a, s′) =







1, if s = h, a = f, s′ = m(h), h ∈ S,m ∈ A

0 otherwise

the discount factor γ = 1.

The reward function R can freely be designed by the model designer and is not defined any

further for now. Solving an MDP consists of finding an optimal policy π∗(θ) (parameterized

by parameters θ) that maximizes the objective, or score function, J corresponding to

expected cumulative return of all actions:

J(π(θ)) := E

(
∑

a

γra|π(θ)

)

= E

(
∑

a

ra|π(θ)

)

.

It can be useful to express the score function in terms of the cumulative return gπt :=
∑

t γra|π(θ):

J(π(θ)) := E (gπt ) .
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3.1.2 Reward Design

One of the most important questions when modeling a problem as an MDP is the

question of how to design the reward function R. For a routing network, there are two

types of rewards to be considered. The first is the final reward that reflects the model’s

performance in solving the main problem, i.e., of predicting a sample-label. The second are

different forms of regularization rewards that can either be computed for entire trajectories

or as immediate responses to individual actions.

3.1.2.1 Final Rewards

The final reward rf models the overall performance of the model for a sequence of

routing decisions. If the underlying machine learning problem is a classification problem,

then the outcome is binary – correct or false – and an obvious choice is a simple binary

reward of ±1 corresponding to the prediction agreement with the target label.

Because the objective for the training of the modules is a loss function Lm(ŷ, y), a

different reward design for the same objective can be derived as the negative of the target

loss: rf = −Lm(ŷ, y). The reward has to be the negative of the target loss because, by

convention, we minimize model losses but maximize RL rewards. In addition, this allows

for a natural application of routing networks to regression problems, because these cannot

be translated into a simple binary ±1 reward. While the second reward design seems like

the better choice, because it both richer in information and a more principled meta-learning

objective that coincides with the main model’s objective, it does not necessarily perform

better in practice depending on the problem of focus.

3.1.2.2 Regularization Rewards

Because the reward signal is sparse for complex compositions, it can also be quite helpful

to incorporate additional rewards to act as intrinsic rewards or regularizers of the choices

made by the router. One option is to model problem-specific information in this reward – e.g.,

to reflect the cost of computation of choosing a specific function, or to incorporate domain-
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knowledge, such as intuitions as to which model should be preferable. The second option, as

we introduced in [Rosenbaum et al., 2017], is to use this regularizer to incentivize transfer

between different kinds of samples. There, the reward can be defined to correlate with how

often a particular function a is chosen within some window w, C(a) = #a∑
w samples

. This

motivates the router to choose, and thereby share, that function for a wider set of samples.

This reward is defined as R(a) = ρ
t
C(a), with a ratio ρ, normalized by the trajectory length

t, such that even for long trajectories this reward may be limited to be smaller than the final

reward rf . In [Rosenbaum et al., 2017] we only investigate values of ρ ∈ [0, 1]. However,

this can lead to a lack of variety in decision-making, as the selection collapses, as discussed

later in Section 4.5 in detail. To compensate, we introduced a different set of values for ρ in

[Cases et al., 2019], ρ ∈ [−1, 0], with the goal of incentivizing diversity of decision-making.

3.1.3 Algorithms

Generally speaking, reinforcement learning algorithms fall into one of two groups. The

first are value based approaches, in particular q-value based approaches. The second are

policy-gradient based approaches.

3.1.3.1 Value-based RL Algorithms

The first class of reinforcement learning algorithms are so-called value-based approaches

that generally learn a state’s q-value to define a policy. A q-value is an estimate of the value,

or expected discounted return, of taking a particular action in a particular state:

Qπ(s, a) = E
(∑

Rt|st = s, at = a, π
)

(3.1)

These state-action values can be straightforwardly converted into policies, i.e., action-

instructions by simply always selecting the highest value q-value for a given state. Discussing

the arguably most famous value-based RL algorithm, q-learning, will be useful for later
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discussions of the properties of routing. For q-learning, the q-value update rule is defined as

(with the already introduced notation, and with α as the learning rate):

Qπ
t+1(s, a) = Qπ

t (s, a) + α
(
r(s, a) + γ

a
maxQπ

t (s
′, a)−Qπ

t (s, a)
)

(3.2)

However, this rule only defines how to update the value estimates, not how to retrieve the

state, action, reward, next state tuples required to perform the update. To retrieve these, a

common approach is called ε-greedy action selection, which is defined for q-learning as:1

π(s, a) =







1− ε, if a =
a′

argmaxQπ(s, a′)

(For ties, choose one action randomly)

ε
|A|−1

otherwise.

(3.3)

In combination, these two formulas fully describe the ε-greedy q-learning algorithm. As

such, this algorithm has several properties worth discussing. First, it illustrates a common

and important concept in reinforcement learning, bootstrapping. Simply put, bootstrapping

means learning to recursively improve guesses from other guesses over time. In this case,

bootstrapping means that we somehow initialize q-values for all states first (possibly very

badly), and then improve their accuracy by computing their difference to the guess at the

next state.

Another important property of q-learning is that it is “off-policy”. This means that

q-learning learns Q∗ directly, even when doing ǫ-greedy exploraiton. This property comes

from the max-operation, because we improve a q-value guess for Q∗
t (s, a) even if we do not

select the highest-value action in Qπ
t (s

′, a).

Lastly, q-learning allows us to illustrate the dilemma between exploitation and explo-

ration in reinforcement learning. This problem intuitively captures the dilemma of relying

on known good solutions (exploitation) at the cost of possibly better, but unknown – and

thus also possibly worse, solutions (exploration). While it might be appealing to err on
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the side of caution and to only exploit, it is possible that the initial guess will determine

all future policies, and that it is far inferior to many other solutions. So learning in any

meaningful way requires exploration.

There are several alternatives to learning q-values than the above algorithm. One, called

SARSA [Rummery and Niranjan, 1994], is an on-policy version of q-learning (on-policy

in that it estimates q-values it actually sampled, i.e., Qπ). Another, called Advantage

Learning [Baird III, 1993], relies on the fact that we can decompose the q-values for the

actions of a given state into an on-policy average expectation for that state, i.e., its value

V π(s) = E (
∑

t rt|π), and the per-action deviations, the per-action advantage Aπ(s, a),

from that average:

Qπ
t (s, a) = V π

t (s) + (Qπ
t (s, a)− V π

t (s))
︸ ︷︷ ︸

Aπ
t (s,a)

(3.4)

= V π
t (s) + Aπ

t (s, a). (3.5)

That is, Aπ
t (s) measures how much a particular q-value for a state differs from the on-policy

expected return of that state. Consequently, a greedy policy can be determined given only

Aπ
t (s). The general advantage of this separation is that the explicit value component can

compensate for any bias occurring during the learning of the q-values. As this benefit is

important for routing, we will now try to explain it further. Imagine that only one action

a1 was taken all the time in some state sk, as its estimate might be slightly higher than

the estimate for all other actions, even though the true expected return may be higher for

an action different from a1. Now additionally consider that the estimates for later states

get better and better, and thus also the q-value for a1. For regular q-learning, this can

‘lock’ the selection to a1 for a considerable amount of time during training, as all of the

improvement in decision-making is attributed to a1 when in state s. However, as we know,

another action a2 might indeed be better. For advantage learning, V π
t (s) will offset the

27



inductive bias over training, thereby making the gap in the estimates of Qπ
t (s, a1) and

Qπ
t (s, a2) smaller, allowing the algorithm to more quickly update it’s estimates to correctly

reflect a2’s superiority. We will relate this inductive bias phenomenon to routing in a later

section.

3.1.3.2 Policy Gradient based RL algorithms

The second class of reinforcement learning algorithms works by computing the policy

directly, and not by way of a value function (although most recent algorithms combine

both). Because a policy is a mapping from states and actions to probabilities, this implies

that policy gradient based learning optimizes this distribution directly to maximize J . One

immediate advantage is that this allows stochastic policies to be learned, as can be required

by e.g., learning policies for specific forms of games.

The most important policy gradient algorithm is REINFORCE [Williams, 1992], because

it was the first policy gradient algorithm that defines the gradient for parameterized policies,

i.e., policies that are not stored as a table but by a function approximator. This algorithm has

become particularly relevant because it allows losses for differentiable models to be defined,

such as deep networks. The standard formulation of this algorithm is, for a score function J ,

depending on a policy π parameterized by parameters θ, and a trajectory T of state, action

and reward tuples:
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∇J(π(θ)) = ∇E

(
∑

a

γra|π(θ)

)

(3.6)

= ∇E

(
∑

a

Qπ(s, a)π(a|s, θ)

)

(3.7)

= E

(
∑

a

Qπ(s, a)∇θπ(a|s, θ)

)

(3.8)

= E

(
∑

a

Qπ(s, a)π(a|s, θ)
∇θπ(a|s, θ)

π(a|s, θ)

)

(3.9)

= E









∑

a

Qπ(s, a)π(a|s, θ)

︸ ︷︷ ︸
=gπt

∇θπ(a|s, θ)

π(a|s, θ)









(3.10)

= E

(

gt
∇θπ(a|s, θ)

π(a|s, θ)

)

. (3.11)

This equivalence defines the gradient for the parameters that follows the gradient of the

score function. As this can be used to immediately optimize the policy to maximize the

score function, we can derive the REINFORCE update (with some learning rate α):

θ′ = θ + αgπt
∇θπ(a|s, θ)

π(a|s, θ)
(3.12)

In particular when combined with a differentiable model as a function approximator,

this update can be used to backpropagate along the parameters of the network. Note that

REINFORCE does not require a specific exploration strategy because it is stochastic by

nature.

However, REINFORCE suffers from extremely high variance, making it often unusable.

Consequently, many extensions have been introduced to correct for the variance by introduc-

ing different forms of bias. This bias may correct for the range of the reward by introducing

a ‘baseline’ that is subtracted from the reward. This baseline may be a simple average, or

a more sophisticated estimation of the current state’s expected reward. In practice, these

extensions improve convergence properties dramatically over vanilla REINFORCE.
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3.1.3.3 RL algorithms for routing

With these two classes of algorithms in mind, we will now make some general comments

about their applicability to routing. We will offer a thorough empirical investigation of these

two different approaches to decision-making in chapter 7.

In existing work on routing, several RL algorithms have been successfully used to train

routing policies. Rosenbaum et al. [2017] compare a variety of algorithms, but settle for a

multi-agent algorithm, fitting their multi-agent approach to multi-task learning. Cases et al.

[2019] find that plain Q-Learning performs the best for their domain. Kirsch et al. [2018]

extend a REINFORCE based algorithm with an alternating, EM-like training for modules

and router that also optimizes for module diversity and does lookaheads. Meanwhile, Chang

et al. [2019] use Proximal Policy Optimization.

While this might seem to suggest that there is not necessarily a “best” reinforcement

learning algorithm, there are some important considerations to be made when designing a

router.

Replay Buffers Routing is generally incompatible with ‘replay buffers’. A replay buffer is

a cache of previously encountered state, action, reward tuples. They are motivated by the fact

that the training of a neural network requires its training samples to be independently drawn

from their distribution, as training on related samples makes the training prone to get stuck

in local optima. However, for RL trajectories, the last k samples are generally correlated.

This motivates replay buffers, because they ‘break up’ this correlation by collecting a large

number of trajectories first, to then draw individual tuples independently. This works as long

as the states buffered actually contain useful training information. If the policy approximator,

or the interpretation of the states, changes too much, the replay buffer is invalidated and

new samples need to be drawn. For routing, with its constantly changing modules, this

invalidation happens after every backpropagation step through the modules, making replay

buffers generally useless for training routing networks.
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Non-Stationarity Another important property of the routing decision-making problem

is the intrinsic non-stationarity of the problem, because the interpretation of the modules

changes every time they are updated. This, in turn, means that not only are the activations

passed on to the router change, but also that the expected value of selecting a particular

module for a particular activation changes over time. One solution, in theory, would be to

allow the router access to all parameters of all of the modules from which it can choose

from. While this would get around the non-stationarity, the state space would become

unmanageable large.

The main way this poses a problem to traditional RL algorithms might be best explained

by the following example: Given a router and a set of modules, routing causes the module

parameters to change, and thereby affects the expected value for each of the modules given

a specific state sample or activation; however, it also changes the value of the modules

for other activations. This means that the estimates of the modules’ values will now be

erroneous for all other samples and activations. More specifically, as the quality of the

modules generally increases over time, their values will most likely be underestimated.

Because routing works best for low levels of exploration, they will probably not selected

enough to correct their value estimates. Consequently, this may “lock” the router in its

selection (see also Section 4.3 for a discussion of this problem) early on.

Intuitively, this could be compensated for by a bias-correcting term that offsets the

value estimates for the models by their general increase in value. One such approach is the

previously discussed advantage learning, as it specifically models such a bias term. We will

discuss this in more detail in Section 7.1.

3.2 Stochastic Reparameterization

When it comes to hard decision-making in differentiable architectures, stochastic repa-

rameterization was recently introduced as an important alternative to Reinforcement Learn-

ing. While earlier work on stochastic reparameterization focused on low-dimensional

31



stochastic distributions, [Maddison et al., 2016] and [Jang et al., 2016] discovered that the

concrete – or Gumbel Softmax – distribution allows to reparameterize k dimensional distri-

butions (We will also refer to the corresponding decision-making algorithm as “Gumbel”).

In difference to RL based approached that rely on a final scalar feedback that is translated

into the policy’s gradient, Gumbel can be added as a neural network layer and trained via

back-propagation immediately [Jang et al., 2016]. This is a highly appealing property for

routing, because it simplifies design and implementation tremendously.

Maddison et al. [2016] already note that the concrete distribution and its reparameter-

ization do not yield an unbiased estimate of the gradient. The REINFORCE estimator

[Williams, 1992] for the gradients of the score function, on the other hand, is known to be

unbiased (but has very high variance). Therefore two more techniques were introduced to

estimate the gradient of discrete random variables. The first, REBAR [Tucker et al., 2017]

compensates for REINFORCE’s variance by introducing a control variate based on the

concrete distribution. The second, RELAX [Grathwohl et al., 2018], generalizes this for

non-discrete and non-differentiable stochastic functions, and allows a neural network to

model the control variate.

To better understand the relative performance of reparameterized approaches when

compared to a reinforcement learning algorithm, we performed the following analysis:

Given a known distribution as a policy π parameterized by θ over a known reward function

r, we can analytically compute the value of the score-function J(θ) = E(r|π(θ)) = r ·π(θ),

where · denotes the inner product. We also analytically compute the gradient for all

parameters θ. We know that these gradients are the ground truth that policy gradient

and reparameterization approaches only approximate. We can then approximate the same

gradients δJ
δθ

using REINFORCE, Gumbel and RELAX, and finally compute the average

difference between the ground truth values and the approximations.
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Figure 3.2: Gradient statistics. The REIN-
FORCE Baseline is computed as r̂ = (1 −
α)r̂ + αr with α = 0.1. The temperature
parameter for all approaches is 0.5, which ap-
pears to be a common choice in the literature.

For Figure 3.2, we used this approach to com-

pute both the average gradient differences and

the average variances over all parameters. More

specifically, we initialized a random reward func-

tion (where each reward is uniformly sampled

from [0, 1]), of dimensionality k. We also ran-

domly initialized a policy of dimensionality k,

parameterized by θ. After computing the ground

truth gradient for a given pair of reward function

and policy, we used the same reward function

and policy to sample the gradients for θ 22 ∗ k

times (so that on average each action may be

sampled equally often, even with increasing di-

mensionality). For each k, we computed and

approximated the gradients for 22 reward and 22

policy values, totalling over 10000 ∗ k datapoints for each point in Figure 3.2.

Figure 3.2 shows the mean squared error between the ground-truth gradient values and

the sampled values using reparameterization and different RL policy gradient algorithms

on top, and the corresponding variances on the bottom. While the gradients estimated by

the Gumbel softmax trick are of much lower variance, they are also biased, with an average

MSE larger than the MSE of the Policy Gradient algorithms. This is consistent with the

analysis in [Maddison et al., 2016]. As for RELAX, we found very low variance for high

dimensionalities, but – interestingly enough – a much higher MSE than REINFORCE and

even than Gumbel, suggesting a higher bias. However, this may stem from the problem

that RELAX relies on a trained surrogate network, which is difficult to train for these

single-sample experiments. While we tried to accommodate this requirement by training

this network over multiple samples first, this might not suffice to fully initialize RELAX.
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However, we evaluate numerous different decision-making algorithms in the context of

routing in Section 7.1. There, RELAX and its surrogate network are trained over millions of

iterations, without yielding results that allow clear conclusions about how reparameterization

techniques relate to REINFORCE based approaches in practice – at least in the context of

routing.

3.3 Training

input: x

ŷ = f1(f3(v, t))

f3

f2

⊥

θ(f3)

θ(f2)

a1

a2

a3

L(ŷ, y)rf (ŷ, y)

+r(a2)

+r(a1)

∂L

∂f2

∂L

∂f3

Figure 3.3: Routing (backward) Example

input :The network’s output ŷ, the ground-truth target y, and the decision making
trajectory T

1 compute the model loss L(ŷ, y)
2 compute the final reward rf (ŷ, y)
3 for each tuple 〈sk, ak, r(ak), sk+1, ak+1〉 in T do

4 compute the Bellman error (or other corresponding loss) for the current tuple, and
add it to LRL

5 backprop on L+ LRL and update using SGD

Algorithm 3.1: Backward step: Training of a routing network

The training of a routing network is illustrated in Figure 3.3 and the corresponding

algorithm is Algorithm 3.1. The core idea is that the training of the router and of the
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modules happens simultaneously, after completing an episode, i.e., the forward pass for

one example (or a batch thereof). After the network has been assembled in the forward

pass, the output of the network is translated into a loss for the module parameters and a

final reward for a reinforcement learner. That reward, in combination with any accumulated

per-action rewards, can be used to define a training loss for the router, either a Bellman Error,

a negative log probability loss or some other loss function that is used to train a decision

maker. The resulting losses can be added and then backpropagated along the decision-

making parameters to define a gradient for each parameter in the model. Backpropagating

along the sum of the losses allows for higher mini-batch parallelization in the update process

of the network.

Finally, a gradient descent style algorithm can use these gradients to derive a new set of

parameter values. However, it is worth noticing that routing networks can be highly sensitive

to the choice of optimization algorithm. We will discuss this further in Section 7.4.4.

3.4 Architectures

3.4.1 Model Architectures

In general, any machine learning model can be routed. However, for non-layered

architectures where only one decision needs to be made, routing collapses to the better inves-

tigated model selection problem. For layered architectures, any single layer can be routed

by creating parallel copies of the respective layer, each with different (hyper)parameters.

Existing routing architectures have included routing several fully connected layers with

identical hyperparameters but different parameters [Rosenbaum et al., 2017, Kirsch et al.,

2018, Chang et al., 2019, Cases et al., 2019], routing entire convolutional networks [Kirsch

et al., 2018], routing the hidden to hidden transformation of recurrent neural architectures

[Kirsch et al., 2018, Cases et al., 2019], routing the input to hidden transformation [Cases

et al., 2019], and routing word representations [Cases et al., 2019]. However, only Ra-
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machandran and Le [2019] have studied the effect of routing among modules that have

different architectures.

This puts two non-competing perspectives on routing. In the first, the focus is on

controlling parameter sharing and training specialized modules for different samples. In the

second, routing tries to optimize the architecture on a per-sample basis. Ultimately, we want

both: routing networks that can choose between different architectures, but that can also

choose not to share specific parameters.

3.4.2 Router Architectures

t1 t2 t3
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(c) dispatched

Figure 3.4: Routing architectures

Because the only general requirement for the architecture of the router is that a router

takes an activation or a sample as input and outputs a single integer value interpreted as

a module selection, many different architectures are possible. However, it is oftentimes

impossible for the router to treat all samples and activations uniformly. Consider routing

a neural network where each layer has a different output dimensionality. In this case, the

router cannot itself be a single neural network, because it cannot handle the changing

dimensionality. Then a router needs to consist of multiple different networks. We could

also conceive of hierarchical routers, where a hierarchy of decisions leads to the final

module selection, again implemented as multiple neural networks. We can describe these

architectures by the respective input-output pairs of each of the (sub) routers. We will now

discuss three out of many possible high-level design ideas, and their potential benefits.
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In the conceptually simplest version used by Chang et al. [2019], Kirsch et al. [2018],

Ramachandran and Le [2019], and unsuccessfully tried by Rosenbaum et al. [2017], there

is only one router that learns to make all required decisions (compare Figure 3.4(a)). This

router’s statespace, i.e., the input to the one function approximator, contains the possible

space of all activations, including the input activation. This in turn means that input and all

activations need to have the same dimensionality. Additionally, it requires additional work

to stabilize as it is the hardest architecture to train – curriculum learning for [Chang et al.,

2019], separate grouping for [Kirsch et al., 2018] and soft-routing for [Ramachandran and

Le, 2019].

We introduced two more architectures in [Rosenbaum et al., 2017] that divide the

routing problem over multiple subrouters. The first is assigning one subrouter to each

step in the routing path (see Figure 3.4(b)). Consequently, each subrouter has a statespace

constrained to the activations possible at the respective depth. In general, this approach has

the disadvantage that it only allows a recursion depth as deep as the number of subrouters

defined. However, it is an effective way to implement routing architectures where constraints

require the modules available at different depths to be different2.

The second option is what we call a “dispatched” routing network (compare Figure

3.4(c)). We introduced it in [Rosenbaum et al., 2017], but only thoroughly investigated it in

[Rosenbaum et al., 2019a]. This hierarchical configuration has an extra preceding subrouter

with the interesting task to assign – or cluster – samples in input space first, before assigning

each sample to be routed to one of a set of parallel subrouters, each of which exclusively

works in activation space.

In practice, dividing the decision problem over multiple subrouters, each with only a

subset of actions and states to learn, can make training the router considerably easier. In

particular in early stages of training, the problem of training a policy on modules that are

2We assume that several other routing papers also use separate approximations to deal with constraints,
though they do not mention this explicitly.
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similarly untrained can make fully recursive, single subrouter routing models hard to train.

For further empirical comparison, see Section 7.1.

Another routing architecture design choice is the available action space. One already-

discussed option that is particularly relevant for fully recursive routing models is to include a

“termination” action to stop routing and forward the last activation. This termination action

is not required for per-decision router designs (Figure 3.4(b)), but could be implemented

if model constraints permit. Another possible action, introduced by [Rosenbaum et al.,

2017] for per-decision routing networks, is to include a “skip” action that does not terminate

routing, but instead simply skips one sub-router. These two actions can result in identical

behavior for limited-depth routing networks.

3.5 The Routing Search Space

For the routing optimization problem, the model needs to jointly optimize over models

and module parameters. Compared to a routed model’s unrouted equivalent that only

optimizes the module parameters, the search space is combinatorially larger. For a maximum

depth d and a number of modules at each step m, we have approximately md implicitly

defined models,3 and thus a search space md times larger.

This complicates the optimization problem tremendously, as will be elaborated in the

following section. To compensate, parts of the challenges to make routing work in practice

consists of finding constraints on this search space that still allow finding good solutions to

a particular problem. The routing architectures presented in the previous section are some

approaches to solve this problem. We will revisit this perspective after talking about the

challenges routing faces in the following chapter.

3The correct number of models is higher, as the model may stop the recursion early. If we also consider a
‘null’ action to model this, we can easily derive (m+ 1)d as an upper boundary.
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3.6 A Different Perspective

This far, we have introduced routing as jointly training modules transforming the input,

and training the router that composes these modules. That is, we have introduced it as the

following bi-level optimization problem (also compare Section 2.5):

θ∗ =
θ∈Θ

argmin
〈x,y〉∈DS

E (L(µθ(x), y)) (3.13)

subject to: µθ =
m∈M

argminL(mθ(x), y) (3.14)

While accurate, focusing on the two nested optimization problems does not fully capture

the intricacies of the interplay of these two optimization problems conceptually. We will

now analyze what is required to solve these two problems jointly, deriving a perspective that

focuses on several underlying learning problems. This perspective will prove very useful in

explaining problems and algorithmic choices later on.

At the core of this perspective is the observation that modules are generally shared

across models, and that the second optimization problem, equation 3.14, has to navigate how

modules are shared. That is, beyond purely finding a good composition of modules for a

given sample, it needs to make sure that compatible samples are routed through similar paths

while incompatible samles are routed through dissimilar paths. Put differently, to decide on

an activation-by-activation basis if different samples should share specific modules along a

routing path requires the router to learn a task-specific latent distance metric. This metric

will then be used to partition the samples and to determine path-overlap between the samples

of different partitions.

Combining this perspective with the interpretation suggested by equations 3.13 and 3.14,

we can thus identify three different conceptual learning problems that need to be solved

jointly when training a routing network:

Learning-to-Transform A routing network needs to train its modules to contain useful

compartmentalized functions that can be meaningfully separated and combined with other
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transformations. This is complicated by ‘learning-to-compose’ as only stable routing paths

will yield optimal solutions for the modules.

Learning-to-Compose The router of a routing network needs to meaningfully compose

modules. This is complicated by learning to modularize, as the modules are not fully

trained yet, introducing non-stationary dynamics into the routing problem. It is additionally

complicated by ‘learning-to-partition’ as the router needs to find compositions that respect

the relationships between different samples.

Learning-to-Partition The router needs to learn a latent distance metric that allows it to

jointly

– partition the sample distribution into clusters of samples that can share entire routing

paths.

– learn distances between different clusters of samples so that it can decide on which

modules are shared between the paths of these clusters.

This is complicated by ‘learning-to-modularize’, as different module parameterizations may

yield different distances between different clusters, or even form different clusters.
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CHAPTER 4

CHALLENGES TO ROUTING AND OTHER FORMS OF

COMPOSITIONAL COMPUTATION

There are several challenges particular to training routing networks, which should

generalize to many forms of compositional learning. These include training stability,

module collapse, and overfitting as well as difficulties with performance extrapolation and

formalizing the setting. Instability in training may occur because of a complex dynamic

interplay between the router and module training. Module collapse may occur if module

selection collapses to a policy which makes the same decision for all inputs. Overfitting

may be severely exacerbated in modular architectures because of their added flexibility to

learn specialized modules for a very narrow subset of samples. Successfully extrapolating

the performance of specific modules out over the course of training would potentially allow

a more successful selection strategy, but achieving this is a difficult problem itself. Finally,

there is no good formalization of popular training methodologies that unifies reinforcement

learning for the module selection training with supervised training for the modules. We

introduced these five challenges in [Rosenbaum et al., 2019b] first.

4.1 Underlying Causes

Training a routing network is challening as it is difficult to balance the three learn-

ing problems introduced in section 3.6: Learning-to-transform, learning-to-compose and

learning-to-partition. However, one may argue that core problems of a more general nature

underlie these challenges to modular architectures. In fact, we can see that their interplay is

difficult because we must simultaneously balance two challenges of learning: the transfer-
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interference trade-off [Riemer et al., 2019], and the exploration-exploitation dilemma [Sutton

and Barto, 1998].

4.1.1 The Transfer-Interference Trade-Off

•
∇θLi∇θLk

Interference

•
∇θLi∇θLk

Transfer

Figure 4.1: Depiction of the effects of transfer and interference across examples i and k during
learning.

The “transfer-interference trade-off” refers to the problem of choosing which parameters

in the model are shared across different input samples or distributions. When there is a large

amount of sharing of model parameters during training, we may see better performance

as a consequence of transfer, because each parameter is trained on more data. But it

may also lead to worse performance if the training on different samples produces updates

that ‘cancel’ one another out, or cause interference. This plays an important role for

compositional architectures, as one of the core ideas behind compositionality is to have

specialized modules that fit one but maybe not another sample.

4.1.2 The Exploration-Exploitation Dilemma

The “exploration-exploitation dilemma”, while mostly associated with reinforcement

learning, generally occurs in other cases of goal-driven stochastic sampling as well. It arises

when a decision maker has insufficient information to determine an optimal decision, and

needs to learn more about its environment first. At a given time in the learning process, the

decision maker will oftentimes believe that one choice works better than the others. However,

because it does not yet know the true distribution of all choices, another choice may in fact

be much better. But to find it, the decision maker has to take the risk of also performing
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worse than if it had stuck with the known solutions. Sticking with known solutions is known

as exploitation, while taking a risk trying to discover new solutions is called exploration.

Balancing these two is one of the core challenges to reinforcement learning [Sutton and

Barto, 1998].

This does not mean that it may not occur in other contexts as well. In fact, it is applicable

for every goal-driven sampling process. This obviously includes the previously discussed

reparameterization strategies, but it also extends to top-k approaches where only k out of a

much larger number of selections are chosen.

Applied to any form of modular learning, the composer (the router for a routing network)

has to strike a balance between these two. Consider that after the initialization of a routing

network, each sample will be associated with a given path, simply by virtue of the initial

parameter values of the router. If, on the one hand, the network was to only exploit, it would

take these paths as ground truth. Because these paths are not very expressive yet, many even

incompatible samples will be routed the same. This will produce interference, preventing the

routing network from learning good module parameters. If, on the other hand, the network

was to only explore, each sample with be routed through a new random path. This means

that the modules cannot benefit from any kind of transfer, as even similar samples will not

reliably share parameters.

Striking the right balance between exploration and exploitation can therefore help with

interference but is not sufficient to mitigate it entirely. This entanglement complicates the

learning and means we cannot treat these tradeoffs in isolation.

4.2 Training Stability

Training a routing network requires learning to transform, to compose, and to partition.

Considering in particular learning to partition in light of the transfer-interference trade-off

means that we need to learn a latent measure of distances between different samples, forming

clusters that will optimize routing paths to assign largely different paths to interfering
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samples, and overlapping paths for compatible samples. This is particularly relevant during

training, because failure to do so will cause catastrophic interference of training the modules.

This is complicated by the fact that, in the early learning phase when both modules

and the router have just been initialized, neither routing paths nor modules have taken on

any real meaning. This means that the router needs to find clusters and assign paths, while

the modules need to learn good transformations. But without having meaningful modules,

clustering the data will be difficult, as the latent distance metric it needs to learn depends

on the parameters of the modules. This creates a “chicken-and-egg” problem: How can a

routing network learn to solve one of the three underlying problems, if each depends on

having learned learned to solve another?

In our experience, this problem can result in the routing dynamics never stabilizing,

leaving the network at effectively random performance. This problem roughly correlates with

the complexity of the decision-making problem. If the router only needs to make decisions

based on a good low-dimensional projection of the samples or activations, then stability is

less of a problem. If, however, the router has to consider very complex distributions in high

dimensional spaces, it consistently struggles.

A mitigating strategy could be to slow down or speed up the learning behavior of either

the modules or the router, by either fixing their parameters for a short initial period, or by

reducing their learning rate. While all of these approaches introduce bias into the learning

phase, their stabilizing effect can justify them. As the module learning rates tend to depend

on the overall architecture, such a strategy should focus on finding the learning rate for the

router. We will present an empirical analysis in chapter 7.2.2.

Another strategy that can be applied is curriculum learning [Bengio et al., 2009], as

is done by [Chang et al., 2019]. This can be very effective because the router is guided

towards good solutions by the ordering of the samples. However, it can only be applied

if the training data can be naturally ordered by complexity, which is not the case in many
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important domains. Neither of these strategies offers a general solution to the problem. They

may work in some settings and fail in others.

Yet another strategy is to try and solve one of the three learning problems separately, so

that its dynamics are taken out of the learning process. We will introduce one such strategy

in chapter 5.

4.3 Module Collapse

Another common training difficulty is module collapse [Kirsch et al., 2018]. This occurs

when the router falls into a local optimum of learning-to-compose, choosing one or two

modules exclusively. Module collapse occurs when the router overestimates the expected

reward of a selection. This may happen due to random initialization of the modules or due

to random initialization of the policy, such that one module has higher initial value. Either

way, the module will be chosen more often by the router, and therefore receive more training.

This in turn improves the module so that it will be selected yet more often and receive yet

more training until the module is dominant and no others seem promising.

As an example, consider Figure 4.3, which depicts a routing problem of one dimensional

linear regression (because it is easily illustrated). In plot (a), we depict a distribution with

two noisy linear modes. Plot (b) shows the perfect, and desired, routing solution, where the

routing model correctly assigns a routing path to each mode. Plot (c) depicts the regression

curves produced by the available modules at initialization. Because the red and yellow

approximations have been initialized producing too great an initial loss, the router will only

update these during exploration phases, and will instead choose the green approximation.

This may result in a suboptimal approximation (depicted in plot (d)), which can form a local

optimum that will trap the router without prolonged additional, poorly rewarded exploration.

This illustrates the view of collapse as a local optimum achieved by maximizing for

early transfer. When every selection is “bad”, training a transformation even on generally

less compatible samples, such as is shown in Figure 4.3, will improve its representative
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Figure 4.3: An example of how a 1-dimensional linear routing problem can collapse

power. Similarly, it can be seen as a local optimum in the exploration-exploitation dilemma,

since the router correctly believes at a given time that one module is better than others, and

may thus not explore the other options sufficiently.

Existing solutions to this problem include adding regularization rewards that incentivize

diversity [Cases et al., 2019], separating the training of the router from the training of

the modules with an EM-like approach that learns over mini-batches, explicitly grouping

samples first [Kirsch et al., 2018], and conditioning the router entirely on discrete meta-data

associated with the sample, e.g., task labels [Rosenbaum et al., 2017, Cases et al., 2019].
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This has the additional benefit of reducing the dimensionality of the information on which

the decisions are made, which, in turn, makes the routing problem easier.

4.4 Overfitting
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(c) A routed approximation

Figure 4.4: Illustration of how a routed model may overfit. The learned parameter values of the three
linear transformations are a = 3, b = 0.1, c = 0.8.

Previous work [Kirsch et al., 2018, Shazeer et al., 2017] observes that models of condi-

tional computation can overfit more than their “base”-models, but do not examine this issue

in depth. We have also encountered this problem multiple times, and believe that it stems

from the flexibility of routing models to compose highly local approximations. Consider the

example in Figure 4.4, where we again depict a routed linear scalar approximator.
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Suppose we have a training dataset consisting of observations of a noisy linear process,

such as the one in Plot (a). It can be clearly seen that a linear model gives good (and

desired) approximations, as in Plot (b), and that it does not overfit to the noise present in

the data. However, imagine that we wanted to learn such an approximation with a routing

model that consists of three parameterized functions, f1 = a · x, f2 = b · x, f3 = c · x,

which the router can combine to a maximum depth of three. If the router now routes purely

based on input information, i.e., if the router can route each sample through a different

route, then it may choose a different path for different subsets of the training data, resulting

in different (local) approximations as illustrated in Plot(c). For neural architectures in

particular, this implies that routing breaks an implicit smoothness assumption that arguably

allows good generalization in spite of high dimensionality (see [Zhang et al., 2016] for a

further discussion). Because the space of routes or paths grows exponentially with routing

depth, deep routing networks can potentially learn highly local approximations with only

few samples covered per approximation, or routing path.

Within the transfer-interference trade-off, overfitting is a natural consequence of avoiding

training interference. In models of uniform, i.e., non-compositional, computation, the

training algorithm always enforces some amount of interference over the model’s parameters.

While often harmful, it can also steer training away from local suboptimal solutions that

cause the model to overfit.

Because this problem is not well investigated for compositional machine learning models,

we can only speculate on possible solutions. The most obvious is to apply regularization

of some kind that prevents the router from fitting samples to highly expressive local ap-

proximators. A very successful solution with a different set of problems is the ‘routing-

by-meta-information’ architecture of [Rosenbaum et al., 2017, Cases et al., 2019] that we

will discuss in detail in chapter 5. Another possible solution might be module diversity:

if only different kinds of approximators can be fit, then the “locality” of routing does not

have the same effect. This would explain why [Ramachandran and Le, 2019] were able to
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achieve very high performance with a modular architecture even when learning with few

examples, although we need to take their particular top-k architecture into account. Another

uninvestigated area that seems promising for exploration is the tradeoff in capacity between

the router and the modules. Is it better to have a ‘smart’ router and ‘dumb’ modules or vice

versa? Either will probably have an effect on overfitting.

4.5 Module Diversity

While much of the prior work has focused on the case where each module is of the

same kind but with different parameters, routing modules that have different architectures

have the potential to be even more powerful and sample efficient. This allows for a larger

coverage of functional capabilities, thereby increasing the expressive power of a routing

network. Interestingly, this is a specific instance of the “Algorithm Selection Problem” [Rice,

1976]. For learning problems, however, the problem is complicated by the different learning

dynamics that different architectures might exhibit.

Training Steps

Pe
rfo

rm
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ce

Module 1
Module 2

Figure 4.5: Module Learning Dynamics

Consider Figure 4.5. For any learning algorithm selection problem, deciding that Module

2 will yield superior performance requires the composing algorithm to sufficiently explore

– and thus train – both selections. As for routing networks, exploration correlates with

interference, this process may unfortunately degrade the overall performance.
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This means that even if the router were to explore Module 1 sufficiently, the sampling

noise of exploration could potentially interfere with the training procedure of selections

taken before or after. While some progress on this problem has been made [Ramachandran

and Le, 2019], it focuses on selections with similar learning characteristics. The full problem,

for selections with arbitrary learning characteristics, was only explored in an offline setting,

where selections are trained until completion and not varied while training [Zoph and Le,

2017, Liu et al., 2018]. Finding optimal selections online remains an open problem due to

the difficulty of anticipating future performance of modules in their larger context.

4.6 A uniform formal framework

All of the previous challenges are complicated by the lack of a principled mathematical

formalization for compositional learning. In particular, it is unclear how the training of the

composition strategy relates to and interacts with the training of the modules. Although

existing approaches have found very successful solutions, even without such a formaliza-

tion, a principled framework may provide additional insight, convergence guarantees and

directions for the development of better algorithms.

The main problem is that the mutual interference between the training of the modules and

the training of the composition is badly understood. It is not clear how exactly composing

functions in different ways will impact the composed modules’ training. In particular

when the modules are trained with gradient-based approaches, recomposing the modules

should have high impact on their gradients.1. For the other direction, consider the case

of a reinforcement learning strategy for training the routers (arguably the most relevant

update strategy). Reinforcement learning relies fundamentally on the assumption that the

environment is governed by an underlying Markov Decision Process (MDP) [Sutton and

Barto, 1998]. A naive though intuitive characterization of routing in this context might

1For an empirical analysis of how compositionality may interfere with the training of the modules, compare
section 7.4.4
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interpret individual modules as actions. But an MDP requires a static, non-changing set of

actions and here the modules are themselves trained and change over time. Although in

practice this strategy has been shown to work well [Rosenbaum et al., 2017, Chang et al.,

2019, Cases et al., 2019], it lacks theoretical justification, and more principled approaches

may yield superior performance.

This critique extends to the two special cases of MDPs introduced in the literature:

Meta-MDPs and stochastic games. Meta-MDPs were introduced by [Hay et al., 2014] and

applied to routing by [Chang et al., 2019]. They specifically model the computational steps

required to make a decision in another underlying MDP. That is, their states are partial

results, and their actions are computations. Once they terminate, the resulting computation

produces an action in the underlying decision problem. This approach emphasizes that the

routing problem consists of computation steps, and not steps taken in an environment.

A stochastic game, related to routing by myself in [Rosenbaum et al., 2017], is the

multi-agent extension to MDPs and allows for an arbitrary number of agents to exist,

which collaborate or compete in the same environment. As other agents interact with the

environment, the environment becomes non-stationary from the perspective of any single

agent. While this approach consequently models the non-stationarity of a routing problem

better than a Meta-MDP, it still does not solve the more fundamental problem of possible

interference between update strategies. We will discuss this approach in greater detail in

section 5.

There are two scenarios that have more principled solutions to this criticism, although

they, too, may benefit from a more targeted solution as they suffer from many of the same

problems in practice. In the first, for neural networks, we use some form of reparameterized

sampling function to update the composition (compare section 3.2). This addresses the core

of the problem because the reparameterized decision-making algorithms explicitly use the

same update strategy as the (neural) models. In the second scenario, the problem solved with

a routing network is optimizing a policy for a given MDP. In this case, the routing network
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is the policy, and can consequently be modeled as a coagent network [Thomas and Barto,

2011]. A coagent network is a theoretical framework that, like Meta-MDPs, models the

decision-making in an underlying MDP but explicitly allows for non-stationary interactions

between parts of the policy. These parts, called coagents, can update locally on stochastic

information. For routing, we can model the policy solving the underlying MDP as a routing

network with routing coagents and transformation coagents (i.e., the module parameters are

part of the policy). Then the policy gradient theorems in [Thomas, 2011] for the acyclic

and [Kostas et al., 2019] for the cyclic case hold, because the modules will also be updated

with the same policy gradient updates. Extending this work on coagent networks to also

cover non-reinforcement learning problems such as supervised learning as well might offer

a principled way of modeling routing and similar RL-integrated approaches for conditional

computation.

4.7 The Challenges and the Routing Search Space

As already mentioned at several times, routing networks form complex optimization

problems. Partially, this is because they combinatorially expand the search space beyond

the basic problem of finding optimal module parameters. Partially, it is because the space

they form is highly non-linear. In the following, we try to describe the challenges outlined

in this chapter as properties of this search space.

Instability is not directly related to the size of the search space, as even in large state

spaces training can be stable. However, instability is caused by the search space’s non-

linearity, because even small changes to the router’s policy can greatly ‘confuse’ the training

algorithm of the modules.

Collapse is a local optimum in the routing solution space, in particular for the parameters

describing the policy.
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Overfitting is an immediate consequence of the size of the search space. As discussed

before, the theoretically worst case is if the router were to assign a single sample to each

routing path. As such, it is exacerbated by the possible number of routing paths.

Module Diversity cast as a property of the search space has to do with how specific

regions of the function space have different higher level properties, such as curvature.

4.8 The Challenges and Local Approximations: The Exacerbated

Bias-Variance Trade-Off for Modular Learning

From the perspective of the routing search space, much of the work in this thesis deals

with regularization and constraint techniques that limit the search space or that penalize

specific regions of it.
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Figure 4.6: The flexibility dilemma. Flexibility is
the ability of a routing model to adapt to localized
inputs. Low flexibility means few large clusters,
and low flexibility means many small clusters. The
extrema are only one cluster, i.e., collapsing and
underfitting, and one cluster for each sample, i.e.,
overfitting.

Especially when comparing the two

challenges of collapse and overfitting, it be-

comes clear that they are not unrelated, but

are an effect of too little – or too much –

‘flexibility’ on the router’s part, where flex-

ibility is a routing network’s ability to lo-

calize its routing decisions. If the router

is not flexible enough to realize how truly

different modes in a distribution should be

treated differently, it will cause underfitting,

oftentimes through collapse. If, on the other

hand, the router is too flexible in mapping

different inputs to different routing paths, it creates hyperlocal approximations that can

overfit badly.
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This problem of ‘flexibility’ is known as the ‘Bias-Variance Trade-Off’ in machine

learning, which is exacerbated by compositional architectures. At its core, the effects of

this trade-off become much worse for routing because routing has an enormous degree of

expressivity. Instead of the (possibly already high) original expressivity of an unrouted

model, routing defines a combinatorial number of implicit local models, each of which with

the same expressivity as the original model. If the model finds a good ‘locality’ of approx-

imations, routing can allow a model to achieve truly impressive levels of generalization

(compare [Chang et al., 2019], and in particular the section on nested implicatives in [Cases

et al., 2019]), as it can adapt to unseen samples by mapping these to known solutions in a

highly variable way. However, on both sides of this ‘locality’ of approximation lie the above

mentioned pitfalls of collapse and overfitting.

While we illustrated and explained this problem on routing (neural models), it is by no

means limited to it. Any modular approach that can treat different samples differently will

be exposed to this dilemma between under- and overfitting, as it comes with any form of

local approximation approach.
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CHAPTER 5

ROUTING WITH META-INFORMATION

As discussed earlier in section 3.6, successfully training a routing network requires

solving three different problems: Learning-to-transform, learning-to-compose, and learning-

to-partition. Only if all three problems are balanced during training can a routing network

learn successfully, because each problem interacts with the other two.

This illustrates again how routing generalizes several existing approaches in the literature.

Learning-to-compose approaches (for a recent example, consider [Alet et al., 2018]) fix the

modules, and learn to compose the network for specific samples. Apart from the obvious

learning-to-compose, this also requires the model to learn to partition. This is equally true

for fixed path approaches that solve the problem of learning-to-transform ([Andreas et al.,

2016] could be considered such an approach). Another, previously uninvestigated alternative

is to solve the last of the three problems, learning-to-partition, separately. But of the two

components behind learning-to-partition, clustering the sample set and learning the path-

distances between these clusters, learning the path-distances depends on the routing paths

and the modules and can therefore not be separated. That leaves us with the clustering part

of learning-to-compose, and the following question: Can we find externally defined clusters

that we can use to simplify and stabilize the routing problem? This chapter tries to answer

this question by stipulating that appropriate clusters can be formed by meta-information.

Meta-information generally refers to additional low-dimensional information that is

provided along with the samples of a dataset. For many applications, it is collected by default.

Scientific measurements generally collect time, place, and something like an instrument
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identifier. Another more common example is photography, because most cameras store time,

place, camera model, aperture size and similar as meta-information.

While many forms of meta-information do not form any kind of useful distance metric,

those that form meaningful semantic abstractions do. These can come in many forms. Some

are semantically valuable labels like partial descriptions of content. Others, particularly

relevant to this chapter, are task-labels. Task labels occur in the context of multi-task

learning, when a model is trained to jointly solve several related, but distinct problems

[Caruana, 1997]. Such approaches are motivated by transfer, boosting overall performance

by having one task benefit from training on another. Consequently, solving a multi-task

learning problem means navigating the transfer-interference trade-off.

5.1 Multi-Task Learning and Multi-Agent Routing

Given a multi-task learning problem, we can define a routing network where we stipulate

that all samples from a particular task should be routed the same way, i.e., where a task

defines a cluster for the learning-to-partition problem. This allows us to greatly simplify the

routing problem, because we can define a router that does not consider the actual content

of the sample, or of a later activation, but that routes purely based on task-label. Such a

router architecture splits the router into several independent sub-routers. From the decision

making perspective, this means that the router is constituted by multiple distinct agents, one

responsible for each task.

A router decision policy using multiple agents can be seen as a multi-agent approach to

routing. Even though we criticize this perspective in 4.6, it is a useful perspective to explore.

It turns the routing problem into a stochastic game, which is a multi-agent extension of an

MDP. In stochastic games, multiple agents interact in the environment and the expected

return for any given policy may change without any action on that agent’s part. In this view,

different agents with compatible tasks can gain from transfer by training the same modules,

while agents solving incompatible tasks can avoid interference by training different modules.
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Similar to the relationship between MDPs and reinforcement learning, solving a stochastic

game from the perspective of an individual agent is addressed by multi-agent reinforcement

learning (MARL).

Algorithm 5.1: Weighted Policy Learner

input :A trajectory T = (S,A,R, rfinal)
n the maximum depth;
R̂, the historical average returns (initialized to 0 at the start of training);
γ the discount factor ; and
λπ the policy learning rate

output :An updated router policy π
1 for each action ai ∈ A do

2 Compute the return:
3 Ri ← rfinal +

∑n
j=i γ

j−irj
4 Update the average return:

5 R̂i ← (1− λπ)R̂i + λπRi

6 Compute the gradient:

7 ∆(ai)← Ri − R̂i

8 Update the policy:
9 if ∆(ai) < 0 then

10 ∆(ai)← ∆(ai)(1− P (ai|π))
11 else

12 ∆(ai)← ∆(ai)P (ai|π)

13 π ← simplex-projection(π + λπ 1|A|(ai)∆(ai))

One MARL algorithm specifically designed to address this problem is the weighted

policy learner (WPL) algorithm [Abdallah and Lesser, 2006], shown in Algorithm 5.1. WPL

is a non-standard1 actor-critic policy gradient algorithm designed to dampen oscillation and

push the agents to converge more quickly to a possibly temporary optimum. This is done

by scaling the gradient of the expected return for an action a according the probability of

taking that action π(a) (if the gradient is positive) or 1− π(a) (if the gradient is negative).

Intuitively, this has the effect of slowing down the policy updates when the policy is moving

away from a temporary equilibrium strategy and increasing it when it approaches one.

1WPL is non-standard in that it does not utilize the log-probability trick.
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The full WPL algorithm is shown in Algorithm 5.1. It is assumed that the critic in form

of a historical average return R̂i for each action ai is initialized to 0 before the start of

training. The function simplex-projection projects the updated policy values to make it a

valid probability distribution. The projection is defined as: clip(π)/
∑

(clip(π)), where

clip(x) = max(0,min(1, x)). In its original form, WPL does not rely on state information,

and has only a tabular representation of its policy. Consequently, the algorithm can only be

used for fixed-depth routing, because each decision requires one separately stored action

distribution. Details, including convergence proofs and more examples giving the intuition

behind the algorithm, can be found in [Abdallah and Lesser, 2006]. We extend this algorithm

to work with function approximators in section 7.1.1.

5.2 Experiments on Image Datasets

In this section, we will discuss routing results on several image domains. Additionally,

we will explicitly consider the multi-task learning scenario, in which every sample at train

and at test time has meta-information determining its task. This section was published

as [Rosenbaum et al., 2017].

5.2.1 The Datasets

The multi-task datasets experimented on are: Multi-task versions of MNIST (MNIST-

MTL) [Lecun et al., 1998], Mini-Imagenet (MIN-MTL) [Vinyals et al., 2016] as introduced

by Ravi and Larochelle [2017], and CIFAR-100 (CIFAR-MTL) [Krizhevsky, 2009] where

we treat the 20 superclasses as tasks. In the binary MNIST-MTL dataset, the task is to

differentiate instances of a given class c from non-instances. We create ten tasks and for each

we use 1k instances of the positive class c and 1k each of the remaining nine negative classes

for a total of 10k instances per task during training, which we then test on 200 samples per

task (2k samples in total). MIN-MTL is a smaller version of ImageNet [Deng et al., 2009]

that is easier to train in reasonable time periods. For mini-ImageNet, we randomly choose
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50 labels and create tasks from 10 disjoint random subsets of five labels each chosen from

these. Each label has 800 training instances and 50 testing instances – so 4k training and

250 testing instances per task. For all ten tasks, we have a total of 40k training instances.

Finally, CIFAR-100 has coarse and fine labels for its instances. We follow existing work

[Krizhevsky, 2009] creating one task for each of the 20 coarse labels and include 500

instances for each of the corresponding fine labels. There are 20 tasks with a total of 2.5k

instances per task; 2.5k for training and 500 for testing. All results are reported on the test

set and are averaged over three runs.

Each of these datasets has interesting characteristics that challenge the learning in

different ways. CIFAR-MTL is a “natural" dataset whose tasks correspond to human

categories. MIN-MTL is randomly generated, so it will have less task coherence. This

makes positive transfer more difficult to achieve and negative transfer more of a problem.

MNIST-MTL, while simple, has the difficult property that the same instance can appear

with different labels in different tasks, causing interference. For example, in the “0 vs other

digits" task, “0" appears with a positive label but in the “1 vs other digits" task it appears

with a negative label.

5.2.2 The Architecture

The experiments are conducted on a simple convnet architecture that appeared recently

in [Ravi and Larochelle, 2017]. This model has four convolutional layers, each consisting

of a 3x3 convolution and 32 filters, followed by batch normalization and a ReLU. The

convolutional layers are followed by three fully connected layers, with 128 hidden units

each. We will call this architecture ‘Base’ throughout this section. The routed version of

the network routes the three fully connected layers and for each routed layer there is one

randomly initialized module per task in the dataset (for e.g., CIFAR-MTL this makes three

layers with 20 modules each). The preceding convolutional layers are shared in between all

tasks unless otherwise noted.
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For multi-task routing, we can define routers that do not consider the sample or the

current activation, because the clusters the network needs to learn in single task learning are

externally defined by the task-labels. In these cases, we implement the policies as tables that

can be indexed by the task labels and the routing depth. This means that, unless a special

‘pass’ action is available, the router will make exactly three decisions, one for each routed

fully connected layer.

In cases where we want the router to decide its paths based on the sample or later

activations, we implement the agent’s policy as one or many neural network function

approximators. In these cases, the approximators are always two layer MLPs with a

hidden dimension of 64. While tabular routers have a separate table per decision depth,

approximation routers do not. To also give the router access to the depth in these cases,

the latest activation is augmented by concatenating a 1-hot representation of the depth. For

single-agent routers, the task is equally concatenated as a 1-hot representation. That is, the

state for the router would be encoded as concat(h, one_hot(m), one_hot(d)), with h being

the current activation, m the task index, and d the depth. For one experiment, we also

implement a recurrent router that has access to a special ‘pass’ action. For this architecture,

the modules are accessed recurrently, i.e., the same set of modules is accessed at each

decision step of the routing.

5.2.3 Results

We began the experiments with a parameter sweep over the collaboration reward ρ,

the learning rate, and the optimization algorithm. For a more general comparison and

analysis of the impact of these hyperparameters, see section 7.2. The parameter sweep

performed here yielded a collaboration reward ρ = 0.0 (no collaboration reward) for CIFAR-

MTL and MIN-MTL and ρ = 0.3 for MNIST-MTL, a learning rate of 10−2 which is

annealed by 10 every 20 epochs, and SGD as the optimization algorithm. We additionally

compared several reinforcement learning algorithms, REINFORCE, Q-Learning and WPL,
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but no reparameterization algorithms, as we only became aware of these later. The best-

performing decision-making algorithm out of the ones tested here was consistently WPL.

The experiments shown here are thus using WPL. However, because WPL was originally

defined in tabular form only, approximation policies are trained with REINFORCE. Only

for later work (see section 7.1.1), did we extend WPL to work with function approximators.

Figure 5.1: Comparison of Routing Architectures on CIFAR-MTL.

The first experiment compares different routing architectures. All of these are variations

of the convolutional architecture introduced above (four convolutional layers, three fully

connected layer). The architectures compared are: routing-all-fc, which routes all of the

fully connected layer (including the final output layer), and which has a separate tabular

policy for each task. All of the following architectures also route the fully connected layers

only. The routing-all-fc recurrent+Pass architecture also has a separate policy for each task,

but recurs through the same modules. It additionally allows the possibility that layers can

be skipped. The routing-all-fc single agent architecture implements the router as a single

function approximated policy that routes by current activation, but that still needs to make

three decisions for the three routed layers. These layers are not recurred through. It is trained

with REINFORCE. routing-all-fc dispatched is a dispatched architecture as introduced in

section 3.4.2. Here, the router is implemented by having a hierarchy between a neural

network policy that assigns samples to subrouters, which in turn are tabular. All decisions
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are trained with REINFORCE. To compare with a ‘soft’ routing version, soft mixture-all-fc

is a sofmax-gated version of the same architecture that computes a softmax-weighted sum

over the output of all modules at each layer.

Among these different architectures, a clear hierarchy can be seen in the results shown

in figure 5.1. The worst architecture is the soft mixture model that is outperformed by all

routing approaches. For the four routing approaches compared, the pure multi-task, tabular

multi-agent approach outperforms all others.

Figure 5.2: Results on domain CIFAR-MTL Figure 5.3: Results on domain MIN-MTL (mini
ImageNet)

Figure 5.4: Results on domain MNIST-MTL

The next experiment compares routing-all-fc as the best performing routing architecture

on different domains against the cross-stitch networks by Misra et al. [2016] and two

challenging baselines: task specific-1-fc and task specific-all-fc, described below.
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Cross-stitch networks are a kind of linear-combination model for multi-task learning.

They maintain one model per task with a shared input layer, and “cross stitch" connection

layers, which allow sharing between tasks. Instead of selecting a single module in the next

layer to route to, a cross-stitch network routes to all the modules simultaneously, with the

input for a module i in layer l given by a linear combination of the activations computed by

all the modules of layer l − 1. That is: inputli =
∑k

j=1 w
l
ijvl−1,j , for learned weights wl

ij

and layer l− 1 activations vl−1,j . For our experiments, we add a cross-stitch layer to each of

the routed layers of our base model.

The task-specific-1-fc baseline has a separate last fully connected layer for each task and

shares the rest of the layers for all tasks. The task specific-all-fc baseline has a separate set of

all the fully connected layers for each task. These baseline architectures allow considerable

sharing of parameters but also grant the network private parameters for each task to avoid

interference. However, unlike routing networks, the choice of which parameters are shared

for which tasks, and which parameters are task-private is made statically in the architecture,

independent of task. Architectures of this kind were made popular in Caruana [1997].

The results are shown in Figures 5.2, 5.3, and 5.4. In each case, the routing net routing-

all-fc performs consistently better than the cross-stitch networks and the baselines. On

CIFAR-MTL, the routing net beats cross-stitch networks by 7% and the next closest baseline

task-specific-1-fc by 11%. On MIN-MTL, the routing network beats cross-stitch networks

by about 2% and the nearest baseline task-specific-1-fc by about 6%. The results on

CIFAR-MTL may be better because the task instances have more in common whereas the

MIN-MTL tasks are randomly constructed, making sharing less profitable. On MNIST-MTL,

the random baseline is 90%. We experimented with several learning rates but were unable to

get cross-stitch networks to train well, because we did not want to provide it with the offline

pretraining suggested in [Misra et al., 2016]. While such additional pretraining would help

cross stitch networks, it would precondition the modules and would not test their ability to

navigate the transfer-interference trade-off from scratch. Without such pretraining, routing
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networks beat cross-stitch networks by 9% and the nearest baseline (task-specific-all-fc) by

3%. The soft version we evaluated before also had trouble learning on this dataset, furthering

the point that ‘soft’ versions are not truly able to navigate the transfer-interference trade-off.

Figure 5.5: Comparison of per-task training cost for cross-stitch and routing networks. We add a
module per task and normalize the training time per epoch by dividing by the number of tasks to
isolate the effect of adding modules on computation.

Apart from achieving higher performance, training a routing network is much faster than

training a soft model. On CIFAR-MTL, for example, training time on a stable compute

cluster was reduced from roughly 38 hours to 5.6, an 85% improvement. A set of scaling

experiments to compare the training computation of routing networks and cross-stitch

networks trained with 2, 3, 5, and 10 modules was meant to verify this. The results are

shown in Figure 5.5. Routing networks consistently perform better than cross-stitch networks

and the baselines across all these problems. Adding modules has no apparent effect on the

computation involved in training routing networks on a dataset of a given size. On the other

hand, cross-stitch networks have a soft routing policy that scales computation linearly with

the number of modules. Because the soft policy backpropagates through all modules and the

hard routing policy only backpropagates through the selected block, the hard policy scales

much more easily to many task-learning scenarios that require diverse types of modules.

To explore why the multi-agent approach seems to do better than the single-agent,

another experiment compares their policy dynamics for several CIFAR-MTL examples.
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For these experiments, ρ = 0.0, so there is no collaboration reward that might encourage

less diversity in the agent choices. In the cases we examined, we found that the single

agent collapsed and often chose just one or two modules at each depth, and then routed all

tasks to those. We discussed this behavior as a challenge to compositional computation in

section 4.3.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

Figure 5.6: An actual routing map for MNIST-MTL.

Routing networks, when conditioned on different tasks, learn a policy which, unlike

the baseline static models, partitions the network quite differently for each task, and also

achieves considerable diversity in its choices as can be seen in Figure 5.6. This figure shows

the routing decisions made over the whole MNIST MTL dataset. Each task is labeled at

the top and the decisions for each of the three routed layers are shown below. We believe

that because routing networks have separate policies for each task, they are less sensitive

to a bias for one or two modules and each agent learns independently what works for its

assigned task.

5.3 Experiments on Language Datasets

In this section, we will describe several different routing architectures for natural lan-

guage inference (NLI). For NLI, a classification task, a machine learning model needs to

decide if a given premise implies the truth of a given hypothesis. An example is “Boston

is the capital of Massachusetts.” implies “Boston is in Massachusetts.”. The other two

classification outcomes are contradiction (“Boston is the capital of Massachusetts.” contra-

dicts “Boston is in Rhode Island.”) and permits (“Boston is the capital of Massachusetts.”
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permits “Amherst is a town in Massachusetts.”) We will focus on two different NLI datasets,

MULTINLI and SCI, because both of them have additional meta-information associated with

each sample. We will treat the meta-information, as before, as task labels. Because neither

of these is considered to be explicitly multi-task, this allows us an analysis of the usefulness

of different kinds of meta-information as hard clusters. This section was published as part

of Cases et al. [2019].

MultiNLI The MULTINLI corpus Williams et al. [2018] contains 392k training examples,

10K dev examples, and 10K test examples. The examples come from five genres: fiction,

government reports, the Slate website, the Switchboard corpus [Godfrey and Holliman,

1997], and Berlitz travel guides. We treated these genre labels as meta-information for the

model.

Stanford Corpus of Implicatives The premise of routing with meta-information is that

routing benefits from clusters that capture some essential property of the sample distribution,

i.e., that form meaningful semantic abstractions. To verify, we did experiments with the

Stanford corpus of implicatives (SCI)2, because each sample is annotated with high-quality

semantic information in the form of signatures. Signatures, discovered by Karttunen [1971],

are implicative constructions that describe logical properties of specific verbs. Examples

are manage to or waste chance to (e.g., They wasted their chance to win). Signatures

characterize the inferences these verbs support in positive and negative contexts. This

makes them particularly informative for NLI predictions, thereby providing a semantically

meaningful partition for the router.

For instance, the positive sentence Joan managed to solve the problem entails Joan

solved the problem, and the negative sentence Joan didn’t manage to solve the problem

contradicts Joan solved the problem. In contrast, waste chance has the opposite signature,

2https://nlp.stanford.edu/projects/sci/
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the order compelled him to appear as a witness entails he appeared as a witness
we have missed an opportunity to examine the art market today contradicts we have examined the art market today
Mr Odinga had not been forced to change his plans permits Mr Odinga had changed his plans

Table 5.1: Examples from SCI randomly chosen from the validation set. Each row contains a triplet
formed by a premise (left column), a hypothesis (right column), and a label specifying one of the
three possible relations (entails, contradicts, permits) holding between premise and hypothesis. The
last row contains an example of a probabilistic implicative (see the main text).

since they wasted the chance to befriend him contradicts they befriended him, and they didn’t

waste the chance to befriend him entails they befriended him. See table 5.1 for examples

and signatures for all three possible outcomes.

For evaluating routing, another very important property of signatures is that they are

compositional: when two or more implicative constructions are composed in a sentence, they

create a nested implicative construction [Nairn et al., 2006]. For example, John managed

to remember to get the keys entails that John got the keys. Therefore, signatures make

implicatives ideal for evaluating different degrees of compositional generalization, because

they provide semantically rich meta-information. For routing, this means that a routing

network should be able to pick up structures that allow it to generalize properties from

several simple signatures to nested signatures, by composing existing modules in new ways.

The SCI dataset contains ≈10K premise–hypothesis pairs. Seven signature types are rep-

resented, in addition to eight stochastic signatures, i.e., verbs with a non-constant signature.

Additionally, SCI is provided in four versions. In the joint version, the underlying

distribution of implicatives is shared across train, validation, and test splits. In the disjoint

version, a different subset of implicatives is used in train from those used in validation and

test. This allows generalization to unseen constructions to be tested. The lexical items

that make up implicative constructions overlap between the splits. For example, take vow

appears only in training and validation, while make vow only appears in test. Another version

is mismatch, where different subsets of the signatures are present in training/validation

and test. The last version is nested, where implicatives are composed of several simpler

implicatives. Apart from evaluating how routing can generalize, this also makes the four
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variants differently difficult to solve. From easiest to hardest (measured by standard RNN

architecture performance), we have joint, disjoint, mismatch, and nested.

5.3.1 The Architecture

Figure 5.7: The general NLI architecture.

The high-level architecture is a simple comparison model as depicted in Figure 5.7. Both

the premise and the hypothesis are encoded, the encoding is concatenated, and a classifier

consisting of several fully connected layers outputs a three-way softmax that is interpreted

as entails, permits, contradicts.

If not otherwise mentioned, we assume that the routed modules are all fully connected

layers with the same input and output dimensions. We furthermore assume that the router is

always selecting from the same set of functions when defining paths through the routing

layers, because this straightforwardly allows recursive routing without any constraints. That

is, the router is implemented with a separate stop action ⊥ when it decides that the current

activation is sufficient for prediction, but it can otherwise recur through the same set of

modules. However, we limited the number of allowed recursion steps, because we found

that this stabilizes training immensely. Unless otherwise noted, the implementation of the

router is a tabular per-step per-task multi-agent subrouter as introduced in section 3.4.2.
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Figure 5.8: Routing the classifier.

5.3.1.1 Routing Classifiers

The simplest method we explored involves routing the layers of the classifier component

of the architecture illustrated in Figure 5.7. To do this, we defined a fixed set of b fully

connected layers (FC), each of the same dimensionality, and we allow the router to choose

any path through this set up to a maximum length d (Figure 5.8). The final activation

produced by the chosen path is then densely connected to a non-routed output layer. The

main differences to the architecture presented in the previous section for image classification

are that the routing is fully recursive and that the final layer is shared.

5.3.1.2 Routing RNN Encoders

In routing RNNs, we focused on their two core transformations: from the hidden state

at time step tk to time step tk+1, and from the input to the hidden state. We have designed

routing architectures for both of them. While we only considered LSTMs Hochreiter and

Schmidhuber [1997], the techniques applied will be straightforward to adapt to other cell

types.

Figure 5.9 shows an architecture where we route the input-to-hidden (I2H) transformation.

Similarly, Figure 5.10 shows an architecture where we route the hidden-to-hidden (H2H)

transformation. While these transformations are often designed as single fully connected

layers, we allowed a recursive application of a maximum of d steps from a selection of b

modules to be applied. The selections for the transformations f, i, o, c are tied to be the
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Figure 5.9: Routing the input to hidden layer of an RNN.

Figure 5.10: Routing the hidden to hidden layer of an RNN.

same. That is, the router makes only one decision per step, but all transformations f, i, o, c

(for forget, input, output, and cell state, the core components and transformations of an

LSTM) are chosen by that one decision. The corresponding transformations (in form of

their weight matrices Wf/i/o/c for I2H and Uf/i/o/c for H2H) become:

K = FCk ◦ · · · ◦ FCm(xt), ∀K ∈ {Wf ,Wi,Wo,Wc, Uf , Ui, Uo, Uc} (5.1)

5.3.1.3 Routing CBOW Encoders

We also experiment with routing a continuous bag of words (CBOW) encoding to

contextualize word interpretations. To do so, we add a word-level transformation before the

main addition (Figure 5.11). This transformation can again be routed recursively (with up to

d steps through b modules). As the I2H RNN model, this approach allows the task-specific

learning of word encodings. The entire CBOW model can be defined as (with w1, . . . , wt as

the sequence of words in the premise or hypothesis):
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Figure 5.11: Routing a CBOW encoder.

CBOWR(w1, . . . , wt) =
t∑

i=1

FCk1 ◦ · · · ◦ FCkd(wi) (5.2)

5.3.1.4 Routing Transformers

The Transformers model [Vaswani et al., 2017] was recently pre-trained as a language

model [Radford et al., 2018], achieving impressive results on several NLI datasets. Because

the corpus for pretraining is not available, we instead used the parameter-files distributed

by the authors.3 The encoding uses twelve Transformer-blocks. Each block consists of

a convolutional attention layer followed by two convolutional layers (along with several

dropout and layer-norm layers). This allows routing at different levels of granularity, of

which we investigated two: routing entire blocks and routing the attention step within each

block. Because we use pre-defined parameters, we cannot apply the blocks or the attention

layers recursively. Furthermore, we have to add routing in the fine-tuning phase of using

Transformers by creating b copies of each routed module (the depth is necessarily d = 12, as

determined by the pretrained models, making the model non-recursive). When fine-tuning,

the router then diversifies the initially identical modules. To add small initial diversification

of the otherwise identical modules, we experimented with adding noise (with σ2 < 10−7) to

the parameters of each module.

3https://github.com/openai/finetune-transformer-lm
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5.3.2 Results

We evaluated the routing architectures introduced in the previous section, along with

different non routed baselines. For all models (except Transformers), we adopt the architec-

ture in Figure 5.7, in which the premise and hypothesis are processed separately, and the

final representations of each are concatenated and fed into the classifier layers. We utilized

pretrained word representations (GloVe; [Pennington et al., 2014]). For all non-routed

models, we provided explicit access to the genre label via special keywords put in front of

each sentence before encoding (i.e., the first word of each sentence becomes ‘k’, where k is

the task index). The routed models used this label as meta-information, creating a separate

sub-router for each signature-class.

Unless otherwise specified, we used embedding and hidden dimensions of 300. The

classifier consists of three fully connected layers with input and output dimensions of

600 (also when routed). The final layer projects from 600 to the output dimension, 3.

All nonlinearities are ReLUs. After a parameter sweep in a range ten times larger and

smaller, we found that a learning rate of 1e−3 yields the best results. For Transformers, all

hyperparameters are determined by the published parameter files. The routing width b = 15,

such that there is possibly one module per signature. We also experimented with different

maximal depths, but found that the router rarely composed more than three modules for a

specific signature. As higher signatures additionally increased training complexity, we set

the depth d = 3.

In experiments with different decision-making algorithms, we found that q-learning was

consistently as good as other more complex decision-making algorithms algorithms, so we

report only results for q-learning. As before, a complete comparison of different decision

making algorithms can be found in section 7.1. Because Routing Networks have more

parameters than their non-routed counterparts, we ran experiments with larger non-routed

networks. We found that this did not affect performance, only resulting in more overfitting.
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MULTINLI SCI

Encoding Routing match joint disjoint mismatch nested∗

CBOW

None 61.94±0.13 57.26±0.18 55.68±0.47 53.41±0.86 50.98±0.92

Classifier 51.99±0.17 62.33±0.80 61.17±0.28 51.55±1.61

WP 64.38±0.24 74.95±0.64 73.91±0.54 68.69±0.93

WP+D 65.84±0.12 75.56±0.77 74.87±0.49 71.08±0.52 75.43±0.29

RNN

None 66.53±0.21 67.04±2.36 63.52±2.00 59.32±2.87 57.69±2.75

Classifier 65.60±0.33 71.02±0.85 67.82±0.81 60.58±1.35

I2H 47.79±0.47 53.25±0.28 56.57±1.83 53.99±0.55

H2H 62.34±0.25 54.89±0.93 53.08±0.57

Transformers†

None 76.12 88.12 88.07 85.64
Classifier 76.50 86.05 86.68 73.45
Attention 76.63 87.91 88.45 85.95

Block 75.87 88.22 87.88 85.33

Table 5.2: Results for MULTINLI and SCI with different baselines and their routed versions. We report
average accuracy with confidence intervals over five runs with different seeds. For Transformers, we
found that finetuning was highly volatile. We therefore report test results from the best-of-5 train
models. ‘WP’ stands for Word Projection, ‘+D’ for Dispatching, ‘I2H’ for Input-to-Hidden routing,
and ‘H2H’ for Hidden-to-Hidden routing. Italics mark scores whose confidence intervals overlap
with the best scores. ∗All results for nested SCI were computed by fine-tuning the same network
previously trained on joint. † Transformers were pretrained as a language model.

5.3.2.1 MULTINLI Results

Our MULTINLI results are given in Table 5.2. The best model combines the Transformer

base model with routing the attention layers. Our methods for routing the RNN seem to

be less successful, but word-representation routing offers clear benefits with the CBOW

base model. Interestingly, the baseline (non-routed) models perform at the same level as

the very similar models without genre labels evaluated by [Williams et al., 2018], even

though they are also exposed to the genre. It seems that these models are not able to take

advantage of the meta-information. In contrast, routing networks seem to provide the space

needed to condition linguistic senses on these labels, at least for CBOW models. On further

analysis, we found that the problem with RNNs is the challenge discussed in section 4.4:

overfitting. These models are too powerful, resulting in near perfect training performance,

but unfortunately they do not generalize.
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Figure 5.12: Path (module selection) overlap for MULTINLI between genres with the CBOW GloVe
WP model. The diagonal represents the number of modules applied for a genre. A maximum of three
means that two genres would be routed through the exact same functions.

Our hypothesis is that routing will not only lead to better performance on diverse tasks

like MULTINLI, but also that the paths – i.e., the sequence of functions selected by the router

– followed by the network will reflect high-level task structure. Figure 5.12 suggests that this

is the case for MULTINLI. Here we show the degree of path-overlap for all pairs of genres.

As we might expect, government (the 9/11 report), Slate (current affairs), and travel cluster

together, distinct from the two more isolated genres (Switchboard; spoken language) and

fiction (mostly from the 20th century).

5.3.2.2 SCI Results

For each example in SCI, we use its associated implicative signature as the meta-

information label, determining task membership. This serves as a subtler kind of semantic

information than genre. As Table 5.2 shows, routing lead to considerable gains in perfor-

mance over most benchmarks. Routing of the classifier helps consistently with all models.

Even simple word-level routing yields major improvements for CBOW. As with MULTINLI,

we believe that the modules allow the conditioning of linguistic senses. Routing at the

word-level for sequential models seems suboptimal here. The training accuracies (> 99.5%)

suggest that the problem is, again, overfitting.
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Figure 5.13: The path-overlap between different signatures on SCI, using the CBOW GloVe WP
model, for b = 4, d = 3. N+|− and N−|+ are nested signatures.

We expect examples with similar signatures to be routed along similar paths. Figure 5.13

summarizes the path-overlap between different signatures. Many of these similarities make

intuitive sense. For example, +|.4 and +|.5 are highly similar, as are -|.7 and -|.9. In

addition, the isolation of the unusual signature +|+ (limited to just two constructions) seems

expected, as does the affinity of the nested signatures N+|- and N-|+ to their unnested

counterparts. However, some signatures only contain very few samples [Cases et al., 2019].

This will probably result in highly noisy routing paths for classes with fewer samples.

5.3.2.3 Navigating the Transfer–Interference Trade-off

Another advantage of language domains over image domains is their relative inter-

pretability. For routing, they allow us to relate specific linguistic phenomena to routing paths.

These, in turn, reflect how a routing network navigates the transfer-interference trade-off by
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controlling the amount of weight sharing between signatures. While baseline networks can

learn to navigate this trade-off if they are optimized for the appropriate objective [Riemer

et al., 2019], in general these models do not have sufficient supervision on how to do this.

To illustrate, we ran experiments on baseline models to analyze their behavior for

possibly interfering problems. There, we noticed that baseline sequence models learned to

classify take vow early in the training process, as the word vow is lexicalized through training

on make vow examples. However, performance decreases over time as take is lexicalized

through training on examples of other implicatives with different signatures, such as take

chance. This behavior is the characteristic outcome of catastrophic interference: learning

take chance results in decreased performance on take vow as the two examples interfere. This

is a particularly revealing instance because these two phrasal verbs are similar on the surface,

but have quite different semantic properties, as reflected by their signatures. However, given

that routing networks are able to route them differently (Figure 5.13), interference is less

likely.

5.3.3 Prediction without Meta-Information at Test-Time

This chapter has illustrated how task information or high-quality meta-information in

general can be extremely useful. Unfortunately, such information is oftentime not available

at test-time. To compensate, we evaluated an extension to routing networks in which an

additional neural network module is trained to assign examples to meta-information classes

(genres for MULTINLI; signatures for SCI). This is a form of dispatched routing (compare

section 3.4.2), because the task of that model is to learn clusters exclusively. It then acts as a

hierarchy on the other sub-routers.

It is important that such a model is not trained to guess the signatures, i.e., trained using

the supervisory sample-metainformation tuples, but is instead trained on the final output of

the network. When we trained the dispatcher jointly with the models and the subrouters, we

found that it was unstable and did not perform well. Instead we trained the dispatcher after
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the rest of the routed model was already fully trained. The training target was, as before,

a translation of the model’s output, translated into a reward. The results for this approach

are extremely promising. Table 5.2 includes an evaluation of this variant with a CBOW base

model and WP routing (denoted as +D). As we can see, accuracy actually increases by a

small amount over WP alone.

Having +D also allows the network to better generalize to unseen examples and unseen

patterns. Consider the relative performance drop for CBOW WP+D from the full joint SCI

dataset (75.56%) to disjoint (−0.69%) and from disjoint (74.87%) to mismatch (−3.79%),

and compare this to the plain WP version: full (74.95%) to disjoint (−1.04%), and disjoint

(73.91%) to mismatch (−5.22%).

Additionally, dispatching allows us to tackle the nested version of the dataset because

the router can compose new paths for the compositional signatures contained there. Con-

sequently, we test different architectures on nested by finetuning a model trained on joint

first. (i.e., we train a model on joint to convergence, and then take that model and train

it on nested.) Table 5.2 shows the truly impressive capability of a routing architecture to

generalize in these cases, achieving an 18% performance increase over a standard, non-

routed recurrent architecture. This suggests that routing is indeed able to fulfill one of the

promises of compositional modularity: recomposing solutions for known problems to solve

yet unencountered ones.
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CHAPTER 6

DISPATCHED ROUTING

Picking up the previously introduced idea of a dispatcher, a separate network that is

trained to guess task (or any meta-information), an obvious question is if we can train such a

network in an end-to-end fashion. Thinking about the fundamental three problems of routing,

having a separate dispatcher would directly address the clustering aspect to learning-to-

partition. In this case, each of the three problems would have a dedicated component. While

we introduced the general idea in [Rosenbaum et al., 2017], it did not work in combination

with the domains and architectures experimented with. In this chapter, we will introduce

some more recent insights and architecture designs. This is very recent work, and the main

results were released in [Rosenbaum et al., 2019a].

The previous chapter showed that language is a better test-bed for routing, for two

reasons. The first is performance, because routing offers larger benefits there. We assume

that this can be explained by a language domain’s higher potential for interference. The

second is interpretability, because word-based routing models allow to intuitively grasp

specific routing decisions.

Consequently, this chapter works on the tacit assumption that the presented ideas will be

applied to language models. However, the core insight into how dispatching can help design

stable routing networks should translate to any domain.

6.1 Conceptual Advantages of Dispatching

In chapter 4, we detailed several challenges to all compositional architectures, and to

routing in particular. The most important for dispatching is how it can address the problems
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of finding the ‘alignment’ of samples, as expressed by the flexibility dilemma of modular

learning. Dispatching can have special properties that can help to find the right local

approximations in a unique way. The first is that the dispatcher’s objective function does not

have to be the same as the one of the routing network. Given that the dispatcher is trained

on the loss of the routing network or some derivative thereof, it can be regularized with an

additional loss (or, for RL dispatchers, reward). This idea will be discussed in more detail

below, and is depicted in Figure 3.4(c). If appropriately chosen, this regularization loss can

prevent collapse. It can also prevent overfitting, because it may prevent the formation of

very small clusters.

The second advantage of dispatching can be related to the problem of learning-to-

partition. More specifically, dispatching introduces a specific component that only learns to

cluster a distribution, thereby finding distinct groups of samples functionally similar in light

of the downstream task. Having such a specific component reduces the burden on the router,

but it also affects the routing search space. Given that there is only one decision to take,

namely assigning a sample to a cluster, the number of paths is non-combinatorial, which

adds an additional safeguard against overfitting. Additionally, a dispatcher can also help

with the second problem of learning-to-partition, i.e., learning distances between clusters. It

does so because it allows parts of the router to be implemented in a way that ignores the

current activations (as done, e.g., by a tabular router). The router can then learn distances

purely based on the dispatched cluster, dramatically simplifying the learning problem.

The third advantage is how dispatching can be combined with well-investigated strategies

for clustering. As argued before, dispatching effectively clusters samples first which are

then uniformly routed. This allows us to interpret these clusters and to investigate if there is

a relationship between these ‘functional’ clusters and clusters naturally ascribed by humans

[Potts, 2019].

Additionally, while the natural question is which clusters are learned when dispatching,

we may also ask how useful existing clustering strategies are to solving the problem at hand.
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Figure 6.1: Dispatching strategies. In offline dispatching, the dispatching strategy πd is decided by
information provided externally (m), and the dispatcher is not trained as part of the routing network,
i.e., it is not part of the feedback loop. In online dispatching, the dispatcher is trained, and is thus
part of the feedback loop. When trained on the same target, the objective function of the dispatcher
is the same as for the router. When trained on a different target, the dispatcher has another objective
function (and is part of another feedback loop), and is trained on both that target and the target
provided by the routing network.

This means that we could cluster the data, either in an online or offline fashion, and use

these clusters as ‘tasks’, looking at the resulting performance of the routing network.

6.2 Dispatching Strategies

We introduced several kinds of dispatching. The first is offline dispatching, the second

is online dispatching with the same objective function (as in the original formulation by

[Rosenbaum et al., 2017]), and the third is online dispatching with multiple objectives.

We will investigate all three, with a focus on using existing clustering algorithms for

offline dispatching, because we want to move beyond relying on externally provided meta-

information.

6.2.1 Offline Dispatching by Clustering

Offline dispatching, depicted in Figure 6.1(a) relies on cluster-information available

before the routing network is trained. In the previous chapter, we investigated human

annotations that can be interpreted as task-information [Rosenbaum et al., 2017, Cases et al.,
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2019]. This can be naturally extended to clusters that are not intertwined with the training

of the routing network, but that are still learned, if separately. This may find clusters that are

relevant for the objective of the routing problem.

The easiest offline clusters can be retrieved by computing an encoding of all the samples

in a dataset, which will then be clustered. For language domains such as natural language

inference (the domain that will be the focus in this chapter), the simplest of these encodings

are CBOW encodings that simply add the respective word (GloVe, [Pennington et al., 2014])

embeddings to form a single vector representation. This vector representation, in turn,

can be clustered by any clustering algorithm. We consider two: K-Means clustering and

Agglomerative Clustering, because these are established clustering baselines. We also

experimented with DBSCAN, but found that the space of encodings is such that DBSCAN

does not converge.

6.2.2 Online Dispatching without an additional Objective Function

Both kinds of online dispatching (this and the following one) introduce a clear hierarchy

in the online decision making process. The dispatcher acts as an additional step in sample-

space that assigns a sample to a secondary subagent which will do the actual routing. For

online dispatching without another regularizer, depicted in Figure 6.1(b), the dispatcher

is trained on the same objective as the other routing decisions. This objective might be

final performance, or any other function of the final output of the routed model. This

architecture has been unsuccessfully tried before in [Rosenbaum et al., 2017, Cases et al.,

2019]. However, we will try several variations in the hope of finding a working configuration.

6.2.3 Online Dispatching with an additional Objective Function

This approach to dispatching tries to mitigate both the problems of offline dispatching

and single objective online dispatching by merging the core ideas of both. It achieves this by

training the dispatcher on a combination of an external objective, such as general purpose

clustering objective, and the final routing objective, depicted in Figure 6.1(c). This can be
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achieved by optimizing the dispatcher, a reinforcement learning agent, on a weighted sum

of rewards corresponding to these objectives, also illustrated in Figure 6.2:

Rtotal = αRdispatcher + (1− α)Rexternal (6.1)

One very simple external objective that should not be interfering catastrophically with

the main objective is self-reconstruction. That is, the dispatching action is not only trained

on the performance on the downstream task, but also on its performance on a bottleneck

autoencoder. A (routed) bottleneck autoencoder (RBAE), as depicted in Figure 6.3, differs

from a ‘regular’ autoencoder in that it can choose the projections to form its smallest, inner

representations. The intuition is that, given that the innermost dimensionality is small

enough, the RBAE cannot compress all samples with the same projections, but instead

needs to diversify. Because this process also involves hard decisions, the bottleneck can be

implemented as a single-step routing network. The routing component of the autoencoder

can thus be defined as solving the following optimization problem (with M as the set of

available modules, Fpre the encoding preprocessing, and Fpost as the postprocessing, Enc

the encoding, S the phrase and MSE as the mean-squared difference):

m∈M

argmax−MSE(E(S), Fpost(m(Fpre(Enc(S))))) (6.2)

A natural translation of this problem into a routing reward is the negative reconstruction

loss, similar to the previously discussed negative loss at the downstream task:
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problem may be any single-step routing network,
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Figure 6.3: A (routed) bottleneck autoencoder. After the input S is encoded, the encoding ES is
projected to some dimensionality dp, and then passed through one of a set of “bottleneck” modules,
{m1,m2,m3}, selected by the autoencoder dispatching policy πd. These are of the form fcdp,dbn →
fcdbn,dp , i.e., they first project the input from dimensionality dp to a bottleneck dimensionality dbn
(such that dbn ≪ dp). The resulting projection is then projected back from dp to the dimensionality
of the embedding. The entire model, including πd, is trained on the reconstruction error between ÊS

and ES . If dbn is sufficiently small, the πd has to cluster samples by distributing them over multiple
bottleneck modules.

RRBAE = −Lreconstruction (6.3)

Because the dispatching decisions also decide on the clusters used for the downstream task,

we can easily design an architecture with one subrouter deciding both the bottleneck and the

dispatching strategy. This subrouter effectively acts as a dispatcher, but we can then train

it on the combined reward on the downstream task and the self-reconstruction task of the

RBAE, as outlined in equation (6.1). A simple way to modify this architecture is to use

different encodings for the RBAE. With the focus of this work was language, we designed

autoencoders relying on the following encodings.

6.2.4 CBOW Autoencoding

In the simplest case, the autoencoder works immediately on a plain CBOW encoding

on some word embedding, GloVe in our case. The autoencoder encoding is then defined as

(with S as the premise, and w as the words in S):

Enc(S) =
∑

w∈S

GloV e(w) (6.4)
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6.2.5 CBOW Autoencoding with Attention

In this modification, the autoencoder works on a weighted CBOW encoding, where a

learned weight is associated to each word. This approach is commonly known as an attention

model. The corresponding autoencoder encoding is defined as (with S as the premise, w as

the words in S, and A as the attention function):

Enc(S) =
∑

w∈S

A(w)GloV e(w) (6.5)

6.2.6 One-hot (unencoded) Autoencoding

This simpler version of an autoencoder does not rely on an pre-trained embedding, but

instead uses a sum of one-hot word representations. This forces the autoencoder to develop

a simple language model. The encoding is (with S as the premise, and w as the words in S):

Enc(S) =
∑

w∈S

OneHot(w) (6.6)

6.2.7 Sequence to Sequence Autoencoding

Another autoencoder we experiment with is a full sequence-to-sequence autoencoder.

Here, the input is encoded using a recurrent neural network (an LSTM, to be precise). As

before, this encoding is then pushed through a routed bottleneck. Finally, the encoding

is used as the input to a sequential decoder that reconstructs the full input sequence. The

encoding is (with S as the premise, and w as the words in S):

Enc(S) = SEQ(S) (6.7)

6.3 Experiments

In this section, we will evaluate the proposed architectures on the Stanford Corpus of

Implicatives (SCI) [Cases et al., 2019], which was introduced in section 5.3.
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6.3.1 Quantitative Results

The first experiment evaluates the performance on SCI over the different approaches to

dispatching. To get a better sense of how the dispatching strategies are able to navigate the

flexibility dilemma between collapse and overfitting (see sections 4.3 and 4.4), all results

also include the dispatching selection entropy. The results are shown in Table 6.1.

The results presented in the previous chapter form the baselines for these experiments.

These are: the (unrouted) sequential model, the (unrouted) CBOW model and word-level

CBOW routing, conditioned on signatures (the first three rows of Tables 6.1, 5.2). The

architecture is the same architecture, i.e., routing the individual word projections of a CBOW

encoding, because it is clearly the strongest routed architecture from section 5.3. The

hyperparameters are the same as in the previous chapter, with a routing width of b = 15, a

maximal depth of d = 3, and a learning rate of 1e − 3. Further analysis of the impact of

the hyperparameters can be found in the following chapter, Chapter 7. In contrast to the

previously discussed results, where we claimed that online dispatching without an additional

target does not generalize well, the dispatching architecture here encodes the input with a

sequential network, and not with a CBOW representation.

The questions asked here are: (1) Is it possible to achieve the same performance (in

particular the impressive boost of simple bag of words architectures) without relying on

meta-information, but relying on dispatching only? (2) How does an end-to-end trained

dispatcher generalize to the more difficult variants of SCI – disjoint, mismatch, and nested?

(3) Are there substantial structural overlaps with the externally provided ‘tasks’, i.e., the

signatures?

6.3.2 Offline Dispatching

We show results for offline dispatching, i.e., for clusters computed offline before training

of the routing network in Table 6.1. We ran experiments with 5, 10, and 20 clusters, and

found that 5 clusters works best on average, and is always within the standard deviation of
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Figure 6.4: Comparison of dispatching architectures
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Joint & Match Disjoint Mismatch Nested

Enc Dispatching #class Accuracy Entr Accuracy Entr Accuracy Entr Accuracy Entr

Seq not routed 1 67.04±2.36 0 63.52±2.00 0 59.32±2.87 0 57.69±2.75 0

not routed 1 57.26±0.18 0 55.68±0.47 0 53.41±0.86 0 50.98±0.92 0

CBOW

Offline

Signatures 15 74.95±0.64 1.82 73.91±0.54 1.8 71.08±0.52 1.82 75.43±0.29 0.46

K-Means 5 62.26±2.79 0.45 61.68±1.4 0.35 59.29±0.59 0.42 71.67± 4.03 0.39

Aggl 5 64.63±0.62 0.44 60.86±0.75 0.46 61.56±0.55 0.43 72.45± 1.79 0.59

Online

Basic ≤ 20 71.4±1.39 0.56 64.13±0.3 0.45 67.77±0.61 0.45 83.24±0.58 0.62

AE ≤ 20 70.42±0.83 2.58 61.31±0.97 0.84 63.08±0.94 0.59 79.38± 0.99 0.31

AE Attn ≤ 20 72.7±0.21 0.46 65.05±0.78 0.45 67.74±0.23 0.44 80.35±1.42 0.41

AE OH ≤ 20 70.89±0.98 0.71 61.94±1.12 0.49 64.01±0.53 0.68 79.77±2.87 0.4

AE Seq ≤ 20 70.49±0.7 0.45 63.3±1.12 0.55 65.43±0.53 0.45 82.37±2.6 0.41

Table 6.1: Test results on SCI, averaged over five runs with different seeds. Each entry consists of
the test accuracy with confidence intervals and the entropy of the learned dispatching policy at test
time. Each result is selected from the average best-of-five dev results from a hyperparameter sweep
and may thereby have different hyperparameter settings. Bold font marks the average best score, and
italics mark scores whose confidence intervals overlap with the best scores.

the best performing setting. These clusters are generally inferior to the provided signatures.

However, they do improve performance over their unrouted baseline. For the mismatched

and nested datasets, they allow the routed model to beat even the generally much stronger

sequential baseline. In particular for the nested dataset, they beat the baselines by at least

14 % on average. For the two clustering techniques compared, agglomerative clustering

generally works better than k-means clustering.

6.3.3 Online Dispatching

Table 6.1 shows the test scores of the different online dispatching algorithms after 300

epochs. Figure 6.4 show dev results over 300 epochs to illustrate the learning behavior over

time. Combined, these results allow us to draw some conclusions:

(1) The best-performing dispatching strategies are the autoencoding with attention and,

surprisingly, basic dispatching without an external dispatching signal. While these

results are (mostly) not competitive with the results relying on human designed

signatures, they clearly outperform all baselines.
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(2) The ‘plain’ autoencoder only learning to reconstruct the CBOW encoding has the

highest selection entropy. Even when its selection entropy reduces over time, it does

so very slowly. Furthermore, all architectures except the ‘plain’ autoencoder and the

onehot autoencoder learn distributions with very similar entropies.

(3) The accuracy results are generally very stable, with most confidence intervals within

less than ±1% accuracy for most architectures.

(4) The most impressive result is the ability to generalize to longer (nested) sequences,

even outperforming the results relying on signatures.

The interpretation of these results is less obvious. (1) That attention helps the autoencoder

is not surprising, because it allows the encoding to learn to ignore stop words, names, and

other words irrelevant to the implication question. However, it is surprising that dispatching

without any external loss signal is able to learn as well as it does, in particular as [Rosenbaum

et al., 2017, Cases et al., 2019] explicitly claim that this does not work well. The main

architectural difference, arguably explaining this gap, is that the basic dispatcher used here

does not use a CBOW encoding, but a sequential encoding instead. Apparently, the different

in expressivity between these two is sufficient to learn meaningful clusters.

(2) There are several possible explanations for why a particular architecture produces

higher or lower entropy. The attention CBOW autoencoder, for instance, can learn to

ignore stopwords when compressing, and only focus on relevant keywords. This makes

the compression problem easier, probably requiring fewer choices – and thereby allowing

lower selection entropy. Similarly, the ‘plain’ CBOW autoencoder or the onehot autoencoder

cannot find such reduction strategies, probably requiring more bottlenecks to route through.

This interpretation is somewhat challenged by the entropy values in table 6.1, because

there is no clear picture emerging. While plain autoencoding tends to have the highest

entropy, it has the lowest for nested. Generally, most of the entropy results are in the 0.4−0.5
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(c) Entropy: 2.58. Best performing AE dis-
patcher; Collab Reward 0.0

Figure 6.5: Comparison of the behavior of different dispatching strategies. For each subplot, the
topmost graph shows the distribution of the ground truth signatures; the center graph shows the
dispatching distribution per signature, and the lowest shows the overall dispatching distribution.

range. As shown in Figure 6.5, this generally corresponds to two dominant dispatching

clusters with minor deviations.

(3) The stability of the learning process is not only reflected by the confidence interval

of the accuracies, but also extends to the entropy results, because all entropies are in a

±0.1 range. A particularly interesting result is the plain autoencoder result on joint &

match, because it achieves a good score while maintaining extremely high entropy of 2.58.
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Additionally, the entropy has a confidence interval of ±0.01, effectively implying that this

model learns highly similar cluster distributions over all runs. This strongly suggests that a

dispatcher learns meaningful and global clusters, and not only locally optimal splits.

(4) This result suggests that a dispatched routing network’s strongest point is its ability

to generalize. What happens intuitively is that a dispatcher can analyze the composition of

an SCI premise and then correctly select function blocks that will mirror this composition.

The results presented here confirm that the intuition behind dispatching – having a

dedicated architectural component learning latent distances between samples – does indeed

simplify the learning process for a routing network. While the proposed architectures

do not (yet) allow clustering of the same quality as high-quality meta-information does,

their performance strongly suggests that dispatching may offer an end-to-end trainable

alternative.

90



CHAPTER 7

AN EMPIRICAL ANALYSIS

In this section, we will evaluate the impact of numerous design decisions for, and

extensions to, routing networks – both for routing networks relying on meta-information and

those that do not. We will evaluate the impact of different router architectures, of different

decision-making algorithms, and of different hyperparameter settings. We will include

several ideas we tried that did not work. While the results may be negative, they allow a

further analysis of different properties of routing. This analysis was partially presented in

all of [Rosenbaum et al., 2017, Cases et al., 2019, Rosenbaum et al., 2019b,a]. However,

most the results were first presented in [Rosenbaum et al., 2019b], with some additions in

[Rosenbaum et al., 2019a].

7.1 Decision Making Algorithms

One of the most important questions when designing a router is the choice of decision-

making algorithm. As discussed in section 3.1.3, two general classes are applicable: rein-

forcement learning algorithms and reparameterizations of stochastic distributions. We will

show their relative performance, and then offer an analysis to the differences in between

algorithms.

7.1.1 Additional Algorithms

Because WPL offered the best performance on image domains, but is in its original form

not applicable to routers with function approximators, we designed a version that can be

combined with function approximators. We will introduce this version before advancing to

further analysis.
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Algorithm 7.1: Weighted Policy Learner: Approximation Version

input :A trajectory T = (S,A,R, rfinal), a critic approximator R̂ that maps states to
approximated returns, and a policy approximator π that maps states to action
distributions.

output :Losses for the critic approximator and the policy approximator
1 # Initialize the losses:
2 Lcritic ← 0
3 Lactor ← 0
4 for each action ai ∈ A do

5 # Compute the return:
6 Ri = rfinal +

∑n
j=i γ

j−irj
7 # Compute the critic loss (the baseline):

8 Lcritic ← Lcritic +MSE(R̂(s),Ri)
9 # Compute the gradient:

10 ∆(s, ai)← Ri − R̂i(s)
11 if ∆(s, ai) < 0 then

12 ∆(s, ai)← ∆(s, ai)(1− P (ai|s, π))
13 else

14 ∆(s, ai)← ∆(s, ai)P (ai|s, π)

15 πtarget(s)← simplex-projection(π(s) + 1|A|(ai)∆(s, ai))
16 # Cumulate the actor loss:
17 Lactor ← Lactor +MSE(π(s), πtarget(s))

18 minimize Lcritic + Lactor

The algorithm is shown in 7.1. Here, the reward baseline is learned by a critic, while the

actor uses an approximator, i.e., another neural network, to estimate the policy as a function

of the state. The reward baseline is learned by training on the MSE between actual and

expected reward. The policy gradient is computed using the normal WPL update rule, but is

not immediately applied as would be the case for REINFORCE. Instead, the target policy is

computed, and the approximator can be trained to minimize the MSE between the target

policy and the current policy. While this approximation version works in practice, it is not

covered by the guarantees of the original algorithm.
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7.1.2 Decision Making Strategies: The Algorithms

For the remainder of this chapter, we will refer to the following decision making

algorithms:

– Q-Learning We use a vanilla q-learning implementation directly following [Watkins,

1989]. For function approximation versions, we train the approximation network to

minimize the ℓ2-norm of the difference between the current estimate and the target

value.

– Advantage Learning We additionally experiment with a variant of advantage updating

[Baird III, 1993]. That is, we have a learner for the on-policy value function, and a

separate learner for the advantage. We include this algorithm to evaluate the argument

from Section 3.1.3, that separate learners could stabilize the learning process. When

implementing this algorithm, we tried two variations, one Monte Carlo version where

we learn the value function by estimating the entire return, and one bootstrapping

version that learns the value function by temporal differences. We found that the

Monte Carlo version learns faster, and will use that version throughout this section.

That is, with V̂ as the value estimator, Â the advantage estimator, t as the current step,

d the routing depth, rf and ri,j as the final and intermediary rewards, and α as the

learning rate, we have:

V̂ (st)← V̂ (st) + α

(

rf +
d∑

j=t

rj − V̂ (st)

)

(7.1)

Â(st, at)← Â(st) + α

(

rf +
d∑

j=t

rj − V̂ (st)− Â(st, at)

)

(7.2)

– REINFORCE We include a basic version of REINFORCE [Williams, 1992] without

a baseline. That is, we train the router to minimize − logP (ak|π)(rf +
∑t

j=k ri,j),

where k is the current time index, t is the trajectory length, rf the final reward and ri

any intermediary reward.
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– AAC We also include advantage actor-critic [Mnih et al., 2016], i.e., we offset REIN-

FORCE with a value-learned critic and train the actor on the advantage estimate.

– WPL We use the weighted policy learner as defined in the previous section.

– Gumbel The first non-reinforcement learning algorithm we experiment with is repa-

rameterization via the Gumbel-softmax distribution [Maddison et al., 2016, Jang et al.,

2016]. The temperature parameter is 1.

– RELAX The second reparameterization algorithm we experiment with is RELAX

[Grathwohl et al., 2018]. We use a temperature parameter value of 0.5, a value

coefficient parameter of 0.5, and an entropy coefficient of 0.01.

7.1.3 Routing without Meta-Information and without Dispatching

Routing decisions that do not rely on meta-information rely on the activation at the

input to the routed layer instead. That is, they only consider the activation produced by the

previous layer, which may or may not be routed, and which may even be the input. This

allows the most fine-grained control over the routing path, because there are potentially

an infinite number of paths, so that each sample could be routed through a different path.

The most straightforward implementation is a ‘single router’ architecture depicted in Figure

3.4(a), where the router consists of only one subrouter, with one parameterization that gets

passed in activations from any layer. This also allows arbitrary depth routing networks,

because the router may decide to apply an arbitrary number of transformations before

stopping. This is intuitively the most difficult scenario to learn, because the router will have

to jointly solve the problems of learning-to-compose and learning-to-partition, without any

further signal. Considering this from the perspective of the decision-making, the interplay

between the three problems creates at least two challenges for the router:

The first is that the subrouter does not only need to learn where to route based on an

activation alone, but even needs to do so for activations that may have been produced at
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completely different steps in the routing network. This makes the distribution of activations

the router will have to decide on dramatically more difficult for the router to interpret,

because it is likely that each ‘depth’ of activations adds another mode to the distribution.

The second, related, reason is that the activations are highly volatile, with any change

to the subrouter’s policy dramatically transforming the distribution of activations, making

the modes non-stationary and even more difficult to disentangle. For illustration, consider a

simple single router model where the router can select from {t1, t2, t3}. At a given training

time, the router only selects t1 or t2. When an update changes the router to use t3 instead of t2,

the space of activations will now have been created by {t1, t3}k, instead of by {t1, t2}k. It is

obvious how this can ‘confuse’ a router, in particular when this non-stationarity is combined

with the already existing non-stationarity produced by updating the transformations.
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(b) SCI, single router

Figure 7.1: Comparison of different decision-making algorithms on two single agent architectures.

Consequently, performance for single agent architectures on both CIFAR and SCI, as

depicted in Figure 7.1 is basically the same as random. For the results on language inference

in Figure 7.1(b), the routing problem becomes so complex that the router even picks a

fourth class for language inference (which generally only has three) that only exists for

implementation reasons, thereby consistently achieving 0% accuracy instead of the 33% of

the random baseline.
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To further investigate this, we additionally experimented with two more architectures

not relying on meta-information. In the first, we fixed the depth for the single router

architecture, and in the second, we designed a per-layer subrouter architecture depicted in

Figure 3.4(b). Other than the single router architecture used for the experiments in Figures
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(a) Singe router, fixed depth of 3

20

30

40

ac
cu

ra
cy

 in
 %

AAC
AdvantageL
Gumbel

QLearning
REINFORCE

RELAX
WPL

10 20 30 40 50
epochs

0

2

en
tro

py

(b) Separate subrouter per layer

Figure 7.2: Decision-making ablation studies on CIFAR. Both experiments compare different
decision-making algorithms on restricted architectures.

7.1, this architecture does not have one approximation network over all routing layers, of

which there may be an arbitrary number, but instead only makes (at most) k decisions,

with a separate subrouter for each layer. As shown in Figure 7.2(a), fixing the routing

depth does help to stabilize the training for some algorithms. As with other experiments,

the (Q-)value-based approaches start learning, but, more surprisingly, RELAX is able to

stabilize, although at the cost of complete collapse. We assume that in this highly volatile

environment, the rich gradient information provided by RELAX can help the most. In

Figure 7.2(b), we show results for a separate subrouter for each layer, thereby limiting

the maximum number of applied transformations to 3 (each subrouter is able to terminate

earlier). This makes the decision-making problem easier so that some algorithms are able

to stabilize. However, most policy gradient approaches, including RELAX, collapse to

achieve this stability, while the remaining policy gradient algorithms, WPL and Gumbel,

do not achieve noteworthy performance. Only Q-Learning and Advantage learning learn
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while maintaining selection entropy. Interestingly, the router apparently does not learn to

completely minimize interference, as it does not achieve non-routed performance, not even

when it collapses. It should be noted, though, that even for algorithms that successfully

stabilize, the solutions found are local optima of very bad performance. For both the results

in Figure 7.2, the final performance stays about 30% below the performance achieved by

models relying on meta-information.

These results strongly suggest that single agent routing networks – and quite probably

any other kind of approach to compositional computation without any further stabilizing

additions – have difficulty overcoming the initial instability of the training process. There are

few solutions apart from the already discussed multi-task/meta-information and dispatching

approaches. One, as introduced by [Chang et al., 2019], is to carefully curate the order in

which samples are provided to the network. This also drastically limits the complexity of

the decision problem, because only ‘similar’ samples are shown at any given time during

training, but relies on such an order to exist for a given distribution.

7.1.4 Routing with Meta-Information

Figure 7.3 shows results for different decision-making algorithms when relying on

meta-information. The starkest result is that policy gradient-based approaches (including

the related reparameterization algorithms Gumbel and RELAX, but excluding WPL) are

consistently outperformed by value-based reinforcement learning based approaches. As

can be seen when comparing Figures 7.3(a) with (b), this difference grows with routing

depth, i.e., number of routed layers. We stipulate that this difference results from the effect

of exploration on interference, as discussed in section 4.3. We will further investigate this

argument in section 7.1.6.

In contrast to policy gradient strategies, ǫ-greedy strategies guarantee only limited path

interference, even for paths of near-identical value, because exploration is limited by ǫ.

This also explains why the weighted policy learner is the best performing policy gradient
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(b) CIFAR 100 MTL, with depth of 2
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(c) SCI MTL, with depth of 3

Figure 7.3: Multi-task results for different decision-making algorithms.

algorithm. It was explicitly designed for stochastic games, and thus has specific properties to

emphasize exploitation even for similar-value actions. This effectively lowers its exploration

and thereby its interference. We will re-visit how exploration impacts routing in section

7.1.6.

In the language inference experiments in Figure 7.3(c), it is apparent how different

algorithms stabilize (or not) over time. As for CIFAR, the value-based approaches Q-

Learning and Advantage learning have a clear edge over the policy gradient based approaches.

It is particularly interesting to see how both algorithms have nearly the same learning

behavior for the first 20 epochs, until Advantage learning, and 20 epochs later, Q-Learning,
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stabilize to then quickly leave the other algorithms behind. We speculate that the benefit of

Advantage learning stems from the argument in Section 3.1.3, because it is able to offset the

general increase in value of the different transformations.

7.1.5 Routing without Meta-Information but with Dispatching

Figure 7.4 shows the same comparison over decision-making algorithms for dispatched

architectures on SCI. These re-iterate the previous results that value-based approaches to

learning reliably outperform policy gradient based approaches, including reparameterization

appraoches. However, within the two value-based approaches evaluated, Q-Learning and

Advantage learning, the picture is less clear. While Advantage learning learns more reliably

and reaches comparable performance in nearly all cases, as e.g., in Figure 7.4(a), Q-Learning

may outperform Advantage learning for specific combinations of hyperparameters, as for

Figure 7.4(b). Another interesting result of the plots in Figure 7.4 is that for the dispatched

architecture, which trains a dispatcher relying on a neural network function approximator
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lab Reward -0.1
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(b) Onehot Dispatcher; Correct Classification
Reward; Collab Reward -0.1

Figure 7.4: Comparison of decision-making algorithms over different dispatched architectures and
hyperparameter settings.
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and the tabular subagents, Gumbel and WPL have problems learning. Additionally, AAC,

REINFORCE and RELAX generally work comparatively.

7.1.6 RL vs Reparameterization and the Impact of Exploration
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Figure 7.5: An ε-greedy version of REINFORCE on CIFAR 100 MTL

In general, the results for reparameterized routing, i.e., using Gumbel and RELAX,

are very similar to the results for policy gradient approaches. We even found that for

deeper architectures, the reparameterization techniques suffer from the same decrease in

performance as other PG algorithms, as shown in Figure 7.3(b). As mentioned above, we

assume that this stems from inferior exploration behavior for on-policy stochastic sampling.

To verify, we designed a version of REINFORCE that samples actions using an ε-greedy

policy, i.e., that takes the best action ε of the time, and that samples from the actual policy

1− ε of the time. Given an existing policy πθ(s), we define πǫ
θ(s) as follows:

πǫ
θ(s, a) =







(1− ǫ) + ǫπθ(s, a), if a = argmax(πθ(s)).
(For ties, choose the lower-indexed action.)

ǫ ∗ πθ(s, a), otherwise.

(7.3)

When training, we sample from πǫ
θ but update πθ, and compensate for the difference by

scaling the magnitude of the gradient updates using importance weighting [Precup et al.,

2000]. As shown in Figure 7.5, this indeed changes the behavior of REINFORCE to act more

like a value-based approach. Also note that exploration for the Q-Learning experiments is
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very high, with over 0.4 for the first 5 epochs, which suggests that the amount of exploration

may play a role, but that the exploitation strategy dominates the results.

These results suggest that routing may greatly benefit from a targeted decision-making

algorithm. In particular shaping exploration, with its added complexity of causing interfer-

ence, seems to be a promising direction for future research. For example, it may be useful to

consider algorithms that have separate exploitation and exploration policies, along the lines

of [Garcia and Thomas, 2019], or algorithms that can incorporate more complex exploration

mechanics into reparameterization techniques.

7.2 Decision Making Hyperparameters

7.2.1 Exploration
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(a) Exploration on SCI using signatures as task
labels with an advantage learning router.
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(b) Exploration on SCI with a dispatched advan-
tage learning router.

Figure 7.6: Results for different levels of exploration. High starts at 0.5 and anneals every 5 epochs
by a factor of 4, until it reaches 0.01. Med starts at 0.25 and anneals every 5 epochs by a factor of 4,
until it reaches 0.005. Low starts at 0.1 and anneals every 5 epochs by a factor of 4, until it reaches
0.002.

As already mentioned in section 4, modeling exploration is one of the fundamental

problems of reinforcement learning, and of any kind of hard decision-making over unknown
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distributions. For routing, this problem is exacerbated in theory by the correlation between

exploration and interference.

In practice, however, exploration seems to have less of an impact than expected. Consider

Figure 7.6, that shows training for a multi-task and a dispatched architecture. For both

architectures, the performance only varies mildly for three different exploration schedules.

Interestingly, exploration hardly affects the selection entropy, either. While the expected

result, i.e., that higher exploration yields higher entropy policies, holds, it only does so by a

negligible margin.

7.2.2 Learning Rates
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(a) Router learning rate on SCI using signatures
as task labels with an advantage learning router.
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(b) Router learning rate on SCI with a dispatched
advantage learning router.

Figure 7.7: Results for different routing learning rates, in ratio to the module learning rate of 0.001.

We mentioned before that modeling the learning rates of the modules and of the router

separately can be beneficial for the overall learning stability. Because the module learning

rate is mostly determined by the problem to be solved, it suffices to analyze the ratio of the

routing learning rate to the module learning rate. Consider Figure 7.7, that shows the impact

of the router learning rate for a multi-task and a dispatched architecture. Here, the pattern is
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clear: the learning rate of the router should be at least as large as the learning rate of the

modules. Smaller learning rates delay learning, and may even be detriment to performance.

However, the learning rate does not seem to affect the selection entropy.

This is a particularly important result, because it allows us to draw some conclusions

about how a routing network stabilizes. Intuitively, there are two options: The modules

stabilize first, and the router follows, or the router stabilizes its paths, and the modules

follow. Because a lower router learning rate makes the paths less flexible, it would benefit

the latter, while a larger router learning rate would benefit the former. Consequently, the

results in Figure 7.7 strongly suggest that the modules should stabilize first, so that the router

can adapt its paths accordingly.

7.3 Reward Design

7.3.1 Final Rewards

Figure 7.8 shows results for different final reward functions. In general, the cor-

rect/incorrect final reward strategy, ±1 for correct and incorrect classification, appears

clearly superior to the negative downstream task loss reward rf = −L(ŷ, y). While this

seems initially surprising because the negative loss reward contains more information, we

believe that this is exactly what makes learning more difficult, for two reasons. First, a nega-

tive downstream task loss may overemphasize outliers, because, relative to other samples, it

may add a much larger part to the total loss. While this may not be harmful to supervised

learning, a reinforcement learning router may update to accommodate these samples at the

cost of other, non-outlier samples.

Second, as suggested by the high fluctuation in the learning on SCI, the finer granularity

of the negative classification loss reward may reduce the difference between the value of

different transformations, resulting in even small updates changing the greedy strategy.

Because this reduces stability, it will also decrease overall performance.
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(a) Final reward on CIFAR 100: MTL
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(b) Final reward on SCI: MTL
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(c) Final reward on SCI: AE Attn Dispatched
with Advantage Learning
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(d) Final reward on SCI: AE Attn Dispatched
with Q-Learning

Figure 7.8: Results for different reward functions

This would also explain the stark difference between the choice of decision-making

algorithm, as shown for the results on a dispatched architecture in Figures 7.8(c) and (d).

While the bias-corrected Advantage Learning can learn a good routing strategy even for the

negative loss reward, Q-Learning fails to do so completely.

7.3.2 Regularization Rewards

Figure 7.9 shows plots for different intermediate reward values. These rewards are

computed as a fraction of the overall probability of choosing a particular transformation.
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Positive values are expected to increase transfer and lower entropy, while negative values are

expected to decrease interference and increase entropy. Comparing the results for CIFAR in

Figure 7.9(a) with the results for SCI in Figure 7.9(b) it becomes apparent that the domain

– or the architecture – plays a major role in the effect of this regularization reward. While

the reward has no discernable effect on CIFAR, it dramatically changes the convergence

behavior – if not the final performance – on SCI. Interestingly, negative reward values,

meant to increase diversity, appear to stabilize learning as the model learns much faster, but
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(a) Per-action reward on CIFAR 100 MTL
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(b) Per-action reward on SCI MTL

Figure 7.9: Multi-task results for different intermediate reward values

have no effect on the routing entropy. While a complete interpretation of this result is very

difficult, we speculate that it results from the higher potential for interference on SCI, and

maybe even on language domains in general. The potential for interference is higher when

training on SCI because the effective input dimensionality is nearly an order of magnitude

lower than it is for CIFAR, which leads to a larger average overlap between examples in the

input space. Additionally, as is also the case for us here, models used for NLP tend to use

smaller hidden representations than computer vision models, resulting in a larger average

overlap between examples in the activation space as well. This would not only explain why

‘pushing’ the router to diversify stabilizes learning, but also why the results with the negative
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loss reward function have such a high variance, because any change in routing decision may

end up with a much higher amount of interference.

These results suggest that future research should consider different new reward functions.

In particular, it could be worthwhile to find a final reward function that can rely on the

information contained in the negative loss, but that is less susceptible to its problems.

Additionally, it would be interesting to investigate an adaptive intermediate reward that

incentivizes diversity as long as it is needed for stability, but that eventually anneals to zero,

so that the router only optimizes for the overall model performance.

7.4 Other Router Design Choices

7.4.1 Entropy Regularization

Considering the danger of collapse, another idea we tried is to regularize the router by

adding a negative entropy term to the decision-making loss. The goal is that this term would

push the router into making more diverse decisions, until it’s routing decisions stabilize. At

this point, the term would anneal out, to allow the router to find an unregularized decision-

making strategy. A similar idea was introduced to incentivize exploration for policy gradient

algorithms [Williams and Peng, 1991]. However, such entropy regularization did simply not

work. For small ratios for the entropy term, it did not prevent collapse, and for larger values,

it made the training of the router unstable.

7.4.2 Exploratory Actions

Another possibly useful change to the training procedure is to limit the updates of the

transformations if they were chosen by an exploratory action. The intuition is that we do not

want the network to add interference to the training of modules if they were just evaluated

and found not fitting to a particular sample. Because, however, any exploratory action has

an effect on any return from the entire trajectory, we simply squash the optimization step

size of the modules for the particular trajectory using the following formula:
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Figure 7.10: Squashing training for exploratory trajectories on CIFAR100 MTL, with values for
αexp.

αexp =

(

1−
#exploratoryactions

trajectorylength

)κ

(7.4)

where αexp is factor to the learning rate, and κ is a hyperparameter. For κ = 0, exploratory

actions will be treated no differently, while for a very large κ, the transformations are

effectively not trained on the entire trajectory if even only one action was taken non-greedily.

Figure 7.10 shows the effect of lowering the training of transformations chosen non-

greedily. As one can see, κ has very little effect on the overall performance and only mild

effect on the entropy. This is a very interesting result, because it tells us that the learned

modules are resistant to small injections of noise in their training process. This suggests

that they are sufficiently distinct from other modules. If they were not, even a small change

could change the router policy, at the very least adding noise to the learning process.

7.4.3 Splitting training data

One of the challenges of training a routing network is overfitting (see Section 4.4 for a

thorough explanation). To prevent this, we investigated splitting the training data into a part

for training the transformations, and a part to train the router. This has a clear effect on the

performance, as shown in Figure 7.11. Here, the curves show the percentage of the data used
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Figure 7.11: Stochastic router-transformation training on CIFAR100 MTL

to train the transformations. As one can see, using the full data benefits both performance

and entropy.

7.4.4 Optimization Algorithm / SGD
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Figure 7.12: The effect of the optimizer choice on CIFAR100 MTL

A very interesting and important result is the impact of the choice of optimization algo-

rithm. Results are depicted in Figure 7.12. As already reported by [Rosenbaum et al., 2017,

Cases et al., 2019], routing becomes unstable for many optimizers, and consistently yields

the best performance for ‘plain’ SGD. We stipulate that similar problems can be observed

for any architecture with an adaptive computation graph. Consider a simple example, where
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we route a sample x through a two-layer routing network. The first routing decision can

choose from transformations {t1,1, t1,2} and the second from {t2,1, t2,2}. Now consider the

gradients for t1,2 over two different routing paths, t1,2(t2,1(x)) and t1,2(t2,2(x)). It is obvious

that for those two paths, t2,1 and t2,2 may yield vastly different activations, and thereby vastly

different inputs to t1,2. If an optimizer relies on parameter-specific approximations, such

as, e.g., momentum, an approximation for t2,2 may be completely incompatible with t2,1,

thereby making training difficult, or even impossible. This explains why plain optimization

strategies that do not compute parameter-specific information generally do better in the

context of dynamic computation graphs.

7.4.5 Gradient Flow from Router to Activations

Another idea we evaluated early [Rosenbaum et al., 2017] is to not only train the

activations at different routing depths on the external provided loss, but also on their

impact on the decision-making. Because this is only applicable to routing with function

approximators, the hope was that the modules could learn representations that are both

useful for the downstream problem, but also to the router. In terms of a deep architecture,

we simply allow the gradient flow from the router through the modules. In practice, this

turned out to not work well. Instead of learning good representations for both problems,

their training appears to interfere, so that the representations are useless for either.

7.5 Analyzing the Challenges

7.5.1 Stability

As we argued before, stability is a consequence of the routing ‘chicken-and-egg’ problem:

Upon initialization of a routing network, both the modules and the router do not yet have

any information on the problem, and act randomly. The router cannot stabilize, because it

cannot discern which selected module caused any increase in performance, and the modules

cannot stabilize as they are trained with samples and activations so different that interference
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can destroy any learning that may happen. This, in turn, may destroy any progress the

router may have made with the credit assignment. This problem is never worse than for the

‘single router’ architecture (compare Figure 3.4), for the reasons described in Section 7.1.3.

Consequently, a routing network may fail to learn anything, as depicted in Figure 7.1.

7.5.2 Module Collapse
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Figure 7.13: Collapse on CIFAR 100 with a dispatched architecture

Figure 7.2 already showed how different router training algorithms can lead to collapse

in different domains. Additionally, consider Figure 7.13, where the experiment is on CIFAR

with a naïve dispatched architecture that is not regularized by any external losses. The same

fc layers are routed as in the other experiments. However, the dispatching action is based on

the activation after the convolutional layers. The dispatched subrouters are tabular, and do

not consider the intermediate activations. For this architecture, collapse is not a consequence

of the routing algorithm, but of the general architecture, because all algorithms lead to

collapse. However, in difference to the results in Figure 7.2, the results achieved are good,

reaching standard non-routed performance.

This is not a surprising result, because collapse will stabilize the router, and because

there are no later activations to consider. This is reflected by the test-time selection entropy

of nearly all algorithms going to zero within ten epochs. What is surprising, however, is that

this extends to the stochastic reparameterization algorithms Gumbel and RELAX which do
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not rely purely on rewards, further establishing that in the context of routing, Gumbel and

RELAX behave ‘just as’ any other PG algorithm.

The only algorithms that do not collapse completely are WPL and Advantage learning.

We assume that WPL does not collapse as much because it was specifically designed for

non-stationary returns, and that Advantage learning performs well as a consequence of the

argument put forth in 3.1.3.

7.5.3 Overfitting
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Figure 7.14: Overfitting on SCI

The main reference architectures used until this point – routing the classifier of a

convolutional network, and routing the word representations of a natural language inference

model – were chosen because of their performance, and overfit only little.

However, if we consider an sequence-to-sequence architecture for language inference

with a dispatched routed classifier, we can show how routing can lead a model to overfit.
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(We made similar claims for different architectures throughout this work.) Consider Figure

7.14, which shows from top to bottom the test accuracy, train accuracy and test entropy on

SCI. While both a basic, non-routed network and the routed network easily reach perfect

train accuracy (> 99.5%), the routing architecture starts flattening out even earlier than the

basic architecture, reaching accuracy around 10% lower than the basic model, and over 20%

lower than the routed model.

As discussed in section 4.4, overfitting is less of a problem in the presence of metain-

formation, because the router can ignore spurious activations in these cases. However,

because the goal of modular architectures is to adaptively modularize without any kind of

external information guiding the composition, future work should investigate how routing

architectures can be regularized to achieve good generalization properties, possibly along

the lines of hierarchical dispatching.
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CHAPTER 8

CONCLUSIONS

This thesis is about modularity and compositionality. It is about the belief that any real

progress towards artificial general intelligence has to compartmentalize skills to combine

them ad-hoc for any new task. I do not and will not claim that routing can achieve this. It

is only a first step towards this goal. I hope that even this step is able to yield important

insights into not only the challenges of what lies ahead, but also into why approaches of this

kind are worth pursuing.

8.1 Contributions

Generally, modular and compositional computation promises two advantages. The first is

that its modularity allows the transfer-interference trade-off to be elegantly navigated. That

is, it allows a learner to learn similar skills with a large overlap in modules and dissimilar

skills with a small, or no, overlap in modules. Intuitively, it specializes specific modules

to learn specific skills. Because it uses hard decisions, and not more common mixture

approaches, it can explicitly model aspects like the relationship between exploration and

interference, which are important factors in navigating the trade-off during learning. In

comparing soft (or mixture) and hard architectures in section 5.2.3, we could verify the

advantage of hard decisions in this context.

The second advantage is generalization via composition. For example, consider our

ability to put together a piece of Ikea furniture. Even if we have never seen that particular

piece, and if we do not study the manual, we would probably be able to put most of the

simpler furniture together without problems (given some experience assembling somewhat
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similar Ikea furniture). We do that so easily because each required step is compartmen-

talized, and either completely or partially known to us already, so the only challenge is

composing already-known pieces into a new skill. This ability to solve specific problems

without training is called zero-shot learning, something machine learning algorithms are

still tremendously bad at. But now imagine a fully modular machine learning architecture

that was able to compose in a way as we do on the fly. Then, generalization of this kind

might become feasible.

In this light, this thesis consists of three major contributions. The first is conceptual, and

is the fundamental idea of routing. Routing is arguably the most general formulation of

functional composition, and generalizes several approaches introduced over the last couple

of years, because it jointly learns modules, paths, and partitions of the sample distribution.

At its core, it is a very simple idea: have a so-called router, i.e., a decision-making

algorithm, pick from a set of (compatible) modules that transform the current activation until

it decides that the last activation can solve the current task, and then training both modules

and router online. This allows it to navigate the transfer-interference trade-off, because the

router can route samples with incompatible training information through different paths.

It can also reach the second goal of compositional learning, generalization, by combining

already pretrained modules in new ways, thereby covering yet unseen examples.

The second contribution is analytical, and consists of a conceptual analysis of modular

and compositional approaches, with a focus on the challenges of training them. They arise

from an unfortunate mingling of the transfer-interference trade-off and the exploration-

exploitation dilemma.

The first is the mutual non-stationarity of the two optimization processes of tranining

the modules and training the router. From the perspective of the router, the environment is
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non-stationary as the modules change. From the perspective of the modules, their input and

output connections change whenever the router changes the paths.

The second and third challenges revolve around routing networks being models of condi-

tional computation, creating different implicit models for different clusters of samples. We

identified the ‘flexibility dilemma for modular learning’ that describes the problems when

a modular approach is too quick or too slow in creating new clusters in sample-space. On

the one hand, initialization conditions can make a router collapse, using too few clusters

and thereby underfitting. On the other hand, if a router creates too many clusters, it runs the

risk of finding hyperlocal approximations that do not generalize well to other examples, i.e.,

overfitting.

The last contribution is purely empirical and consists of a suite of experiments. We

evaluated the capacity of routing networks to navigate the transfer-interference trade-off,

their capacity for generalization and the impact of many different design decisions.

Some highlights of this analysis are: Experiments on multi-task learning domains, in

particular on MNIST-MTL and on SCI, where routing can navigate the transfer-interference

tradeoff; experiments on SCI, where a routing network generalizes much better to complex

and nested samples than comparable non-routed baselines; experiments evaluating differ-

ent architectures, such as single agent, multi-agent and dispatched architectures; and an

empirical analysis of the impact of optimization algorithms, among other design decisions.

8.2 Future Work

Routing, being a very recent paradigm, offers a lot of space for improvement. The first

area is addressing specific issues that arise for routing networks as introduced here. The

second is questioning if there is a fundamental modification to the routing paradigm that

may be better suited to achieve compositional zero-shot generalization.
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For the first area, I propose the following core goals of research, among others: The

first are architectural extensions. We have shown in chapter 6 how including a so-called dis-

patcher can help to manage the fundamental challenges to routing. It is possible that similar

ideas could be used to stabilize the network, to orthogonalize the transformations defined

by different modules, or to prevent overfitting and collapse. The second goal is deriving

a better, routing-specific decision making agent. The core problem is, as we have shown,

that for a routing network, exploration correlates with interference. This means that static

exploration architectures give consistently better results. However, these approaches do not

not utilize the rich information that e.g., RELAX provides. The third goal is developing

a full theoretical framework for routing. This may not only yield interesting insights into

how routing works fundamentally, but may also guide the development of new and better

architectures and decision making algorithms.

For the second area, the goals are more abstract, because they might require a re-thinking

of the routing paradigm. One such goal would be to explore if it may not be useful to have

multiple (non-additive) module selections per depth. The intuition would be “evidence

aggregation”. Instead of picking modules and applying them to an activation, and then

recursively updating that activation, it may be useful to “gather evidence”, by sequentially

collecting activations of the same depth and combining them. This may be combined with

the second goal, architectural diversity. While already discussed in the challenges (see

section 4.5), it feels as if routing as it is may be too limited to overcome the ‘module

selection problem’ without some fundamental changes or additions.
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