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DYNAMIC COMPUTATIONAL GEOMETRY

Mikhail J. Atailah

Department of Computer Sciences
Purdue University

West Lafayette, Indiana 47907.

Abstract

We consider problems in computational geometry when everyone of the input

points is moving in a prescribed manner. We present and analyze efficient algo-

ritilms for a number of problems and prove lower bounds for some of them.
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1. Introduction

Geometric objects may represent physical entities that do not have a fixed

position in space, and therefore it is natural to consider the problems of compu

tational geometry in a framework where everyone of the geometric objects con

sidered is moving in a prescribed manner, In this paper we assume that we are

dealing With n points PI' . , . 'Pn such that every coordinate of every P
t

is a

function or a time variable t, We Use the word dynamic to refer to the situation

When the points are moving and the word static for the case when they are fixed

(these words are used with a different meaning in other papers, but the context

in which we Use them should not cause confusion).

Some of the teChniques for solving static computational geometry problems

do not seem to help in the dynamic case, especially when we are trying to con

tinuously update over time the information we have about the moving points (for

example, as the points move their Voronoi diagram [10.11] seems too expensive

to maintain). On the other hand, some issues which were irrelevant in the static

case are very important in the dynamic one. An example of this is the problem

of computing the pointWise MIN of n functions of time (this problem leads to

interesting questions about bow long a string can be without containing any of a

number of forbidden patterns). It also turns out that a number of dynamic

problems can be solved by considering some suitably defined static problems.

After introducing our notation in Section 2 and making a few preliminary

observations in Section 3, the algorithms and lower bound results are presented

in Sections 4 and 5, Section 6 suggests problems for further research, and Sec

tion 7 concludes,
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2. Terminology

Throughout this paper. we assume that the input consists of a description of

the motion ot everyone of the points Pl . ... ,Pn . Motion is assumed to be in

Euclidean d-dimensional space. We restrict our attention to the case where

every coordinate of every point is a polynomial in the time variable t, and if

every such polynomial has degree 5:k then we refer to this motion as k-Tnotion

(so the static case is that of a-motion). More specifically, if 0 is the origin of the

- '-coordinate system. then for k-motion we have OP, (t):::; ~ Cit tt (l=:=isn), where
t=o

every Gil is a constant d-dimensional vector. The motion of Pi is entirely

described by the vectors C-u (05:lSk), so that the input for point Pi is just a list

of those vectors. The initial position of point Pi. is its position at t =0, and the

velocity of Pi. is ~~Pi(t). Observe that in the case of I-motion every point is

moving on a straight line with a constant velocity. We use c4i(t) to denote the

distance between points Pi. and Pi as a function of time.

For convenience, we assume that no two points have the same initial posi-

tion. On the other hand, we do not assume that the vectors C
II
,' .. ,e

nl
are dis-

tinct (I:==l:==k). Such an assumption Would be too restrictive since it would even

rule out the case when some points are fixed While others are moving.

The arithmetic operations involved in our algorithms are +. _, x , / and, in

the algorithms of Section -4, the v operation. If additional operations are

needed by an algorithm then this will be explicitly stated.

We now define the function .\(n,s) which will play an important role in the
paper.

Definition 2.1 Let En =fa 1,a2' ... ,anI and define £n.s as the set of strings over

the alphabet En that do not contain any a,: a,: as a SUbstring and do not contain
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any ~~. (i#j) as a sUbsequence. where f~- is defined as follows: M=~a;~,

MP=fi~P-la; and fl~P+l=~\~PfI.t: (P~l). Then A(n,s) is the maximum length that a

string in. Ln..s may have, Le.

l.(n,s)=MaxllulluEL".• J.
For example. A(n,~) is the maximum length that a string over the alphabet

[al'· .. ,ani may have without containing any fI.t:tz,: as a sUbstring and without

containing any a"aia.;,aiCLj,ai (i'#j) as a subsequence. It is not hard to see that

no string in Ln..s is longer than sn(n-l)/2+1, and therefore A(n,s) is well

defined. (We will soon show that the bound just given is not tight.)

3. Preliminaries

This section presents a few preliminary observations which will be needed

later in the paper. The first such observation has to do with the function A(n,s),

Lemma 3.1 l.(n,I)=n, and l.(n,2)=2n-1.

Proof; That A(n,l)=n is trivial. We now prove that A(n,2)=2n-1. Let aELn.2. Le.

a is a string over the alphabet Ia. l , ... ,~j. does not contain any a;,f1.t as a sub

string and does not contain anya.;,aia.;,aj (i'#j) as a subsequence. We prove that

lals2n-l by induction onn. The basis (n=l) is trivial. For the induction step.

assume n>l and let f1.t be the first symbol in a. so that a=a.;,fJ. If a;, does not

appear in fJ then fJELn -1.2 and therefore by the induction hypothesis IfJ!s2n-3,

and therefore /aISZn-Z. If a;, appears in fJ then a=a;,7/a.;,y where a;, does not

appear in 7/ and 1'111 #0. Observe that no ai (j '#i) appears in both '11 and')' since

otherwise a would contain the "forbidden" SUbsequence a;,aj a.;, ai' Therefore

7/ELp.2 and CLj,,),ELq .2 where q +p =n and l.sp ,q <no The induction hypothesis gives

Iul-l= 1'7 I+ 1,,<7' 1O<2p -I+2q -1=2n-2.

This completes the proof that every aELn.2 must have jal:S2n-1. Since the
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A(n,2)=2n-1. •

Now, suppose we are given n real-valued functions of time f 1.' .. .fn,

where each f i is continuous for all values of t and has an O( 1) storage descrip-

tion, and we are asked to compute a description of the pointwise MIN of these n

functions, defined by h(t) = MfN!fi,(t)J . Note that h is continuous for all values
l,s;~"n

of t. and that it is typically made up of "pieces" each of which is a section of one

of the Ii'S (figure 1 shows 3 functions whose pointwise MIN has 5 pieces).

Figure 1.

More formally, a piece of h is the portion of a function Ii in an interval of time

[t 1.t 2 ) such that (i) h is identical to Ii in that interval of time, and (ii) h is not

identical to any Ii (l::::j~n) over an interval which properly contains [t
l
,t2]. The

storage representation of such a piece consists of the index i together with the

interval [t l ,t 2J (so a piece has an 0(1) storage description). (Detail: If Ii and Ii

are identical over the interval [t 1.t 2J then we break the tie by taking min(i.j).)

The desired description of h is a list of the descriptions of the successive pieces

that make it up. The next lemma bounds the number of pieces that make up h

if no two distinct fWlctions Ii and f j intersect more than s times Ui and f j

intersect p times iff the equation f i (t):::; f j(t) has p real solutions).

Lemma 3.2 Let I I' ... ,I" be real~valued functions of time. each of which is

continuous for aU values of t. If no two distinct functions Ii and Ii intersect

'.
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more than s times. then h(t)=MIN[j,(t)) is made up of no more than X(n,s)
ISisn

pieces, and this bound is the best possible.

Proof: Scan (left to right) the pieces of h. creating as you go along a string a

over the alphabet !a I ,'" .tIn!. in the obvious way: If the piece you are

currently looking at belongs to Ii then do (] :::; ullj; (for example, figure 1 would

We now prove that uELn.ll • That a does not contain any a..r:~ as a substring fol-

lows from the fact that no two consecutive pieces of h belong to the same Ii-

That a does not contain the subsequence "forbidden" in tn.s can be seen from

the following observations: If U-taf~ is a SUbsequence of a then Ii and If must

have intersected at least twice, if llj;ajfI.taj is a subsequence of a then Ii and Ii

must have intersected at least 3 times.... I it ~i~ is a subsequence of a then Ii.

and Ii must have intersected at least s +1 times, a contradiction. This shows

that uELn.:s. and therefore h is made up of no more than A(n,s) pieces. We now

prove that the bound is tight. We say that n functions are valid if they satisfy

the conditions of the lemma, and we say that they give rise to a if u is the string

obtained (rom their pointwise MIN in the manner we outlined above. It clearly

suffices to show that for every string uELnJ: there exist n valid functions which

give rise to u (because then the choice UELn./I;. Ia I=A(n ,k) would imply that

there are n valid functions whose pointwise MIN has exactly A(n,k) pieces}. We

prove this by induction on n. The claim is trivially true if n=1. For n>1. let u'

be the string obtained from a by first removing from U every occurrence of ~

(call ;r the string resulting from this operation), and then replacing in uevery

substring (~)T (r<:=:2) by~. Since u'ELn-l,/I;. the induction hypothesis implies

that there are valid functions I I" .. .fn-I which give rise to u'. I! we do not

insist on the resulting II, ' .. ,fn being valid, then finding an additional function

f n such that I I, ... ,fn give rise to U is a trivial matter. Let In be one such
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function. We now sketch how f 11. can be "modified" in such a way that f l' ... ./n

become valid while still giving rise to rI. Let h be the pointwise MIN of

fl.' .. In. and call x be the leftmost piece that in contributes to h. Now,

modify f n so that every function Ii which contributes a piece to the left of x

intersects f n only once in the interval before x. This can be done by changing

that portiou of f n which is to the left of z into a very steep decreasing straight

line (it can always be made steep enough that the desired property holds).

Next. make a symmetric modification to the portion of f n which is to the right

of the rightmost piece that In contributes to h. Now, between every two con

secutive pieces (call them y and z) that f n contributes to h, modify f n so that

it consists of a very steep increasing straight line followed (after a local max

imum) by a very steep decreasing straight line: These two lines can be made

steep enough that every f t which contributes to h a piece between y and z

intersects f 71 only twice in that interval. These modifications result in a

"modified" fn which intersects no other fi more than k times (because if it did

then a would have ~&. or ~::i as a subsequence, a contradiction). Therefore

f I, ... ,fn are now valid. They still give rise to fl, since the portions of f n that

are pieces of h were untouched by the modifications.•

Lemma 3.3 Let f 1, .•• ,f71 and h be as in Lemma 3.2 and, in addition, assume

that (i) every Ii has an 0(1) storage description and can be evaluated at any l

in 0(1) time. and (ii) for every two distinct functions ii and fj, the (at most s)

real solutions to the equation/i.(l)=fj(t) can be computed in 0(1) time. Then

the description of h can be computed in time T(n). where

T(n)';;2T(n/2) +0 I\(n ,s),

PrOOf: Recursively compute the description of the pointwise lJIN of
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fl • •.. .fn/2 and that of the pointWise MEN of f nl2+1. ' ..•/ n' Each of these two

descriptions has at most A(n/ 2.s ):SA(n,s) pIeces. and they can be combined to

give the description of h in time CAen,S), in a manner reminiscent of the way

two sorted sequences are merged (the details are easy and are left to the

reader) .•

Lemma 3.4 If 8::=2 in Lemma 3.3, then h has at most 2n -1 pieces and its

description can be computed in O(n logn) time.

Proof: An immediate consequence of Lemmas 3.1 and 3.3.•

Unfortunately not an the functions whose pointWise MIN we want to com

pute are continuous for all t. We now give lemmas similar to 3.2 and 3.3 for the

pointwise lJ/N (call it h) of functions gl,' .. .gn which have discontinuities and

are not defined for ail t. It is understood that h(t) is the smallest of only those

9i'S that are actually defined at time t (if they are all undefined at time t then h

is also undefined at t). Our formal definition of a piece of h is the same as that

we gave earlier (note that in this case a piece of h may have discontinuities in

its interval of time and may be undefined over portions of that interval).

Definition 3.5 Let 9 be a function of time. We say that 9 has a transition at

time to if, at time to. it switches between being defined and undefined (Le. if it is

undefined just before to and defined just after to. or if it is defined just before to

and undefined just after to).

Figure 2 shows a function which has two transitions (at t
r

and t
2

) and two jump

discontinUities (at t 3 and t
4
).

Lemma 3.6 Let 91, ... ,971, be real-valued functions of time, such that (i) every

9i is continuous except for at most 'P jump discontinuities, (ii) every 91 has at

most q transitions, and (iii) no two distinct functions 91. and 9j intersect more

than s times. Then the pointWise MIN of the 9i'S is made up of no more than
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Figure 2.

PrOOf: Let h be the pointWise MIN of the 9,,'S, and let u be the string obtained

from h in the manner outlined in the proof of Lemma 3.2. That u does not con-

lain any c;a,; as a sUbstring follows from the fact that no two consecutive pieces

of h belong to the same gi (if they did then this would contradict our definition

of what constitutes a piece of h). We now show that a does not contain any

~i}+2p+Zq (i;l:.j) as a sUbsequence. We may assume that gi and gj are distinct

since otherwise the symbol tlm.u(i.j) does not appear at all in a (because ot the

tie-breaking rule previously mentioned). Let 'lT4; be the number of times one of

the follOWing takes place: (i) an intersection between gi and Uf' (ii) a transition

or a jump of gi' (iii) a transition or a jump of g,.. Note that by hypothesis we

have mtj:=s+2p+2q. Now, observe that if, for t 1<t2. we have h(t1)=g,;(t1) and

h(t 2)=gj(t2) then in the interval of time [t 1.t 2] at least one of events (i).(iii)

must have taken place. This implies the following: If a;,aj is a SUbsequence of (J

then m;,j~1, if a;,a.ja;, is a subsequence of (J then m;,j~2, ... J if ~i~·+2p+2q is a subse-

quence of (J then m,;j~s+2p+2q+1, a contradiction. Therefore (JE:4..s+2p+2q,

which implies that I(J I==:A(n ,s +2p +2q).•

Lemma 3.7 Let 91.....9n be as in Lemma 3.6 and, in addition. assume that (i)

every Yi has an 0(1) storage description and can be evaluated at any t in its

domain in 0(1) time. and (ii) for every two distinct functions 9i and 9i' the (at

most s) real solutions to the equationgi(t)=9i(t) can be computed in 0(1) time.
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Then the description of the pointwise MIN of the gi'S can be computed in time

T(n), where

T(n),;2T(n/2) +0 /..(n ,s +2p +2g).

PrOOf: An immediate consequence of Lemma 3.6 and the divide-and-conquer

approach outlined in the proof of Lemma 3.3.•

It is clear that Lemmas 3.2-3.7 still hold if the word MIN is replaced by

MAX.

4. Transient Behavior Computations

In this section we consider how some properties of the points vary as t

increases from t=O to t=~ (we call this the "transient behavior" of the points

because for large enough t many properties of the points "stabilize" and stop

changing).

1. Closest and Farthest Points

Let S denote the sequence of points that are closest to some selected

point, say Pl' The elements of S are listed in the chronological order in which

they occur, so that the first element of 5 is the point closest to PI at time t=O.

and the last element of 5 is the point closest to PI at time t=oo. W denotes the

sequence at pairs of points that are closest (again, the elements at Ware listed

in the order in which they occur). 5' and W' denote the sequences obtained by

replacing the word "closest" by "farthest" in the definitions of Sand W, respec-

tively.

Theorem 4.1 For i-motion in d-dimensional space, each of S and 5' has a

length of at most 2n-3 and can be computed in O(n logn) time.

Th,;mrem 4.2 For i-motion in d-dimensional space. each of Wand W' has a
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length of at most n 2-n-l-and can be computed in O(n 2 1ogn) time.

Proof of Theorems 4.1 and 4.2: Simply observe that in the case of i-motion

every c4;(t) is a quadratic function of time, and that quadratic functions of time

satisfy the conditions of Lemma 3.4.•

Theorem 4.3 Computing S requires O(n logn) time in the worst case.

Proof: We show that an algorithm that computes S can be used to sort n arbi

trary numbers with Den) time additional work. Let %2, ... ,xn+
1

be arbitrary

numbers to be sorted. Let xl=Min !x2' ... ,xn+d - 1, and let the input to the

algorithm that computes S be the points Pl • ... ,Pn+l such that every Pi is ini

tially on the x-axis. at position Xi, and such that point PI has zero velocity, while

all the other points are moving leftward on the x-axis with the same constant

velocity. S then consists of the numbers %2, ... ,zn+l in increasing order.•

Theorem 4.4 Computing W requires Q(n2) time in the worst case.

Proof: We construct an instance of the problem for which the length of W is

0(n
2
). Let every Pi be initially on the x-axis, at position xt==i, and assume that

every Pi. moves rightward on the x-axis, with a velocity of magnitude

wf=(n+l)n-i. Verify that P, goes past Pi +1,' •• 'Pn before any PI; (i<k<n)

catches up with PI; +1' Therefore every P, will appear inn-l pairs of W, sO that

the length of W is n(n-l)/2.•

2. The Convex Hull

Assume k-motion in the plane, and let '&tj(t) be the angle that PiPj makes

with the x-axis at time t (by convention, we have -01 < '&i.f(t) === +1T). Define 'Yfj(t)

to be equal to '&ij(t) when ilij(t)~O and to be undefined othenvise, and define

(3ij(t) to be equal to "ij(t) whenilij(t)<O and to be undefined otherWise.

The functions At. Hi, q, Di are defined a,.s follows:
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A; (t )=MINly,; (t)}.,.,
B, (t )="f~y,;(t)l,

C. (t )=MliVIP,,' (t)}.
;'"

D, (t )=MAX!P,; (t)l,,..
where the MIN's and MAX's at time t only involve the functions that are defined

at t. If at time t every 'Yij (l~j~n, j il!i) is undefined then ~ and B;, are both

undefined at t. Similarly, if at time t every Pij (l':=::j::=::n, j::l:i) is undefined then

Q and Di are undefined at t.

Lemma 4.5 Each of the functions Ai, Bi , Ci and D" has O(n) transitions and

jump discontinUities.

PrOOf: Note that every "Iii is continuous and has at most k transitions. so that

the total number of transitions of the n-l functions 'Yij (l.:=oj:Sn, j'#i) is O(n).

Since a transition or jump of any of ~. B i • ~, Dr. coincides with a transition of

one of the I';,/s, the lemma follows.•

Lemma 4.6 Each of the functions~, B'f.I Gi • and Di has no more than i\(n,4k)

pieces (i\(n.3) pieces if k =1).

Proof: We give a proof for ~ (the proofs for Bi.Ci.Di are similar). Recall that

~(t) is simply the MIN of those /'i;'S that are defined at time t. Now, observe

that two distinct functions 'Yij and 'YiL intersect at most 2k times. because 19
if

and 19-iL intersect at most 2k times (verify tills). In addition. every 'Ytf is continu-

ous and can have at most k transitions. Therefore it follows from Lemma 3.6

that Ai is made up of no more than .\(n .4k) pieces. If k = 1 then the bound can

be improved to i\(n,3), as follows. Let a be the string obtained from At as out-

lined in the proof of Lemma 3.2. It sutrices to show that a cannot contain any

rzpajCI.paflLp (p;t.j) as a subsequence. Suppose to the contrary that it does con-

tain such a SUbsequence. Then 'Yip and 'Yij must be distinct and must have inter-

sec ted twice, and each of them must have one transition. But for i-motion all
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the ';'(j's are monotonic, and therefore the fact that lip and 1i; intersect twice

implies that either they are both increasing or both decreasing. We continue

the proof assuming they are both increasing (a similar argument holds if they're

both decreasing). In this case the graphs of these two functions are as shown in

Figure 3, and it is easily seen from that figure that ~aja"aiUp cannot be a

SUbsequence of u.•

o

. ,

Co.)

+-n

o Ct-) FigureS 0 (0)

Let f and g be real-valued functions of t. We agree that the function f _g

is defined at t iff both f and g are defined at t. In this case the value of f _g at

t is simply f (t)-g(t).

Lemma 4.7 At time t, point Pi belongs to the convex hull it! one of the following

conditions is true

(i) .4«t)-D,(t) '" n

(il) B,(t)-C,(t) " n-

(iii) Ai and B i are undefined at t

(iv) Ci and ili are undefined at t

(The proof of the above lemma is easy and is omitted.)

Theorem 4.8 For k-motion in the plane, a point Pi. changes between "belonging
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to the convex hull" and "not belonging to the convex hull" D(ACn 14k» times

(O()..(n,3)) times if k =1).

Proof: Lemma 4.5 implies that conditions (iii) and (iv) of Lemma 4.7 switch

between being true and false D(n) times. We now bound the number of times

that condition (i) of Lemma 4.7 switches between true and false (a similar argu
w

ment holds for condition (ii) of that lemma). Let P J q, r be (respectively) the

number of jumps, transitions and local minima of A,-D\. It is easy to see that

the number of times Ai -Dj, sWitches between being <rr and ;;=:1T is O(p +q +r).

That p+q==O(n) follows from Lemma 4.5. Lemma 4,6 implies that. if At-D,; has

m pieces, then m==O(i\(n.4k» (=O(i\(n,3» if k=t). Since everyone of these m

pieces has DO) local minima. it follows that r=O(m) .•

It is not hard to find a 1-motion example in which a point switches between

belonging and not belonging (to the huH) n-1 times.

Corollary 4.9 For k-motion in the plane, the sequence of hulls has 0(ni\(n,4k))

elements (O(nA(n,3» il k=l).

The next theorem assumes the following: If get) is a pQlynQmial (in t) of degree

===2k, none Qf whose coefficients depends on n, then we count the time needed to

find its roots as being 0(1) (we make this assumption just for the sake of stating

the next theorem in terms of k , and with the understanding that the practicality

of such an assumptiQn may be questionable for k=:::3).

TheQrem 4.10 For k-motiQn in the plane, tet T(n) be the time needed to com

pute the intervals of time during which a given point belongs tQ the convex huU.

Then

T(n),,;2T(n/2)+cf (n,k),

where f (n ,k) equals A(n,4k) if k"2, A(n,3) if k = 1.
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Proof: Note that soiving '$"j(t)='$-a(t) amounts to finding the instants of time at

which PiPj and Pj,Pt are parallel, which can be considered to take 0(1) time in

view of the assumption stated before the theorem. This observation and Lem

mas 4.6 and 3.7 imply that the representation of each of A;.,B",q,Di can be com

puted in time T'(n) where T'(n).==2T'(n/2)+c'!(n,k). Getting the representa

tions of ~-Di and Bi-Ci takes an additional O(J (n.k)) time, and getting the

instants of time at which each of the conditions of Lemma 4.7 is satisfied also

takes O(f(n,k» time. since solving an equation like '$ij (t)-'$it (t)=1T amounts to

finding the instants of time at which PiPj and PiPt are antiparallel. Therefore

T(n)=4T'(n)+0 If (n ,k ):<ST'(n/ 2)+40 'f (n,k )+0 If (n ,k ):<2T(n/ 2)+of (n,k) .•

Since X(nAk)=O(n 2
), the above theorem implies that T(n)=O(n 2). We conjec

ture that X(n,4k)=O(n), in which case the theorem implies that

T(n)=O(n logn).

3. Other Problems

Assume that motion is in the plane, and suppose that the points are initially

distinct (Le. no two points occupy the same position at t=O). The question to be

answered is: Will the points remain distinct for all t>O? If not, then some pair of

points will eventually "collide" (presumably a collision is a bad thing to happen

and in a real-world situation something will be done to avoid it). Let A be an

algorithm which answers "no" if no two points ever collide and "yes" otherwise,

and let TA(n) be the worst-case running time of A. We do not know if there is an

A such that TA (n)=o (n 2
), even for 1-motion (but if all points are moving on the

same straight line then there is a trivial O(n logn) time SOlution).

Theorem 4.11 TA(n)=Q(n logn).

Proof 1: We can in O(n) time reduce the element uniqueness problem [4] to the

collision problem. as follows: Suppose that we want to test whether two of the
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l~::=n. Note that the wi'S are positive, that wi=Wj iff cj,=Cj. and that finding

the wi'S from the Ci'S takes D(n) time. Now create, in D(n) time. the following

instance of the collision problem: Choose the points PI' ... 'P
n

such that (i)

the initial position of Pi is on the unit circle centered at the origin. at coordi

'2 1 2'
nates (.x'i,Yd:;(:2 - ,+--1, and (li) every Pi is moving toward the origin 0 of

'Z. +1 'l. +1

coordinates on a straight line, with a velocity of magnitude Wi_ Observe that two

of the W,; 's are equal ift' two of the moving points collide. which completes the

reduction (note that the arithmetic operations used in the reduction are

+,-.X.I). Since testing whether n arbitrary nwnbers are distinct requires

O(n logn) time in the worst case (2,~]. the theorem follows.

PrOOf 2: Consider instances of the problem where motion is restricted to be on

the x-axis, and let x( and Vi denote (respectively) the initial position and the

velocity of point Pi· An algorithm for solving such instances of the problem can

answer "no colliSIon occurs" only after making sure that Xi <Xj implies Vi5.Vj,

which is equivalent to verifying that in the set of two-dimensional vectors

(X 1,-V 1),' " ,(xn,-vn ). no vector dominates another one (we say that (a.,b)

dtJmina.tes (c ,d) itl a.>c and b >d). It is well known that verifying this requires

Q(n logn) time in the worst case [5.7]. •

Assume k·motion in d-dimensional space, and suppose that we want to com-

pute the list I whose elements are the intervals of time during which the points

can be enclosed within a rectilinear hyperrectangle of given dimensions.

Theorem 4.12 For k::::;2, I can be computed in O(n logn) time.

Let 0, be the length of the side of the smallest rectilinear hyperCUbe that

can enclose the points at time t, and let o==Min at .
•
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Theorem 4.13 For k'::;;2, acan be computed in O(n logn) time.

The last two theorems are easy to prove, using Lemma 3.~ (we leave the details

to the reader).

5. Steady-State Computations

We use the words steady--state to refer to conditions at time t =llQ. For

example, the steady-state closest pair is the closest pair at t =<», Le. it is the last

element of T. In this section we give algorithms lor computing steady-state pro-

per-ties of the moving points. The only arithmetic operations needed by these

algorith.rns are +,-,x, and /.

First we need to introduce some additional terminology. For k-motion and

-- '-O'::;;s:::=k, we define the point Pis as being such that OPis (t)=:E Q1t' (recall that 0
L=O

is the origin of coordinates). Note that Pik =Pi , and that Pi.O is the initial position

at Pi- We also define the (static) point V~ as being such that OV-/s=Cis. The

points V1IJ , - - • ,Vns need not be distinct (we already noted that assuming them

to be distinct is too restrictive), and by eliminating duplicates from among them

we obtain qs (l::::;qs::::=n) distinct points which we call Q!s. - .. ,Qq,s' We use Nt to

denote the set IFj I 0v,"IJ=OQ-/s I_ Observe that N~,· " - ,N:, form a partition ot

[PI, - . ".Fnf, and that Nio=!Pd (since we assumed the initial positions to be dis-

tinct) ,

1. Closest and Farthest Points

We now consider the problem ot finding the steady-state closest pair(s). We

need to take a closer look at c4.Ht). We have

d;~Ct) =11C;,-c,,112 t'" + 2CC;,-c;.),'fcc;.-c,.)tk+.
a=O
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+lI't'cCi. -c;.)t·~'
0:=0

11 ;;-=01 -- .-,--= Vi.!: v,J: 1
2 tV; + 2Vik; lj",t . ~ ~a Vfo: tk+a.

a=O

.-,--
+112: 1'<.V;.t·!I'

a=O

where"," stand.::; for the scalar product between vectors and 11.11 is the euclidean

length of a vector. Note that. for large t, the dominant term in (.) is the first

one, and therefore the steady-state closest pair(s) (Pi,Pi ) must have smallest

JlViJ: Vj,l; U. If Vi.\: Vjk¢O for every i'#j then the problem can be solved by enumerat

i.ng in O(n lagn) time [3] the static (at most O(n» closest pairs among

V1.\;; , •.. ,Vn,t and then breaking the tie between the candidate pairs thus

obtained in O(n) time by using a brute force way which is based on the observa-

tion that the coetIicients of c4.~(t) and d.Jv(t) indicate which one is smaller at

t=oo (such a "comparison" between r4.J(~) and ctu1,(co) takes constant time). Note

that we are using the expression "break the tie" somewhat loosely, since even

alter the tie is broken there may be more than one winner (it is possible that

r4.~(t) and du~(t) have exactly the same coetIicients)_ But if the points

VIA:, . - . ,Vnk are not distinct then there may be 8(n 2) pairs (Pi,P
i

) which have

ViA: VjA: =0, and we cannot afford to use a brute force way for breaking the tie

between them. Instead, we note that for every such candidate pair, the first two

terms of (*) are zero, and that minimizing the third term in (*) is just a steady-

state closest pair problem for k -i-motion. This leads to the following recursive

algorithm, which returns the steady-state closest pair(s) among n input points

P l , - .. 'PYI, having k. -motion in d-dimensional space:

Step 1: If the points Vu:, - ... Vnk are not distinct (Le. if ViA: = V,-I; for some i'!-j)

then go to step 2, Otherwise there are O(n) pairs (Pl..Pi ) with srnallestllV
ik

v,-A: 1I
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and therefore we can enumerate them in O(n logn) time [3] and then break the

tie in O(n) time (using the brute force way already mentioned) and return the
surViVing pair(s).

Comment: Note that if k=O then we do not go to step 2. since we assumed that

the Pi'S have distinct initial positions.

return the surViVing pair(s).

Step;]: Compute Nt . ... .N;" and for every Nf which contains more than one

point do the following: After assigning to every PjENf the motion of Pj~-l'
recursively tind the steady-state closest pair(s) among the points in N'l.k (which

now have a k-l-motion). Let Hi be the set of pairs returned by this recursive

call. The union of the His thus obtained is the set of candidates for the closest

patr position: Break the tie between these candidates in O(~ IHi f) time and
,

Comment: It is easy to prove by induction on k that IH, I=O( INfl). This implies
that2::I Hd=O(n).,

Correctness of the above algorithm foliows from the discussion preceeding it. If

T(n,k) is its running time, then

T(n,k) s 2:: T(",.k -1) + en logn,,

Where 2::",sn. and T(n,O)Sc'n logn. It easily follows that T(n,k)=O(n logn),,

this problem in the static case [11]. This completes the proof of the follOWing

which is optimal since it is weil known that O(n logn) time is a lower bound for

Theorem 5.1 For -<-motion in d-dimensional space. the steady-state closest

pair(s) can be found in O(n logn) time. and this is optimal.

We now consider the steady-state farthest pair(s) problem. We restrict

motion to be in the plane. If V,,;, 1';, for every i;'i then the problem is easy:
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There are O(n) pairs (Pl.,Pi ) with largest II Vi.\: v,J:: II and therefore we can

enumerate them in O(n logn) time [10] and then break the tie in D(n) time

using the brute force way already mentioned. But if Vu; I •••• VnJ: are not dis

tinct then there may be 8(n 2
) pairs (Pl,Pj ) having largest 1Jvil:. Vi.\::: II. We want to

break the tie between these candidates without having to enumerate them. We

now show how this can be done for the case of 1-motion. In this case (.)

becomes

c4j(t)~IVilljlIl2 t 2 + 2 l'ilVjI'~t +IIViolJo1J2 (u)

Let v,w be such thatllQvIQwlll is largest. and let Duw be an axis parallel to

QulQwl' Since all pairs (Pt,Pi ) in N,}xN,}j have the same ViI V,"l (=QvIQwl)' the

second term in en) i~plies that the "best" pair in N
1
}xNJ (Le. the one with larg

est ~j (O:J» must be such that the "shadow" of Via Yjo on Dvw is largest, i.e. Pi ENv1

must be such that 1;0 has smallest projection on Dvw ' and PjENJj must be such

that ~·o has largest projection on DlJ'W (Le. smallest projection on DlJlIJ)' We use

this observation for choosing the "best" pair in Nv1xN,}j.

The following algorithm computes the steady-state farthest pair(s) for 1-motion

in the plane:

Step 1: Find QUt ... ,Qqll and partition the P,'s into sets Nl, ... ,Nil'

Step 2: Find the set F of O(n) farthest pairs among Qu, ... ,QQl
1

'

It there eXists some (QIJ!' Qw!)EF such that INv
l 1>1 or INJj I>1 then go to step 3.

Otherwise the set UNv1xN,}j (Where the union is over all (Qvl,Qwl)E:F) consists of

IFI ( =O(n) ) candidate pairs. Break the tie between the candidate pairs, and

then output the surviving pair(s) and Halt.

Step 3: For every (Qvl,QWl)e:F, let DlJIJJ and DlJlIJ be axes that are parallel to

Qv I QWl and QWl~ I, respectively. Let DIR be the set of aU such axes, and note
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that IDIR 1=2IFj. Now, for every QUI which appears in some pair of F, let

DIH.", = !D'VUJ IDvw EDJR J, and then find for every direc lion in DJRv the point in Nul

which corresponds to it, where a point of Ni is said to correspond to direction

Dvw it! no other point in NI/I has a Vic with a smaller projection on Duw (we have

assumed that to a given DVIJJ corresponds only one point of Nt}, but the algorithm

can easily be modified to handle the general case).

Step 4: Let F'=I(Pi,Pj)e:N.}XNJ I(Qvl,Qwl)€F, Pi corresponds to D
vw

' Pi

corresponds to Duro I (note that ]F'I=O(n». Break the tie among the pair'S in

F' and then output the surviving pair(s) and Halt.

Theorem 5.2 For l-motion in the plane. the above algorithm finds the steady-

state farthest pair(s) in D(n logn) time.

Proof: Correctness of the algorithm follows from the discussion preceeding it.

The only step of the algorithm where it is not obvious that the time needed is

O(n logn) is that part of step 3 which has to do with computing the correspon

dance between points of N,} and directions in DIHv . Lemma 5.3 (which follows)

implies that this can be done in O( INvll log JN'l} I + IDIHv I log IDIRv I), and since

l:: IN.'I =n and l:: IDIH. I=O(n) itfollows that the time for step 3 is a(n logn).•
• •

Lemma 5.3 Let A be a set of (static) points, DR be a set of oriented axes

(IAI=m, IDHI=/i). ForeveryDEDH,let

3D = IPEA I P has smallest projection on D I.

All the 3D 's can be computed in O(m logm + 0 logo) time.

Proof: Let HA=(A 1, .•• ,Aq) (q,:5;m) be the points of the convex huH of A listed

in counterclock1....ise cyclic order. and let SDR =(D l , ... ,D
6

) be the axes of DR

listed by increasing value of their slope. HA can be found in O(m logm) time,

and SDR in 0(0 logo) time. We now show that we can find SD
i

, ... ,SD
d

with an
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additional O(q+o) time. For the rest of this proof. by "checking ~ against Dt"

we mean comparing the projections of ~-l' ~ and ~+1 on Dj in order to find out

whether ~E:SDj or not (it is clear that knowledge of these three projections is all

we need to make such a decision). For D I • find in O(g) time a point of HA that

belongs to SD
1

, say it is At. From this point on, we proceed in the manner which

we outline next (and which is reminescent of the way two sorted sequences are

merged). We check At against D2 .D3, ... until we hit a Dj to which it does not

correspond (possibly j~2), in which case we move to A2 and check it against

Dj_1,Dj , ... until we find a DL to which it does not correspond (possibly l;;,i -1).

in which case we move to As ...elc. In this way we "scan" each of HA and SDR

only once. and this implies that we spent O(q+li) time doing so. Correctness is

an immediate consequence of the following two observations: (i) The D~'s to

whose SD
1

a given A; belongs are consecutive in SDR (with the convention that

D 1 and DfJ are consecutive), and (ti) ~ and Ai + 1 have at most one Dj to whose SD
j

they both belong, and in this case ~£SD. and ~+l.ESD .•
J+I i-I

The steady-state farthest pair algorithm for l-motion can be generalized to

k-motion. The details are cumbersome, but the main idea is essentially the

same as that for l-motion: First we find the set F of farthest pairs among

QI.I:, . .. ,Q'ltJ: and then for every pair (QvJ:.QwJ:)EF we try to find the "best" pair

(Pi,Pj)EN~xN~. We use the coefficient of t 2k - 1 in (,,) to decide which pair in

NiXN~ is best and, if there is still ambiguity, we use successively the

coefficients of t2k-2,t2k-3, ... etc (the implementation details. which we omit,

involve repeated use oE Lemma 5.3 in order to maintain the O{n logn) time per-

Eormance).

Theorem 5.4 For k-motion in the plane, the steady-state farthest pair{s) can be

found in O(n logn) time.
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2. The Convex Hull

Let CH be the steady-state convex hull of the P,;'s.

Theorem 5.5 For k-motion in d-dirnensional space (d:::;;3), CH can be computed

in D(n logn) time. and this is optimal.

Proof: We give an algorithm for the case d=2 (it illustrates the main idea). The

representation we use for CH is a list of those Pi'S that belong to the hull at

t=a;I, in counterclockwise cyclic order.

If k=Q then use Graham's algorithm [6] to find CH in D(n logn) time.

Otherwise. find (in D(n logn) time) Qlk' ... I Qq.l;k and NT I ••• ,N:.l:' Then, com

pute the (static) convex hull HQ of Qu:.· .. ,Qq,).: (this also takes D(n logn) time

[6]). Now, for every QVJ;EHQ. recursively compute the steady-state convex hull

(call it Kv ) of the points !Pi.k-lIPiEN:J. and then from Kv get the steady-state

hull (call it Hv ) of the points in N!J, Getting Hv from Kv takes 0UN!;!) time

since it suffices to replace every PU - 1 by Pi in the list representing Kv . A point

Pi EN!; belongs to CH iff (i) QV/l; EHQ I (ii) Pi EHv ' and (iii) there is a line L passw

ing through fbk and a line L' passing through Pi such that Land L' are parallel.

L is a supporting line at HQ and L' is a supporting line ot Hv . and it HQ is to the

right (lett) of L then H'lJ is to the ,right (lett) ot L'. These observations imply

that. once we have HQ and the H'lJ 's, CH can be computed in O(n) time, in a

manner which we now outline. Scan the elements of the list representing HQ

and for every such element (say, Q'lJk)' go through the corresponding H'lJ and for

every Pi on H'lJ check in 0(1) time whether it belongs to CH or not, as follows:

Let Quk and QUlk be (respectively) the predecessor and successor of Q'lJ/I; in HQ.

and let Pr and Ps be (respectively) the predecessor and successor of Pi in H'lJ'

Compute (in 0(1) time) the steady-state direction of the vector PiPr and let

OD-ir be parallel to that direction. Similarly, ODis is parallel to the steady-state
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direction of p,P,. Let OE= and OE"" be parallel to Q
v
• Q... and Qv. Q"., respec-

tively. Now, P, ECH it! 0 is not inside the convex hull of the four points

D",D",E=,E"", which can easily be verified in 0(1) time. This implies that the

time needed to compute CH after computing HQ and the Hv's is

O(~INil)=O(n). If T(n,k) is the running time of this algorithm, thenv

T(n,k) '" ~T(""k-l)+ cn Iogn,
j

Where ~",=n, and T(n,O)=c'n logn. It easily follows that T(n,k)=O(n logn).,

This is optimal because there is a well known (l(n logn) 100yer bound for this

problem in the static case [5,10,12]. (The proof for d=3 is similar, and USes the
results in [9].) •

3. Other Problems

Theorem 5.6 For k-motion in the plane, a steady-state euclidean minimum

spanning tree can be found in O(n logn) time. and this is optimaL

(The proof, which We omit, Uses techniques similar in fiavor to those we used for

Theorems 5.1 and 5.2, and depends on the fact that a static euclidean minimum

Spanning tree in the plane can be found in O(n logn) time [11].)

Theorem 5.7 For k-motion in the plane, the (two or three) points which deter

mine the steadY-state smallest enclosing circle can be found in O(n) time.

(The proof, Which we Omit, makes Use of the O(n) time algorithm for finding

sUch a circle In the static case [8].)

6. Open Problems

1. Do theorems similar to 4.1 and 4.2 hold ii, in the definitions of S, W, S', W'

the words "closest" and "farthest" are replaced by (respectively) "~Ih closest"
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and "pth farthest'''? This leads to the question of how many pieces make up the

pointWise MINP of n functions. where the lJfNP of flo' .. ,fn at time t is the ptA

smallest number among fl(t),· .. .fn(t). We conjecture that. for functions

satisfying the conditions of Lemma 3.2. the maximum number of pieces of their

pointWise MfNP is O(n) for every p.

2. Do theorems similar to 4.3 and 4.4 hold for S' and W'. or can one compute S'

and W' faster than Sand W?

3. What is the exact form of A(n.s) for s;;=:3 ? We conjecture that

I>.(n ,8)=f (8)n +g (8)= O(n).

4. Is there an Q (n 2
) time algorithm for testing membership in £n,s?

5. When do steady-state conditions settle in? Assume that k=l, that eH is the

steady-state hull of the moving points. and let t' be the smallest instant of time

such that CH is the hull of the points for all time t~t'. ]s there an o(n2) algo

rithm for computing t'? Similar questions can be asked for the closest and

farthest pair problems, the minimum spanning tree problem, ... etc.

6. Given n red points and m blue points having I-motion in the plane. is there a

"fast" algorithm for deciding whether there is an instant of time at which the red

and blue points are separable? (The obVious brute force approach gives an

O(mn(m+n) log(m+n)) time SOlution.)

7. Given n red points and m blue points having I-motion in the plane. is there

an 0 (mn) time algorithm for deciding whether there Will ever be a collision

between a red point and a blue point? ]f all blue points are moving on the same

line, starting from the same initial position. then an

O(maz(m,n) log min(m.n)) time solution is quite easy: Compute the median

velocity of the blue points and let B 1 be the set of blue points whose velocity is

less than the median, B 2 those whose velocity is more. Let P be the blue point
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having median velocity. If P collides with a red point then we're done, otherwise

let Al be the red points that are "too fast" for a collision with P. A2 those that

are "too slow", and observe that no point in B 1 can collide with one in AI' and

that no point in 8 2 can collide with one in A2• This observation leads to a recur-

sive algorithm whose running time T(m,n) satisfies the recurrence

T(m ,n) ,; lJ= {T(m/ 2.a)+ T(m/ 2.II)J +em+e 'n,
a+-lJ=n

with T(l,n)=e'n, From this recurrence it easily follows that

T(m,n)~cm logn+c'n logm.

B. Let ST be the sequence of euclidean minimum-cost spanning trees of the

moving points. A crude upper bound on the number of elements in ST is O(n 4 )

(this follows from the fact that every change in the minimum spanning tree is

the result of one edge becoming cheaper than another edge). Can this bound be

improved? (Similar questions can be asked for many other problems.)

7. Summary

We considered problems in computational geometry when every coordinate

at every point is a polY'"TI.omial of constant degree in a time variable t. The prob-

lems we considered fall into two categories: (i) Those dealing with the changes

undergone by some properties of the points as t continuously increases from 0

to DO (Le. the transient behavior' of the points), and (li) Those having to do with

where some properties ot the points will eventually "stabilize" and stop changing

(Le. the steady-state condition of the points).
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