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Dynamic Congestion-Based Pricing
of Bandwidth and Buffer

Nan Jin, Student Member, IEEE, Gayathri Venkitachalam, and Scott Jordan, Member, IEEE

Abstract—We consider pricing of network resources in a reser-
vation-based quality-of-service architecture. The pricing policy
implements a distributed resource allocation to provide guaran-
teed bounds on packet loss and end-to-end delay for real-time
applications. Distributed pricing roles are assigned to each user,
each network node, and an arbitrager in between the user and the
network. When delay constraints are not binding, we investigate
two dynamic pricing algorithms using gradient projection and
Newton’s method to update prices, and prove their convergence.
We analyze the performance of the dynamic pricing policies
and show that the gradient algorithm using Newton’s method
converges more quickly and displays only a few small fluctuations.
When delay constraints are binding, we investigate subgradient
methods which can provide convergence to some range of the
optimal allocation.

Index Terms—Congestion-based pricing, dynamic pricing, QoS,
resource allocation, utility.

I. INTRODUCTION

WE ARE concerned in this paper with ensuring quality of
service (QoS) to real-time applications in a network with

a reservation-based QoS architecture. By reservation-based
QoS architecture, we include any network architecture that can
reserve bandwidth and buffer, whether for a single flow or an
aggregate of flows, for the purpose of QoS. Such architectures
could potentially include RSVP, MPLS, and ATM. By real-time
applications, we include any applications whose QoS depends
on the amount of reserved bandwidth and buffer. In this paper,
we consider packet loss probability and maximum end-to-end
delay as the QoS measures.

Common network mechanisms to ensure QoS for real-time
applications in a reservation-based QoS architecture include
flow control, connection admission control (CAC), and dimen-
sioning. Flow control is usually applied on a time-scale less
than or equal to a round trip time, CAC on a time scale greater
than a round trip time, and dimensioning on a relatively long
time scale. Any such QoS architecture would also include many
other elements, potentially including traffic characterization,
traffic measurement, application-level QoS characterization,
scheduling policies, dropping policies, and traffic smoothing.
We focus here on the CAC time-scale, and jointly consider
resource reservation and admission control.

Manuscript received December 9, 2003; revised July 4, 2004, and December
2, 2004; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A.
Orda. This work was supported by the National Science Foundation and by the
Defense Advanced Research Projects Agency.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of California, Irvine, CA 92697-2625 USA (e-mail:
njin@uci.edu; sjordan@uci.edu).

Digital Object Identifier 10.1109/TNET.2005.861252

Our particular concern is the distributed control of QoS. In a
reservation-based QoS architecture, some mechanism must de-
cide what network resources to reserve for each flow (or aggre-
gate of flows). Our premise is that this decision should be based
both on how the application values QoS and on congestion in
the network. We are looking for a mechanism in which a min-
imal amount of information is exchanged between the applica-
tion and the network, and considering how pricing could be used
to accomplish this in a distributed fashion.

Pricing has been suggested as a method to signal congestion
and distribute the allocation of bandwidth to individual flows or
groups of flows [1]–[12]. In this paper, we pose a generic pricing
method to control bandwidth and buffer based on differences be-
tween demand and supply of each, i.e., what is commonly called
congestion-based pricing. We include three aspects that are usu-
ally overlooked. First, we consider both the mapping from net-
work resources to QoS and the mapping from QoS to an applica-
tion’s utility, rather than modeling utility directly as a function
of network resources. Second, we consider allocation of both
bandwidth and buffer, based on the realization by many previous
researchers that bandwidth and buffer often act as substitutes, in
the sense that they can be traded off to obtain the same loss [13],
[14]. Third, we allow for the inclusion of multiplexing gains, so
that this significant source of network efficiency can be reflected
in the prices and therefore encouraged.

The method is generic in that it does not rely upon any spe-
cific network architecture, signalling protocol, or traffic char-
acterization, and in that it allows for a broad class of dynamic
congestion-based pricing algorithms. It is therefore meant to in-
clude a large set of potential congestion-based pricing methods.
We do not recommend any particular such method; this would
necessarily include consideration of the cost and complexity of
the resulting architecture and protocols.

In this paper, we investigate the ability of such congestion-
based pricing schemes to allocate bandwidth and buffer and
achieve desired levels of loss and delay, with the goal of max-
imizing the total utility of all users in the network. The paper
is organized as follows. In Section II, we review the related
literature. We discuss the cases in which delay constraints are
not binding and delay constraints are binding separately in Sec-
tions III–V and Section VI, respectively. In Section III, each user
is modeled as an aggregate of flows with similar traffic charac-
terizations and similar utility functions. Utility is assumed to be
a function of loss probability, which in turn depends on the re-
served bandwidth and buffer at each node. Our goal is maximize
total utility of all users under capacity and delay constraints.
We show that when delay constraints are not binding, this opti-
mization problem has a unique solution (under concavity con-
ditions), and that the corresponding shadow costs associated
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with each resource can be related to user’s marginal utilities. In
Section IV, we propose an implementation distributed between
users and network routers, and prove that an allocation is op-
timal if and only if all users and routers are in equilibrium. For
the network algorithm, two different methods—gradient projec-
tion and Newton’s method—are discussed, and the convergence
of the distributed solution is proven for both cases. In Section V,
we propose a second implementation in which we introduce an
arbitrager layer in between the user and the network. The arbi-
trager sells QoS (loss and delay) to the users, and purchases from
the network the least cost bundle of resources (bandwidth and
buffer) that achieves the desired QoS. We prove that an alloca-
tion is optimal if and only if all users, arbitragers, and routers are
in equilibrium. Finally, considering all three entities involved,
we investigate two dynamic pricing policies, in which gradient
projection or Newton’s method is used to update prices, and
present simulation results illustrating the resulting network dy-
namics. Finally, in Section VI, we investigate the case in which
delay constrains are binding. We show that the previously pro-
posed two layer and three layer implementations are still appli-
cable, and prove that if an allocation is optimal, then it must
be an equilibrium of the network and users in a two layer im-
plementation, or an equilibrium of the network, users and arbi-
tragers in a three-layer implementation. A subgradient method
for the network algorithm is discussed and numerical results are
presented.

II. RELATED WORK

Congestion-based pricing policies typically decide what net-
work resources to reserve for each flow (or aggregate of flows)
on the basis of how the application values the network resources
(commonly called utility) and on congestion in the network.
Congestion, in this context, is typically defined based on the dif-
ference between demand for a network resource and its supply.
Such pricing approaches therefore typically rely on information
from both the application and the network. In our model, we ab-
stract what we believe are the key relationships between these
entities. On the application side, we presume the existence of
two functions, one which describes each flow (or aggregate of
flows), and one which describes how the flow measures satisfac-
tion with its QoS. For the flow characterization, we presume the
existence of a function that maps the number of sources in an ag-
gregate and the amount of bandwidth and buffer reserved at each
hop into the loss probability that these flows experience. Such a
function might be derived using the literature on traffic char-
acterization. Some researchers suggest using multi-parameter
models to characterize flows, e.g., Markov-modulated Poisson
processes or Markov-modulated fluid flows [15], [16]. Many
researchers have suggested using effective bandwidth charac-
terizations [17]–[19]. However, we do not necessarily need to
know such a function a priori, if we can instead measure the
loss experienced, such as often assumed in measurement-based
admission control policies [20], [21]. For the QoS satisfaction,
we presume the existence of a function that maps the number
of sources in an aggregate and the loss probability into a utility.
This utility can be either interpreted directly as the amount that
these sources would be willing to pay for this level of QoS, or in-
directly interpreted as a numerical measure of satisfaction. Un-
fortunately, there is less work in the literature on deriving such

functions, as the function would likely be application-specific
[22], [23].

On the network side, we presume the existence of a reserva-
tion-based QoS architecture. In our approach, we assume the
network uses some type of route pinning (i.e., virtual circuit)
for real-time applications, e.g., using MPLS or ATM. We also
assume the existence of scheduling policies that are capable of
assigning bandwidth and buffer to aggregates of flows. Such an
architecture would likely specify which flows share resources,
and thus determine the multiplexing gains in the network. Re-
search on this topic includes effective bandwidth results that de-
scribe multiplexing gains by sharing of bandwidth and buffer
[24], [25]. Here we merely presume that such multiplexing gains
are incorporated into the flow characterization, whether known
or measured.

The mechanism that decides what network resources to re-
serve for each aggregate should take into account this informa-
tion from the applications and the network. Congestion-based
pricing is often used to signal such information in a distributed
fashion with a minimal exchange. There is a significant body
of literature on the use of pricing in network operation, in order
to accomplish a wide variety of goals. Here, we briefly review
some of the pricing literature with goals similar to ours. Early
versions of congestion-dependent pricing considered charges
per packet. Mackie-Mason [26] introduced a smart market
pricing scheme in which each user submits a bid for each
packet to transmit. The network transmits all packets whose
bid exceeds a cut-off price, which is set to the equilibrium
price where demand meets capacity, or to the marginal cost of
transmitting one more packet, whichever is applicable. Other
proposed congestion-dependent per packet pricing approaches
often use an auction to determine the optimal price per packet,
resulting in prices that vary with demand. However, per-packet
pricing can not easily address any flow-based QoS metrics.

The most common version of congestion-based pricing is to
set the price per unit bandwidth according to the marginal cost.
Murphy [1] suggested a distributed pricing policy to allocate
bandwidth to achieve maximal network efficiency. By incorpo-
rating congestion into the cost function, they showed that set-
ting the price equal to the marginal cost results in simultaneous
maximization of a network measure and of user surplus. Jiang
[2] suggested a distributed pricing policy based on pricing of ef-
fective bandwidth, with the goal to maximize total user utility. It
was shown that the optimal allocation corresponds to the equi-
librium in a distributed process in which users maximize surplus
and the network sets prices so that demand equals supply.

Utility and pricing have also been used to express the objec-
tive of congestion control schemes. Kelly [8], [9] proposed an
optimization framework in which the objective is to maximize
the aggregate source utility over their transmission rates. The
centralized problem is decomposed into a separate problem
for each user, which indicates the willingness-to-pay, and
the network, which allocates bandwidths given each user’s
willingness-to-pay. Many researchers followed Kelly’s idea
of maximizing aggregate utility and proposed their own vari-
ations. Low [10] decomposed the optimization problem such
that users choose transmission rates given prices and the net-
work determines the price given the differential between total
transmission rate and capacity. In both approaches, the utility
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function for each user is thought of as determined by the flow
control algorithm. La et al. [11] investigated a window-based
congestion control mechanism where the network adjusts its
prices and the users adjust their window sizes such that at
an equilibrium the system optimum is achieved. Kar et al.
[12] proposed algorithms where the network tells the user the
number of congested links, while the user adjusts its rate based
on its utility function and the network congestion feedback. All
of this research concentrates on rate control of elastic traffic in
a best-effort network, where utility is expressed as a function
of a constant rate, and where QoS of different user classes are
not directly considered.

Such approaches can capture QoS metrics such as loss, but do
not easily capture delay since buffer is not explicitly modeled.
A few congestion-based pricing schemes consider both band-
width and buffer as resources. In [3], Low proposes bandwidth
and buffer as resources to be priced and presents an allocation
scheme using burstiness curves which capture the tradeoff be-
tween bandwidth and buffer. In [4], Low considers an alloca-
tion scheme that provides each user with a fixed minimum and
a random extra amount of bandwidth and buffer. Allocations and
prices are adjusted to adapt to resource availability and user de-
mands. Keon [5] considers constraints on loss, maximum delay,
and blocking, and uses auctions to solve the resulting nonlinear
integer programming problem. Each of these approaches rely
upon specific traffic and user models, and none includes multi-
plexing gains.

Finally, some pricing algorithms view the price as the result
of a game between users or between the users and the network
[6], [7].

These papers point us in the right direction, and we use sev-
eral of these concepts in our distributed QoS control method.
However, the approach presented in this paper includes three
aspects that we do not believe have been adequately addressed
by this literature. First, we consider both the mapping from net-
work resources to QoS and the mapping from QoS to an applica-
tion’s utility, rather than modeling utility directly as a function
of network resources. Second, we consider allocation of both
bandwidth and buffer. Third, we allow for the inclusion of multi-
plexing gains.

III. THE PRICING FRAMEWORK

A. Network and User Models

The complete model consists of a network model, which
describes what type of service the network offers, and a user
model, which describes how the user behaves. We presume
the existence of a reservation-based QoS architecture using
virtual circuits for real-time applications and using scheduling
policies that are capable of assigning bandwidth and buffer to
aggregates of flows.

Consider a network in which classes of virtual-circuit real-
time traffic reserve network resources on links. Assume each
class can reserve bandwidth on each link it transverses, and
buffer at each router it passes through. Specifically, we assume
class can reserve bandwidth on link , and buffer
at the router just before link . If link has a total (unidirectional)
bandwidth available to real-time traffic, then the band-
width reservation allocations must obey ,

where denotes the set of user classes that utilize link . As-
sume routers are output-buffered and that the total buffer avail-
able to real-time traffic with output link is . The corre-
sponding buffer constraint is therefore .
The maximum delay for class traffic at link is therefore

. We assume that each class can place an
upper bound on the total end-to-end delay experienced by its
traffic where denotes the set of links that
user class traverses. We define as the number of links on
the virtual path for class traffic. Obviously the total number of
links .

We use the term user, or class, to refer to an aggregate of
flows with similar traffic characterizations and similar utility
functions. The QoS of real-time applications is often considered
to be defined by loss, delay, and delay jitter. Here, we assume
that these applications require a tight bound on end-to-end delay,
but are somewhat elastic with respect to loss. (We do not place
a separate bound on delay jitter, beyond that placed on delay.)
Utility is thus assumed to be a function of loss probability, which
in turn depends on the reserved bandwidth and buffer at each
node. The user model consists of two functions: a traffic model,
which describes the statistics of each real-time flow aggregate,
and a QoS model, which describes how each user measures sat-
isfaction with its QoS.

The traffic model is a function that maps the number of
sources in an aggregate and the amount of bandwidth and
buffer reserved at each hop into the loss probability that
these flows experience. Such a function might be derived
using the literature on traffic characterization or measured.
Specifically, assume there are independent and identically
distributed flows within class . We denote the probability
of loss of the multiplexed class on link , , as a function
of the bandwidth allocated to the class, , the buffer
allocated to the class, , and the number of sources ,
as . The loss function for class
traffic, , might be given for instance by effective bandwidth
results. We presume that this loss function is independent of
the link number, which is reasonable if the allocated bandwidth
and buffer are sufficient to decouple the effective bandwidths
[27]. We also presume that each source within a class experi-
ences the same loss probability. Finally, we presume that the
loss function is decreasing, differentiable, and jointly strictly
convex in . While some effective bandwidth
functions in the literature are not differentiable everywhere
convexity has been uniformly empirically found to hold in
the literature, including the numerical cases investigated in
this paper. In addition, a similar result has been proven for
overflow probabilities given by large deviations results in the
many source regime [28]. We assume that the loss on each
link is small and independent of other losses within the path,
given bandwidth and buffer allocations. Therefore, the total
end-to-end loss probability for class is .

The QoS model is a function that maps the number of
sources in an aggregate and the loss probability into a utility.
This utility can be either interpreted directly as the amount that
these sources would be willing to pay for this level of QoS, or
indirectly interpreted simply as a numerical measure of satis-
faction. Specifically, we assume class derives a satisfaction



1236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

from supporting sources with a probability
of loss of . In this paper, we will assume that
is decreasing, twice continuously differentiable, and strictly
concave in . The utility can also be thought of directly as a
function of reserved bandwidth and buffer.

Theorem 1: is increasing, twice continuously
differentiable, and strictly concave in .

Proof: By assumption, the loss on each link, ,
is twice continuously differentiable and jointly convex in

. It follows that the total loss, , is also
twice continuously differentiable and jointly convex in

, since positive linear combination of convex
functions are convex [29, Prop. 2.1.1]. The utility as a function
of bandwidth and buffer can then be viewed as the composition
of with . Therefore, is twice con-
tinuously differentiable in following the chain
rule of the second derivatives. And is also strictly
concave in , since the composition of the strictly
convex function (defined on a convex set), with a decreasing
concave function produces a strictly concave function [29,
Prop. 2.1.8].

Throughout this paper, we further assume that marginal utili-
ties with respect to bandwidth and buffer are each infinite when
these resources are zero (so that infinite resource prices imply
zero demand) and that the Hessian of utility with respect to re-
sources is negative definite.

B. Optimal Resource Allocation

We now pose our resource allocation problem. We assume
that the network attempts to maximize total utility of all active
users, by choosing bandwidth and buffer allocations on each
link and at each router. The corresponding problem is

(1)

(2)

(3)

When none of the delay constraints (3) are binding, we de-
note this as Problem U; this will be shown to be a concave pro-
gram in Theorem 2. When at least one of the delay constraints
(3) is binding, we denote this as Problem UD; the presence of
at least one binding constraint in (3) can render the constraint
set (1)–(3) nonconvex. In the remainder of this section and in
Sections IV and V, we consider Problem U. In Section VI, we
consider Problem UD.

To simplify the notation, let

denote the set of resource allocations for class , and

denote resource allocations for all active user classes in the net-
work, where is the total number of resource pairs.

Define as the function that maps a resource
allocation into its corresponding constraint vector

Finally, let represent the constraint set, namely
.

Theorem 2: Problem U is a concave program, and
contains a single point.

Proof: Problem U is a concave program, by definition, if
the feasible region is a convex set and the optimization metric is
a concave function. By Theorem 1, is strictly con-
cave in the resource allocation .

When delay constraints are not binding, the feasible set is the
intersection of constraint sets in (1) and (2), which are convex
since these constraints are linear. Thus, the feasible set is also
convex. It follows that Problem U is a concave program.

Furthermore, since the objective function is strictly concave,
the optimal solution to the problem is either empty or contains
a single point [30, Th. 7.14]. Finally, since the constraint set is
a closed set, there must be at least one optimal allocation [30,
Th. 3.1]. It follows that the optimal allocation is unique.

Establishing that Problem U is a concave program tells us that
there is only one local maximum of the total utility over the re-
source allocation space. This property suggests that the optimal
allocation can be found using some type of gradient algorithm.
This can be made explicit by characterizing the optimal resource
allocation in terms of the shadow costs corresponding to each of
the constraints.

Theorem 3: The resource allocation solves Problem U if
and only if there exists a set of nonnegative shadow costs

such that

(4)

The theorem is a direct application of the Kuhn–Tucker the-
orem under convexity [30, Th. 7.16] and the proof is omitted.
Solving such a maximization problem for a network of moderate
size can be computationally intensive, and thus it is desirable
to distribute the computation to the users and various network
levels. The Lagrangian dual problem is often used to serve such
a purpose.

C. Dual Problem

Given Problem U as the primal problem, the dual problem is
defined as follows:
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where the dual function is defined as

(5)

The Lagrangian dual problem is a convex optimization
problem, since the objective to be minimized is convex and the
constraint set is convex. With Slater’s condition being satisfied,
i.e., there exists a strictly feasible point where all the
constraints are not binding, we know that strong duality holds.
In other words, the best bound that can be obtained from the
Lagrange dual function is tight for the primal problem.

This suggests a mechanism to distribute the resource opti-
mization between the user classes and the network in which the
network solves the dual problem while the user classes deter-
mine the minimal cost resource allocation given a set of prices.

IV. DISTRIBUTED RESOURCE ALLOCATION USING PRICING

As we mentioned before, the Lagrangian dual problem uses
shadow costs to distribute the resource optimization between the
users and the network. An interpretation of the (4) is that each
of the shadow costs in is zero if the corresponding constraint
is not binding, and positive if the constraint is binding. (We are
thus considering that congestion occurs only when demand ex-
ceeds supply. An alternative approach would be to define con-
gestion as a function of load.)

We note a few properties of the dual function (5). First, it is
everywhere continuously differentiable [31, Prop. 8.1.1], and its
gradient with respect to the price vector can be represented as

(6)

where is the minimum cost allocation.
This implies that a gradient feedback algorithm can be used
to adjust prices based on the differences between demand and
supply.

Second, the first term in the dual function is simply the sum-
mation of terms, each of which involves a maximization only
over one class’s resources. This implies that the optimal global
resource allocation can be achieved by the combination of op-
timal allocations of each class.

Suppose the network and users follow the following strategies
at update number :

Network Algorithm N1: Update the prices as follows:

(7)

where is the set of prices to use at update number
, is a positive scalar step size, is the projection on

, and is any feasible direction that satisfies
and

. The feasible direction therefore al-
lows for any price update rule that results in an increase in a
price if the corresponding demand exceeds supply.

User Algorithm U1: In each class , choose bandwidth and
buffer allocations that maximize surplus, where surplus is de-
fined as utility minus cost:

(8)

We prove that the equilibrium point of this distributed re-
source allocation process is optimal.

Theorem 4: The resource allocation solves Problem U if
and only if it is an equilibrium for Network Algorithm N1 and
the User Algorithms U1 for each class.

Proof: At equilibrium, the Network Algorithm N1 results
in either a binding constraint or an associated shadow cost of
zero, namely and

.
The utility functions are jointly strictly concave in ,

so the surplus is jointly strictly concave in . It follows that the
equilibrium solution to the User Algorithm U1 for class j results
in , .

Therefore, the equations (4) are satisfied, and the equilibrium
solution is optimal, if and only if it is an equilibrium for Network
Algorithm N1 and the User Algorithms U1 for each class.

A few caveats are in order here. We are not suggesting that
these algorithms should be implemented in the Internet as
written, but only mean to demonstrate what a pricing approach
might attempt to accomplish. Any user response would un-
doubtedly have to be done via a user agent to automate the
response, the time scales for each iteration would have to be
chosen and the feedback algorithms would have to be designed
to guarantee convergence. Also, much additional work would
have to be done to make any such approach implementable,
including development of signalling protocols, reservation
protocols, measurement algorithms, and scheduling policies.

The User Algorithm U1 is an unconstrained multi-dimen-
sional optimization problem, and can be solved using any ap-
propriate ascent direction method. In the Network Algorithm
N1, common methods for determining the feasible direction in-
clude gradient projection and Newton’s method. In the next two
subsections, we investigate these two methods.

A. Gradient Projection Method

In this subsection, we investigate the use of a gradient pro-
jection algorithm to determine the feasible direction in the price
update, namely in (7).

Using (6), this results in

(9)

We can utilize several different types of step size rules, such
as constant step size, diminishing step size, and dynamically
chosen step size based on the exact optimal dual value or a suit-
able estimate. To simplify the discussion, we will use a constant
step size in this discussion.

Suppose in each iteration, the network updates prices using
(9) and the users allocate resources using (8). In the remainder
of this section, we will prove the convergence of this algorithm.
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First, a lemma is introduced.
Denote as the set of positive shadow costs.
Lemma 1: The following two statements are true:
1) For every bounded set , there exists some constant

such that , ,
.

2) The set is either bounded or empty,
.

Proof: We first consider the Hessian of . From the
dual function (5), we have

By differentiating the above equation with respect to

where , which is symmetric and
negative definite by assumption. And

(10)

which is a real, symmetric, positive definite matrix of dimension
. Since are twice continuously differentiable

and are continuously differentiable, it is obvious that
is also twice continuously differentiable over . Thus, the gra-
dient of satisfies Lipschitz continuity over any bounded set

, i.e., the first statement is true.
We also notice that when , and ,

and that when , and . Since is
convex and there exists some such that is minimized,
then the set , , is either bounded or
empty, i.e., the second statement is true.

We can now prove the following theorem.
Theorem 5: Consider the algorithms specified in algorithms

N1 and U1. Let be a sequence generated by (9), and
a sequence generated by (8). Then there exists a positive step
size such that the limit point of is stationary
and solves Problem U.

Proof: Let denotes the initial vector. We need only con-
sider rather than since by theorem 1, utility is
increasing and strictly concave in resources, which implies that
at the optima all of the shadow costs are positive.

The level set is
bounded following the second statement of Lemma 1. Let

, ,
and . Using the first statement of
Lemma 1, we know that there exists a constant such that

, , . Suppose
the step size satisfies . If

then . By using the descent lemma [32, Prop. A.24],
we have

When , the right-hand side of the above relation is
nonpositive. So and stays within the
level set . If has a limit point , then

which implies . And since is given by (8), we
have . By Theorem 4, is stationary and solves
Problem U.

B. Newton’s Method

In this subsection, we investigate the use of Newton’s method
in place of the gradient projection method to determine the fea-
sible direction and step size in the price update, namely

and in (7), which results in

(11)

where is given by (10).
To simplify the computation of (10), we note that

is a block diagonal matrix and can be de-
noted as , .

The inverse of a block diagonal matrix equals the matrix of
the inverse blocks. Furthermore, we have previously proven that

, the sensitivities of class resources to
bandwidth and buffer prices on route ([33], Lemma 2). There-
fore, , .

is a routing matrix consisting of 2 2 iden-
tity matrices in positions corresponding to links in each route,
and 2 2 zero matrices in all other positions. It can therefore
be shown that (10) reduces to

(12)

where is the sensitivity matrix for class , which
consists of 2 2 sub-matrices of the sensitivities of resources
on link with respect to resource prices of link :

Theorem 6: Consider the algorithms specified in algorithms
N1 and U1. Let be a sequence generated by Newton’s
method (11) and be the local minimum of over the con-
straint set . Then there exists a such that if

, then converges to zero superlin-
early.

The proof is straightforward and is omitted here (see [32,
Prop. 2.3.5]). Note that this theorem only guarantees local con-
vergence, as is typical with Newton’s method. However, well-
known variations can be used to guarantee global convergence
since the dual problem is a convex optimization problem.

In comparison to the price update based on gradient projec-
tion, we find (as is typical) that Newton’s method converges
more quickly but requires more information. Specifically, the
feasible direction based on gradient projection only requires
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knowledge of the demands and supplies, while the feasible di-
rection based on Newton’s method also requires the sensitivity
matrices for each class.

V. DYNAMIC PRICING

In the previous section, we proposed an implementation
distributed between users and network routers, and proved that
an allocation is optimal if and only if all users and routers
are in equilibrium. For the network algorithm, two different
methods—gradient projection and Newton’s method—were
discussed. This approach, however, requires that users choose
the optimal combination of network resources (bandwidth
and buffer) at each link and router based on prices for these
resources. This level of detail may seem inappropriate for users
(or even application agents) since they are likely to care only
about the QoS that results from these resource allocations, not
the resource allocations themselves.

In this section, we propose a new distributed implementation
in which we introduce an arbitrager layer in between the user
and the network. The arbitrager sells QoS (loss and delay) to the
users, and purchases from the network the least cost bundle of
resources (bandwidth and buffer) that achieves the desired QoS.
This allows the users (or their agents) to focus on QoS rather
than the network resources themselves.

With the new three layer model, we prove that an allocation
is optimal if and only if all users, arbitragers, and routers are in
equilibrium. Through a set of examples, we demonstrate the re-
sult of using algorithms for the arbitrager and the network based
on gradient projection and on Newton’s method, and present
simulation results illustrating the network dynamics.

A. Network, User, and Arbitrager

We now propose a new distributed implementation in which
we introduce an arbitrager layer in between the user and the net-
work. The arbitrager sells QoS (loss) to the users, and purchases
from the network the least cost bundle of resources (bandwidth
and buffer) that achieves the desired QoS. This approach simpli-
fies the task for the users by moving consideration of bandwidth
and buffer allocation to the arbitrager.

To simplify the notation, we denote

The optimal shadow costs in (4) can be used to establish that,
at equilibrium,

(13)

(14)

Fig. 1. Minimum cost allocation of bandwidth and buffer when the delay
constraint is not binding.

Equation (13) can be interpreted as a user minimization of
cost to achieve a desired loss probability on each link. If the
prices and losses on each link are known, then (13) indicates
that the optimal allocation of bandwidth and buffer on each link
are given by finding the tangent point between the constant loss
contour and a constant cost line, as illustrated in Fig. 1.

Equation (14) expresses how the user chooses the desired
amount of loss, and how to allocate it among the links along
the route. At the optimal allocation, the marginal benefit of de-
creasing loss is equal to the marginal cost. The marginal cost,
in turn, is given by the cost of purchasing additional bandwidth
and/or buffer, which is guaranteed to be equal. Since the left
hand side is independent of , the optimal allocation of loss
equalizes the marginal costs among all links. In Fig. 1, this can
be viewed as choosing the optimal point along the curve of min-
imum cost allocations.

Consideration of loss as intermediate variables suggests a
new distributed resource allocation method. We now introduce
an intermediate layer, called an arbitrager, in between the user
and the network. Each network link periodically updates the
prices for bandwidth and buffer on that link, based on the dif-
ferences between the total demands and supplies for bandwidth
and buffer. The arbitrager for class periodically receives a re-
quest for a specified loss level from the class users and finds
the minimum cost allocation of bandwidth and buffer on each
link on route . The arbitrager also calculates a cost per unit loss,

, and advertises this cost to the class users. The class users
periodically calculate the desired loss based on the cost
and the utility function for that class. This process is illustrated
in Fig. 2.

The network algorithm (N1) remains the same as above. The
arbitrager and user algorithms are formalized as follows.

Arbitrager Algorithm A2: In each class , choose the min-
imum cost bandwidth and buffer allocations that achieve a de-
sired loss :

(15)
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Fig. 2. Communication between user, arbitrager, and network.

Set a price per unit loss for class as the minimum marginal
cost:

(16)

User Algorithm U2: In each class , choose loss that maxi-
mizes consumer surplus, where the surplus is defined as utility
minus cost:

(17)

This distributed process simplifies the task for the users by
removing direct consideration of network resources and instead
focusing on the QoS parameters of concern. In addition, the ar-
bitrager could be used to guarantee a fixed price for each user
connection by acting as an insurance agent who charges a small
premium in order to smooth out fluctuations in the resource
prices, although we do not consider this here.

Theorem 7: The resource allocation solves Problem U if
and only if it is an equilibrium for Network Algorithm N1, the
Arbitrager Algorithm A2 for each class, and the User Algo-
rithms U2 for each class.

Proof: At equilibrium, the Network Algorithm N2 results
in either a binding constraint or an associated shadow cost of
zero, namely and

.
With fixed prices and surcharges, the Arbitrager A2 is mini-

mizing an increasing linear function on a convex set. Using the
Kuhn–Tucker theorem under convexity it follows that a feasible
resource allocation is minimal cost if and only if there exists an

such that the Kuhn–Tucker first-order conditions hold:

and . It follows
that, at equilibrium, .

The utility functions are strictly concave and de-
creasing in , so the equilibrium solution to the User Algorithm
U1 for each class results in .

Therefore, the equations (4) are satisfied, and the equilibrium
solution is optimal, if and only if it is an equilibrium for Network
Algorithm N2, the Arbitrager Algorithm A2 for each class, and
the User Algorithms U2 for each class.

Theorem 7 establishes that the approach using separate user,
arbitrager, and network algorithms achieves the maximal utility
in a distributed fashion. As with Theorem 4, it is a result on equi-
librium, but not on dynamics. Freedom is left to design feedback
algorithms that achieve convergence on a time-scale of interest.
We have not proven the convergence of this new three layer im-
plementation. However, we believe that given appropriate step
sizes, the network algorithm using either gradient projection
method or Newton’s method to update prices, along with the
user and arbitrager algorithms finding optimal solutions, will
converge to the equilibrium.

In numerical examples in this section, we consider small net-
works consisting of classes of on/off flows. Class consists of

i.i.d. on/off fluid flows with Exponentially distributed on
and off times. We set the mean on time to 340 ms, the mean
off time to 780 ms, and the peak rate to 8 kb/s. We measure
bandwidth in multiples of 8 kb/s (the peak rate) and buffer in
multiples of 340 B (the mean number of bytes per cycle). We
calculate loss using an effective bandwidth function derived by
Morrison [19]. The utility function for class is

, so that utility is proportional to the number
of sources, and is a concave decreasing function of loss proba-
bility. The parameter determines the application’s sensitivity
to loss.

B. Dynamic Pricing Using Gradient Projection Method

In this subsection, we consider use of gradient projection to
dynamically update resource prices. To simplify the discussion,
consider a single link (i.e., , ) in the case in which
the delay constraints for each class are loose. Then the Network
Algorithm using gradient projection for resource prices as pre-
sented in (9) reduces to

where and are positive step sizes which determine the
speed of the convergence. We allow for the step sizes to be dif-
ferent, since the ratio of the prices may be far from 1.

The User Algorithm U2 is a one-dimensional maximization.
We assume that each user solves this problem each iteration.

The Arbitrager Algorithm A2, however, is a multi-dimen-
sional constrained optimization. Rather than finding the optimal
resource allocation each user and network iteration, we propose
using a gradient algorithm to make small adjustments to these
each iteration. Thus, in each iteration of the user and network
algorithms, the arbitrager will receive updated prices from each
network link on its route and an updated desired loss from the
user class. In reaction, the arbitrager will make small changes
to the resources it buys from the network along the route, and
corresponding small changes to the price per unit loss it charges
to the user. To specify these changes, it is helpful to separately
consider the effects of resource price fluctuations and of changes
in desired loss.

Increased loss from the user class should result in a lower al-
location of both bandwidth and buffer. In Fig. 3, the minimum
cost combination of bandwidth and buffer at a fixed loss prob-
ability is shown as point A. Let denote the ratio of
the price of bandwidth to the price of buffer. Then point A lies
on the desired loss contour, and is tangent to a line with slope
equal to . An increase in the desired loss would move the
minimum cost combination of bandwidth and buffer to a point
B, on a lower contour and still tangent to a line with slope equal
to .

Updated prices from the network should result in a new
choice of buffer versus bandwidth if changes. Because the
two resources can be traded-off to achieve the same loss, a
decrease in would move the minimum cost combination of
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Fig. 3. Income and substitution effects.

bandwidth and buffer from point B to point C, on the same loss
contour, but with more bandwidth and less buffer.

Let represent the change in desired loss of user class
in iteration , and represent the change in price ratio of

class in iteration . A simple gradient algorithm would react
to both changes in prices and changes in loss:

(18)

where and are taken along a path with
constant prices and where and are taken
along loss contours. The arbitrager can set the new price per unit
loss for class using (16).

In [34], we derive the required sensitivities at constant prices:

where .
A similar derivation (omitted here) gives the required sen-

sitivities at constant losses: ,

.
We now investigate the performance of this gradient pro-

jection algorithm through a numerical example. We consider a
single link single class network with 500 sources that have a
sensitivity to loss given by . To drive the dynamics,
we set the initial demand for bandwidth and buffer, respectively,
at (172.3, 25), and the initial supply at (170, 24). The supply
is held fixed for the first portion of the experiment. In Fig. 4,
we show the resulting bandwidth and buffer allocations as the
dashed curve.

At first, both bandwidth and buffer prices rise quickly, since
demand exceeds supply for both. However, the price per unit
buffer rises more quickly than the price per unit bandwidth, and
therefore the price ratio falls. The effect of decreases in ,
the substitution effect, initially dominates the income effect. As

Fig. 4. Dynamic allocation for a single link single class network under a
change in supply.

a result, initially the allocated buffer falls while the allocated
bandwidth increases, approximately following a loss contour.
After a relatively small number of iterations, the substitution and
income effects become of the same order. As a result, both band-
width and buffer allocations now decrease toward the supply.

When the demand is approximately (170.8, 24.3), we change
the supply to (169, 23). (The change in supply may represent
additional allocation to other classes not modeled here.) If the
supply had not been modified, then the resource allocation
would follow the dotted curve, converging to the initial supply
of (170, 24). The modified supply causes an abrupt change in
the resource allocation. The price ratio quickly decreases,
resulting in movement along the current loss contour toward
higher bandwidth and lower buffer. Soon, the substitution and
income effects are of the same order, and both bandwidth and
buffer allocations decrease toward the new supply.

The step sizes and determine both the speed of con-
vergence and the slope of the resource allocation path when
both the substitution and income effects are significant. A clever
choice of these constants can equalize the time scales on which
the two terms in (18) work. This would result in a much more di-
rect path from demand to supply. However, such clever choices
of and are dependent upon system parameters, and we
believe that it may be difficult to find a method that sets them
appropriately under a wide variety of loads.

C. Dynamic Pricing Using Newton’s Method

In this subsection, we consider use of Newton’s method to
dynamically update resource prices. We will consider a network
with two links and two classes in the case in which the delay con-
straints for each class are loose. The Network Algorithm using
Newton’s method for resource price adjustments was given by
(11). The required gradients in the sensitivity matrix are pro-
vided in [33, Th. 7]. These sensitivities would have to be calcu-
lated by the arbitrager and passed to the network (in addition to
the bandwidth and buffer demands).

In the gradient projection method, the resource allocation
path usually does not converge directly due to the differences
in the time scales on which the substitution and income effects
applied. To rectify this issue, we propose that the Arbitrager
Algorithm also use Newton’s method to determine adjustments
to the resource allocation and price per unit loss.
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The arbitrager wishes to find the minimum cost resource al-
locations that achieve a desired loss , denoted . This
can be represented as a constrained minimization problem:

where represents the minimum cost required to
achieve a loss on route and link

(19)

Equivalently, we can represent this as an unconstrained min-
imization problem:

where .
From our previous work [33, Th. 1] we know that the min-

imum cost, , is a decreasing and convex function of
loss probability, . The minimization problem is therefore
a convex problem. We propose to use several iterations of
Newton’s method to determine the resource allocation and
associated loss probabilities in between each single iteration
of the user and network algorithms. Denote the set of achieved
loss probabilities on route at arbitrager subiteration as

, and the corresponding total cost of

obtaining these loss probabilities as . Newton’s method
can then be applied as follows:

(20)

Each time the arbitrager receives a desired loss from the user
and a set of prices from the network, it executes several itera-
tions of (20) to find the loss distribution that minimizes the total
cost. From this loss distribution, the arbitrager determines the
resource allocation by solving the 2-dimensional minimization
in (19). The arbitrager also computes a cost per unit loss and
a sensitivity matrix , and sends this information to the user
and the network, respectively.

It only remains to determine the gradient and Hessian re-
quired in (20). In our previous work [33], we determined the
required sensitivities:

where , and , and

The resulting bandwidth and buffer allocations using this dy-
namic pricing algorithm, for the single link single class experi-

Fig. 5. Network topology with two links and two classes of sources.

ment considered in the previous subsection, is shown in Fig. 4 as
the solid curves. As expected, use of Newton’s method results in
both a more direct convergence path and quicker convergence.

The improvement in dynamics, however, comes at the cost of
additional complexity. When the Network Algorithm is based
on gradient projection, it only needs the resource demands from
the arbitrager. However, when the Network Algorithm is based
on Newton’s method, it also needs from the arbitrager a gra-
dient matrix containing sensitivity information. These sensitivi-
ties may in turn require the arbitrager to obtain information from
the user, or alternatively use an estimation procedure such as
perturbation analysis.

In order to further investigate the performance of this ap-
proach, we directly consider the effect of a change in the number
of users upon the resource allocation for each class. For this ex-
periment, we consider a network with two links and two classes,
shown in Fig. 5. The bandwidth supply on the links are set to 370
and 170, respectively, and the output buffer available at routers
A and B are set to 80 each. Class 1 sources have a sensitivity to
loss defined by , and class 2 sources have a sensitivity
to loss defined by . A single class 2 source therefore
has the same traffic characterization as a class 1 source, but is
less sensitive to loss.

We start by examining convergence of the resource allocation
for each class on link 1. The number of class 1 sources is held
fixed at , while the number of class 2 sources starts
at . The initial desired losses of each class are set so
that the initial demands for bandwidth and buffer are (165.00,
41.98) for class 1 on link 1 and (203.90, 37.92) for class 2.

In Figs. 6 and 7, we show the resulting bandwidth and buffer
allocations on link 1, for class 1 and class 2, respectively. The re-
source allocations for both class 1 and class 2 converge directly
to the optimal allocations for each class, denoted first optimal
allocation in the figures.

After these resource allocations converge to values near the
optima, we increase the number of class 2 sources from 630
to 631. The immediate effect of the new user entering the net-
work is first felt at the class 2 arbitrager, who must buy addi-
tional bandwidth and buffer to achieve the same loss for the
higher number of sources under the same resource prices. As
a result, we see a jump in class 2’s resource allocation from
(204.48, 38.21) to (204.80, 38.24), shown as a dashed line in
Fig. 7. We note that resource allocations per source now are less
than resource allocations per source in the previous iteration,
because class 2 has a higher multiplexing gain with one more
user coming in.

Following this immediate effect, the network algorithm in-
creases both resource prices on link 1 since the demands are
now higher than the supplies. The users in each class react by
accepting higher losses, and the arbitragers for each class corre-
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Fig. 6. Dynamic allocation of class 1 on link 1 under a change in the number
of class 2 users.

Fig. 7. Dynamic allocation of class 2 on link 1 under a change in the number
of class 2 users.

spondingly modify the resource allocations. This process con-
tinues until the allocations converge to the second optimal allo-
cations as shown in the figures. The end result of an additional
class 2 user is that both class 1 and class 2 users are allocated
a combination of bandwidth and buffer per user which results
in a higher loss. In this particular case, the final optimal alloca-
tion presents a decreasing bandwidth but increasing buffer per
class 1 source, and a decreasing bandwidth and buffer per class 2
source.

We now investigate the variation in prices, loss probabilities
and utility over a wide range of , with held constant at
500. When the number of class 2 sources is small ,
both classes can obtain very low loss probabilities on link 1, and
correspondingly the price for bandwidth on link 1, , is very
low. On link 2, where the bandwidth supply is lower, the price
for bandwidth, , is higher than on link 1, and correspondingly
class 1’s loss is also higher. The utility per source is near its
maximum value, and thus the total sensitivity increases nearly
linearly with in this range.

As the number of class 2 sources exceeds 530, the competi-
tion for resources on link 1 becomes significant. Prices for link
1 resources slowly start to increase. The effect is felt first by
class 2 sources, which are less sensitive to loss and therefore
more willing to scale back demand. We illustrate the bandwidth
prices on each link in Fig. 8; the buffer prices, which are not

Fig. 8. Prices of bandwidth on link 1 and link 2.

Fig. 9. Loss probabilities of class 1 and 2 on each link.

shown, follow similar trends. As exceeds 560, the prices for
link 1 resource escalate more quickly to counteract the increased
demand. Both classes are now accepting higher loss on link 1.
In addition, class 1 sources try to obtain lower loss on link 2 to
compensate, driving up prices for resources on link 2.

The effect of these price increases on loss is evident in Fig. 9.
When the number of class 2 sources is small, the loss of class
1 is dominated by loss on link 2. As increases, loss on link
1 increases, eventually becoming the dominant component of
class 1’s total loss. On link 1, class 1 and 2 face the same re-
source prices. When , class 2 obtains a higher multi-
plexing gain than class 1, and hence the price per unit loss for
class 2 is cheaper, i.e., . However, class 2 is less sen-
sitive to loss, and this dominates the effect of the multiplexing
gain, so the loss of class 2 on link 1 is always larger than the
loss of class 1.

VI. BINDING DELAY CONSTRAINTS

In this section, we investigate the case in which at least one
delay constraint is binding, namely Problem UD. Whereas
Problem U is a concave program by Theorem 2, Problem UD
[which is equivalent to Problem U plus the delay constraints
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(3)] is not a concave program. (Whether the set of constraints
remains a convex set depends on the set of routes.)

In this section, we revisit Theorems 2–7 under Problem
UD. Theorem 2 guaranteed a unique optimal resource alloca-
tion under Problem U. With delay constraints binding, there
remains at least one optimal resource allocation, but it is no
longer guaranteed to be unique.

Without binding delay constraints, Theorem 3 states that the
optimal allocation occurs if and only if the optimal price set is
used. Furthermore, the optimal prices on a particular link are
equal to the marginal utilities with respect to bandwidth and
buffer for each class passing through that link.

When delay constraints are binding, at the optimal allocation
there still exists a corresponding optimal price set. However,
there are two significant differences. First, the prices charged
to each class on a particular link must be differentiated on the
basis of the effect the corresponding allocation has upon the
delay constraints. Second, satisfaction of these Kuhn–Tucker
conditions no longer guarantees optimality. We express these
relationships in Theorem 8.

Theorem 8: If resource allocation solves Problem
UD, then there exists a set of nonnegative shadow costs

such that

where and
.

Proof: We know that a global maximum exists to
Problem UD by Weierstrass Theorem (c.f. [30]). The theorem
follows by the Kuhn–Tucker theorem if constraint qualifica-
tion holds everywhere on the feasible set [30, p. 152]. Define

as the function that maps a resource
allocation into its corresponding constraint vector

The gradient of the constraint function, , is a
matrix which consists of two parts. The left part is

the routing matrix (discussed previously), and the right
part, with a dimension of , corresponds to the gradients of
the delay constraints. By analyzing , it is easy to show
that , , where is the cardinality
of the set of effective constraints and is a vector of effective
constraints.

Finally, since the above two conditions hold, there exists a
such that ( , ) is a critical point of the Lagrange function

of Problem UD; in other words, there exists a such that the
Kuhn–Tucker first and second conditions are met [30, Th. 6.1].

We interpret and as surcharges for bandwidth and
buffer, respectively, to class traffic on link if the delay con-
straint for that class is binding.

For Problem U, Theorem 4 provides a manner to distribute the
tasks between each user and each network router. For Problem
UD, the network algorithm (denoted ) is the same as N1,
except that the price vector now includes shadow costs for the
each delay constraint. (Updates of these associated prices per
unit delay must be provided by an agent that knows about the
delay for that class, which will be the arbitrager for that class
in the three-level model.) The user algorithm (denoted ) is
similar to U1, but now includes a charge for delay, namely

is used in place of (8). The new version of Theorem 4 becomes:
Theorem 9: If the resource allocation solves Problem UD,

then it must be an equilibrium for Network Algorithm and
User Algorithms for each class.

The proof is straightforward and is omitted. The theorem tells
us that equilibrium is a necessary condition for the solution of
Problem UD.

Dynamics for Problem U were described by Theorems 5 and
6 for the gradient projection and Newton’s methods, respec-
tively. When delay constraints are binding, the dual function
may not be everywhere continuously differentiable. The descent
direction, therefore, is not uniquely defined at some points. The
solution to this is typically to use subgradient methods. At points
at which the gradient of is not defined, the feasible direc-
tion is given by any of the subgradients of at , i.e.,

where is one of the subgradients of at . Conver-
gence results similar to Theorems 5 and 6 can be proven using
well-known properties of subgradient methods. For instance, the
gradient projection algorithm used earlier can be replaced by
a subgradient method with a constant step size, which is now
guaranteed to converge to within some range of the optimal
value [31]. Due to space limitations, we omit the details.

We now consider the design of an arbitrager. As we did in the
case in which delay constraints are not binding, we can consider
loss as intermediate variables and introduce an arbitrager layer
in between the user and the network. When a delay constraint
is binding, i.e., , surcharges are added, with and

. Correspondingly, the constant cost contours become
steeper, as demonstrated in Fig. 10. The result is that the arbi-
trager will choose higher bandwidth and lower buffer to achieve
similar loss. In addition, the marginal costs on delay will allow
the arbitrager to allocate the total delay among the links on
route .

For Problem U, Theorem 7 provides a manner to distribute the
tasks between users, arbitragers, and the network. For Problem
UD, the network algorithm remains (except that logically
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Fig. 10. Minimum cost allocation of bandwidth and buffer when the delay
constraint is binding.

Fig. 11. Dynamic allocation for class 2 on link 1.

the update of the associated prices per unit delay is done by the
arbitrager for that class). The arbitrager algorithm (denoted )
becomes

The user algorithm remains the same as U2. The resulting com-
bination gives us:

Theorem 10: If the resource allocation solves Problem
UD, then it must be an equilibrium for Network Algorithm ,
the Arbitrager Algorithm for each class, and the User Al-
gorithms U2 for each class.

The proof is straightforward and is omitted.
In the remainder of this section, we return to our two class,

two link numerical example presented in Section V-B. The pa-
rameters remain the same. Without a delay constraint, the op-
timal bandwidth and buffer allocations result in total delays of

for class 1 for class 2. We now we add
delay constraints of and , both of which
are tighter than corresponding optimal delays under Problem U.
We use the user, arbitrager, and network algorithms presented
in this section, with a constant step size subgradient method.

In Fig. 11, we show the resulting bandwidth and buffer alloca-
tion for class 2 on link 1. Without a delay constraint, the optimal

Fig. 12. Dynamic delay of class 1 along link 1 and link 2.

bandwidth and buffer allocations were (204.48,38.21). This al-
location violates the delay constraint for class 2, and therefore
the algorithms increase the price per unit buffer and decrease
the price per unit bandwidth charged to class 2 on link 1, until
the allocation satisfies the delay constraint. At optimality, the
allocation for class 2 becomes (204.70, 36.84). Consequently,
class 1 uses less bandwidth and more buffer on link 1. This raises
the delay for class 1 on link 1. To compensate, class 1 buys less
buffer on link 2 in order to satisfy its delay constraint. These
dynamics are illustrated in Fig. 12.

We note that in this experiment there is an unique optimum al-
location, and the users, arbitragers, and network all converge to
this point. Although the presence of the delay constraint makes
Problem UD not a concave program, we have not found a nu-
merical example in which there exist multiple optimum allo-
cations or in which the gradient projection algorithm does not
globally converge.

VII. CONCLUSION

We have assumed the existence of a reservation-based QoS
architecture that uses shadow-cost pricing. In particular, we
considered a pricing policy which implements a distributed
resource allocation to provide guaranteed bounds on packet loss
and end-to-end delay for real-time applications. Distributed
pricing roles consist of three entities: user, network, and an
arbitrager layer in between the user and the network.

When delay constraints are not binding, we have constructed
two simple dynamic pricing policies using gradient projection
method and Newton’s method for network price adjustments.
We have proven the convergence of these two methods when
pricing based resource allocation is distributed between user and
network. When delay constraints are binding, we have investi-
gated subgradient methods which can provide convergence to
some range of the optimal allocation. Numerical results pro-
vide some insight into how such algorithms respond when the
number of users or resource supplies change. In practice, the
rate of convergence of these algorithms must be compared to
the rate of change of other network dynamics.

In the approach presented in this paper, we considered con-
gestion-based pricing in a reservation-based QoS architecture
e.g., IntServ. The method is generic in that it does not rely
upon any specific network architecture, signalling protocol, or
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traffic characterization, and in that it allows for a broad class
of dynamic congestion-based pricing algorithms. Many chal-
lenges remain before any such congestion-based pricing could
be implemented in real networks including design of automated
user agents, delineation of time scales, design of feedback algo-
rithms, and development of measurement algorithms, and con-
sideration of the cost and complexity of the resulting architec-
ture and protocols.

A related research question is how to accomplish congestion-
based pricing in a priority-based QoS architecture such as diff-
Serv. Such an architecture often groups traffic into different pri-
ority classes, and performs scheduling policies, dropping poli-
cies, and traffic smoothing on each priority class. We believe
pricing can be used to implement congestion control and re-
source allocation in these frameworks, and are considering this
in current research.

REFERENCES

[1] J. Murphy, L. Murphy, and E. C. Posner, “Distributed pricing for
embedded ATM networks,” in Proc. Int. Teletraffic Congr., 1994, pp.
1053–1062.

[2] H. Jiang and S. Jordan, “The role of price in the connection establish-
ment process,” Eur. Trans. Telecommun., vol. 6, no. 4, pp. 421–429,
Jul.–Aug. 1995.

[3] S. Low and P. Varaiya, “A new approach to service provisioning in ATM
networks,” IEEE/ACM Trans. Netw., vol. 1, no. 5, pp. 547–553, Oct.
1993.

[4] S. Low, “Equilibrium bandwidth and buffer allocations for elastic traf-
fics,” IEEE/ACM Trans. Netw., vol. 8, no. 3, pp. 373–383, Jun. 2000.

[5] N. J. Keon and G. Anandalingam, “Optimal pricing for multiple ser-
vices in telecommunications networks offering quality-of-service guar-
antees,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 66–80, Feb. 2003.

[6] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic
framework for bandwidth allocation and pricing in broadband net-
works,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678, Oct. 2000.

[7] X. Cao, H. Shen, R. Milito, and P. Wirth, “Internet pricing with a game
theoretical approach: concepts and examples,” IEEE/ACM Trans. Netw.,
vol. 10, no. 2, pp. 208–216, Apr. 2002.

[8] F. Kelly, “Charging and accounting for bursty connections,” in Internet
Economics, L. W. McKnight and J. P. Bailey, Eds. Cambridge, MA:
MIT Press, 1997, pp. 253–278.

[9] A. M. F. P. Kelly and D. Tan, “Rate control for communication networks:
shadow prices, proportional fairness and stability,” J. Oper. Res. Soc.,
vol. 49, pp. 237–252, 1998.

[10] S. Low and D. Lapsley, “Optimization flow control, i: basic algorithm
and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp. 861–875,
Dec. 1999.

[11] R. J. La and V. Anantharam, “Utility-based rate control in the internet
for elastic traffic,” IEEE/ACM Trans. Netw., vol. 10, no. 2, pp. 272–286,
Apr. 2002.

[12] K. Kar, S. Sarkar, and L. Tassiulas, “A simple rate control algorithm
for maximizing total user utility,” in Proc. IEEE INFOCOM, 2001, pp.
133–141.

[13] S. Low and P. Varaiya, “Burstiness bounds for some burst reducing
servers,” in Proc. IEEE INFOCOM, 1993, pp. 2–9.

[14] R. Cruz, “A calculus for network delay, part 1: networks elements in
isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 114–131, Jan.
1991.

[15] P. Skelly, M. Schwartz, and S. Dixit, “A histogram-based model for
video traffic behavior in an ATM multiplexer,” IEEE/ACM Trans. Netw.,
vol. 1, no. 4, pp. 446–459, Oct. 1993.

[16] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of Ethernet traffic (extended version),” IEEE/ACM Trans. Netw.,
vol. 2, no. 1, pp. 1–15, Feb. 1994.

[17] M. Montgomery and G. DeVeciana, “On the relevance of time scales
in performance oriented traffic characterizations,” in Proc. IEEE IN-
FOCOM, 1996, pp. 513–520.

[18] A. W. Berger and W. Whitt, “Effective bandwidths with priorities,”
IEEE/ACM Trans. Netw., vol. 6, no. 4, pp. 447–460, Aug. 1998.

[19] J. Morrison, “Asymptotic analysis of a data-handling system with many
sources,” SIAM J. Appl. Math., vol. 49, no. 2, pp. 617–637, Apr. 1989.

[20] J. Qui and E. W. Knightly, “Measurement-based admission control with
aggregate traffic envelopes,” IEEE/ACM Trans. Netw., vol. 9, no. 2, pp.
199–210, Apr. 2001.

[21] C. A. Courcoubetis, A. Dimakis, and G. D. Stamoulis, “Traffic equiv-
alence and substitution in a multiplexer with applications to dynamic
available capacity estimation,” IEEE/ACM Trans. Netw., vol. 10, no. 2,
pp. 217–231, Apr. 2002.

[22] L. Breslau and S. Shenker, “Best-effort versus Reservations: A simple
comparative analysis,” in ACM SIGCOMM, 1998, pp. 3–16.

[23] J. L.-T. Park, J.-W. Baek, and W.-K. Hong, “Management of service level
agreements for multimedia Internet service using a utility model,” IEEE
Commun. Mag., vol. 39, no. 5, pp. 100–106, May 2001.

[24] A. Elwalid and D. Mitra, “Effective bandwidth of general Mar-
kovian traffic sources and admission control of high-speed networks,”
IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 329–344, Jun. 1993.

[25] A. Elwalid, D. Mitra, and R. H. Wentworth, “A new approach for allo-
cating buffers and bandwidth to heterogeneous, regulated traffic in an
atm node,” IEEE J. Sel. Areas Commun., vol. 13, no. 6, pp. 1115–1127,
Aug. 1995.

[26] J. K. MacKie-Mason and H. Varian, “Pricing congestible network re-
sources,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1141–1149,
Sep. 1995.

[27] G. D. Veciana, C. Courcoubetis, and J. Walrand, “Decoupling band-
widths for networks: a decomposition approach to resource manage-
ment,” in Proc. IEEE INFOCOM, vol. 2, 1994, pp. 466–473.

[28] K. Kumaran, M. Mandjes, and A. Stolyar, “Convexity properties of loss
and overflow functions,” Oper. Res. Lett., vol. 31, no. 2, pp. 95–100,
2003.

[29] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimiza-
tion Algorithms. New York: Springer-Verlag, 1993.

[30] R. K. Sundaram, A First Course in Optimization Theory. Cambridge,
MA: Cambridge Univ. Press, 1996.

[31] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and
Optimization. Belmont, MA: Athena Scientific, 2003.

[32] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[33] N. Jin and S. Jordan, “The effect of bandwidth and buffer pricing on
resource allocation and QoS,” Internet Economics, Special Issue Com-
puter Networks, vol. 46, no. 1, pp. 53–71, 2004.

[34] N. Jin and S. Jordan, “Sensitivity of optimal quality of service to band-
width and buffer prices,” in Proc. IEEE Conf. Decision and Control, Dec.
2003, pp. 1580–1585.

Nan Jin (S’04) received the B.S degree from Nanjing
University, Nanjing, China, in 1997, and the M.S. de-
gree from the Acoustics Institute, Chinese Academy
of Sciences, Beijing, China, in 2000, both in elec-
trical engineering. She is currently working toward
the Ph.D. degree in the Department of Electrical En-
gineering and Computer Science, University of Cal-
ifornia, Irvine.

Her research interests include Internet pricing,
system modeling of communication networks,
network performance evaluation, protocols, and

architecture design.

Gayathri Venkitachalam, photograph and biography not available at the time
of publication.

Scott Jordan (S’86–M’90) received the B.S./A.B.,
M.S., and Ph.D. degrees from the University of Cal-
ifornia, Berkeley, in 1985, 1987, and 1990, respec-
tively.

From 1990 until 1999, he served as an faculty
member at Northwestern University, Evanston, IL.
Since 1999, he has served as an faculty member at
the University of California, Irvine. His research
interests currently include pricing and differentiated
services in the Internet, and resource allocation in
wireless multimedia networks.


	toc
	Dynamic Congestion-Based Pricing of Bandwidth and Buffer
	Nan Jin, Student Member, IEEE, Gayathri Venkitachalam, and Scott
	I. I NTRODUCTION
	II. R ELATED W ORK
	III. T HE P RICING F RAMEWORK
	A. Network and User Models
	Theorem 1: $U_{j}(L_{j},N_{j})$ is increasing, twice continuousl
	Proof: By assumption, the loss on each link, $L_{jl}$, is twice 


	B. Optimal Resource Allocation
	Theorem 2: Problem U is a concave program, and $\arg\max_{x}\sum
	Proof: Problem U is a concave program, by definition, if the fea

	Theorem 3: The resource allocation $x$ solves Problem U if and o

	C. Dual Problem

	IV. D ISTRIBUTED R ESOURCE A LLOCATION U SING P RICING
	Theorem 4: The resource allocation $x$ solves Problem U if and o
	Proof: At equilibrium, the Network Algorithm N1 results in eithe

	A. Gradient Projection Method
	Lemma 1: The following two statements are true: 
	Proof: We first consider the Hessian of $q(\mu)$ . From the dual

	Theorem 5: Consider the algorithms specified in algorithms N1 an
	Proof: Let $\mu^{0}$ denotes the initial vector. We need only co


	B. Newton's Method
	Theorem 6: Consider the algorithms specified in algorithms N1 an


	V. D YNAMIC P RICING
	A. Network, User, and Arbitrager


	Fig.€1. Minimum cost allocation of bandwidth and buffer when the
	Fig.€2. Communication between user, arbitrager, and network.
	Theorem 7: The resource allocation $x$ solves Problem U if and o
	Proof: At equilibrium, the Network Algorithm N2 results in eithe

	B. Dynamic Pricing Using Gradient Projection Method

	Fig.€3. Income and substitution effects.
	Fig.€4. Dynamic allocation for a single link single class networ
	C. Dynamic Pricing Using Newton's Method

	Fig.€5. Network topology with two links and two classes of sourc
	Fig.€6. Dynamic allocation of class 1 on link 1 under a change i
	Fig.€7. Dynamic allocation of class 2 on link 1 under a change i
	Fig.€8. Prices of bandwidth on link 1 and link 2.
	Fig.€9. Loss probabilities of class 1 and 2 on each link.
	VI. B INDING D ELAY C ONSTRAINTS
	Theorem 8: If resource allocation $x^{\ast}$ solves Problem UD, 
	Proof: We know that a global maximum $x^{\ast}$ exists to Proble

	Theorem 9: If the resource allocation $x^{\ast}$ solves Problem 


	Fig.€10. Minimum cost allocation of bandwidth and buffer when th
	Fig.€11. Dynamic allocation for class 2 on link 1.
	Theorem 10: If the resource allocation $x^{\ast}$ solves Problem

	Fig.€12. Dynamic delay of class 1 along link 1 and link 2.
	VII. C ONCLUSION
	J. Murphy, L. Murphy, and E. C. Posner, Distributed pricing for 
	H. Jiang and S. Jordan, The role of price in the connection esta
	S. Low and P. Varaiya, A new approach to service provisioning in
	S. Low, Equilibrium bandwidth and buffer allocations for elastic
	N. J. Keon and G. Anandalingam, Optimal pricing for multiple ser
	H. Yaiche, R. R. Mazumdar, and C. Rosenberg, A game theoretic fr
	X. Cao, H. Shen, R. Milito, and P. Wirth, Internet pricing with 
	F. Kelly, Charging and accounting for bursty connections, in Int
	A. M. F. P. Kelly and D. Tan, Rate control for communication net
	S. Low and D. Lapsley, Optimization flow control, i: basic algor
	R. J. La and V. Anantharam, Utility-based rate control in the in
	K. Kar, S. Sarkar, and L. Tassiulas, A simple rate control algor
	S. Low and P. Varaiya, Burstiness bounds for some burst reducing
	R. Cruz, A calculus for network delay, part 1: networks elements
	P. Skelly, M. Schwartz, and S. Dixit, A histogram-based model fo
	W. Leland, M. Taqqu, W. Willinger, and D. Wilson, On the self-si
	M. Montgomery and G. DeVeciana, On the relevance of time scales 
	A. W. Berger and W. Whitt, Effective bandwidths with priorities,
	J. Morrison, Asymptotic analysis of a data-handling system with 
	J. Qui and E. W. Knightly, Measurement-based admission control w
	C. A. Courcoubetis, A. Dimakis, and G. D. Stamoulis, Traffic equ
	L. Breslau and S. Shenker, Best-effort versus Reservations: A si
	J. L.-T. Park, J.-W. Baek, and W.-K. Hong, Management of service
	A. Elwalid and D. Mitra, Effective bandwidth of general Markovia
	A. Elwalid, D. Mitra, and R. H. Wentworth, A new approach for al
	J. K. MacKie-Mason and H. Varian, Pricing congestible network re
	G. D. Veciana, C. Courcoubetis, and J. Walrand, Decoupling band-
	K. Kumaran, M. Mandjes, and A. Stolyar, Convexity properties of 
	J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Mini
	R. K. Sundaram, A First Course in Optimization Theory . Cambridg
	D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis a
	D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Ath
	N. Jin and S. Jordan, The effect of bandwidth and buffer pricing
	N. Jin and S. Jordan, Sensitivity of optimal quality of service 



