Erratum

(C) Springer-Verlag 1983

Dynamic Connections in Neural Networks

Jerome A. Feldman
Computer Science Department, University of Rochester, Rochester, USA
Biol. Cybern. 46, 27-39 (1982)

Inter-unit

One-end		Dual	Block	-
Idle	Low	High	Blocked	
Low	High	Block		
High	(Low)		Block	
Block	Blocked	Idle		
Blocked		\times	\times	Low

End-unit

Start			From inter		
Idle	Low	Low			
Low	High	High	Idle		
High		(Low)	Low		

Fig. 4. State and output tables for dynamic connections

On p. 28 , second column, the second formula should be $v \leftarrow$ if $\underline{p}>0 \ldots$. On p. 30, next to last sentence in the last full paragraph, the final " B " should be "not B ". On p. 33 , the formula in the first column should read
$\bar{P}=(1-F)^{\mathrm{B}^{K}}$.
On p. 35, the formula $v \leftarrow 2 p$ should be $v \leftarrow 0.2 p$. Also on p. 36 there is a long formula. The first bracket after the equals is empty. It should be
$\binom{d}{k}$
which is read " d choose k " and is the number of different combinations of k choices from a total of d alternatives.

$\bar{P}=$ Probability that there is no link from X to y
$N=$ Number of Units in a "Layer"
$B=$ Number of Randomly Outgoing Branches/Unit $\approx \sqrt{N}$
$F=B / N$ (Branching Factor)
$K=$ Number of Intermediate Levels (2 in diagram above)
\bar{P} for $B=1000$; different numbers of levels and units

	10^{6}	10^{7}	10^{8}
0	0.999	0.9999	0.99999
1	0.367	0.905	0.989
2	10^{-440}	10^{-44}	10^{-5}

Fig. 7. Making a connection
Random networks: N nodes each connected to \sqrt{N} others

Assume $v=0.2^{*}$ potential; decay is 2

	F	I	G	L	O	A	N	\ldots
$T=0$								
1	10	10	0	0	0	0	0	0
2	10	10	0	2	4	2	2	
3	10	10	0	2.8	6	2	2	
4	10	10	1	4	8.6	2	2	
5	10	10	1	6.3	10	2	2	

Fig. 8. Random chunking network

