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Dynamic constitutive relations for polarization and magnetization

James Baker-Jarvis* and Pavel Kabos
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303-3328

~Received 23 April 2001; published 26 October 2001!

In this paper we develop constitutive relations for materials where the magnetization and polarization may
depend on both the electric and magnetic fields. The approach is general, and is based on a previously
developed statistical-mechanical theory. We include the quadrupole-moment density as well as the dipole-
moment density in the microscopic displacement field. This yields an electric gradient term in the constitutive
equations. This leads to origin invariance in the multipole moments from which Maxwell’s equations are
defined. We present generalizations of Debye and Landau-Lifshitz equations of motion which are valid for
nonequilibrium and contain memory. The reversible and relaxation terms in the polarization and magnetization
evolution equations include the possibility of magnetoelectric coupling. Using constitutive relationship, we
derive evolution equations for the displacement and induction fields from a Hamiltonian approach.
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I. INTRODUCTION

Artificial ferrite-ferroelectric composites, photonic ban
gap crystals, and metamaterials are being used in emer
electronic technologies. New materials combine ferroel
trics, ferrites, and ferromagnetic materials into thin films
composites to obtain a desired response. Metamater
composed of wires and resonators, have a unique perm
ity and permeability response. For development of new co
posites it is crucial to have a fundamental understanding
the coupled response in the constitutive relations for M
well’s equations. To establish this relationship in such co
plicated systems, in this paper we study the foundations
the time evolution of the electric polarization and magne
zation by a Liouville-based, projection-operator, nonequil
rium statistical-mechanical theory. The goal is to presen
theory for constitutive parameters in Maxwell’s equatio
starting from microscopic quantities that are averaged to
tain macroscopic quantities. We apply the developed the
to magnetoelectric and chiral media. For the history of
projection operator approach, see Refs.@1–5#. We do not
discuss specific, field-dependent constitutive relationship

Maxwell’s equations in material media require the spe
fication of the magnetization and polarization as functions
the applied fields. Complications arise because the mag
zation and polarization depend not only on the applied fie
but also on the internal energy. In magnetoelectric media
driving can be both electric and magnetic. In this paper
develop a system of equations that describes electromag
driving with magnetoelectric coupling. These equations c
be used in Maxwell’s equations with appropriate bound
consitions to yield a closed system of equations.

Magnetic response originates in moving charge, intrin
angular momentum, and spin. If an external magnetic fiel
applied to a material, the material responds by a preces
of the magnetic moments. In the case of magnetic-field d
ing, the Landau-Lifshitz or Bloch equations phenomenolo
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cally describe the magnetization time evolution as a funct
of the magnetic field and internal energy interactions. Diel
tric behavior, on the other hand, originates from charge
electric multipole moments. Electric moments are form
from charge separation. The description of dielectric rel
ation is complicated because the translation and rotation
charge and dipoles induces magnetic fields and momen
the material. Induced and permanent electric dipoles rotat
an applied electric field due to the applied torque. Howev
since the ratio of electric to thermal energy is usually sm
thermal effects tend to randomize the orientation of perm
nent dipoles. Therefore, for low field strengths and at am
ent temperatures, few dipoles in an ensemble of dipoles
low the applied electric field. However, this small percenta
of dipoles can produce appreciable polarization.

The simultaneous application of electric and magne
fields in complex materials can produce very complex
havior. A particular example is magnetoelectric materi
@6–12#. Magnetoelectric coupling occurs in crystals havi
the requisite symmetry and lattice coupling between the e
tric and magnetic moments. Hornreich and Shtrikman@13#
and Rado@14# found that the origin of magnetoelectric be
havior was the electric-field-inducedg shift, spin-orbit inter-
action, exchange energies, and the electric-field-induced
in single-ion anisotropy energy. Magnetoelectric effects a
occur in materials moving in relation to the observer. T
underlying electrodynamics is complicated by induced fie
interacting with electric and magnetic moments. That is,
spin orientation is coupled to the electric multipole throu
the lattice. In such materials the application of electric
magnetic fields produces magnetization or polarization,
spectively. Magnetization orientations may change due to
application of electric fields. Electric-dipole moments c
also be modified by application of magnetic fields throu
lattice deformation.

The outline of the paper is as follows. We present a g
eral approach for the combined magnetic and dielectric
sponse in complex media. In Sec. II, we overview consti
tive relationships in electromagnetic theory. In Sec. II B, w
define the polarization, magnetization, internal energy, a
associated Hamiltonian. In Sec. II C we develop t
27-1



c
a-
. I
on

f
itu
ce
n

. I
tio

ga
io
io
iv
ip

h
th
o

iv-

en
ri
e
tit
s

ri-

n-

lec
er

n-

in
e
on

nc
in

en
ld

f

pic

d
mi-
tri-

it
we
ole.
er
he
arge

ten

he
ned

n is
mo-

u-
x-

rgy

ds.
of
of

the
im-

vo-
e

vari-
his
en-
ag-
ge

JAMES BAKER-JARVIS AND PAVEL KABOS PHYSICAL REVIEW E64 056127
statistical-mechanical foundations for the analysis. In Se
II D and II E we derive evolution equations for the polariz
tion, magnetization, internal-energy density, and entropy
Sec. II F we develop a linear approximation for polarizati
and magnetization. In Sec. II G we present special cases
the magnetization evolution. In Sec. III we use the const
tive relations and derive evolution equations for the displa
ment and induction fields. Additionally, general expressio
for charge and energy conservation are derived. In Sec
we investigate a number of special cases using the equa
derived in Sec. II C.

II. MICROSCOPIC CONSTITUTIVE QUANTITIES

A. Constitutive relations and theoretical constraints

In order to solve electromagnetic relaxation and propa
tion problems, Maxwell’s equations require the specificat
of relationships between the polarization and magnetizat
and electric, magnetic fields, and their space and time der
tives, in the form of constitutive relations. This relationsh
can be expressed asP⇔$E,H%, M⇔$H,E%. The double-
headed arrow in this relation indicates that the relations
could be local or nonlocal in time and space, and that
constitutive relation may be linear or nonlinear functions
the driving fields, or contain various derivatives of the dr
ing fields @15,16#.

The dielectric polarization is odd under parity and ev
under time reversal. The magnetization is even under pa
transformation and odd under time reversal. These symm
relationships place constraints on the nature of the cons
tive relationships@17–34#. B and E are widely accepted a
the fundamental fields rather thanD and H, and we agree
with this interpretation~see, for example, the covariant de
vation of Maxwell’s equations@25#!. However, in this paper
we useE andH as driving fields. We are interested in co
stitutive relationships, so we may write, for example,B
5mH rather than the reverse.

B. Formulation of the problem

When driven by time-dependent applied magnetic or e
tric fields, a material may attain induced in addition to p
manent magnetic moments@26#. Locally, the total magnetic
moment is built from intrinsic and orbital angular mome
tum and current-induced magnetic moments@27#. The
atomic or other charge-motion magnetic moments are
cluded because we consider nonequilibrium systems. W
not use relative coordinates from the nuclei to the electr
as in Ref.@24#.

The authors of Refs.@16,25,27,28# showed that for multi-
pole expansion truncation consistency and origin invaria
in Maxwell’s equation, the displacement vector needs to
clude a quadrupole term in addition to the dipole mom
density. The macroscopic displacement and induction fie
are related to the macroscopic magnetizationM and polar-
ization P̃ and applied fieldsE andH by

D5e0E1P̃2“•QI[e0E1P, ~1!

B5m0H1M , ~2!
05612
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where e0 and m0 are the permittivity and permeability o
vacuum,QI is the macroscopic quadrupole moment, andP̃ is
the dipole-moment density, whereasP is the effective mac-
roscopic polarization which includes the macrosco
quadrupole-moment density term.

We will now define the macroscopic polarization an
magnetization in terms of the microscopic densities. The
croscopic dipole density plus the quadrupole-moment con
bution for N particles is defined as

p5(
j 51

r jejd~r2r j !2 1
2 (

j 51
ej~r j r j !•“d~r2r j !5(

j
pj ,

~3!

The chargeej is can be positive or negative, for example,
is negative for electrons and positive for protons. Here
sum over bound charge that is electrically neutral as a wh
Overall dipole bound charge neutrality is required in ord
for the net dipole moment to be independent of origin. T
free charge need not be neutral as a whole. The free-ch
kinetic energy is included in the internal energy.

The microscopic magnetic-moment density can be writ
in terms of intrinsic magnetic momentsmI i and the magnetic
dipole density due to charge motionmO as

m5(
i

H g I i j i~r i !d~r2r i !2
gei

ei
pi3piJ [(

i
mI i 1mO ,

~4!

gei5m0ei /2Mi whereMi is mass andei is the charge located
at positionr i. j is the intrinsic spin, andr i is the position of
particle i with a canonical momentum,pi5Mi ṙ i1eiA i .
Note thatgei can be positive or negative depending on t
sign of the charge. The spin gyromagnetic ratios are defi
by g I i 5gim0ei /2Mi , and for an electrong'2.

The expected value of the macroscopic magnetizatio
separated into intrinsic and magnetization due to charge
tion, M (r ,t)[^m&[Tr@mr(t)#5S i^mI i &(r ,t)1^mO&(r ,t),
wherer is the statistical-density operator that satisfies Lio
ville’s equation and is reviewed in Appendix C. The e
pected macroscopic polarization is P(r ,t)[^p&
[Tr@pr(t)#, and the expected macroscopic internal-ene
density is^U&[Tr@Ur(t)#[U(r ,t). Both p and m implic-
itly depend on functions of the electric and magnetic fiel
Modeling induced electric moments requires a knowledge
the positions of all the charges in the molecules. Modeling
permanent electric dipoles requires only a knowledge of
coordinates of the dipole, in which case the integrations s
plify in the expectation calculations.

C. Statistical-mechanical theory

We now use statistical-mechanical theory to develop e
lution equations@3#. The analysis is semiclassical in that w
use Poisson brackets between position and momentum
ables and also include intrinsic angular momentum. In t
section we define the Hamiltonian, then introduce the
tropy, and then derive expressions for the polarization, m
netization, and internal-energy density in terms of Lagran
7-2
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DYNAMIC CONSTITUTIVE RELATIONS FOR . . . PHYSICAL REVIEW E 64 056127
multipliers. The Lagrange multipliers are determined for t
linear response. The expressions for the polarization, ma
tization, and internal energy-density will be used in Sec. I
for a derivation of evolution equations.

Consider a dielectric and magnetic material immersed
electric and magnetic fields. The applied Maxwell fiel
E(r ,t) andH(r ,t) are turned on att50, and drive the non-
equilibrium process. We assume that the wavelength of
field is much longer than the particle dimensions. In a fin
time after a field is appled, relaxation occurs in the mate
which modifies the interaction field. In this analysis we lim
relaxation time tot@\/kT.

In classical mechanics the dynamical state is specified
the phase coordinatesr i and momentapi for each degree o
freedom ~see Fig. 1!. This dependence for all particles
denoted by the variableG. The applied electric and magnet
fields are functions ofr andt and not functions of the phase
space coordinates.

The trace~Tr! is defined in classical mechanics as in
gration over phase variables and quantum mechanically
trace of the operators. The definition of the classic
mechanical trace is

Tr~ !5E ~ !dr1¯drNdp1¯dpN[E ~ !dG. ~5!

The Hamiltonian in volumeV includes potential and ki-
netic energy interaction of moments with applied field
dipole-dipole interactions, magnetic anisotropy, and other
teractions. We separate the Hamiltonian into internal ene
density, Stark, and Zeeman interactions~see Appendix A!

H~ t !5E d3r$U~r ,G!2p~r ,G!•E~r ,t !2m~r ,G!•H~r ,t !%.

~6!

U is the internal-energy density which contains the latt
electrostatic and magnetostatic energies, the kinetic en
of the bound and free charge, and other interactions.p, m,
andU, are functions ofr and positions and momenta of a
the particles, but have no explicit time dependence. T
dependence in these quantiles is obtained after taking
trace. The effect of the inclusion of the quadrupole term inp
is to include in the Hamiltonian the gradient of the elect
field which interacts with the quadrupole moment. Th
electric-field gradient is also present in the equations of m

FIG. 1. Coordinate system with position and momentum
charger i , pW i .
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tion for the polarization and magnetization which we la
derive. These gradients of the electric field terms have b
shown to be important in constitutive modeling@28#. If even
higher-order moments were included in the definitions op
andm, then higher-order field derivatives would be includ
in the Hamiltonian.

Calculation of the equations of motion is based
Poisson-bracket or commutator relations. The kinetic ene
and magnetic terms in the internal energy do not comm
with the polarization and, therefore, when calculating t
time evolution, will contribute to@p,F#. We use the symbols
@ # for either classical-mechanical Poisson brackets
quantum-mechanical commutators~see Appendix A!. In this
paper, intrinsic spin is treated quantum mechanically. HerF
is the internal energy~as compared withU which is the
internal-energy density!. m and the magnetic dipole-dipol
interaction do not commute withm, and therefore will con-
tribute to@m,F#. We separate the internal energy into latti
potential energyF0 and lump the balance intoG, or F5F0
1G.

In addition to r, the projection-operator statistica
mechanical theory uses a relevant canonical-density func
s. s does not satisfy Liouville’s equation, but an exact equ
tion of motion can be constructed in terms ofr, s, and a
projection operator@1#. The basis of the projection-operato
method is the projection out of the relevant variable con
bution and the lumping the rest into relaxation or dissipat
terms.s can be constructed by maximizing the informatio
entropy at specific times,

S~ t !52k Tr@s~ t !ln s~ t !#, ~7!

subject to constraints on relevant variablesM , P, andU @1#.
This yields

s~ t !5
1

Z
expS 2E d3r 8$b~r 8,t !U~r 8!

2b~r 8,t !m~r 8!•HM~r 8,t !

2b~r 8,t !p~r 8!•EP~r 8,t !% D . ~8!

The initial condition iss(t50)5r(t50), ~this condition
can be generalized, see Oppenheim and Levine@4#!. The
partition function is

Z5TrFexpS 2E d3r 8$b~r 8,t !U~r 8!2b~r 8,t !

3m~r 8!•HM~r 8,t !2b~r 8,t !p~r 8!•EP~r 8,t !% D G , ~9!

where Z is the partition function, b(r ,t)51/kT(r ,t),
b(r ,t)EP(r ,t), andb(r ,t)HM(r ,t) are Lagrangian multipli-
ers related to the inverse temperature and electromagn
fields that interact withp and m, wherek is Boltzmann’s
constant andE andH are applied fields, whereasEP andHM
are effective local fields which do not depend on the pha

f

7-3
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The constraints are

M ~r ,t !5^m&

5
1

Z
TrFm~r !expS 2E d3r 8$b~r 8,t !U~r 8!

2b~r 8,t !m~r 8!•HM~r 8,t !

2b~r 8,t !p~r 8!•EP~r 8,t !% D G , ~10!

P~r ,t !5^p&

5
1

Z
TrFp~r !expS 2E d3r 8$b~r 8,t !U~r 8!

2b~r 8,t !m~r 8!•HM~r 8,t !

2b~r 8,t !p~r 8!•EP~r 8,t !% D G , ~11!

U~r ,t !5^U&

5
1

Z
TrFU~r !expS 2E d3r 8$b~r 8,t !U~r 8!

2b~r 8,t !m~r 8!•HM~r 8,t !

2b~r 8,t !p~r 8!•EP~r 8,t !% D G . ~12!

At this stage of development we have expressed the expe
values of the magnetization, polarization, and intern
energy density as functionals of Lagrange multipliers wh
are interpreted as electric and magnetic fields and inv
temperature. The Lagrangian multipliers can be expresse
terms ofM , P, andU. A linear approximation for these quan
tities is obtained in Sec. II D. Then we develop evoluti
equations for these quantities.

D. Evolution equations

In this section we use the statistical-mechani
projection-operator theory to derive time-evolution equatio
for the magnetization, polarization, and internal-energy d
sity @1#. If we apply Eq.~C10! from Appendix C and Eq.~6!
to the case of simultaneously applied electric and magn
fields incident on a material containing intrinsic and induc
magnetic moments and permanent and induced electric
ments, we find

]M ~r ,t !

]t
5geffM ~r ,t !3@H~r ,t !2HMM~r ,t !#1^ṁ&

1E d3r 8E
0

t

Tr$@m~r !,H~r ,t !#T~G,t,t!

3~12P~G,t!!%@m~r 8!,s~G,t!#)•$H~r 8,t!

2HM~r 8,t!%dt1E d3r 8
05612
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0

t

Tr$@m~r !,H~r ,t !#T~G,t,t!~12P~G,t!%

3@p~r 8!,s~G,t!#!•$E~r 8,t!2EP~r 8,t!%dt,

~13!

where we divided the magnetic field from the internal ene
into purely magnetic and magneto-electric components a

HM5HMM1HME , ~14!

andHME appears in the magnetoelectric term,ṁ, as we will
see shortly, and

]P~r ,t !

]t
5^ṗ&1E d3r 8E

0

t

Tr$@p~r !,H~r ,t !#T~G,t,t!@1

2P~G,t!#@p~r 8!,s~G,t!#%•$E~r 8,t!

2EP~r 8,t!%dt1E d3r 8

3E
0

t

Tr$@p~r !,H~r ,t !#T~G,t,t!@12P~G,t!#

3@m~r 8!,s~G,t!#%•$H~r 8,t!2HM~r 8,t!%dt.

~15!

T is an evolution operator andP is a projection operator
defined in Appendix C. The projection operator in the rela
ation term subtracts flux and assures the proper behavio
the correlation functions at large time. The reversible ter
reduce to 0 when there is no correlation between the mag
tization and polarization.

Using Eqs.~6!, ~13!, ~15!, and ~C1!, we find that the
internal-energy density evolves as

]U~r ,t !

]t
1¹•Jq5E~r ,t !•

]P~r ,t !

]t
1H~r ,t !•

]M ~r ,t !

]t
,

~16!

where we included an additional divergence term for therm
driving by heat exchange with the surroundings,¹•Jq ~see
Robertson’s thermal-driving formalism@33#!. Equations
~13!, ~15!, and ~16! are exact within the approximations i
the multipole moments, and valid for nonequilibrium stat
As a consequence of the generality of the formulation,
nonlinear correlation functions must be approximated a
interpreted. The relaxation kernels can be approximated
many ways~see Refs.@2#, @29#!. These equations can then b
linearized and solved using Fourier analysis.

We now calculate the so-called reversible terms in
equations of motion~13!, ~15!, and~16! ~see Appendix B!:

Tr~ iLms!5Tr~@H,m#s!

5TrS Fm,E m•Hd3r Gs D1TrS Fm,E p•Ed3r Gs D
2Tr~@m,F#s!
7-4
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DYNAMIC CONSTITUTIVE RELATIONS FOR . . . PHYSICAL REVIEW E 64 056127
5TrS Fm,E m•~H2HM !d3r Gs D
1TrS Fm,E p•~E2EP!d3r Gs D . ~17!

The integrals can be performed because of the delta fu
tions in Eqs.~3! and ~4!. Tr(@m,F#s) contains magnetic
internal interactions including any magnetoelectric coupli
This term is re-expressed in terms of effective fieldsHM and
EP as shown in Appendix B. Magnetoelectric effects c
also originate from charge translation; however, in t
analysis we do not treat media that is moving as a wh
Using commutation relations between the intrinsic angu
momenta and Poisson brackets for magnetic dipole
ments, we find

TrS Fm,E m•~H2HM !d3r Gs D
5S (

i
g I i ^mI i &~r ,t !1gO^mO&~r ,t ! D

3@H~r ,t !2HM~r ,t !#, ~18!

whereg I i are for spin species~i!. We neglected the secon
spatial derivative of thed function and any field gradients
The magnetic dipole-moment densitŷmO&5Tr@( igeir i
3p¢ id(r2r i)s# can be small in comparison tômI i &. For a
single spin species, the right hand side of Eq.~18! can be
approximated asgeffM3(H2HM). Noting that mI com-
mutes withp, and using Eq.~14!, we see that the magneto
electric term in Eq.~13! can be expressed as

^ṁ&52TrS Fm,E m•HMEd3r Gs D
2TrS FmO ,E p•~E2EP!d3r Gs D . ~19!

Calculating the Poisson brackets between the magn
dipole angular momentum and polarization, we find that
~19! is

^ṁ&~r ,t !52(
i

ugeiuTr@d~r2r i !sr i3uei uE~r i ,t !#

1(
i

ugeiuTr@d~r2r i !sr i3uei uEP~r i ,t !#2geffM

3HME . ~20!

In Eq. ~20! the first term on the right-hand side~rhs! denotes
the interaction withE-field and the second term the intera
tion with EP field, the quadrupole term cancels with the d
rivative of the delta function in the dipole-moment densit

For the polarization we have
05612
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^ṗ&~r ,t !5Tr~ iLps!5Tr~@H,p#s!

5TrS Fp,E m•Hd3r Gs D1TrS Fp,E p•Ed3r Gs D
2Tr~@p,F#s!

5TrS Fp,E m•~H2HM !d3r Gs D
1TrS Fp,E p•~E2EP!d3r Gs D . ~21!

The term containing only polarization in Eq.~21! is 0, be-
causep commutes with itself. Tr(@p,F#s) contains all re-
versible polarization internal energy interactions includi
effects of magnetoelectric coupling.

^ṗ&~r ,t !5(
i

uei uTr@d~r2r i !sr i3ugeiuH~r i ,t !#

2(
i

uei uTr@d~r2r i !sr i3ugeiuHM~r i ,t !#.

~22!

The first term on the right hand side denotes the interac
with H field and the second term the interaction with theHM
field.

HM in Eqs. ~20! and ~22!, contains effects from demag
netization, induced fields, magnetoelectric interaction, a
other interactions with the internal energy. As we will see
the applications, this field can be the origin of Thomas p
cession or spin-orbit interaction. Similarly, theEP field in
Eqs. ~20! and ~22! contains depolarization, induced electr
fields formed by changing magnetic flux, magnetoelect
and other interactions with the internal energy~see Fig. 2!.

We see from Eq.~4! that the reversible bound curren
defined by Eq.~22! is related to the vector-potential mome
tum and the time integral of the magnetic part of the Lore
force. The first term is related to changes in the magn
moment due to an applied electric field acting on dipo
moments. We expect this term to be small. The term cont
ing EP is related to changes in magnetic moments from
torque due to the Coulomb forces from induced elec

FIG. 2. Model of a rotating dipole and induced magnetic field
7-5
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JAMES BAKER-JARVIS AND PAVEL KABOS PHYSICAL REVIEW E64 056127
fields; that is,( igeir i3eiEP . The term containingHM in Eq.
~22! is related to the magnetic field induced in the dipo
rotation and other internal-energy interactions. Equation~22!
includes the charge current of, for example, a polar molec
rotating in an electric field.̂ṁ& can be seen from Eq.~4! to
be proportional tor crossed into the Coulomb electric forc
In the case of no polarization-magnetization interaction,^ṁ&
goes to zero. In this case the constitutive equations decou
Eq. ~13! reduces to a generalized magnetization-evolut
equation, and Eq.~15! reduces to a generalized polarizatio
evolution equation. In Sec. II F examples are presented fṗ
andṁ when permanent dipole and magnetic moments ro
due to applied fields.

E. Nonequilibrium entropy evolution

We can also calculate the nonequilibrium entropy fro
Eq ~7!:

S~ t !52k Tr@s~ t !ln s~ t !#

5E d3r
1

T
@U~r ,t !

2P~r ,t !•EP~r ,t !2M ~r ,t !•HM~r ,t !#1k ln Z,

~23!

and the entropy rate is, using Eq.~16!,

dS~ t !

dt
52kTrS ds~ t !

dt
ln s~ t ! D

5E d3r
1

T H ]U
]t

2
]Prelax

]t
•EP2

]M relax

]t
•HMJ

5E d3r H 2¹•Js2
Js•¹T

T J 1
1

k E0

tE dtd3rd3r 8

3Tr@ ṡ~r ,t !T~12P!ṡk~r 8,t!#, ~24!

where the thermal driving entropy flux from the surroun
ings @35,36# is Js5Jq /T. In the case of thermal isolation
this term is 0. The last integrals on the rhs of Eq.~24! are the
entropy production. The subscript~relax! indicates only the
relaxation part of Eqs.~13! and~15! is used. Also the micro-
scopic entropy density rate isṡ5(U̇2ṗ•EP2ṁ•HM)/T,
where the dot is defined in Eq.~C10!. HereU̇ is the dynami-
cal evolution and does not contain the thermal driving ene
density. The superscriptk indicates Kubo transform@3#; clas-
sicaly, ak5a. We have not been able to show that t
entropy-rate correlation function on the rhs of~24! is strictly
>0 The reversible terms do not contribute directly the e
tropy rate, since Tr(iLs)50.

F. Linear approximation

In order to use Eqs.~13! and ~15!, we need to obtain
approximations for the Lagrangian multipliers represent
the effective electric and magnetic fieldsEP(r ,t) and
HM(r ,t).
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In a linear approximation fors, we use a zero-order equ
librium canonical-density function in terms of lattice intern
energyF0 ;

s05exp~2bF0!/Tr@exp~2bF0!#.

F0 depends on the positions of all of charges in the lattice
is independent of the kinetic energy, electric-moment d
sity, and magnetic-moment density. We assume that par
the internal energy,G, contains the electric and magnet
dipole-dipole interactions, kinetic energy, and other inter
tions. If we expand Eq.~11! for a small argument, in a high
temperature approximation, assumep•EP , m•HM , and G
are small relative tokT, and keep only terms linear inEP ,
HM , andG, in volumeV we find

P~r ,t !

V
'

^p~12bG!&0

V
1@b^pp&02b2^p$p,G%&0#•EP~r ,t !

1@b^pm&02b2^p$m,G%&0#•HM~r ,t ! ~25!

or

P~r ,t !5^p~12bG!&01xJ0pp•@ II2NIpp#•EP~r ,t !1xJOpm@ IJ

2NIpm#•HM~r ,t !

[^p&01RJ1•EP1RJ2•HM , ~26!

where the zero-order static susceptibility per unit volume
xJ0pp5bV^pp&0 , xJ0pm5bV^pm&0 , $ % denotes an anticom
mutator, and the subscript on the brackets indicate thats0 is
used in the expectations. In nonpyroelectric materials,^p(1
2bG)&050. The tensorsNI i j contain depolarization, demag
netization, and other interactions contained inG, where

NIpp5b$^pp&0%
21^p$p,G%&05b2xJ0pp

21 ^p$p,G%&0 ,
~27!

NIpm5b$^pm&0%
21^p$m,G%&05b2xJ0pm

21 ^p$m,G%&0 .
~28!

AssumingNIpp and NIpm are small, sinceG/kT!1, we may
expand Eq.~26! to obtain the effective local field

EP~r ,t !'~ IJ1NIpp!xJ0pp
21 $P~r ,t !2xJ0pm@ IJ2NIpm#•HM~r ,t !%

'xJ0pp
21 P~r ,t !1LIp•P~r ,t !, ~29!

where the electric depolarization tensor is defined as

LIp[b2xJ0pp
21 ^p$p,G%&0xJ0pp

21 5NIpp•xJ0pp
21 . ~30!

Equation~30! represents the depolarization tensor in terms
the dipole-dipole interaction potential energy. The magn
zation can be approximated as
7-6
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M ~r ,t !

V
'

^m~12bG!&0

V
1@b^mm&0

2b2^m$m,G%&0#•HM~r ,t !1@b^mp&0

2b2^m$p,G%&0#•EP~r ,t ! ~31!

or

M ~r ,t !5^m~12bG!&01xJ0mm•@ IJ2NImm#•HM~r ,t !

1xJ0mp•@ IJ2NImp#•EP~r ,t !

[^m&01RJ3•EP1RJ4•HM . ~32!

In antiferromagnetic, paramagnetic, and diamagnetic ma
als there is no net magnetization in the absence of an app
field. The coefficientRJ3 is related to thea in Rado’s theory
@9,14#.

The demagnetization tensors are

NImm5b$^mm&0%
21^m$m,G%&05b2xJ0mm

21 ^m$m,G%&0
~33!

and

NImp52b$^mp&0%
21^m$p,G%&05b2xJ0mp

21 ^m$p,G%&0 ,
~34!

where the susceptibilities per unit volume arexJ0mm
5bV^mm&0 andxJomp5bV^mp&0 . SinceG/kT!1, we can
assumeNImm is small, and we may expand Eq.~32! to obtain
the effective field

HM~r ,t !'~ IJ1NImm!•xJ0mm
21 @M ~r ,t !

2xJ0mp•@ IJ2NImp#•EP~r ,t !#

'xJ0mp
21

•M ~r ,t !1LIm•M ~r ,t !, ~35!

LIm[b2xJ0mm
21

•^m$m,G%&0•xJ0mm
21 5NImm•xJ0mm

21 . ~36!

For magnetic materials Eq~35! yields well-known results.
Depolarization has its origin in the potential field created
the polarized bound charge which creates an opposing e
tric field. Demagnetization is related to the analogous s
effects.

Using Eqs.~26! and ~32! we can solve forEP and HM
when there is no magnetization or polarization in the abse
of applied fields:

EP5@RJ32RJ4•RJ2
21

•RJ1#21
•@M2RJ4•RJ2

21
•P#

[SJ1•P1SJ2•M . ~37!

and

HM5RJ2
21

•@P2RJ1•EP#[SJ3•P1SJ4•M . ~38!
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G. Relaxation approximations

The relaxation kernel can be approximated in the abse
of an electric field and no reversible terms to obtain Land
Lifshitz, Gilbert, or Bloch-Bloembergen equations~see Rob-
ertson@2#!. In the simplest case of no memory, the kernel
proportional to a delta function. Equations~13! and~15! can
be solved by using Eqs.~10!–~12! or their linear approxi-
mates. In Sec. II F, applications are presented to illustrate
coupling of induced fields to the electric and magnetic m
ments. With no electric field driving, for Eq.~13! we have

]M ~r ,t !

]t
5geffM ~r ,t !3@H~r ,t !2HM~r ,t !#

1E d3r 8E
0

t

Tr$@m~r !,H~r ,t !#T~G,t,t!

3@12P~G,t!#@m~r 8!,s~G,t!#%•$H~r 8,t!

2HM~r 8,t!%dt, ~39!

where

Tr$@m~r !,H~r ,t !#T~G,t,t!@12P~G,t!#@m~r ,!s~G,t!#%

5KJ .

The relaxation term reduces to the Landau-Lifshitz rela
ation expression when we assume the magnetization rel
toward the effective magnetic field. This was shown by Ro
ertson@2# for NMR relaxation.

The Gilbert dissipation expression is of the form

}M3
dM

dt
. ~40!

So the loss term in this case assumes that the right hand
of Eq. ~13! is orthogonal toM .

The original Landau-Lifschitz equation is obtained fro
Eq. ~13! if M5xJ0mHM and the kernel is assumed to be
delta function} IJd(t2t) and

dM

dt
5ggM3~H2LJm•M !2C~xJ0m

21
•M2H!, ~41!

whereC is a positive constant.
The Bloch-Bloembergen equation can be obtained

dM

dt
5ggM3~H2LJm•M !2TJ•~M2M0!, ~42!

whereM05M0ez is the static magnetization, and the appli
field contains a static bias magnetic field in thez direction. In
Eq. ~42! we define

TJ5S 1/T2 0 0

0 1/T2 0

0 0 1/T1

D , ~43!
7-7
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and let KJ5xmd(t2t)TJ. We set H2HM'H2LJm•M
2xm

21M , where we usedHM5xm
21M1LJm•M . Then thex

andy components ofH2LJm•M , in the relaxation term, are
neglected, keeping only thez component which is written a
Hz5xm

21M0 .

III. DISPLACEMENT AND INDUCTION FIELDS

Evolution equations for the displacement and induct
fields, charge density, and energy conservation can be
tained from the Poisson-bracket formalism using the con
tutive relationships~13! and~15!, and Eqs.~1! ~2!, and iden-
tifying E and H as Maxwell fields. The magnetic field i
expressed in terms of the vector potential, with each part
having a canonical momentum associated with it. The ve
potential for particlei is A i(r )5aid(r2r i). The Poisson
bracket of the vector potential, and displacement fields w
themselves yield@A i ,A j #50, @di(r ),dj (r )#50 and the ex-
pected values areB5Tr@b(r )r#5Tr$S i“3@aid(r2r i)#r%
1“3A, “•b50, D5Tr$@e0E1p(r )#r%5Tr@d(r )r#.

If we add and subtract (e0uEu21m0uHu2) from the internal
energy density in Eq.~6!, then the Hamiltonian can be writ
ten as

H~r !5E ~UM2d•E2b•H!d3r , ~44!

where the Maxwell internal-energy densityUM is a sum of
the energy density due to the materialU and the energy
density in the fields in vacuum. The integration volume
the Hamiltonian is large enough to include all stored fie
energy.

In the Maxwell approximation because of,“•E5r t, and
Ampere’s lawUM does not depend on the position coord
natesr i of the particles but does depend onr . This is because
the electrostatic and magnetostatic lattice energies can
expressed in terms ofe0uE(r ,t)u21m0uH(r ,t)u2. UM does
depend on the canonical momentum through the kinetic
ergy. We define the current density asJ5Tr(@d,uM#r),
whereuM is the Maxwell internal energy. Therefore, usin
Liouville’s equation@Eq. ~C1!# Eq. ~1!, and the definition of
the Poisson brackets@Eq. ~A3!#, and using the results from
Appendix E, we find, from a classical analysis,

]B

]t
5m0

]H

]t
1

]M

]t
5Tr~ uH,bur!

52TrS F E e0uEu2d3r1(
j

ej r j•E~r j ,t !

2
1

2 (
j 51

ej~r j r j !:“E~r j ,t !,

(
i

“3$@a~r i !d~r2r i !#1A~r !%r52“3E, ~45!

where, to obtain the last expression, we took the trace
integrated by parts. We have Tr(@uM ,b#r)50 sinceuM does
not depend onr i .
05612
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The displacement field satisfies

]D

]t
5e0

]E

]t
1

]P

]t
5Tr~@H,d#r!

5TrS F e0E1(
j

ej r jd~r2r i !2
1

2 (
j 51

ej~r j r j !•“

3d~r2r j !,

(
i

“ i3ai•H~r i ,t !1E
vac

“3A•H~r ,t !d3r Gr D
2Tr~@d,uM#r!5“3H2J. ~46!

e0uEu2 does not contribute to the Poisson brackets in E
~45!. When taking the spatial derivative in the trace, t
quadrupole term cancels with the derivative of the de
function in the dipole-moment density~see Appendix E!.

Using only the kinetic energy of the free chargeTf and
neglecting the bound-charge dependence, the current de
is

J~r i !5Tr~@d,uM#r!

5(
i

TrS ei

M1
~p¢ i ~ f !2eA i ~ f !!d~r2r i !r D

5(
i

TrS ei

M i
~p¢ i ~ f !2eA i ~ f !!d~r2r i !s D

1E d3r 8E
0

t

(
i

TrS ei

M i
~p¢ i ~ f !2eA i ~ f !!d~r2r i !

3T~ t,t!$12P~t!%@p~r 8!,s# D @E~r 8,t!

2EP~r 8,t!#dt1E d3r 8E
0

t

(
i

TrS ei

M i
~pW i ~ f !

2eA i ~ f !!d~r2r i !T~ t,t!$12P~t!%@m~r 8!,s# D
3@H~r 8,t!2HM~r 8,t!#dt. ~47!

When Eqs.~13! and ~15! are used in Eqs.~45! and ~46!, we
obtain general evolution equations for the displacement
induction fields. In addition we have

“•B50. ~48!

The bound charge density from Eq.~1! is

¹•P5TrS (
i

eir i•¹d~r2r 8!r2
1

2 (
j 51

ej~r j r j !:¹“

3d~r2r j !r D 52rb , ~49!

where the sum is over the bound charge. Therefore, s
“•E5r t ,
7-8
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¹•D5TrS (
i

eid~r2r i !r D 5r f . ~50!

Maxwell’s equations~45!–~50! and ~10!–~12!, together
with boundary conditions, determineE, H, EP , HM , b, M ,
andP.

The equation of continuity for charge conservation can
obtained from Eqs.~46! and ~50!:

] Tr~S ieid~r2r i !r!

]t
1TrS (

i

ei~p¢ i ~ f !2eA i ~ f !!

Mi
•¹d~r

2r i !r D 5
]Tr~S ieid~r2r i !r!

]t

1¹•TrS (
i

ei~p¢ i ~ f !2eA i ~ f !!

Mi
d~r2r i !r D 50, ~51!

where the first term on the right-hand side is]r f /]t, and the
last Tr term is equal toJ.

The sums here are over all free charge. From Eq.~16! we
see that the time derivative of the Maxwell internal-ener
density,UM5Tr(UMr), is

]UM~r ,t !

]t
5

]D~r ,t !

]t
•E~r ,t !1

]B~r ,t !

]t
•H~r ,t !. ~52!

This is the same expression as derived by Landau and
chitz using another approach@6#. For linear systems the in
tegral of Eq.~52! can be performed to obtain

UM5 1
2 @D•E~r ,t !1B•H~r ,t !#. ~53!

Using Eqs.~45!, ~46!, ~47!, and~52!, we obtain the gen-
eral equation of energy conservation

]UM

]t
1“•S52J•E, ~54!

where the Poynting vector isS5E3H. Equations~52! and
~54! are general, and are not limited to linear dielectrics.
The entropy for an electromagnetic field, including a h
flux from the surroundingsJq5TJs

dS~ t !

dt
5E d3r S 2¹•Js1

1

T H 2Js•¹T1J•~EP2E!

2S m0

]H

]t
1¹3ED •~H2HM !

2S e0

]E

]t
2¹3HD •~E2EP!J D . ~55!

IV. APPLICATIONS TO MAGNETOELECTRIC
AND ARTIFICIAL MEDIA

A. Magnetoelectric media

Usually magnetoelectric media are analyzed in terms
linear constitutive relations between the electric field and
05612
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f
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magnetization. If we use Eq.~32! we obtain a relation analo
gous to that obtained by Rado@9#:

M ~r ,t !

V
5@b^mm&02b2^m$m,G%&0#•HM~r ,t !1@b^mp&0

2b2^m$p,G%&0#•EP~r ,t !

'bJ•HM~r ,t !1aJ•EP~r ,t !.

B. Artificial media

In this section we illustrate the dynamics of electric a
magnetic field coupling in the reversible terms@Eqs.~20! and
~22!# for various special cases. We assume a dynam
model with no relaxation. Relaxation could be included, b
makes the analysis less transparent.

We assume a perfectly rigid electric dipole that is free
rotate. Intrinsic magnetic moments are rigidly coupled to
charges. To obtain these specialized cases, the density
tion in Eqs.~20! and~22! is assumed to constrain the charg
to a rigid dipole with aligned magnetic moments.

If an electric field is applied to a dipole without magnet
moments, the dipole rotates because of the applied ele
torque. The rotation produces induced magnetic fields fr
each charge, but in opposite directions. This produces
duced magnetic moments in opposite directions. This is
causege changes sign for6e. We now study special case
of coupled magnetic moments and charge movement.

1. Case 1: electric driving

In the first application, we consider a rigid, rotating ele
tric dipole in an applied electric field where each particle h
an intrinsic magnetic moment, as shown in Fig.~3!. The
magnetic moment is constrained to align with the elec
dipole. This is a magnetoelectric, Tellegen model in an
plied electric field @11#. We use the phrase ‘‘Tellege
model’’ since the media do not seem to exist in nature
only an electric field is applied, the dipole will rotate an

FIG. 3. Model of a rotating dipole with oriented magnetic m
ments with induced magnetic fields6Hin . Also indicated is the
angular momentum of the magnetic moments with angular mom
tum L.
7-9
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JAMES BAKER-JARVIS AND PAVEL KABOS PHYSICAL REVIEW E64 056127
produce induced magnetic fields. At the same time the m
netic moment is forced to rotate.

In this case the Hamiltonian contains the Zeeman
Stark interactions and kinetic energy of the moving charg
We neglect all contributions to the internal energy except
kinetic energy.

The kinetic energy is

T5
1

2
I uveu25

uxeu
2

uH in~e!u2, ~56!

whereH in(e) is the induced screening magnetic field due
the charge motion, andxe is the induced diamagnetic su
ceptibility which is related to the moment of inertia byuxeu
5^I &ge

2. H in(e) is the part ofHM induced from charge mo
tion, andve5ugeuH in(e) . The mechanical torque can be e
tracted by considering the time rate of change of the elec
internal energy in Eqs.~56! and ~16!. This yields

^I &
dve

dt
5

uxeu
ugeu

dH in~e!

dt
5Pe3E. ~57!

We use the convention that positiveH in(e) is in the same
direction as positiveve , andve is positive for the counter-
clockwise rotation of the dipole. The polarization satisfies

dPe

dt
5ve3Pe52Pe3ugeuH in~e! . ~58!

In this case the magnetization from Eq.~22! satisfies

dMe

dt
5(

i 51

2

geieir i3Ein~ i !5ugeuPe3Ein5
ugeuuPeu

uMeu
Me3Ein

52ugguMe3H in~E! , ~59!

where, by Lenz’ Law, an electric fieldEin is induced by the
interaction of the permanent magnetic moments, with
induced magnetic fieldsH in(e) caused by the rotation of th
charge. This simple result describes a process for obtai
magnetization changes from an applied electric field. In
Tellegen model the electric field drives the magnetizat
throughEin interacting with the permanent electric mome
This is a type of spin-orbit coupling. The induced elect
field is related to an effective magnetic field by

Ein52
ugguuMeu
ugeuuPeu

H in~E! . ~60!

The torque from the induced electric field is equivalent to
magnetic fieldH in(E) acting on the permanent magnetic m
ments, whereH in(E)5H in(e)ugeu/uggu.

2. Case 2: magnetic driving

As another simple example we consider the same rota
dipole as in the previous case, but instead of an applied e
tric field we have an applied magnetic field. The magne
moment will precess about the applied magnetic field and
electric dipole is forced to follow, thus exhibiting gyroele
05612
g-

d
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e

ic
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ng
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g
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tric behavior as shown in Fig. 4@14#. The orbiting charge
produces an induced diamagnetic magnetic fieldH in(m) in
opposition to the applied field.

H in(m) is obtained from the mechanical torque

uxeu
ugeu

dH in~m!

dt
5Mm3H. ~61!

The polarization satisfies Eq.~13!:

dPm

dt
5ugeuPm3~H2H in~m!!. ~62!

In this example the applied magnetic field in Eq.~22! does
not cancel out, since only the positive charge is orbiting~pre-
cessing!. The charge at the vertex is assumed to be point
so that the induced magnetic field is negligible.

The magnetization satisfies

dMm

dt
5ugguMm3~H2H in~M !!. ~63!

The induced magnetic field subtracts from the applied fie
since it is diamagnetic. We can relateH in(M )5(1
2ugeu/uggu)H1ugeuH in(m) /uggu.

3. Application to chiral media

In the final application, we consider a system with unb
anced charge and no permanent magnetic moments. In
case we have only current-induced magnetic moments
charge-induced electric moments.

Consider a charged bead, free to slide on a spiral, a
shown in Fig. 5. If a frequency-dependent magnetic field
applied in the plane of the spiral, a magnetic moment will
induced in the opposite direction of the applied field and,
Lenz’ Law, an electric field will be induced in the wir
which will slide the bead on the spiral, causing electric p
larization. This is chiral behavior, as opposed to a magne
electric effect. Conversely, if an electric field is applied, t
sliding bead produces an induced magnetic moment. In
type of analysis there are no microscopic magnetoelec

FIG. 4. Model of precessing magnetic moments with an
tached electric dipole.
7-10
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DYNAMIC CONSTITUTIVE RELATIONS FOR . . . PHYSICAL REVIEW E 64 056127
effects in Eqs.~20! and~22! since there is no coupling of th
microscopic magnetic moments to the electric moments
the lattice. Rather the movement of the free unbalan
charge is due to the current densityJ in Maxwell’s equations
@30#.

The constitutive relations for this application are given
Eqs.~26! and ~32!, or they can be more generally obtaine
following Ref. @29#, by taking linear approximations to Eq
~13! and~15!, neglecting the reversible terms, Fourier tran
forming, and solving for the frequency-dependent polari
tion and magnetization.

V. CONCLUSIONS

In this paper we have derived a statistical-mechan
theory for polarization and magnetization evolution for
system of particles using a projection-operator approach.
started from microscopic expressions for the polarizati
magnetization, and internal-energy density. These quant
were then averaged to obtain macroscopic expressions. T
generalized, nonlocal equations of motion were derived
the polarization, magnetization, displacement, induction,
internal energy, which included effects of memory and no
equilibrium. We studied the coupling of the polarization a
magnetization in complex media, and found that a noneq
librium coupling can exist between the magnetization a
polarization.

The internal energy was studied and decomposed into
tice potential energy, kinetic energy, energy due to perm
nent and induced dipole moments and angular moment
and other interactions. In limiting cases the evolution eq

FIG. 5. Model of chiral material.
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tions decouple and reduce to well-known equations. A qu
rupole term was included in the displacement field that yie
origin invariance. Evolution equations for the displaceme
and induction fields, with generalized constitutive relatio
were derived using a Hamiltonian approach. General exp
sions for the dielectric and induction field evolution an
charge and energy conservation were derived. In this the
symmetries in the constitutive relations are based on Ha
tonian mechanics, and therefore the constraint on cons
tive relations developed by Post is satisfied@31#. In order to
develop specific models for materials the approach in
paper requires an estimation of correlation functions. A nu
ber of simple cases were presented, in order to illustrate
results of the theoretical work. Simple examples of mag
toelectric coupling were studied in detail. In these cases
were able to describe the coupling between polarization
magnetization. In the last application we contrasted the ch
behavior of free charge traveling on a spiral with magne
electric media. We found that chiral behavior can be d
scribed by Maxwell’s equations with constitutive relatio
ships of the forms of Eqs.~26! and~32!. On the other hand
magnetoelectric media can require more fundamental a
tions to the magnetization and polarization evolution eq
tions.

ACKNOWLEDGMENTS

We wish to thank B. Stamps, A. Shivola, and R. E. Ra
for helpful comments. J.B.J. would like to thank Baldw
Robertson for introducing him to various aspects of
projection-operator theory.

APPENDIX A: HAMILTONIAN AND POISSON
BRACKETS

A material with charged particles with an electric dipo
moment and an intrinsic spin moment in applied magne
and electric fields, with electrostatic energyef, has an ap-
proximate Hamiltonian

H5
1

2M
~p2eA!22m•H2er•E

1
1

2 E ~e0uEu21m0uHu2!d3r1V. ~A1!

We can separate free from lattice charges, and expand
lattice contribution, usingA5 1

2 (H3r ) and angular momen
tum L5r3p¢ , to obtain

1

2M
~p2eA!21

1

2M
~pf2eA f !

22m•H

5
1

2M
~pf2eA f !

22~geL1m!•H1
1

2M
~ upu21e2uAu2!.

~A2!
7-11



o
e

for
ver-
ce

ed
e-

u-

e
tions
-
r-

on

-

of

on-

r
de-

ion

JAMES BAKER-JARVIS AND PAVEL KABOS PHYSICAL REVIEW E64 056127
The last terms are due to the motion of the lattice as a wh
in a magnetic field. This and the kinetic energy of the fr
charge is included in the internal energy.

The Poisson bracket for functionsF(r 1 ...r n ;p1 ....pn ,t)
andG(r 1 ...r n ;p1 ....pn ,t) is defined as

@F,G#5(
i

S ]F

]r i

]G

]p i
2

]F

]p i

]G

]r i
D , ~A3!

@r i ,r j #5@p i ,p j #50, ~A4!

@r j ,p j #5d i j 52@p j ,r j #. ~A5!

APPENDIX B: REVERSIBLE TERM

From Eq.~8!,

FbS F2E ~p•EP1m•HM !d3r D ,s G50; ~B1!

therefore

@F,s#5F E ~p•Ep1m•HM !d3r ,s G , ~B2!

and the polarization current is

2Tr~p@H,s#!52Tr~p@F,s#!1TrS pF E p•Ed3r ,s G D
1TrS pF E m•Hd3r ,s G D

5TrH Fp,E p•~E2EP!d3r GsJ
1TrH Fp,E m•~H2HM !d3r GsJ

5TrH Fp,E m•~H2HM !d3r GsJ 5^ṗ&.

~B3!

Using Eq.~14! yields

2Tr~m@H,s#!52Tr~m@F,s#!1TrS mF E m•Hd3r ,s G D
1TrS mF E p•Ed3r ,s G D

5TrS Fm,E m•~H2HM !d3r Gs D
1TrH Fm,E p•~E2EP!d3r GsJ

5ggM3~H2HMM !1^ṁ&, ~B4!

where we used the identity for operatorsA andB;

Tr~AiLB!52Tr@~ iLA !B#. ~B5!
05612
le
e

APPENDIX C: NONEQUILIBRIUM
PROBABILITY-DENSITY FUNCTION

In this appendix the projection-operator tools needed
studying relaxation processes treated in this paper are o
viewed ~see Ref.@3#!. We suppress any spatial dependen
and use a semiclassical analysis.

The evolution of the statistical density function produc
by the dynamics is given both classically and quantum m
chanically by

]r~ t !

]t
5@H~ t !,r#5 iL~ t !r~ t !. ~C1!

HereL is either the classical or quantum-mechanical Lio
ville operator.

We assume the set$Fi(r )% of functions in phase spac
that have expectations that are observables. The expecta
are defined bŷF&5Tr@Fr(t)#. We define a generalized ca
nonical densitys(t) that describes the nonequilibrium the
modynamic variables of the system. Following Refs.@1# and
@3# the generalized canonical probability density functi
s(t) at time t satisfies

Tr@F j~G!s~ t !#5^F j~G!&. ~C2!

In this approachs(t) is that part of the nonequilibrium sta
tistical densityr(t) which is obtained from information at a
single instant of time.

The canonical-density function is developed by use
constraint condition~C2! and by maximizing the information
entropy to obtain

s~ t !5exp~2l* F ! ~C3!

The * operator is defined as

l* F5 (
n50

N

ln~ t !Fn. ~C4!

The Lagrangian multipliersl j (t) are found by substitution
of the calculated expectation values into the constraint c
dition ~C2!. Normalization is obtained by settingF051.

It is necessary to introduce a projection-like operatorP(t)
@32#. The operatorP is linear, non-Hermitian, and is used fo
separating relevant or observable details from irrelevant
tails. It satisfies both

]s/]t5P~ t !]r/]t ~C5!

and

s~ t !5P~ t !r~ t !, ~C6!

and it is defined for operations on a functionA by

P~ t !A5
ds~ t !

d^F& * Tr~FA!5Fs* ^FF&21* ^FA&, ~C7!

whered denotes a functional differentiation. The operatorP,
a generalization of Zwanzig’s time independent project
7-12
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operator@32#, separates the relevant part from the irrelev
part. The projection operator also contributes to the time
pendence ofT(t,t). P(t) may be expected to correct for th
divergence of transport coefficients.

It is possible to show that with the condition,r(0)
5s(0) @33# ~Oppenheim@4# generalized this condition!:

r~ t !5s~ t !2E
0

t

dt T~ t,t!$12P~t!% iL~t!s~t!. ~C8!

The integrating factorT(t,t) satisfies the initial value prob
lem

]T~ t,t!

]t
5T~ t,t!$12P~t!% iL, ~C9!

with initial conditionT(t,t)51. All of operatorsT, P, andL
are linear.

Using this formalism an equation of motion can be wr
ten

]^Fm&
]t

5^Ḟm& t2E
0

t

Tr$@H,Fm#

3T~12P!@H,s~t!#%dt. ~C10!

Here the dot is defined byḞ5 iLF. The first term on the
right side of Eq.~C10! is the reversible or convection term
the second is the relaxation term. Equation~C10! is exact.
This technique has been used for other applications@2#.

APPENDIX D: DIELECTRIC RELAXATION

On application of an electric field to a material, relaxati
and dissipation occurs and also dipoles may rotate. At am
ent temperatures and low field strengths, the ratio satis
p•E/kT!1, and thermal effects dominate over dipole en
gies. This is described by the Langevin equation. As
temperature is decreased and the field strength increased
thermal energy decreases relative to electrical energy and
probability of rotation of dipoles increases.

We can write the polarization rate as a sum of rotatio
plus a nonrotational components

dP

dt
5

dProt

dt
1

dPnonrot

dt
. ~D1!
f
i

05612
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For rigid body rotation

dProt

dt
5^v&3Prot ~D2!

^v& is the average radial velocity of the particles. Classica
this equation is to be solved simultaneously with the torq
equation~57! for ^v& andProt . The effective angular velocity
is

^v&5
1

uProtu2
Prot3

dProt

dt
. ~D3!

If the magnitudeuProtu is constant, thenProt•^v&50.

APPENDIX E: TRACE CALCULATION

In this appendix, an example calculation in Eqs.~45! and
~46! is evaluated

TrF(
j

]

]r jx
S e0E~r ,t !1(

j
ej r jd~r2r j !

2
1

2 (
j 51

ej~r j r j !•¹d~r2r j ! D ]

ei]p jx
(

j
¹ j

3aj•H~r j ,t !rG
5TrS (

j

]

ej]p jx
eid~r2r j !¹ j3H~r j ,t !•a~r j !r D û1

5(
j

Tr@¹ j3H~r j !d~r¢2r¢ j !r#•û1

Tr@d~r2r j !r#
û15S ]Hy

]z
2

]Hz

]y D û1 ,

~D4!

whereûi are unit vectors. The mean value of a variableai is
defined as

Tr@ajd~r2r j !r#

Tr@d~r2r j !r#
~D5!

of the i th particle at positionr at time t ~see Ref.@34#!. The
second derivative of thed function was neglected. Similarly
the other components can be calculated to obtain the cu
the magnetic field.
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