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Dynamic Context Capture and Distributed
Video Arrays for Intelligent Spaces

Mohan Manubhai Trivedi, Senior Member, IEEE, Kohsia Samuel Huang, Member, IEEE, and
Ivana Mikić, Member, IEEE

Abstract—Intelligent environments can be viewed as systems
where humans and machines (rooms) collaborate. Intelligent (or
smart) environments need to extract and maintain an awareness
of a wide range of events and human activities occurring in these
spaces. This requirement is crucial for supporting efficient and
effective interactions among humans as well as humans and
intelligent spaces. Visual information plays an important role
for developing accurate and useful representation of the static
and dynamic states of an intelligent environment. Accurate and
efficient capture, analysis, and summarization of the dynamic
context requires the vision system to work at multiple levels of
semantic abstractions in a robust manner. In this paper, we present
details of a long-term and ongoing research project, where indoor
intelligent spaces endowed with a range of useful functionalities
are designed, built, and systematically evaluated. Some of the
key functionalities include: intruder detection; multiple person
tracking; body pose and posture analysis; person identification;
human body modeling and movement analysis; and for inte-
grated systems for intelligent meeting rooms, teleconferencing,
or performance spaces. The paper includes an overall system
architecture to support design and development of intelligent en-
vironments. Details of panoramic (omnidirectional) video camera
arrays, calibration, video stream synchronization, and real-time
capture/processing are discussed. Modules for multicamera-based
multiperson tracking, event detection and event based servoing
for selective attention, voxelization, streaming face recognition,
are also discussed. The paper includes experimental studies to
systematically evaluate performance of individual video analysis
modules as well as to evaluate basic feasibility of an integrated
system for dynamic context capture and event based servoing, and
semantic information summarization.

Index Terms—Active vision, activity summarization, ambient
intelligence, body modeling, event analysis, face detection/recog-
nition, human–machine interfaces, multicamera systems, person
tracking, real-time vision, smart rooms/spaces.

I. INTRODUCTION

I NTELLIGENT environments are indeed complex systems,

where humans and machines (i.e., rooms) collaborate to ac-

complish a task. From such a perspective, intelligent environ-
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ments can also be considered as a novel human–machine inter-

face. The overall goal of intelligent environment research is to

design and develop integrated sensor-based systems that allow

natural and efficient mechanisms for human–computer inter-

actions in places where humans work, learn, relax, and play.

There is a growing interest in developing intelligent or smart

spaces, and, like most new areas of research, there may not be

a well-accepted definition for such terms. One possibility to ad-

dress this issue could be to specify requirements, which a phys-

ical space needs to possess in order to be called intelligent. We

consider the following four requirements in developing intelli-

gent environments.

1) Intelligent spaces are designed for humans, and they

should facilitate normal human activities taking place in

these spaces.

2) Intelligent spaces should automatically capture and dy-

namically maintain an awareness of the events and activ-

ities taking place in these spaces.

3) Intelligent spaces should be responsive to specific events

and triggers.

4) Intelligent spaces should be robust and adaptive to various

dynamic changes.

Such spaces need not be limited to rooms in buildings, but ex-

tend to outdoor environments and any other spaces that humans

occupy such as a performance on a stage, or an automobile on a

highway. Design of such spaces is indeed a rather ambitious ef-

fort, especially when one considers the real-world challenges of

providing real-time, reliable, and robust performance over the

wide range of events and activities, which can occur in these

spaces.

Novel multimodal sensory systems are required to realize

useful intelligent spaces. Arrays of cameras and microphones

distributed over the spatial (physically contiguous or oth-

erwise) extent of these spaces will be at the front end of

capturing the audio-visual signals associated with various

static and dynamic features of the space and events. The

intelligent environments will have to quickly transform the

signal-level abstraction into higher level semantic interpreta-

tion of the events and activities.

The spaces are monitored by multiple audio and video

sensors, which can be unobtrusively embedded in the infra-

structure. To avoid intrusion on the normal human activities

in the space, all sensors, processors, and communication de-

vices should remain invisible in the infrastructure. The system

should also support natural and flexible interactions among the

participants without specialized or encumbering devices.

1083-4427/$20.00 © 2005 IEEE
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Fig. 1. Multilevel hierarchy of computational tasks associated with an
intelligent environment. The system captures multimodal sensory signals and
transforms it to a higher semantic level of information in order to facilitate
human activities taking place in these spaces.

In an intelligent environment, multiple video cameras and

microphones may be embedded in walls and furniture. Video

and audio signals are analyzed in real time for a wide range of

low-level tasks including: person identification, localization,

and tracking; and gesture and voice recognition. Combining

the analysis tasks with human face and body synthesis en-

ables efficient interactions with remote observers, effectively

merging disjoint spaces into a single intelligent environment.

Fig. 1 shows the overall system conceptualization, functional

blocks, and information flow associated with an Intelligent

Environment. Multimodal sensory arrays capture signals from

audio and video domains. These signals are represented in a

time-synchronized manner using appropriate basis functions.

Classification algorithms allow extraction of higher level

semantic information from the signals. Such interpretation

along with task specifications generates control signals for

the sensory arrays for acquiring the next set of signals, from

only an attention zone at a selected spatial-temporal resolution.

Successful operation of the intelligent environment requires it

to operate as a finely tuned system, where information resides

at multiple levels of abstractions. Key levels to consider are.

1) Signal: This is the lowest level of abstraction where sig-

nals from multi modal sensors are captured and repre-

sented digitally in the forms of pixels, optical flow, pitch,

or cepstrum.

2) Object: This is a pattern defined in the spatial domain. We

focus on objects, which are defined using video sensory

modality. Examples of such objects would be a person or

face.

3) Event: This is a pattern defined in the spatial-temporal

domain. We consider events using both audio and video

modalities. Examples of events can be a person en-

tering/leaving a room, or a person speaking.

4) Activity: This is a complex (or compound) pattern of

events. We consider activities using both audio and video

modalities. Examples of an activity can be people having

a meeting or a person dancing in a room.

5) Context: This is considered to be a specification of the

state of an intelligent environment. It is defined using

prior knowledge of the environment and tasks. Events de-

tected from sensory information would cause changes in

the state of the system.

Recent research on intelligent environments provides nu-

merous new challenges in the fields of machine perception.

In computer vision [1], distinct progress in face detection

and recognition [2]–[5], people tracking [6], [7], and gesture

recognition [8], [9] has been made in the last decade. For audio,

much progress has been made in speaker and speech recogni-

tion [10] and source localization [11], [12]. Integrated sensory

modalities of audio and video [13]–[18] are also being seri-

ously considered recently. One type of system that recognizes

gesture and spoken words made possible a more natural “put

that there” type of interaction between humans and computers

[19]. We are currently embedding distributed video networks in

rooms, laboratories, museums, and even outdoor public spaces,

in support of experimental research in this domain [20]. This

involves the development of new frameworks, architectures,

and algorithms for audio and video processing, as well as

for the control of various functions associated with proper

execution of a transaction within such intelligent spaces. These

test beds are also helping to identify novel applications of such

systems as distance learning, teleconferencing, entertainment,

and smart homes.

In this paper, we present a framework for efficiently analyzing

human activities in the environment, using networks of static

and active cameras. Information will be extracted at multiple

levels of detail, depending on the importance and complexity

of activities suspected to be taking place at different locations

and time intervals. The environment will be constantly moni-

tored at a low resolution, enabling the system to detect certain

activities and to estimate the likelihood that other more complex

activities are taking place at specific locations and times. If such

an activity were suspected, to enable its accurate perception,

a higher resolution image acquisition and more sophisticated

analysis algorithms would be employed. Current systems focus

on analyzing data at a fixed resolution, in some cases, moni-

toring a large space with a single camera and in others covering

a small area with many cameras. We believe that the middle

ground has not been sufficiently explored and that combining

the coverage and robustness of low-resolution analysis with the

power of high-resolution analysis will result in robust and ef-

ficient systems that will be capable of extracting high quality,

relevant information from the environment.

The paper includes details of this multiresolution computa-

tional framework to help design the distributed video arrays

(DIVA) for intelligent environments. We also describe the infra-

structure and experimental testbeds of utility in design and eval-

uation of indoor intelligent spaces. We will focus on real-time

tracking of single or multiple people and on coordination of

multiple cameras for capturing visual information on wide areas

as well as selected areas for activity analysis and person iden-

tification. Finally, a detailed design and experiments conducted

in an intelligent meeting room are presented.
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Fig. 2. DIVA for tracking, human identification, and activity analysis.

II. DIVA FOR INTELLIGENT ENVIRONMENTS

DIVA is an intelligent environment that is able to detect the

presence of people, track their movements, recognize them, and

understand their actions, as shown in Fig. 2. For recognition of

complex actions, high-resolution images of the human body (or

even body parts) are necessary. To allow unconstrained human

movement in a large surveillance area, the system should there-

fore be able to acquire such high-resolution video anywhere in

the environment. Some computer vision groups have equipped

their laboratories with large numbers of static cameras [21],

[22] with the idea of obtaining very detailed information about

the monitored space. However, on the other hand, for the pur-

pose of maintaining awareness of the presence and activities of

people, the system does not need detailed information all the

time and everywhere in the environment, but only at specific

intervals or locations when/where something potentially inter-

esting is happening. At other times, much less detail is suf-

ficient. Detecting a person’s presence or recognizing whether

they are sitting or standing requires less detailed information

than estimating the direction that the person is pointing his/her

finger to. Based upon these observations, we propose a system

that continuously monitors the environment at low resolution,

which detects only the presence and location of people and

their dimension. More detailed image acquisition and analysis

would be triggered when a potentially interesting event or ac-

tivity is suspected to be taking place. We will term those po-

tentially interesting events as the focuses of attention of the

system. Equipped with a few static wide-angle view cameras,

the low resolution but large area monitoring of the environment

can be achieved. With a small number of active pan/tilt/zoom

(PTZ) cameras, multiple simultaneous focuses of attention can

be maintained. Depending on the activity to be analyzed, the

active camera can focus on various levels of details of people,

from the whole body to face or hand gestures. Using this ap-

proach, robust monitoring of the entire environment with mul-

tiple resolutions can be achieved with fewer cameras and com-

putational resources.

In this section, we discuss the development of such DIVA,

which support a wide range of tasks of the intelligent environ-

ments. Key features of these smart video arrays are:

1) the ability to derive semantic information at multiple

levels of abstraction;

2) the ability to be attentive to specific events and activities;

3) the ability to actively shift the focus of attention at dif-

ferent semantic resolutions;

4) the ability to apply different types of camera arrays to

provide multiple signal-level resolutions.

To develop such a multilevel approach, problems of camera

placement and control, as well as the designing of image-anal-

ysis algorithms have to be addressed. Good camera placement

will provide efficient coverage. The control problem involves

developing the system that will acquire data from certain loca-

tions/time intervals in the environment and employ appropriate

analysis algorithms at the level of detail needed to maintain

awareness of the people and their activities. This may often in-

volve maintaining multiple simultaneous focuses of attention.

Algorithms that track people in three-dimensions (3-D) at

multiple resolutions are essential parts of the proposed system.
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Fig. 3. Floor plan and camera network configurations of our intelligent space complex. These rooms are built for experimental development and evaluation of
the intelligent room systems utilizing 12 rectilinear cameras, eight omnidirectional cameras, eight PTZ cameras, and eight microphones, which are embedded in
the room.

At a low-resolution level, locations of all people in the envi-

ronment will be continuously monitored. A more sophisticated

algorithm is needed to extract more detailed body posture and

motion estimates. The algorithm should be able to extract mul-

tiple levels of detail depending on the quality of the available

data and the level of detail currently requested by the system.

Camera videos are first captured and processed for low-level

visual cues, such as histograms, colors, edges, and object seg-

mentations. The challenges at this level include: robustness to

illumination, background, and perspective variations.

On the next level of abstraction, tracking plays an impor-

tant role in event analysis. It derives the current position and

geometry of people as well as the histories and predictions of

their trajectories. With the semantic database, which defines

prior knowledge of the environment and activities, events can

be detected from the tracking information, e.g., one person en-

ters the room and sits beside a table. The activity analyzer and

the semantic database could be implemented by a rule base or

a Bayesian net [23]. The challenges at this level include: the

speed, accuracy, and robustness of the tracker, as well as the

scalability of the semantic database, which allows incremental

updating when new events are detected.

The events trigger the attention of a camera array to derive

higher semantic information. Using tracking information, a

suitable camera is chosen to capture a perspective that covers

the event at a desired resolution, e.g., perspective on a person

with an omnicam for posture and around the head area with

a PTZ camera for person identification. For this purpose,

necessary processing modules, such as face detection and

recognition, should be deployed. The challenges at this level

include: accuracy, speed, and robustness of the view generation

and recognition modules. The derived semantic information

at multiple levels can also be fed back to update the semantic

database.

This architecture of multilevel abstraction can be further

generalized to include many other applications such as object

recognition, facial expression recognition, 3-D human-body

modeling and tracking [24], and behavior estimation and

prediction [25].

The DIVA system architecture developed for the intelligent

environments described in this paper can be viewed as a smart

or active camera network, where various cameras are actively

controlled to support a wide range of functionalities. It is

recognized that the proper operation of the overall system

depends on the success of selecting the proper parameters

for video capture, perspective selection, feature extraction,

object/event detection, tracking, storage/archiving, and interac-

tions with humans. It is also important to emphasize that video

streams which are primary inputs to DIVA at the raw pixel

levels are prohibitively large in size. Success of the system will

depend on the ability to eliminate redundancy, to transform

raw data into higher semantic levels, and to be very selective

in acquiring new video data only when needed and also from

a specific region of interest and at the appropriate resolution.

These observations help in designing video arrays which get

turned on only when needed and vision algorithms which

extract the context specific cues to support proper operation of

the overall system. In this paper, we have focused only on the

intelligent environments which physically continuous entities

like conference room and performance space. However, the

active vision concepts used in the DIVA architecture allow

them to be effective in monitoring and surveillance applica-

tions of very large distributed spaces, such as highways and

open public spaces [20].
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III. INTELLIGENT ENVIRONMENTS: SYSTEM INFRASTRUCTURE

AND EXPERIMENTAL TESTBEDS

Systematic development of intelligent environments, where

networks of cameras and microphone arrays serve as the sources

of multimodal sensory information, is indeed a system-oriented

experimental research effort. In this section, we present the

overall infrastructure and some novel experimental testbeds

designed to support design and evaluation of computational

modules. We also discuss the experimental system architecture

of our intelligent space complex.

A. Intelligent Environment Research Complex

The intelligent environment research complex at the Com-

puter Vision and Robotics Research (CVRR) Laboratory, Uni-

versity of California, San Diego, is shown in Fig. 3. It includes

two separate but connected rooms appropriately instrumented

and suitable for a wide range of experimental research. The first

one is audio video interactive appliances, rooms, and systems

(AVIARY), which was designed to be a small conference room.

The second space is multimodal interfaces, and context aware

spaces (MICASA), which was designed to be a classroom or

a performance chamber. We present a brief overview of these

testbeds below.

The audio-video sensory suite installed in the AVIARY room

includes a network of four omnidirectional cameras, four PTZ

and four static rectilinear cameras, and eight microphones. The

four omnicameras (ODVSs), are near the corner of a meeting

table, covering the entire room from inside out. ODVS is a

catadioptric camera with a hyperboloidal mirror to cover a

downward hemispherical field of view [26]. The omnidirec-

tional video can be unwarped into either a panoramic video or

a PTZ rectilinear video by nonlinear transformations [6]. The

four static rectilinear cameras are located at the upper four cor-

ners of the room, each covering the entire room from outside in.

This directional difference matters with tracking performance

as will be mentioned later. Also, four PTZ rectilinear cameras

are installed at the four corners about 1.4 m above ground. They

capture events with higher resolutions than the static cameras

but narrow field of view. Two microphone arrays, each with

four microphones, are, respectively, installed on the wall and

the ceiling to pick up the speech activities in the meeting. A

white board is sitting at the upper right corner of the room as

shown in Fig. 3. One computer resource is allotted to tracking,

which takes either the four static omnicam videos or the four

static rectilinear videos. Another computer is used to analyze

audio and visual events within the room. The third computer is

used to archive the audio and video streams for later retrieval.

AVIARY is used to develop and evaluate systems that capture,

process, transmit, and display audio-visual information in an

integrated manner. The audio and video modalities provide

valuable redundancy and complementary functionality. These

two modalities are also the most natural ways for humans to

sense and interpret their environments, and interfaces of these

two modalities can be very natural and effortless for the users.

Robustness to the environment is another essential requirement

since it is not practical to dictate to the user a specific rigid

Fig. 4. MICASA static rectilinear camera array placement.

Fig. 5. Architecture for synchronous video capturing using quad.

environment. In addition, it is not unusual to expect the environ-

ment of the user to change, for example, lights getting turned

on, or the room furniture getting reconfigured. It is important

that the systems still can carry out their task.

MICASA is two times larger than AVIARY. The omnicam

array is installed on the ceiling to cover the entire space. The

PTZ rectilinear camera array is installed similar to AVIARY.

However, there are eight static rectilinear cameras installed on

top of the room, as shown in Fig. 4. The four cameras at the cor-

ners have larger field of view to cover the entire room and can

serve as the tracking camera array. The other four have smaller

coverage for a little better detail. All eight overlap each other by

approximately a 2 3 2.5-m volume. Within this volume,

voxel reconstruction of human objects can be performed by

shape-from-silhouette. The pairs of cameras that face each other

are placed with offset, since the two cameras that directly face

each other collect redundant 2-D silhouette information of the

object. The camera videos are captured frame-by-frame syn-

chronously. For the computational resources, currently, one PC

is dedicated to tracking with the omnicam array. More PC would

be favorable to increase the resolution of tracking. Six other

PCs are allotted to voxel reconstruction with six of the eight

static rectilinear cameras. Currently, no microphone arrays are

installed in MICASA. A projector presentation board is sitting

at the left side and a white board is sitting at the lower left-hand

side of the room for classroom setup, as shown in Fig. 3.

B. Camera Calibration

Camera calibration affects the tracking and voxel reconstruc-

tion accuracy. The static rectilinear cameras are calibrated auto-

matically using Tsai’s algorithm with respect to a unique world-
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Fig. 6. The primary-secondary architecture for full-frame synchronous capture of multiple video streams.

coordinate system [27]. The calibration is carried out in advance

and parameters are stored in the computers.

The calibration of ODVS is carried out manually. We col-

lect a set of calibration points with their coordinate values in

a world frame with the origin at one corner of the room. The

world coordinates of the ODVS optical center are also taken.

If the ODVS is sitting upright, then the absolute azimuth ori-

entation of the ODVS can be estimated by rotating the relative

direction of the calibration points in the omnidirectional image

around the center of the image to match the azimuth directions

of the calibration points with respect to the optical center of the

ODVS in the world coordinate frame. The way to see whether

the ODVS is sitting upright is by checking whether a set of

markers at the same height as the optical center of the ODVS

is on a concentric circle in the omnidirectional image that cor-

responds to the horizontal level, or whether they align on a row

in the unwarped panorama that corresponds to the horizontal

level. If the ODVS is tilted, then the absolute orientations of the

camera need to be estimated analytically by relating the world

coordinates and the camera coordinates with the mirror optics.

However, an approximate approach may be taken if the tilting is

very small. From the horizontal markers mentioned previously,

we can tweak around the center of the omnidirectional image

by several pixels to make the horizontal markers align with the

horizontal row of the unwarped panorama. This approximation

is used to improve the tracking accuracy in our experiments.

C. Synchronized Video Capture in DIVA

Arrays of cameras are included in the DIVA system to capture

visual cues in the overlapped zone in a synchronized manner.

For the omnicam, static rectilinear, and PTZ rectilinear camera

arrays, three approaches of frame synchronization on video cap-

turing may be taken. The first one is to use quad video mul-

tiplexers to combine four videos into one to be captured by

the computer image grabber, as shown in Fig. 5. This, by na-

ture, guarantees synchronized capture of the four camera videos.

However, image resolution of each camera is reduced to one

fourth. In larger space such as MICASA and applications that

require fine details, this may be unsatisfactory. As the second

approach, each video is captured by a computer in full frame

and synchronized by time stamps. This approach allows pre-

processing to derive some higher-level visual cues of each full-

frame video before sending them through network to a server

for integrated analysis. However, since the clock cycles of the

video frames are not genlocked between the cameras, the time-

stamp synchronization is only approximate with errors as much

as 17 ms. For real-time voxelization of moving subjects like

waving arms, millisecond jitters of capture timing can cause

large misalignment between each camera array frames and de-

teriorate voxel reconstruction. Also, network traffic jam would

reduce the frame rate of real-time human tracking.

The third approach is to synchronize the image grabbing by

hardware devices, as shown in Fig. 6. This way guarantees full-
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Fig. 7. Workstations that perform synchronous grab from multiple cameras.

Fig. 8. System processes and multithread synchronization for active event
capturing.

frame capturing for high-resolution demands as well as cap-

ture timing. In our systems, each camera is connected to a PC

with a Matrox Meteor II frame grabber. To ensure synchronous

grabbing, one PC is designated as the primary and the others as

secondary. The primary sends a trigger signal to the secondary

frame grabbers, which grab a frame at the rising edge of the

trigger pulse. The trigger pulse is boosted and distributed to the

secondary machines using a high-speed CMOS 74HC244 octal

inverting tristate buffer. Each output of the octal buffer is con-

nected to an RG58 cable, and can then be attached to a Meteor

II input cable for external triggering. Multiple boosters can be

cascaded if more than eight videos are needed. Additionally, the

signal can be converted to a RS-232 computer serial port signal

to allow for alternative triggering methods, e.g., synchronization

of frame grabbing from firewire cameras via serial port. The set

of workstations used is shown in Fig. 7.

D. Active Control for Event Capture in DIVA

The DIVA system is designed to capture the interested

objects and events in the sensor array coverage, as shown in

Fig. 8. Person detection and tracking is carried out on the

static video arrays. Multiple baseline stereo on the synchro-

nized static video arrays measures the locations of people on

each frame and tracking filters smooth measurement noises

and predicts the trajectories of people. When the trajectory is

TABLE I
SUMMARY OF THE INTELLIGENT COMPLEX SETUP

Fig. 9. Functional blocks of the NOVA intelligent room system. The lower
window shows head tracking by ODVS perspective view generation and face
recognition.

available, low-level events, such as a person entering the room

or a person sitting down, triggers system attention. The system

then captures more details of the event by driving a dynamic

camera to it, and higher level analysis and interpretation of the

event is computed. The processes are implemented in C++ with

multithreaded programming, and the thread synchronization is
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Fig. 10. Real-time 3-D O-VAT and its implementation. In the implementation, four omni videos are unwarped into panoramas where person detection and
measurement are performed, and person tracking is displayed in the floor plan.

shown in the timing diagram in Fig. 8. Tracking could be run-

ning on one computer and the trajectories are communicated to

other machines through network. Dynamic event capture takes

one thread to compute the attentive directions to the interested

low-level events. High-level event analysis takes spatial-tem-

poral visual-audio events and derives semantic interpretations

of the human activities by dynamic multistate models. Those

processes achieve minimum delay and optimal efficiency by

carefully synchronized multithreading.

The features of the system architecture of our current intelli-

gent complex testbed are summarized in Table I.

IV. TRACKING AND ANALYSIS OF HUMANS IN INTELLIGENT

ENVIRONMENTS AND EXPERIMENTAL STUDIES

As mentioned in Section II, video arrays deployed in an intel-

ligent environment need to support a number of important tasks.

These include: tracking of human movements, human identi-

fication, and human body analysis including gait and gesture

recognition. Also, based upon the state and context of the intel-

ligent environment, the system should be able to switch between

functionalities of the video modules. In this section, we present

subsystems for multiperson tracking as well as for human body

analysis and give experimental results.

A. Multiperson Tracking Using Video Arrays

We have developed a real-time intelligent room system, the

networked omni video array (NOVA) system as shown in Fig. 9

which utilizes the omnicam array for tracking, face capture, and

face recognition [6]. It is a subsystem of Fig. 2. The 3-D tracker

takes the ODVS array videos for detecting and tracking people

on their planar locations as well as heights, and sends their tracks

to another computer. Active camera selection (ACS) and dy-

namic view generation (DVG) modules in the second computer

use the track information to latch upon person’s face by a per-

spective view generated from an ODVS video in the array. Since

the view is generated electronically, the face is immediately cap-

tured according to the direction of the tracker. A 64 64 face

video is then extracted from the perspective view to be identi-

fied.1 This system provides a platform for developing and eval-

uating robust face recognition schemes in order for the humans

to behave naturally in the intelligent room.

The omnicam-based person tracker or omni-video array

tracker (O-VAT) [6] is shown in Fig. 10. Silhouettes of people

are detected by background subtraction with shadow removal

on the panoramas unwarped by the omnicam videos. The

horizontal locations of people are first measured from the

azimuth angles of the silhouettes or blobs for each panorama

by N-ocular stereo [28], [27] and associated to the existing

1Demonstration clips of person and face tracking on the ODVS array is avail-
able at http://cvrr.ucsd.edu/pm-am/demos/index.html.
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Fig. 11. Visual servoing for face capture on a mechanical PTZ camera driven by the 3-D O-VAT. In the sample sequence, please note the motion of the subject
both in horizontal and vertical directions, and the dynamics of the PTZ camera trying to catch up the human motion.

set of tracks by the nearest neighborhood. If a measurement is

not associated to the tracks, a new track is initialized with a

time delay to avoid spurious detection. The tracks that have no

measurements are also kept for some period before termination

to avoid missing detection. The heights of people are measured

from the topmost pixels of the silhouettes of people in the

panorama by triangulation with the knowledge of the horizontal

distances of people to the camera. Height measurements of one

person from the cameras are averages with weights reciprocal

to the horizontal distances of the person to the cameras. Then,

a constant velocity Kalman filter is updated by the associated

set of 3-D measurements for each person. The Kalman filter

uses random maneuver with fixed maneuver covariance, but

the time interval between frames is updated on-the-fly. Also,

the measurement covariance is fixed and estimated empirically.

They are fine-tuned for regular indoor human motions.

B. Human Face, Body, and Movement Analysis

1) Head Tracking and Face Capture: Results of the tracker

are used to control the face capture module. As shown in Fig. 9,

one ODVS in the array may be picked and captured in full-frame

to capture the face. The advantage is that electronic PTZ is in-

stantaneous. However, image resolution would be lower. The

face capture using mechanical PTZ is shown in Fig. 11. The

O-VAT uses the ODVS array on the ceiling in the MICASA

testbed to track people. The location of the head is then es-

timated and used to drive a PTZ rectilinear camera through

RS-232 commands. From the video sequence in Fig. 11, it can

be seen that mechanical PTZ would have some control delay

problems, and the human-motion speed needs to be limited.

There is a possible way to improve the PTZ face tracking.

Given the face that O-VAT is a low-resolution tracker, the PTZ

control scheme could be fine-tuned. After the PTZ camera

captures the face by the direction of O-VAT, a face detector and

tracker comes in to grab the face. Autonomous face tracking

servo mechanism can be implemented to keep the detected

face near the center of the video. If it fails to detect the face,

loses track, or has a spurious detection that does not match with

O-VAT, O-VAT overrides the face tracking again. If the system

decides to change target, the face tracking can also be reset by

the O-VAT. By this way the inaccuracy and delay due to O-VAT

can be bypassed. This mechanism is to be implemented and

evaluated in the future.

2) Single-Frame Face Detection and Recognition: The

captured video is then processed to detect the face and extract

the face video, as shown in Fig. 12. From the head tracking

output, skin tone segmentation is first used to find the face

candidates. Possible face images are cropped from the skin

tone blobs. Those images are then classified to reject nonfaces.

A simple eigenface, or principle component analysis (PCA)

method is used for both face classification and single-frame

face recognition [3]. We construct the PCA feature subspace

with 200 face images of multiple people and face orientations

taken with the perspective unwarping of omnicam videos. The

output of this module is the stream of projection vectors of the

face video in the PCA subspace as well as the stream of face
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Fig. 12. Single-frame face detection and recognition on omni-vision array using view-based method. The pictures illustrate the mechanism of skin tone
segmentation and face classification. Panoramic face detection is also shown.

Fig. 13. Face orientation estimation for best-view camera selection.

recognition identity. The stream of feature vectors can be fur-

ther processed to estimate the face orientations and recognize a

person over the frames.

As a direction of further improvement, multiple modalities of

features should be used in the face detection in addition to skin

tone segmentation, which works robustly only on constant illu-

minations like indoor environments. Possible modalities include

elliptical edge links [29] and wavelets [30]. More sophisticated

methods are also needed for better face/nonface classification

[2], [31], [32].

3) Face-Orientation Estimation: Face-orientation estima-

tion is needed to select a camera to capture the face with a best

viewing angle. If the face capture finds a profile face, it would

be necessary to capture the face by another suitable active

camera. It can also be used to assess the direction of attention

of people in the intelligent environment. It provides valuable

information to estimate the behavior of people. We present an

effective simple method built upon skin tone segmentation.

Due to the hairline, the ellipse fitted to the skin pixels changes

orientation as person turns from far left to far right, as shown

in Fig. 13. We can regard the skin pixels as samples from a 2D

Gaussian distribution and find the distribution parameters as

where (1)

Then, the principle component, i.e., the first eigenvector corre-

sponding to the larger eigenvalue, of the 2 2 covariance matrix

C describes the orientation of the ellipse. A lookup table based

on a set of training samples is used to relate the approximate

direction the person is facing to the angle between the prin-

ciple component of the ellipse and the vertical axis, as shown

in Fig. 14. The table is interpolated from five facing angles of
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Fig. 14. Lookup table for face orientation estimation computed by averaging
across the training examples.

Fig. 15. Examples of the face images in the training and testing video streams.
The left six are perspective views generated from the omni videos, and the
right face images are automatically extracted by the NOVA system. They show
various face angles, sizes, expressions, backgrounds, and other perturbations
that SFR needs to deal with.

the training samples. More sophisticated methods would be re-

quired for higher accuracy and robustness to cluttered back-

grounds [33], [32].

4) Streaming Face Recognition: Served as a crucial event

analyzer, face recognition performance can be enhanced by

video-based algorithms [34]. In order to deal with uncertainties

in face alignment in the captured face video, illumination

changes, face orientation, gender, and racial differences, hair

style and clothing, and sensor noises as shown in Fig. 15,

accumulating the confidence across frames in the face video

will boost the recognition accuracy. As shown in Fig. 16, the

captured face video is partitioned into segments, and streams

of single-frame face recognition identities as sell as PCA

subspace feature vectors of the detected face are computed

by subspace feature analysis module as mentioned earlier.

These two streams are classified by three schemes, as shown

in Fig. 16. The majority rule (MAJ) decides on the highest

occurrence of the single-frame recognition identities in the

segment, the discrete HMM (DHMM) maximum likelihood

Fig. 16. Streaming face recognition scheme and the geometric interpretation
in feature subspace.

(ML) decision rule (DMD) decides on the sequence pattern

of the single-frame recognition identities, while the CDHMM

ML decision rule (CMD) decides on the stream of single-frame

feature vectors.

MAJ rule is a straightforward way to decide the identity of

the face video segment. It does not require training. On DMD, a

DHMM is trained by the single-frame face-recognition identity

streams for each person. Then, on testing phase, DMD picks the

maximum value of the likelihoods of those DHMMs given the

testing segment. This smoothes the jitters in the single-frame

recognition sequence and would give better results than MAJ

rule. However, useful information of features is already dis-

carded by the single-frame face recognition before the DMD

rule. CMD rule avoids this problem by taking the feature vector

stream of subspace analysis instead of recognition identity

stream. Similarly, a CDHMM must be trained for each indi-

vidual, and upon testing the identity of the CDHMM that yields

the maximum likelihood on the testing face video segment is

decided as the final recognition output, as illustrated in Fig. 16.

In the subspace interpretation of Fig. 16, each single frame of

face video is represented as a point in the feature subspace, and

a video segment is represented as a scatter of points. Each point

has a likelihood value with respect to a specific class modeled

by the Gaussian mixture density. Thus, the accumulation of

the likelihoods has a maximum value if the scattering of the

video segment falls mostly to the density function modeled by
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Fig. 17. Body modeling system components. Video from four cameras is
segmented and 3-D voxel reconstruction is performed. Model initialization
finds body parts using template fitting and growing. The positions of located
body parts are then adjusted to ensure the valid model using and extended
Kalman filter. A modified version of that filter is then used for tracking.

a CDHMM. This rule would give the best recognition accuracy

since it is in a delayed decision style.

5) Body Modeling and Movement Analysis: An important

feature of the MICASA testbed setup is that it allows synchro-

nized capture of rectilinear camera array that covers an over-

lapped volume as shown in Fig. 6. Within the volume, voxel

reconstruction of human body can be carried out in real-time.

As shown in Fig. 17, the 2-D silhouettes from different viewing

directions of the calibrated cameras are obtained by background

subtraction with shadow detection. From the silhouettes and the

calibration parameters, shape-from-silhouette is used to recon-

struct the 3-D silhouette of the human. by by voxels are

first defined in the overlapped volume, then a voxel is marked

if all the 2-D silhouettes has a pixel corresponds to it through

camera calibration model. After the 3-D voxel reconstruction is

available, search for the head ellipsoid is made. It is followed

by fitting other ellipsoids for torso and limbs. The length and

connectivity of each body parts are adjusted then by a Bayesian

net. While tracking, the centroid and joints of the body parts are

tracked by extended Kalman filters with respect to a body coor-

dinate defined on the torso. Complete details of the body mod-

eling and movement analysis system are described in a recent

publication [24].2 Some of the joint angles of the body model

are plotted in Fig. 18 with two walking subjects. Differences

between the walking patterns can be used as another biometrics

2The demonstration video clips are available at http://cvrr.ucsd.edu/pm-
am/index.html.

modality for person identification, posture, and gesture analysis,

and behavior recognition.

C. Experimental Results

In this section, we present the experimental results of some

algorithms mentioned earlier.

1) 3-D Multiperson Tracking by O-VAT: Since O-VAT

relates directly to the accuracy of face capturing in the NOVA

system, it is necessary to evaluate its accuracy. We test it by

tracking people walking on a designated path in the room

around the array of four ODVS in AVIARY and in MICASA

testbeds as shown in Fig. 3. People’s tracks are logged for

later retrieval, analysis, and plotting offline for comparison.

We define the accuracy indices by the offset of the track from

the ground truth and by the standard deviation of the track. In

AVIARY, the four ODVSs are mounted on the four corners

of a meeting table in the midst of the room and are a little

higher than sitting people. The designated walking path goes

around the table. Test results in AVIARY can be found in [6].

For MICASA, the room is twice the size of AVIARY, and the

camera array of four ODVS is installed under the ceiling, with

one ODVS near the center of each quadrant of the room (see

Fig. 3). We tested O-VAT in MICASA with one to six adults

as the tracking targets walking on a designated path in the

room which would pass under the ODVSs. Some track plots

of the targets are shown in Fig. 19, and the accuracy results

are given in Table II.

From the MICASA results in Table II, the ground track offset

and standard deviation increase with the number of people, es-

pecially after five people. The height estimate also degrades

with the number of people. We note that for the experiments in

the AVIARY testbed these indices only have a little fluctuation

with one to four people [6]. The major difference between these

two testbeds is that the coverage of the ODVS array in AVIARY

is strictly inside-out and is about as high as people. Thus, the

chance of people occluding each other is almost independent

to the number of people because the ODVSs are standing up-

right at approximately the height of people and people walking

around the array can be easily distinguished in the panoramas.

To fix this occlusion problem in MICASA, the merged blobs of

people in the panorama of a camera could be excluded from the

measurement calculations.

O-VAT runs at approximately 20 frames per second on a plat-

form of dual Pentium III 866 MHz, 256 MB memory, Windows

2000. Therefore it is very suitable for real-time applications. In

term of system flexibility, ODVS array has good reconfigura-

bility because with the same ODVS array, the system not only

allows tracking but also allows electronic PTZ for higher level

processing. Note that electronic PTZ does not require mechan-

ical control, which leads to delay and damping problems. Also

multiple electronic PTZ views at different objects can be gen-

erated from the same ODVS video at the same time. In addi-

tion, since the ODVS array can be placed in the midst of the

meeting participants, it has the advantageous inside-out cov-

erage on people’s faces from a close distance by unobtrusive

electronic PTZ views. Therefore ODVS network is very suit-

able for a meeting room setup.
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Fig. 18. Comparison of multiple joint angle patterns of the body model when tracking two walking subjects.

2) Streaming Face Recognition: For streaming face recog-

nition (SFR) experiments, the parameters include video seg-

ment length , the number of states for both the DHMM

and CDHMM, the number of Gaussian mixture , and the uti-

lized first dimensions of the PCA feature vector of full di-

mension for the CDHMM. The accuracy is evaluated as the

overall correct percentage (OCP), defined as the correct recog-

nition percentage of all frames in the single-frame case, and

the percentage of correct recognized segments of all video seg-

ments in the streaming cases. Table III compares the best OCP

of the recognition schemes. This outcome justifies the streaming

type processing schemes because accumulating the likelihoods

of the frames in a video segment would provide a better match

to a class in the feature subspace than only one single frame,

as illustrated in Fig. 16. It also confirms the implications of the

streaming-type recognition schemes as mentioned earlier.

V. HUMAN ACTIVITY AND INTERACTIONS IN AN

INTELLIGENT MEETING ROOM (IMR)

IMR are spaces, which support efficient and effective interac-

tions among their human occupants as in Fig. 20. They can all be

occupying the same physical space or they can be distributed at

multiple/remote sites. The infrastructure which can be utilized

for such intelligent rooms include a suite of multimodal sensory

systems, displays, pointers, recording devices, and appropriate

computing and communications systems. The necessary intelli-

gence of the system provides adaptability of the environment to

the dynamic activities of the occupants in the most unobtrusive

and natural manner.

The types of interactions in an intelligent environment impose

requirements on the system that supports them. In an intelligent

meeting room we identify three types of interactions:

1) between active participants—people present in the room;

2) between the system and the remote participants;

3) between the system and the future participants.

The first category of interactions defines the interesting events

that the system should be able to recognize and capture. The ac-

tive participants do not obtain any information from the system

but cooperate with it, for example by speaking upon entering

the room to facilitate accurate person identification. Two other

types of interactions are between the system and people that

are not present in the room. Those people are the real users of

the system. For the benefit of the remote participant, the video

from active cameras that capture important details such as a face

of the presenter or a view of the whiteboard should be cap-

tured and transmitted. Information on identities of active par-

ticipants, snapshots of their faces and other information can be

made available. The future participant, the person reviewing the

meeting that happened in the past, requires a tool that graph-

ically summarizes past events to easily grasp the spatio-tem-

poral relationships between events and people that participated

in them. Also, an interface for interactive browsing and review

of the meeting is desirable. It would provide easy access to

stored information about the meeting, such as identities and
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Fig. 19. Some tracking results of O-VAT in MICASA testbed with one to four adult people walking simultaneously on the designated path. The floor plan on the
left shows the 2-D tracking accuracy. Dash lines are the designated walking paths on the floor (ground truth). The height tracking on different tracks of people are
color-coded. The height tracking on the right are plotted against time. The actual heights of the volunteers are shown as dash lines and denoted below the plots.

snapshots of participants and video from active cameras asso-

ciated with specific events.

Interactions between active participants in a meeting room

define interesting activities that the system should be able to
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TABLE II
TRACKING ACCURACY OF O-VAT IN THE MICASA TESTBED FOR ONE TO SIX

PEOPLE. ACCURACIES ARE COMPARED IN TERMS OF TRACK MEAN OFFSET

FROM THE GROUND TRUTH AND STANDARD DEVIATION OF THE TRACK,
FOR BOTH X-Y GROUND TRACK AND HEIGHT ESTIMATION

TABLE III
COMPARISON OF THE BEST OCP OF THE SINGLE-FRAME FACE RECOGNITION

AND THE SFR RULES. COMMON SETTINGS: D = 135; L = 49,
NON-OVERLAPPING VIDEO SEGMENTS

Fig. 20. Configuring AVIARY in an Intelligent Meeting Room. People are
tracked, identified, and classified as presenters or participants based upon
dynamic analysis of the visual and audio signals. A summarization module
maintains a record of all state changes in the system which can be accessed at
a later time.

recognize and capture. We identified three: 1) a person located

in front of the whiteboard; 2) a lead presenter speaking; and

3) other participants speaking. A lead presenter is the person

currently in front of the whiteboard. First, activity should draw

attention from one active camera that captures a view of the

whiteboard. Two other activities draw attention from an active

camera with the best view of the face for capturing the video of

the face of the current speaker.

To recognize these activities, the system has to be aware of

the identities of people, their locations, identity of the current

speaker and the configuration of the room. Basic components

of the system that enable described functionality are:

1) 3-D tracking of centroids using static cameras with highly

overlapping fields of view;

2) person identification (face recognition, voice recognition,

and integration of the two modalities);

3) event recognition for directing the attention of active

cameras;

4) best-view camera selection for taking face snapshots and

for focusing on the face of a current speaker;

5) active camera control;

6) graphical summarization/user interface component.

Tracking and face-recognition algorithms using visual data are

already discussed in the previous section. In this section, we

will also explain the role of audio data. Integration of audio and

video information is performed at two levels. First, the results

of face and voice recognition are integrated to achieve robust

person identification. At a higher level, results of 3-D tracking,

voice recognition, person identification (which is itself achieved

using multimodal information) and knowledge of the structure

of the environment are used to recognize interesting events.

When a person enters the room, the system takes the snapshot

of their face and sample of their speech to perform person iden-

tification using face and voice recognition [35], [36].

The system-block diagram is shown in Fig. 21. As men-

tioned before, it currently takes inputs from four static cameras

with highly overlapping fields of view, four active cameras,

and two microphones. All of the eight cameras are calibrated

with respect to the same world coordinate system using Tsai’s

algorithm [27]. Two PC computers are used. One performs 3-D

tracking of blob (people and objects) centroids based on input

from four static cameras. Centroid, velocity, and bounding

cylinder information are sent to the other PC which handles

all other system functions. For new people in the environment,

the camera with the best view of the face is chosen and moved

to take the snapshot of the face. The person is also required

to speak at that time and the system combines face and voice

recognition results for robust identification. Identity of the

current speaker is constantly monitored and used to recognize

interesting events together with 3-D locations of people and

objects and known structure of the environment. When such

events are detected, the attention of active cameras is directed

toward them.

The IMR project is designed for a meeting-room scenario.

It not only tracks people and recognizes them, but also detects

speaker activities and archive the events. The speaker activity

detection is composed of a voice gate based speech detector

and IBM ViaVoice speaker recognition. When a person walks

in the room, the system recognizes the person by a face snap-

shot and speech. The identity is tagged to the track of the person.

Events are defined according to the room setup. In AVIARY, an

area is defined near the white board as the presenter’s zone. If

a person is in the area, then that person is regarded as a pre-

senter. When the people are nearly static, the meeting starts and

speech activities trigger events such as presenting, listening, and

speaking (questioning/answering) and a PTZ camera zooms into

the event.

A. Event Recognition for Directing the Attention

of Active Cameras

This module constantly monitors for events as described in

Section II. When a new track is detected in the room, it is clas-

sified as a person or object depending on the dimensions of the



160 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 1, JANUARY 2005

Fig. 21. Block diagram of the IMR system.

bounding cylinder. This classification is used to permanently

label each track. If classified as an object, the camera closest to

it takes the snapshot. If classified as a person, the camera with

the best view of the face needs to be selected. The snapshot is

then taken, and person identification is performed. Each person

track is labeled with the person’s name. Events are associated

with tracks labeled as people (person located in front of a white-

board, person in front of the whiteboard speaking, and person

located elsewhere speaking) and are easily detected using track

locations and identity of the current speaker.

B. Best-View Camera Selection

The best-view camera for capturing the face is the one for

which the angle between the direction the person is facing

and the direction connecting the person and the camera is the

smallest (Fig. 22). Center of the face is taken to be 20 cm

from the top of the head (which is given by the height of the

bounding cylinder). There are three different situations where

the best-view camera selection is performed. First is taking

snapshot of the face of the person that just entered the room.

Second, if the person in front of the whiteboard is speaking

a camera needs to focus on their face. The third situation is

when a person not in front of the whiteboard speaks. In these

three situations, we use different assumptions in estimating the

direction the person is facing.

When a person walks into the room, we assume that they

are facing the direction in which they are walking. If a person

is in front of a whiteboard (location of which is known), one

camera focuses on the whiteboard (Fig. 23). If the person starts

speaking, a best-view camera needs to be chosen from the

remaining cameras to focus on that person’s face. Since the

zoomed-in whiteboard image contains person’s head, we use

that image to estimate the direction the person is facing by the

method described in Section IV-B (Fig. 14). These estimates

are not very accurate, but we have found that this method works

quite reliably for purposes of best-view camera selection. In

the third case, where person elsewhere in the room is speaking,

Fig. 22. Best-view camera is chosen to be the one the person is facing the most
(maximum inner product between the direction the object is facing and direction
toward a camera).

Fig. 23. Person standing close to the whiteboard draws attention from one
active camera.

we assume they are facing the person in front of the whiteboard

if one is present there. Otherwise, we assume they are facing

the opposite side of the room. By these assumptions, the first

image obtained with the chosen camera is processed for facing

direction and the camera selection is modified if necessary.

C. Active Camera Control

Pan and tilt angles needed to bring a known location to the

center of the image can be easily computed using the calibrated

camera parameters. However, the zoom center usually does not

coincide with the image center. Therefore, the pan and tilt angles

needed to direct the camera toward the desired location have to
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TABLE IV
EVENT LOG DATABASE FOR ACTIVITY ARCHIVING AND RECALL.
ENTRIES ARE LOGGED WHEN THERE IS CHANGE OF THE STATES.

(K = KOHSIA, I = IVANA; AND M = MOHAN)

be corrected by the pan and tilt angles between the center of the

image and the zoom center as

(2)

Otherwise, for large magnifications, the object of interest may

completely disappear from view. A lookup table is used to se-

lect a zoom needed to properly magnify the object of interest

(person’s face or a whiteboard). Magnifications are com-

puted for a subset of possible zoom values defined by a chosen

zoom step. Magnifications for other zoom values are interpo-

lated from the computed ones. The magnifications are obtained

using a slightly modified version of [37]. Two images taken with

two different zoom values are compared by shrinking the one

taken with the larger zoom value. The value of magnification

(will be smaller than one) that achieves best match between the

two images is taken to be the inverse of the magnification be-

tween the two images. The absolute magnification for a certain

zoom value with respect to zero zoom is computed by multi-

plying the magnifications of the smaller zoom steps. The image

coordinates of the zoom center is determined manually by over-

laying a crosshair over the view from the camera and zooming

in and out until we find a point that does not move under the

crosshair during zooming.

Fig. 24. Graphical summarization interface of the IMR system for retrieval.
The horizontal plane is the floor plan of the meeting room, and the vertical
direct represents time. People’s tracks are color coded and plotted in a
spatial-temporal manner. Square dots are plotted if the person is speaking,
otherwise, circular dots are plotted. Interesting activities on person’s location
and speech activities trigger the attention from active cameras. Every object in
this graphical summarization is associated with information needed to access
the appropriate portion of video, face snapshots, and identity information.

D. Graphical Summarization/User Interface Module

The tracks, identities, and events are logged into a database as

shown in Table IV and the audio and video are also recorded for

later retrieval. A summarization interface as shown in Fig. 24

is used for the user to do the retrievals. The horizontal plane is

the floor plan of the meeting room, and the vertical direct rep-

resents time. People’s tracks are color coded and plotted in a

spatial-temporal manner. Square dots are plotted if the person

is speaking, otherwise, circular dots are plotted. Interesting ac-

tivities on person’s location and speech activities trigger the at-

tention from active cameras. Every “object” in this graphical

summarization is associated with information needed to access

the appropriate portion of video, face snapshots and identity in-

formation. When user clicks on a circular dot, the snapshot and

identity of the person is shown. If a square dot is clicked, the

video clip of the speech interval is replayed. For remote viewing,

the videos from active cameras that capture interesting events

can be transmitted together with the other information needed

to constantly update the remote summarization graph.

Experimental trials confirm satisfactory performance of the

system. Person tracking module performed with maximum er-

rors around 200 mm. These experiments included five people

in the face and speaker databases, so the person identification

accuracy based on both modalities is 100% in most situations.

Also, recognition of the current speaker performs with nearly

perfect accuracy if silence in a speech clip is less then 20%

and clip is longer than 3 s. The results are very good for clips

with low silence percentage even for shorter clips, but results

deteriorate when silence is more than 50% of the clip. The si-

lence percentage and speech clip length can be fine-tuned by the

voice gate sensitivity. By increasing the voice gate threshold,

less silence is in the speech clip, and clips less than 3 s can be

discarded. However, there is an indispensable delay of 1–5 s

between the beginning of speech and the recognition of the
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speaker, which causes a delay in recognizing activities that are

concerned with the identity of the current speaker.

The face capture and pose estimation modules work flaw-

lessly when the moving person keeps the face in the direction

of the movement. Difficulties arises when a person turns the

head while walking. In this case, another camera is selected ac-

cording to the estimated face orientation and the current loca-

tion of the person as in Fig. 22. The camera selection for fo-

cusing on the face of the person that is talking in front of the

whiteboard succeeds around 85% of the time. In the case of the

person talking elsewhere in the room, our assumption that they

are facing the person in front of the whiteboard or the opposite

side of the room is almost always true. This is due to the room

setup—there is one large desk in the middle of the room and

people sit around it—therefore almost always facing the oppo-

site side of the room, unless they are talking to the presenter. If

exception happens, another camera can take over to capture the

speaker on the face orientation estimations.

VI. CONCLUDING REMARKS

In this paper, we presented a framework for efficiently an-

alyzing human activities in the environment, using networks

of static and active cameras. In the framework we developed,

information is extracted at multiple levels of detail depending

on the importance and complexity of activities suspected to be

taking place at different locations and time intervals. The envi-

ronment will be constantly monitored at a low resolution, en-

abling the system to detect certain activities and to estimate the

likelihood that other more complex activities are taking place at

specific locations and times. If such an activity were suspected,

to enable its accurate perception, a higher resolution image ac-

quisition and more sophisticated analysis algorithms would be

employed. The paper includes an overall system architecture

to support design and development of intelligent environments.

Details of panoramic (omnidirectional) video camera arrays,

calibration, video stream synchronization, and real-time cap-

ture/processing are discussed. Modules for multicamera-based

multiperson tracking, event detection and event-based servoing

for selective attention, voxelization, and streaming face recogni-

tion are also discussed. The paper includes experimental studies

to systematically evaluate performance of individual video anal-

ysis modules as well as to evaluate basic feasibility of an inte-

grated system for dynamic context capture and event based ser-

voing, and semantic information summarization.

The trend toward humans inhabiting intelligent or smart

spaces has already begun. This will continue as high per-

formance computing, high-speed communication links, and

multi functional sensory arrays are becoming available at low

cost. Integrating these modules to support natural interactions

with humans in real-world situations, is still an open research

problem especially from the systems engineering perspec-

tive. Satisfactory resolution of the research agenda for the

development of these novel human–machine systems not only

require efforts of the engineering community but also from the

cognitive science, human factors and psychology communities.

Such multidisciplinary efforts are already getting established,

and in the not too distant future, environments such as our au-

tomobiles, highways, conference rooms, hospitals, and homes,

would start displaying significant smartness in them.
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