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Abstract

Static word embeddings that represent words

by a single vector cannot capture the vari-

ability of word meaning in different linguistic

and extralinguistic contexts. Building on prior

work on contextualized and dynamic word em-

beddings, we introduce dynamic contextual-

ized word embeddings that represent words

as a function of both linguistic and extralin-

guistic context. Based on a pretrained lan-

guage model (PLM), dynamic contextualized

word embeddings model time and social space

jointly, which makes them attractive for a

range of NLP tasks involving semantic vari-

ability. We highlight potential application sce-

narios by means of qualitative and quantitative

analyses on four English datasets.

1 Introduction

Over the last decade, word embeddings have rev-

olutionized the field of NLP. Traditional methods

such as LSA (Deerwester et al., 1990), word2vec

(Mikolov et al., 2013a,b), GloVe (Pennington et al.,

2014), and fastText (Bojanowski et al., 2017) com-

pute static word embeddings, i.e., they represent

words as a single vector. From a theoretical stand-

point, this way of modeling lexical semantics is

problematic since it ignores the variability of word

meaning in different linguistic contexts (e.g., poly-

semy) as well as different extralinguistic contexts

(e.g., temporal and social variation).

The first shortcoming was addressed by the in-

troduction of contextualized word embeddings that

represent words as vectors varying across linguis-

tic contexts. This allows them to capture more

complex characteristics of word meaning, includ-

ing polysemy. Contextualized word embeddings

are widely used in NLP, constituting the semantic

backbone of pretrained language models (PLMs)

such as ELMo (Peters et al., 2018a), BERT (Devlin

et al., 2019), GPT-2 (Radford et al., 2019), XLNet

φ
(k)
ij

e
(k)
ij

ẽ
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Figure 1: Dynamic contextualized word embeddings.

A static embedding ẽ
(k) ( ) is mapped to a dynamic

embedding e
(k)
ij ( ) by a function d that takes time and

social space into account. The scattered points ( ) are

contextualized versions of e
(k)
ij . Variability in φ

(k)
ij indi-

cates semantic dynamics across time and social space.

The embeddings have 768 dimensions.

(Yang et al., 2019), ELECTRA (Clark et al., 2020),

and T5 (Raffel et al., 2020).

A concurrent line of work focused on the second

shortcoming of static word embeddings, resulting

in various types of dynamic word embeddings. Dy-

namic word embeddings represent words as vectors

varying across extralinguistic contexts, in particu-

lar time (e.g., Rudolph and Blei, 2018) and social

space (e.g., Zeng et al., 2018).

In this paper, we introduce dynamic contextual-

ized word embeddings that combine the strengths

of contextualized word embeddings with the flex-

ibility of dynamic word embeddings. Dynamic

contextualized word embeddings mark a depar-

ture from existing contextualized word embeddings

(which are not dynamic) as well as existing dy-

namic word embeddings (which are not contextu-

alized). Furthermore, as opposed to all existing

dynamic word embedding types, they represent

time and social space jointly.
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While our general framework for training dy-

namic contextualized word embeddings is model-

agnostic (Figure 1), we present a version using a

PLM (BERT) as the contextualizer, which allows

for an easy integration within existing architec-

tures. Dynamic contextualized word embeddings

can serve as an analytical tool (e.g., to track the

emergence and spread of semantic changes in on-

line communities) or be employed for downstream

tasks (e.g., to build temporally and socially aware

text classification models), making them beneficial

for various areas in NLP that face semantic vari-

ability. We illustrate application scenarios by per-

forming exploratory experiments on English data

from ArXiv, Ciao, Reddit, and YELP.

Contributions. We introduce dynamic contex-

tualized word embeddings that represent words as

a function of both linguistic and extralinguistic

context. Based on a PLM, dynamic contextual-

ized word embeddings model time and social space

jointly, which makes them attractive for a range of

NLP tasks. We showcase potential applications by

means of qualitative and quantitative analyses.1

2 Related Work

2.1 Contextualized Word Embeddings

The distinction between the non-contextualized

core meaning of a word and the senses that are real-

ized in specific linguistic contexts lies at the heart

of lexical-semantic scholarship (Geeraerts, 2010),

going back to at least Paul (1880). In NLP, this is

reflected by contextualized word embeddings that

map type-level representations to token-level rep-

resentations as a function of the linguistic context

(McCann et al., 2017). As part of PLMs (Peters

et al., 2018a; Devlin et al., 2019; Radford et al.,

2019; Yang et al., 2019; Clark et al., 2020; Raffel

et al., 2020), contextualized word embeddings have

led to substantial performance gains on a variety

of tasks compared to static word embeddings that

only have type-level representations (Deerwester

et al., 1990; Mikolov et al., 2013a,b; Pennington

et al., 2014; Bojanowski et al., 2017).

Since their introduction, several studies have an-

alyzed the linguistic properties of contextualized

word embeddings (Peters et al., 2018b; Goldberg,

2019; Hewitt and Manning, 2019; Jawahar et al.,

2019; Lin et al., 2019; Liu et al., 2019; Tenney

et al., 2019; Edmiston, 2020; Ettinger, 2020; Hof-

1We make our code publicly available at https://
github.com/valentinhofmann/dcwe.

mann et al., 2020; Rogers et al., 2020). Regarding

lexical semantics, this line of research has shown

that contextualized word embeddings are more

context-specific in the upper layers of a contextual-

izer (Ethayarajh, 2019; Mickus et al., 2020; Vulić

et al., 2020) and represent different word senses

as separated clusters (Peters et al., 2018a; Coenen

et al., 2019; Wiedemann et al., 2019).

2.2 Dynamic Word Embeddings

The meaning of a word can also vary across ex-

tralinguistic contexts such as time (Bybee, 2015;

Koch, 2016) and social space (Robinson, 2010,

2012; Geeraerts, 2018). To capture these phenom-

ena, various types of dynamic word embeddings

have been proposed: diachronic word embeddings

for temporal semantic change (Bamler and Mandt,

2017; Rosenfeld and Erk, 2018; Rudolph and Blei,

2018; Yao et al., 2018; Gong et al., 2020) and per-

sonalized word embeddings for social semantic

variation (Zeng et al., 2017, 2018; Oba et al., 2019;

Welch et al., 2020a,b; Yao et al., 2020). Other

studies have demonstrated that performance on a

diverse set of tasks can be increased by including

temporal (Jaidka et al., 2018; Lukes and Søgaard,

2018) and social information (Amir et al., 2016;

Hamilton et al., 2016a; Yang et al., 2016; Yang

and Eisenstein, 2017; Hazarika et al., 2018; Mishra

et al., 2018; del Tredici et al., 2019b; Li and Gold-

wasser, 2019; Mishra et al., 2019).

The relevance of dynamic (specifically di-

achronic) word embeddings is also reflected by

the emergence of lexical semantic change detec-

tion as an established task in NLP (Kutuzov et al.,

2018; Schlechtweg et al., 2018; Tahmasebi et al.,

2018; Dubossarsky et al., 2019; Schlechtweg et al.,

2019; Asgari et al., 2020; Pömsl and Lyapin, 2020;

Pražák et al., 2020; Schlechtweg and Schulte im

Walde, 2020; Schlechtweg et al., 2020). Besides

dynamic word embeddings, many studies on lexical

semantic change detection use methods based on

static word embeddings (Kim et al., 2014; Kulka-

rni et al., 2015), e.g., the alignment of static word

embedding spaces (Hamilton et al., 2016b). How-

ever, such approaches come at the cost of modeling

disadvantages (Bamler and Mandt, 2017).

Sociolinguistics has shown that temporal and so-

cial variation in language are tightly interwoven:

innovations such as a new word sense in the case

of lexical semantics spread through the language

community along social ties (Milroy, 1980, 1992;

https://github.com/valentinhofmann/dcwe
https://github.com/valentinhofmann/dcwe
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Labov, 2001; Pierrehumbert, 2012). However,

most proposed dynamic word embedding types

cannot capture more than one dimension of varia-

tion. Recently, a few studies have taken first steps

in this direction by using genre information within

a Bayesian model of semantic change (Frermann

and Lapata, 2016; Perrone et al., 2019) and includ-

ing social variables in training diachronic word

embeddings (Jawahar and Seddah, 2019). In addi-

tion, to capture the full range of lexical-semantic

variability, dynamic word embeddings should also

be contextualized. Crucially, while contextualized

word embeddings have been used to investigate se-

mantic change (Giulianelli, 2019; Hu et al., 2019;

Giulianelli et al., 2020; Kutuzov and Giulianelli,

2020; Martinc et al., 2020a,b), the word embed-

dings employed in these studies are not dynamic,

i.e., they represent a word in a specific linguistic

context by the same contextualized word embed-

ding independent of extralinguistic context or are

fit to different time periods as separate models.2

3 Model

3.1 Model Overview

Given a sequence of words X =
[

x(1), . . . , x(K)
]

and corresponding non-contextualized embeddings

E =
[

e
(1), . . . , e(K)

]

, contextualizing language

models compute the contextualized embedding of

a particular word x(k), h(k), as a function c of its

non-contextualized embedding, e(k), and the non-

contextualized embeddings of words in the left con-

text X(<k) and the right context X(>k),3

h
(k) = c

(

e
(k), E(<k), E(>k)

)

. (1)

Crucially, while h(k) is a token-level representation,

e
(k) is a type-level representation and is modeled

as a simple embedding look-up. Here, in order to

take the variability of word meaning in different ex-

tralinguistic contexts into account, we depart from

this practice and model e(k) as a function d that

depends not only on the identity of x(k) but also on

the social context si and the temporal context tj in

which the sequence X occurred,

e
(k)
ij = d

(

x(k), si, tj

)

. (2)

2It is interesting to notice that contextualized word embed-
dings so far have performed worse than non-contextualized
word embeddings on the task of lexical semantic change de-
tection (Kaiser et al., 2020; Schlechtweg et al., 2020).

3Some contextualizing language models such as GPT-2

(Radford et al., 2019) only operate on X
(<k).
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Figure 2: Model architecture. Words are mapped to dy-

namic embeddings by the parts of the dynamic compo-

nent ( ), which are then contextualized by the con-

textualizer ( ). The output of the contextualizer is

used to compute the task-specific loss Ltask.

Dynamic contextualized word embeddings are

hence computed in two stages: words are first

mapped to dynamic type-level representations by d

and then to contextualized token-level representa-

tions by c (Figures 1 and 2). This two-stage struc-

ture follows work in cognitive science and linguis-

tics that indicates that extralinguistic information is

processed before linguistic information by human

speakers (Hay et al., 2006).

Since many words in the core vocabulary are

semantically stable across social and temporal con-

texts, we place a Gaussian prior on e
(k)
ij ,

e
(k)
ij ∼ N

(

ẽ
(k), λ−1

a I

)

, (3)

where ẽ
(k) denotes a non-dynamic representation

of x(k). Combining Equations 2 and 3, we write

the function d as

d
(

x(k), si, tj

)

= ẽ
(k) + o

(k)
ij , (4)

where o
(k)
ij denotes the vector offset from x(k)’s

non-dynamic embedding ẽ
(k), which is stable

across social and temporal contexts, to its dynamic

embedding e
(k)
ij , which is specific to si and tj . The

distribution of o
(k)
ij then follows a Gaussian with

o
(k)
ij ∼ N

(

0, λ−1
a I

)

. (5)

We enforce Equation 5 by including a regulariza-

tion term in the objective function (Section 3.4).
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3.2 Contextualizing Component

We leverage a PLM for the function c, specifically

BERT (Devlin et al., 2019). Denoting with Eij the

sequence of dynamic embeddings corresponding to

X in si and tj , the dynamic version of Equation 1

becomes

h
(k)
ij = BERT

(

e
(k)
ij , E

(<k)
ij , E

(>k)
ij

)

. (6)

We also use BERT, specifically its pretrained in-

put embeddings, to initialize the non-dynamic em-

beddings ẽ(k), which are summed with the vector

offsets o
(k)
ij (Equation 4) and fed into BERT.

Using a PLM for c has the advantage of making

it easy to employ dynamic contextualized word

embeddings for downstream tasks by adding a task-

specific layer on top of the PLM.

3.3 Dynamic Component

We model the vector offset o
(k)
ij as a function of the

word x(k), which we represent by its non-dynamic

embedding ẽ
(k), as well as the social context si,

which we represent by a time-specific embedding

sij . We use BERT’s pretrained input embeddings

for ẽ(k).4 We combine these representations in a

time-specific feed-forward network,

o
(k)
ij = FFNj

(

ẽ
(k)‖ sij

)

, (7)

where ‖ denotes concatenation. To compute the

social embedding sij , we follow common practice

in the computational social sciences and represent

the social community as a graph G = (S, E), where

S is the set of social units si, and E is the set of

edges between them (Section 4). We use a time-

specific graph attention network (GAT) as proposed

by Veličković et al. (2018) to encode G,5

sij = GATj (s̃i,G) . (8)

We initialize s̃i with node2vec (Grover and

Leskovec, 2016) embeddings.

To model the temporal drift of the dynamic em-

beddings e
(k)
ij , we follow previous work on dy-

namic word embeddings (Bamler and Mandt, 2017;

Rudolph and Blei, 2018) and impose a random

walk prior over o
(k)
ij ,

o
(k)
ij ∼ N

(

o
(k)
ij′ , λ

−1
w I

)

, (9)

4We also tried to learn separate embeddings in the dynamic
component, but this led to worse performance.

5We also tried a model with a feed-forward network instead
of graph attention, but it consistently performed worse.

with j′ = j − 1. This type of Gaussian process

is known as Ornstein-Uhlenbeck process (Uhlen-

beck and Ornstein, 1930) and is commonly used

to model time series (Roberts et al., 2013). The

random walk prior enforces that the dynamic em-

beddings e
(k)
ij change smoothly over time.

3.4 Model Training

The combination with BERT makes dynamic con-

textualized word embeddings easily applicable to

different tasks by adding a task-specific layer on

top of the contextualizing component. For training

the model, the overall loss is

Ltotal = Ltask + Lpriora + Lpriorw , (10)

where Ltask is the task-specific loss, and Lpriora
and Lpriorw are the regularization terms that impose

the anchoring and random walk priors on the type-

level offset vectors,

Lpriora =
λa

K

K
∑

k=1

‖o
(k)
ij ‖

2
2 (11)

Lpriorw =
λw

K

K
∑

k=1

‖o
(k)
ij − o

(k)
ij′ ‖

2
2 . (12)

It is common practice to set λa ≪ λw (Bamler and

Mandt, 2017; Rudolph and Blei, 2018). Here, we

set λa = 10−3 · λw, which reduces the number of

tunable hyperparameters. We place the priors only

on frequent words in the vocabulary (Section 5.1),

taking into account the observation that the vocab-

ulary core constitutes the best basis for dynamic

word embeddings (Hamilton et al., 2016b).

4 Data

We fit dynamic contextualized word embeddings to

four datasets with different linguistic, social, and

temporal characteristics, which allows us to investi-

gate factors impacting their utility. Each dataset D
consists of a set of texts (e.g., reviews) written by a

set of social units S (e.g., users) over a sequence of

time periods T (e.g., years). Furthermore, the so-

cial units are connected by a set of edges E within

a social network G. Table 1 provides summary

statistics of the four datasets.

ArXiv. ArXiv is an open-access distribution ser-

vice for scientific articles. Recently, a dataset of

all papers published on ArXiv with correspond-

ing metadata was released.6 For this study, we

6https://www.kaggle.com/

Cornell-University/arxiv

https://www.kaggle.com/Cornell-University/arxiv
https://www.kaggle.com/Cornell-University/arxiv
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Linguistic Social Temporal

Dataset |D| Unit µ|X| Unit |S| |E| µd µπ ρ Unit |T | t1 t|T |

ArXiv 972,369 Abstract 118.10 Subject 535 5,165 19.34 3.48 .036 Year 20 [01/]2001 [10/]2020

Ciao 269,807 Review 684.68 User 10,880 129,900 18.20 3.65 .002 Year 12 [05/]2000 [09/]2011

Reddit 915,663 Comment 43.50 Subreddit 5,728 61,796 23.99 4.69 .005 Month 8 09/2019 04/2020

YELP 795,661 Review 151.59 User 5,203 223,254 45.17 2.83 .009 Year 10 [01/]2010 [12/]2019

Table 1: Dataset statistics. |D|: number of data points; µ|X|: average number of tokens per text; |S|: number of

nodes in network; |E|: number of edges; µd: average node degree; µπ: average shortest path length between two

nodes; ρ: network density; |T |: number of time points; t1: first time point; t|T |: last time point. In cases where

years are the temporal unit, we also provide the first and last month included in the data.

use ArXiv’s subject classes (e.g., cs.CL) as social

units and extract the abstracts of papers published

between 2001 and 2020 for subjects with at least

100 publications in that time.7 To create the net-

work, we measure the overlap in authors between

subject classes as the Jaccard similarity of corre-

sponding author sets, resulting in a similarity ma-

trix S. Based on S, we define the adjacency matrix

G of G, whose elements are

Gij =
⌈

Sij − θ
⌉

, (13)

i.e., there is an edge between subject classes i and

j if the Jaccard similarity of author sets is greater

than θ. We set θ to 0.01.8

Ciao. Ciao is a product review site on which

users can mark explicit trust relations towards other

users (e.g., if they find their reviews helpful). A

dataset containing reviews covering the time period

from 2000 to 2011 has been made publicly avail-

able (Tang et al., 2012).9 We use the trust relations

to create a directed graph. Since we also perform

sentiment analysis on the dataset, we follow Yang

and Eisenstein (2017) in converting the five-star

rating range into two classes by discarding three-

star reviews and treating four/five stars as positive

and one/two stars as negative.

Reddit. Reddit is a social media platform host-

ing discussions about a variety of topics. It is di-

vided into smaller communities, so-called subred-

dits, which have been shown to be highly conducive

to linguistic dynamics (del Tredici and Fernández,

2018; del Tredici et al., 2019a). A full dump of pub-

lic Reddit posts is available online.10 We retrieve

all comments between September 2019 and April

7We treat subject class combinations passing the frequency
threshold (e.g., cs.CL&cs.AI) as individual units.

8We tried other values of θ, but the results were similar.
9https://www.cse.msu.edu/˜tangjili/

trust.html
10https://files.pushshift.io/reddit/

comments

2020, which allows us to examine the effects of the

rising Covid-19 pandemic on lexical usage patterns.

We remove subreddits with fewer than 10,000 com-

ments in the examined time period and sample 20

comments per subreddit and month. For each sub-

reddit, we compute the set of users with at least

10 comments in the examined time period. Based

on this, we use the same strategy as for ArXiv to

create a network based on user overlap.

YELP. Similarly to Ciao, YELP is a product

review site on which users can mark explicit friend-

ship relations. A subset of the data has been re-

leased online.11 We use the friendship relations

to create a directed graph between users. Since

we also use the dataset for sentiment analysis, we

again discard three-star reviews and convert the

five-star rating range into two classes.

The fact that the datasets differ in terms of their

social and temporal characteristics allows us to ex-

amine which factors impact the utility of dynamic

contextualized word embeddings. We highlight,

e.g., that the datasets differ in the nature of their

social units, cover different time periods, and ex-

hibit different levels of temporal granularity. We

randomly split all datasets into 70% training, 10%

development, and 20% test. We apply stratified

sampling to make sure the model sees data from all

time points during training. See Appendix A.1 for

details about data preprocessing.

5 Experiments

5.1 Embedding Training

We fit dynamic contextualized word embeddings to

all four datasets, using BERTBASE (uncased) as the

contextualizer and masked language modeling as

the training objective (Devlin et al., 2019), i.e., we

11https://www.yelp.com/dataset

https://www.cse.msu.edu/~tangjili/trust.html
https://www.cse.msu.edu/~tangjili/trust.html
https://files.pushshift.io/reddit/comments
https://files.pushshift.io/reddit/comments
https://www.yelp.com/dataset
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ArXiv Ciao Reddit YELP

Model Dev Test Dev Test Dev Test Dev Test

DCWE 3.521 3.513 5.920 5.902 9.480 9.596 4.717 4.720

CWE 3.523 3.530 5.922 5.910 9.580 9.555 4.714 4.723

Table 2: Masked language modeling perplexity on the

four datasets (lower is better). DCWE: dynamic contex-

tualized word embeddings; CWE: contextualized word

embeddings. The better score per column (highlighted

in gray) is underlined if it is significantly (p < .01)

better as shown by a Wilcoxon signed-rank test.

add a language modeling head on top of BERT.12

To estimate the goodness of fit, we measure masked

language modeling perplexity and compare against

finetuned (non-dynamic) contextualized word em-

beddings, specifically BERTBASE (uncased). See

Appendix A.2 for details about implementation,

hyperparameter tuning, and runtime.

Dynamic contextualized word embeddings

(DCWE) yield fits to the data similar to and (some-

times significantly) better than non-dynamic con-

textualized word embeddings (CWE), which indi-

cates that they successfully combine extralinguistic

with linguistic information (Table 2).13

5.2 Ablation Study

To examine the relative importance of temporal

and social information for dynamic contextualized

word embeddings, we perform two experiments in

which we ablate social context and time (Figure 3).

In social ablation (SA), we train dynamic contex-

tualized word embeddings where the vector offset

depends only on word identity and time, not social

context, keeping the random walk prior between

subsequent time slices. In temporal ablation (TA),

we use one social component for all time slices.

See Appendix A.3 for details about implementa-

tion, hyperparameter tuning, and runtime.

Temporal ablation has more severe conse-

quences than social ablation (Table 3). On Ciao,

the social component does not yield better fits on

the data at all, which might be related to the fact

that many users in this dataset only have one review,

and that its social network has the lowest density

as well as the smallest average node degree out of

all considered datasets (Table 1).

12For a given dataset, we only compute dynamic embed-
dings for tokens in BERT’s input vocabulary that are among
the 100,000 most frequent words. For less frequent tokens,
we input the non-dynamic BERT embedding.

13Statistical significance is tested with a Wilcoxon signed-
rank test (Wilcoxon, 1945; Dror et al., 2018).

ẽ
(1)

ẽ
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(a) Social ablation
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(b) Temporal ablation

Figure 3: Models for ablation study. In social abla-

tion, the vector offset only depends on word identity

and time, not social context. In temporal ablation, there

is only one social component for all time slices.

ArXiv Ciao Reddit YELP

Model Dev Test Dev Test Dev Test Dev Test

DCWE 3.521 3.513 5.920 5.902 9.480 9.596 4.717 4.720

SA 3.517 3.515 5.919 5.899 9.620 9.631 4.725 4.723

TA 3.534 3.541 5.924 5.931 9.598 9.612 4.726 4.734

Table 3: Masked language modeling perplexity on the

four datasets in ablation study (lower is better). DCWE:

dynamic contextualized word embeddings; SA: social

ablation; TA: temporal ablation. The best score per col-

umn (highlighted in gray) is underlined if it is signif-

icantly (p < .01) better than the second-best score as

shown by a Wilcoxon signed-rank test.

5.3 Qualitative Analysis

Do dynamic contextualized word embeddings in-

deed capture interpretable dynamics in word mean-

ing? To examine this question qualitatively, we

define as sim
(k)
ij the cosine similarity between the

non-dynamic embedding of x(k), ẽ(k), and the dy-

namic embeddings of x(k) given social and tempo-

ral contexts si and tj , e
(k)
ij ,

sim
(k)
ij = cosφ

(k)
ij , (14)

where φ
(k)
ij is the angle between ẽ

(k) and e
(k)
ij (Fig-

ure 1).14 To find words with a high degree of

variability, we compute the standard deviation of

sim
(k)
ij based on all si and tj in which a given word

x(k) occurs in the data,

σ
(k)
sim = σ

(

{sim
(k)
ij |(x(k), si, tj) ∈ D}

)

, (15)

where we take the development set for D.

Looking at the top-ranked words according to

σ
(k)
sim, we observe that they exhibit pronounced

14In cases where x(k) is split into several WordPiece tokens
by BERT, we follow previous work (Pinter et al., 2020; Sia
et al., 2020) and average the subword embeddings.
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Context for sim
(k)
ij > µ

(k)
sim Context for sim

(k)
ij < µ

(k)
sim

Word Extralinguistic Linguistic Extralinguistic Linguistic

“isolating”
r/SAHP

12/19

It’s really hard to explain to other people

how isolating and exhausting being a

SAHP can be.

r/Asthma

03/20

I wish I knew if I’d had covid so that I

could stop self isolating and instead

volunteer in my community.

“testing”
r/VJoeShows

04/20

Testing a photocell light fixture during

the day is easy when you know how.

This is what this DIY video is about.

r/vancouver

03/20

Testing is not required if a patient has no

symptoms, mild symptoms, or is a returning

traveller and is isolating at home.

Table 4: Examples of dynamics in word meaning during the Covid-19 pandemic. The table lists example words

with top-ranked values of σ
(k)
sim, i.e., they exhibit a high degree of extralinguistically-driven semantic dynamics.

extralinguistically-driven semantic dynamics in the

data. For Reddit, e.g., many of the top-ranked

words have experienced a sudden shift in their dom-

inant sense during the Covid-19 pandemic such as

“isolating” and “testing” (Table 4). Social and tem-

poral contexts in which the sense related to Covid-

19 is dominant have smaller values of sim
(k)
ij (i.e.,

the cosine distance is larger) than the ones in which

the more general sense is dominant. Such short-

term semantic shifts, which have attracted growing

interest in NLP recently (Stewart et al., 2017; del

Tredici et al., 2019a; Powell and Sentz, 2020), can

result in lasting semantic narrowing if speakers

become reluctant to use the word outside of the

more specialized sense (Anttila, 1989; Croft, 2000;

Robinson, 2012; Bybee, 2015).

Thus, the qualitative analysis suggests

that the dynamic component indeed captures

extralinguistically-driven variability in word mean-

ing. In Sections 5.4 and 5.5, we will demonstrate

by means of two example applications how this

property can be beneficial in practice.

5.4 Exploration 1: Semantic Diffusion

We will now provide a more in-depth analysis of

social and temporal dynamics in word meaning to

showcase the potential of dynamic contextualized

word embeddings as an analytical tool. Specifically,

we will analyze how changes in the dominant sense

of a word diffuse through the social networks of

ArXiv and Reddit. For ArXiv, we will examine the

deep learning sense of the word “network”. For

Reddit, we will focus on the medical sense of the

word “mask”. We know that these senses have

become more widespread over the last few years

(ArXiv) and months (Reddit), but we want to test

if dynamic contextualized word embeddings can

capture this spread, and if they allow us to gain new

insights about the spread of semantic associations

through social networks in general.

To perform this analysis, let r
(k,k′)
ij be the rank of

x(k
′)’s embedding among the N nearest neighbors

of x(k)’s embedding, given social and temporal

contexts si and tj . We then define as

r̂
(k,k′)
ij = N − r

(k,k′)
ij + 1 (16)

a semantic similarity score between x(k) and x(k
′).

r̂
(k,k′)
ij is maximal when x(k

′)’s embedding is clos-

est to x(k)’s embedding. We set r̂
(k,k′)
ij = 0 if x(k

′)

is not among the N nearest neighbors of x(k). We

set N = 100.

Using r̂
(k,k′)
ij , we measure dynamics in the se-

mantic similarity between “network” and “learning”

(representing the deep learning sense of “network”)

as well as “mask” and “vaccine” (representing the

medical sense of “mask”). For all social and tem-

poral contexts in which “network” and “mask” oc-

cur, we compute r̂
(k,k′)
ij between their socially and

temporally dynamic embeddings on the one hand

and time-specific centroids of “learning” and “vac-

cine” averaged over social contexts on the other,

employing contextualized versions of the dynamic

embeddings.15 In cases where “network” or “mask”

occur more than once in a certain social and tem-

poral context, we take the mean of r̂
(k,k′)
ij .

The dynamics of r̂
(k,k′)
ij reflect how the changes

in the dominant sense of “network” and “mask”

spread through the social networks (Figure 4). For

“network”, we see that the deep learning sense was

already present in computer science and physics in

2013, where neural networks have been used since

the 1980s. It then gradually spread from these two

epicenters, with a major intensification after 2016.

For “mask”, we also see a gradual diffusion, with a

major intensification after 03/2020.

15We average the first six layers of the contextualizer since
they have been shown to contain the core of lexical and se-
mantic information (Vulić et al., 2020).
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(a) r̂
(k,k′)
ij for “network” and “learning” in ArXiv

(b) r̂
(k,k′)
ij for “mask” and “vaccine” in Reddit

Figure 4: Spread of changes in the dominant sense through the social network. The figure shows dynamics in

r̂
(k,k′)
ij , a score for semantic similarity between 0 (no similarity) and 100 (very similar), for “network” and “learn-

ing” in ArXiv as well as “mask” and “vaccine” in Reddit. The different node shapes in the ArXiv network represent

the three major ArXiv subject classes: computer science (square), mathematics (triangle), and physics (circle). For

“network”, the change towards the deep learning sense spread gradually from computer science and physics. For

“mask”, the change towards the medical sense also spread gradually, with a major intensification after 03/2020.

On what paths do new semantic associations

spread through the social network? In complex sys-

tems theory, there are two basic types of random

motion on networks: random walks, which consist

of a series of consecutive random steps, and ran-

dom flights, where step lengths are drawn from the

Lévy distribution (Masuda et al., 2017). To probe

whether there is a dominant type of spread for the

two examples, we compute for each time slice tj

what proportion of nodes that have r̂
(k,k′)
ij > 0 for

the first time at tj (i.e., the change in the domi-

nant sense has just arrived) are neighbors of nodes

that already had r̂
(k,k′)
ij > 0 before tj . This anal-

ysis shows that random walks are the dominant

type of spread for “network”, but random flights

for “mask” (Figure 5). Intuitively, it makes sense

that a technical concept such as neural networks

spreads through the direct contact of collaborating

scientists rather than through more distant forms of

reception (e.g., the reading of articles). In the case

of facial masks, on the other hand, the exogenous

factor of the worsening Covid-19 pandemic and the

accompanying publicity was a driver of semantic

dynamics irrespective of node position.

Figure 5: Types of semantic diffusion in ArXiv (A) and

Reddit (R). The figure shows for each time tj the prob-

ability that a node having the new sense for the first

time is the neighbor of a node that already had it previ-

ously (walk, W) as opposed to cases where none of its

neighbors had it previously (flight, F).

5.5 Exploration 2: Sentiment Analysis

As a second testbed, we apply dynamic contextu-

alized word embeddings on a task for which so-

cial and temporal information is known to be im-

portant (Yang and Eisenstein, 2017): sentiment

analysis. We use the Ciao and YELP datasets and

train dynamic contextualized word embeddings by

adding a two-layer feed-forward network on top of

BERTBASE (uncased) and finetuning it for the task

of sentiment classification.16 We again compare

16We finetune directly on sentiment analysis without prior
finetuning on masked language modeling.
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Ciao YELP

Model Dev Test Dev Test

DCWE .894 .896 .969 .968

CWE .889 .890 .967 .966

Table 5: F1 score on sentiment analysis (higher is bet-

ter). DCWE: dynamic contextualized word embed-

dings; CWE: contextualized word embeddings. The

better score per column (highlighted in gray) is under-

lined if it is significantly (p < .01) better as shown by

a McNemar’s test for binary data.

against contextualized word embeddings, specif-

ically BERTBASE (uncased), which is finetuned

without the dynamic component. See Appendix

A.4 for details about implementation, hyperparam-

eter tuning, and runtime.

Dynamic contextualized word embeddings

achieve slight but significant improvements over

the already strong performance of non-dynamic

BERT (Table 5).17 This provides further evidence

that infusing social and temporal information on

the lexical level can be useful for NLP tasks.

6 Conclusion

We have introduced dynamic contextualized word

embeddings that represent words as a function of

both linguistic and extralinguistic context. Based

on a PLM, specifically BERT, dynamic contextu-

alized word embeddings model time and social

space jointly, which makes them advantageous for

various areas in NLP. We have trained dynamic

contextualized word embeddings on four datasets

and showed that they are capable of tracking social

and temporal variability in word meaning. Besides

serving as an analytical tool, dynamic contextual-

ized word embeddings can also be of benefit for

downstream tasks such as sentiment analysis.
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Ivan Vulić, Edoardo M. Ponti, Robert Litschko, Goran
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A Appendices

A.1 Data Preprocessing

For each dataset, we remove duplicates as well as

texts with less than 10 words. For the Ciao dataset,

we further remove reviews rated as not helpful. We

lowercase all words. Since BERT’s input is limited

to 512 tokens, we truncate longer texts by taking

the first and last 256 tokens.

A.2 Embedding Training: Hyperparameters

DCWE. The hyperparameters of the contextualizer

are as for BERTBASE (uncased). In particular, the

dimensionality of the input embeddings ẽ(k) is 768.

For the dynamic component, the social vectors sij
and s̃i have a dimensionality of 50. The node2vec

vectors for the initialization of s̃i are trained on

10 sampled walks of length 80 per node with a

window size of 2. The GAT has two layers with

four attention heads, respectively (activation func-

tion: tanh). The feed-forward network has two lay-

ers (activation function: tanh). We apply dropout
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ArXiv Ciao Reddit YELP

Model µ σ ne l λa τ µ σ ne l λa τ µ σ ne l λa τ µ σ ne l λa τ

DCWE 3.848 .307 7 3e-6 1e-1 6,756 6.794 .606 7 3e-6 1e-1 11,831 9.836 .318 7 3e-6 1e-1 4,629 5.122 .384 7 3e-6 1e-1 7,002

CWE 3.851 .305 7 3e-6 — 3,749 6.789 .589 7 3e-6 — 3,564 9.869 .274 7 3e-6 — 2,160 5.129 .384 7 3e-6 — 3,551

Table 6: Validation performance statistics and hyperparameter search details for embedding training. DCWE: dy-

namic contextualized word embeddings; CWE: contextualized word embeddings. The table shows the mean (µ)

and standard deviation (σ) of the validation performance (masked language modeling perplexity) on all hyperpa-

rameter search trials and gives the number of epochs (ne), learning rate (l), and regularization constant (λa) with

the best validation performance as well as the runtime (τ ) in minutes for one full hyperparameter search (28 trials

for DCWE on Ciao, 14 trials for CWE on Ciao, 7 trials for DCWE and CWE on ArXiv, Reddit, and YELP).

with a rate of 0.2 after each layer of the dynamic

component. The number of trainable parameters

varies between models trained on different datasets

due to differences in |T | and is 134,914,570 for

ArXiv, 124,990,698 for Ciao, 120,028,762 for Red-

dit, and 122,509,730 for YELP. We use a batch

size of 4 and perform grid search for the num-

ber of epochs ne ∈ {1, . . . , 7}, the learning rate

l ∈ {1× 10−6, 3× 10−6}, and the regularization

constant λa ∈ {1× 10−2, 1× 10−1}, thereby also

determining λw (Section 3.4).

CWE. All hyperparameters are as for

BERTBASE (uncased). The number of train-

able parameters is 110,104,890. We use a batch

size of 4 and perform grid search for the number

of epochs ne ∈ {1, . . . , 7} and the learning rate

l ∈ {1× 10−6, 3× 10−6}.

For both DCWE and CWE, we tune hyperparam-

eters except for the number of epochs on the Ciao

dataset (selection criterion: masked language mod-

eling perplexity) and use the best configuration for

ArXiv, Reddit, and YELP. Models are trained with

categorical cross-entropy as the loss function and

Adam (Kingma and Ba, 2015) as the optimizer. Ex-

periments are performed on a GeForce GTX 1080

Ti GPU (11GB).

Table 6 lists statistics of the validation perfor-

mance over hyperparameter search trials and pro-

vides information about best hyperparameter con-

figurations.18 We also report the number of hyper-

parameter search trials as well as runtimes for the

hyperparameter search.

A.3 Ablation Study: Hyperparameters

SA. Words are mapped to offsets using time-

specific two-layer feed-forward networks (activa-

tion function: tanh). Both layers have a dimen-

sionality of 768. All other hyperparameters are

18Since expected validation performance (Dodge et al.,
2019) may not be correct for grid search, we report mean
and standard deviation of the performance instead.

as for DCWE with a full dynamic component

(Appendix A.2). The number of trainable pa-

rameters again varies between models trained on

different datasets due to differences in |T | and

is 133,728,570 for ArXiv, 124,279,098 for Ciao,

119,554,362 for Reddit, and 121,916,730 for YELP.

We use a batch size of 4 and perform grid search for

the number of epochs ne ∈ {1, . . . , 7}, the learning

rate l ∈ {1× 10−6, 3× 10−6}, and the regulariza-

tion constant λa ∈ {1× 10−2, 1× 10−1}, thereby

also determining λw (Section 3.4).

TA. All hyperparameters are as for DCWE with

a full dynamic component (Appendix A.2), with

the difference that we only use one social compo-

nent (consisting of a two-layer GAT and a two-layer

feed-forward network) for all time units. The num-

ber of trainable parameters is 111,345,374. We use

a batch size of 4 and perform grid search for the

number of epochs ne ∈ {1, . . . , 7}, the learning

rate l ∈ {1× 10−6, 3× 10−6}, and the regulariza-

tion constant λa ∈ {1× 10−2, 1× 10−1}.

For both SA and TA, we tune hyperparame-

ters except for the number of epochs on the Ciao

dataset (selection criterion: masked language mod-

eling perplexity) and use the best configuration for

ArXiv, Reddit, and YELP. Models are trained with

categorical cross-entropy as the loss function and

Adam as the optimizer. Experiments are performed

on a GeForce GTX 1080 Ti GPU (11GB).

Table 7 lists statistics of the validation perfor-

mance over hyperparameter search trials and pro-

vides information about best hyperparameter con-

figurations. We also report the number of hyper-

parameter search trials as well as runtimes for the

hyperparameter search.

A.4 Sentiment Analysis: Hyperparameters

DCWE. The mid layer of the feed-forward network

on top of BERT has a dimensionality of 100. All

other hyperparameters are as for DCWE trained

on masked language modeling (Appendix A.2).
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ArXiv Ciao Reddit YELP

Model µ σ ne l λa τ µ σ ne l λa τ µ σ ne l λa τ µ σ ne l λa τ

SA 3.849 .302 7 3e-6 1e-1 4,438 6.790 .635 7 3e-6 1e-1 7,616 9.851 .282 6 3e-6 1e-1 2,699 5.127 .392 7 3e-6 1e-1 4,231

TA 3.860 .303 7 3e-6 1e-1 6,080 6.843 .782 7 3e-6 1e-1 10,343 9.871 .321 7 3e-6 1e-1 3,859 5.129 .388 7 3e-6 1e-1 6,471

Table 7: Validation performance statistics and hyperparameter search details for ablation study. SA: social ablation;

TA: temporal ablation. The table shows the mean (µ) and standard deviation (σ) of the validation performance

(masked language modeling perplexity) on all hyperparameter search trials and gives the number of epochs (ne),

learning rate (l), and regularization constant (λa) with the best validation performance as well as the runtime (τ )

in minutes for one full hyperparameter search (28 trials on Ciao, 7 trials on ArXiv, Reddit, and YELP).

Ciao YELP

Model µ σ ne l λa τ µ σ ne l λa τ

DCWE .883 .010 4 3e-6 1e-1 8,128 .967 .003 2 3e-6 1e-1 4,373

CWE .880 .011 5 3e-6 — 2,122 .967 .001 3 3e-6 — 2,221

Table 8: Validation performance statistics and hyperpa-

rameter search details for sentiment analysis. DCWE:

dynamic contextualized word embeddings; CWE: con-

textualized word embeddings. The table shows the

mean (µ) and standard deviation (σ) of the validation

performance (F1 score) on all hyperparameter search

trials and gives the number of epochs (ne), learning rate

(l), and regularization constant (λa) with the best vali-

dation performance as well as the runtime (τ ) in min-

utes for one full hyperparameter search (20 trials for

DCWE on Ciao, 10 trials for CWE on Ciao, 5 trials for

DCWE and CWE on YELP).

The number of trainable parameters again varies

between models trained on different datasets due

to differences in |T | and is 124,445,049 for Ciao

and 121,964,081 for YELP. We use a batch size

of 4 and perform grid search for the number of

epochs ne ∈ {1, . . . , 5}, the learning rate l ∈
{1× 10−6, 3× 10−6}, and the regularization con-

stant λa ∈ {1× 10−2, 1× 10−1}, thereby also de-

termining λw (Section 3.4).

CWE. The mid layer of the feed-forward net-

work on top of BERT has a dimensionality of 100.

All other hyperparameters are as for BERTBASE

(uncased). The number of trainable parameters

is 109,559,241. We use a batch size of 4 and

perform grid search for the number of epochs

ne ∈ {1, . . . , 5} and the learning rate l ∈
{1× 10−6, 3× 10−6}.

For both DCWE and CWE, we tune hyperparam-

eters except for the number of epochs on the Ciao

dataset (selection criterion: F1 score) and use the

best configuration for YELP. Models are trained

with binary cross-entropy as the loss function and

Adam as the optimizer. Experiments are performed

on a GeForce GTX 1080 Ti GPU (11GB).

Table 8 lists statistics of the validation perfor-

mance over hyperparameter search trials and pro-

vides information about best hyperparameter con-

figurations. We also report the number of hyper-

parameter search trials as well as runtimes for the

hyperparameter search.


