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Abstract  
Background/objectives: Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used in tumor 

diagnosis, staging and assessment of therapy response for different types of tumors, thanks to its capability to provide 

important functional information about tissue microvasculature. Tracer kinetic models used for estimating microcir- 

culatory parameters can be broadly categorized as conventional compartmental (CC) or distributed- parameter (DP) 

models. While DP models seem to be more realistic, CC models (in particular the Tofts and the Brix models) have been 

widely used in clinical investigations over the past two decades. However, to date there is no direct comparison of CC vs 

DP models on real breast DCE-MRI data; moreover, a direct comparison between Tofts and Brix models, has not yet been 

reported on real breast data. Therefore, the purpose of this study was two-fold: on the one hand we analyzed the 

performance, on real breast DCE-MRI data, of CC vs DP models in terms of goodness-of-fit metrics; on the other hand we 

compared Tofts and Brix models on the basis of real breast DCE-MRI data. 

Methods: Three models were compared: two CC models (the Tofts and the Brix models) and one DP model (the ATH 

model). We gathered data in two different scenarios: DCE-MRI with high temporal resolution obtained by means of a 

k-space under-sampling and data sharing method known as Time-resolved angiography With Stochastic Trajectories 

(TWIST) and DCE-MRI with low temporal resolution obtained by means of the Spoiled Gradient-Echo k-space scheme 

known as Fast Low Angle Shot (FLASH). The performances of the three models were evaluated by means of three 

goodness-of-fit metrics: the Residual Sum of Squares, the Bayesian Information Criterion and the Akaike Information 

Criterion on four breast DCE-MRI examinations. 

Results: Although not conclusive, the results of this study suggest that the ATH model can achieve better fit in comparison 

to the Tofts and Brix models for TWIST data; and that the Brix model can achieve better fit with respect to the Tofts model 

for FLASH data. 

Conclusion: Given the current typical settings of clinical breast DCE-MRI examinations, there seems not to be a clear 

advantage, in terms of goodness-of-fit, of ATH with respect to Tofts and Brix models; moreover, at lower temporal 

resolution the Brix model can achieve better fit than the Tofts model. 
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1  I nt roduct ion 
Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used in tumor diagnosis, staging and 

assessment of therapy response for different types of tumors, thanks to its capability to provide important functional 

information about tissue microvasculature [1, 2]. Evidence has shown that microcirculatory parameters (eg, perfusion, blood 

volume, mean transit time, and vessel permeability) derived from dynamic contrast-enhanced imaging may be linked to 

the aggressiveness or angiogenic potential of the tumor and may be useful for diagnosis and monitoring of cancer therapy 

outcome [1-4]. These issues are particularly pertinent in breast carcinoma where there is a need to identify, before or early in 

treatment, those patients unlikely to respond to conventional therapy so that additional treatments may be given [5-10].  

For T1-weighted DCE-MRI, a variety of tracer kinetic models have been developed during the last two decades [11-19]. 

Conventional-Compartmental (CC) or Distributed-Parameter (DP) models [17-19] are the two main categories of tracer 

kinetic models used for perfusion parameter estimation in DCE-MRI. Many investigations, especially clinical studies, 

have been published using CC models: in particular the Tofts [8-10, 13, 14, 16] and the Brix models [13, 20-22]. The former, 

proposed by Tofts and Kermode [11], used a population-based AIF with two exponentials, that was drawn from the 

literature concerning excretion of Gd-DTPA in the normal population (Weinmann et al. [25]). On the contrary, the model 

originally proposed by Brix et al. [15] used a single exponential AIF by including one more parameter in the model. The 

Tofts and the Brix models (which have been shown to be both descending from a complete CC model [8]) have been widely 

used due to their simplicity [14, 26]. However, these methods are only applicable when permeability-limited conditions are 

met [8]. Moreover, although some results in separating benign from malignant lesions have been obtained [26], their 

acceptance in the clinical environment is not yet fully achieved, probably because of the not completely clear 

interpretation of some parameters (such as Ktrans) which does not allow to separately consider flow (F) and permeability 

surface area product (PS). 

On the other side, several authors [12, 18, 24, 29] have reported that DP models could allow a more complete analysis of kinetic 

parameters: Larson et al. [18] stated that CC models do not possess sufficient realism, because tracer concentration 

gradients within compartments are assumed to be zero at all times and consequently the tracer is assumed to distribute 

instantaneously on arrival in each compartment. On the contrary, in DP models the concentration gradients in the vascular 

compartment are considered as a function of both time and space. The first DP model for two compartments was proposed 

by Johnson and Wilson [7] under the name of tissue homogeneity (TH) model; later, St Lawrence and Lee [12] proposed a 

simplified version with an adiabatic approximation of the tissue homogeneity model (ATH). The ATH model allows direct 

quantification of flow (F), extraction fraction (E), the clearance constant (kep) and the mean capillary transit time (Tc). 

Here, rather than defining the composite parameter Ktrans, it is possible to separate the flow from permeability. 

To date, studies reporting comparison between CC and DP models in the DCE-MRI context have been few. Donaldson et 

al. [36] provided a comparison among four different models: Tofts model, extended Tofts model with plasma fraction 

volume contribution, an uptake model and a general two-compartment exchange model (2CXM) in the carcinoma of 

cervix. Their results suggested that the assumption of negligible plasma mean transit time is not appropriate in this context 

and the 2CXM is better suited for its analysis than the Tofts models. This demonstrated the importance of selecting an 

appropriate tracer kinetic model in DCE-MRI. Li et al. [29] compared four different models by applying four statistical 

measures (chi-square test, Durbin–Watson statistic, Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC)) to assess their capability to describe DCE-MRI data obtained in breast cancer. They examined the fast 

exchange limit model with (FXL_vp) and without (FXL) a plasma component, and the fast and slow exchange regime 
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models (FXR and SXR, respectively). They reported that the FXL_vp and the FXR models provided the most complete 

statistical description of dynamic contrast-enhanced MRI time courses for the patients selected in their study. 

To the best of our knowledge, apart from the simulation-based study by Zwick et al. [13], there is no direct comparison 

between Tofts and Brix models on real data; moreover, there is no direct comparison of CC models and DP models on real 

breast DCE-MRI data. 

With the previous considerations in mind, the objective of this study was two-fold: on the one hand we compared Tofts to 

Brix, on the other hand we aimed to compare DP (ATH) to CC models (Tofts and Brix); both comparisons were based on 

real breast DCE-MRI data. 

It should be pointed out that in this study we considered only a few CC models that have been previously widely used in 

breast DCE-MRI (Tofts and Brix). Therefore, many other CC models have not been considered here (such as for example, 

the Patlak model [23], which was developed originally for blood-brain-barrier exchange, or the general two-compartment 

exchange model as analyzed by Donaldson [36]). 

We analyzed breast DCE-MRI data from 4 subjects with histologically proven invasive ductal carcinoma; they underwent 

DCE-MRI examinations in two different protocols: DCE-MRI with high temporal resolution obtained by means of a 

k-space under-sampling and data sharing method known as Time-resolved angiography With Stochastic Trajectories 

(TWIST) and DCE-MRI with low temporal resolution obtained by means of the common Spoiled Gradient-Echo k-space 

scheme (Spoiled Gradient Echo knew as Fast Low Angle SHot(FLASH) [30]. This was done because the ATH model 

requires a sampling interval lower than the mean capillary transit time (Tc). FLASH data were used to perform the 

comparison between Brix and Tofts models in a typical clinical setting (as in previous studies). Models have been 

compared using different goodness-of-fit metrics (Residual Sum of Square (RSS), BIC, AIC). Moreover, a study of 

reliability of fit parameters estimation was performed. 

2  Materia ls and m ethods 

2 .1  Pat ients data and DCE- MRI  acquisit ion 

Four women (38-53 age) with histologically proven invasive ductal carcinoma underwent imaging with a 1.5 T scanner 

(Magnetom Symphony, Siemens Medical System, Erlangen, Germany) equipped with dedicated 4-channel breast coil.  

Dynamic images were obtained before and after intra-venous injection of 0.1 mmol/kg body weight of a Gd-DOTA 

(Dotarem, Guerbet, Roissy CdG Cedex, France; r1=4.5 × 10-3 mM/s). Automatic injection system was used (Spectris 

Solaris EP MR, MEDRAD, Inc., Indianola, Pennsylvania) and injection constant flow rate was set to 2 mL/s followed by 

a flush of 10 mL saline solution at the same rate. 

For two women DCE T1-weighted FLASH 3-D coronal images were acquired (TR/TE: 9.8/4.76 ms; flip angle: 25 

degrees; matrix: 256×128; thickness: 2 mm; gap: 0; acquisition time: 56 s; 80 slices spanning entire breast volume, 11 

temporal series). Three pre-contrast volumes were acquired with different flip angles (7, 12 and 25 degrees) in order to 

obtain T10 map in accordance with the standard methods proposed in literature [12]. 

For the other two women DCE T1-weighted TWIST 3-D coronal images were acquired (TR/TE: 3.08/1.18 ms; flip angle: 

25 degrees; matrix: 320×290; thickness: 2 mm; gap: 0 mm; acquisition time: 6.2 s; 64 slices spanning entire breast volume; 

88 temporal series; pA: 0.20, pB: 0.20). The choice of pA and pB was based on the results of [30]. Five pre-contrast volumes 

were acquired with different flip angles (7, 12, 15, 20 and 25 degrees) in order to obtain T10 map in accordance with the 

standard methods proposed in literature [33]. 
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2 .2  Est im at ion of t racer concentrat ion  

Using a spoiled gradient echo acquisition, the signal intensity at time t (St) from a tissue having longitudinal relaxation 

time T1 and transversal relaxation time T2* can be described by eq. 1 [31]: 
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where α is the flip angle; TE is the echo time; TR is the repetition time; M0 describes the scanner gain and proton density. 

To perform quantitative DCE-MRI data analysis, the time varying longitudinal relaxation time, T1(t), must be related to 

the concentration of contrast agent (CA) in the tissue, Ct(t). Usually, a linear relationship between the two quantities is 

assumed [32] (eq. 2): 
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where R10 is the R1 value of the tissue before CA administration and r1 is the relaxivity of the CA. R10=1/T10 may be 

estimated using several gradient echo images with different flip angles taken before contrast injection [33]. Rearranging eq. 

1 yields:  
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where Y = St sin(α) and X = St tan(α). Hence a plot of Y against X for a range of flip angles will result in a straight line, and 

T10 may be estimated from the slope. 

2 .3  Tracer k inet ic m odels 

Many tracer kinetic models have been developed for DCE-MRI data ranging from simplified two-compartment models to 

more physiologically plausible distributed parameter models [9-12, 34]. In this section we introduce the models and the 

associated contrast agent input functions which we have considered in this study. 

2 .3 .1  Tofts m odel 

In the Tofts model [11] the concentration of CA within plasma (Cp(t)) after the injection of a bolus of Gd (also called 

Arterial Input Function, AIF) was assumed to be the one measured in normal control subjects by Weinmann [25]. This was 

fitted to a bi-exponential decay, which is expected from the compartmental theory: 

))exp()exp(()( 2211 tmatmaDtC p 
                                                    (4) 

where D is the dose (mmol/kg). The fitted values were a1 = 3.99 kg/L, a2 = 4.78 kg/L, m1 = 0.144 min-1, m2 = 0.0111 min-1. 

The time course of tissue concentration was modeled as follows:  

)()exp()()( tCvtktCKtC ppepptranst 
                                        (5) 

Where Ktrans [min-1] is the volume transfer constant from plasma to extracellular-extravascular space (EES); kep [min-1] is 

the diffusion rate constant from EES to plasma, and Cp(t) was obtained by eq. 4. In particular Ktrans is associated to both the 

vessel permeability and blood flow, kep is linked to the duration of the wash-out phase, vp is plasma volume fraction [37]. 

Ktrans and kep satisfy eq. (6) where ve ∈ (0, 1) is the volume fraction occupied by EES. 
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2 .3 .2  Brix  m odel 

In the Brix et al. model [15] the signal enhancement was assumed to be proportional to the concentration of CA in the tissue, 

the plasma concentration is fitted with single exponential decay characterized by a rate constant kel [min-1]. During the 

infusion of contrast material the CA concentration Ct is equal to: 
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where A [mmol min-1 L-1] is the initial slope of the curve. 

2 .3 .3  ATH m odel 

According to the adiabatic approximation to the tissue homogeneity (ATH) model [12], the concentration of CA in tissue, 

Ct(t), is equal to the convolution of the arterial input function, Cp(t), and the tissue impulse response function H(t): 
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The ATH is more complex than the Tofts and Brix model. It accounts for different contributions from the plasma flow rate 

Fp [mL 100 g-1 min-1], extraction fraction through first-passage E, mean capillary transit time Tc [min], and interstitial 

volume fraction ve. 

The relationship with the above quantities Ktrans and vp can be obtained with following equations: 
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In this study we estimated Cp(t) by means of non-linear fitting of the arterial flux measured directly on the images using the 

computationally efficient model recently proposed by [27]: 
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with / ( )B B B G b GA a a a m m    and 
2/ ( )G B G b GA a a m m  : in fact, the model proposed [27] was based on 

decomposition of the AIF in a bolus term and a body transfer function term; mB, aB and mG, aG are the transfer rate and the 

amplitude of two terms respectively [27]. 

2 .4  I m age and data analysis 

Manual segmentation was performed by an expert radiologist on the fat suppressed image obtained subtracting the basal 

pre-contrast image from one post-contrast image. The segmentation was performed by means of the OsiriX v.3.8.1 3 [46]. 

Two scenarios were compared: the first with high temporal resolution (TWIST acquisition with 6.2 s sampling interval); 

the second with low temporal resolutions (FLASH acquisition with 56 s sampling interval). 
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T10 maps were calculated using eq. (3). However, for all the voxels within a segmented ROI the T10 median value was used 

for CA quantification. This approach was inspired by Schabel et al. 2010 [26]. 

For Cp(t) fitting using eq. (10) breast arteries have been manually selected. The starting estimates for AB, AG, mB, mG were 

chosen on basis of results of [27]. 

The starting estimates for non linear regression of the tracer kinetic models were chosen using the kinetic parameters 

values found in literature [15, 20, 38, 39] (see Table 1). 

Table 1. Starting estimates for nonlinear regression 

 Ktrans [min-1] kep [min-1] vp A [mmol/kg] kel [min-1] F [mL 100 g-1 min-1] E Tc [s] 

Tofts  0.5 0.5 0.05      

Brix   0.5  0.001 0.144    

ATH   0.5    21 0.7 6 

For the parameters to fall in physiologically meaningful ranges, upper bounds were imposed on Ktrans, vp, ve, A, kel, Fp, E, 

and Tc  to 1 min-1, 1, 1, 10 mmol min-1 L-1, 10 min-1, 100 mL 100 g-1 min-1, 1, and 100 s, respectively. 

The data acquired with TWIST protocol were used to compare Tofts, Brix and ATH models while the data acquired with 

FLASH protocol were used to compare Tofts and Brix models. 

Data fitting was performed using constrained nonlinear curve fitting in Matlab (v. 7.0; MathWorks, Natick, MA). 

2 .4 .1  Goodness of Fit   

A cost function commonly used for quantifying the goodness-of-fit between models and data is given by the residual sum 

of squares (RSS): 
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where N denotes the number of observations, yi is the observation at time i the Ct(i) is the associated fitted value. The 

higher the R2 value the higher the discrepancy between the data and the model. However, this metric is not well suited to 

compare models with different number of parameters (as is the case for Brix vs ATH or Tofts vs ATH). To this aim we 

used the Bayesian Information Criterion [40] and corrected Akaike Information Criterion (AICc) [41]. 

Both AICc and BIC make a balance between the goodness-of-fit and the model complexity in a similar manner (they have 

a common statistical basis in the Kullback-Leibler divergence [41]); however, the BIC applies a heavier penalty on the 

model complexity: 

2log( / ) log( )BIC N R N p N                               (12) 

The AIC is computed via eq. 13: 
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2 .4 .2  Reliability of Fit  Param eters 

In order to evaluate the reliability of fit parameters a Monte Carlo simulation was performed. Per each model and per each 

voxel, the estimated parameters were used to compute the corresponding tissue concentration curve by means of eq. 5-7-8. 

After, 100 repetitions of Gaussian noise were added to each curve (standard deviation calculated as square of RSS). Per 

each repetition a new parameter estimate was obtained. Using the 100 estimates we obtained the standard deviation per 

each parameter of a specific model, corresponding to a specific voxel. Subsequently, the median value of all the standard 

deviations for a specific parameter was calculated. This value should represent the confidence interval for the estimate of 

that specific parameter. 

3  Results 
Figure 1 shows an example of FLASH data: in particular the T1-w image, the fat-suppressed image obtained subtracting 

the basal signal from 5th post contrast image and the ROI segmented by an expert radiologist. Similarly, figure 2 shows an 

example of TWIST data. 

 

Figure 1. FLASH data: a) T1-w example image; b) Fat-suppressed image obtained subtracting the basal image from the 

5th post contrast image; c) ROI selected by an expert radiologist. 

 

Figure 2. TWIST data: a) T1-w example image; b) Fat-suppressed image obtained subtracting the basal image from the 

44th post contrast image; c) ROI selected by an expert radiologist. 
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The selected ROIs included 1276 and 322 voxels for the TWIST and the FLASH data respectively. 

Figure 3 shows the Cp(t) fitting obtained using eq. 10 in TWIST data. 

 

Figure 3. Manually selected AIF on TWIST data (blue dots) have been fitted by means of eq. 10 (red line). 

Figure 4 reports some examples of the fitting obtained for Tofts, Brix and ATH for TWIST data (a) and the fitting for Tofts 

and Brix for FLASH data (b). For the curve in (a) the ATH model resulted in a better fitting in comparison to both Tofts 

and Brix (for both BIC and AIC); for the curve in (b) the Brix model showed a better fitting in comparison to the Tofts one. 

 

Figure 4. Example of data fitting. a) TWIST data (blue dots); Tofts model (red line); Brix model (blue line); ATH model 

(green line). b) FLASH data (blue dots); Tofts model (blue line); Brix model (green line). 

The main results of this study are summarized in figures 5, 6 and in table 2. 
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Figure 5. Goodness-of-fit for TWIST data. First row involves AIC: a) ATH versus Tofts; b) ATH versus Brix. Second row 

involves BIC: c) ATH versus Tofts; d) ATH versus Brix. Red lines indicate equal goodness of fit. 

Table 2. Goodness-of-fit measurements on TWIST and FLASH data. Per each metric the table reports the percentage of 

voxels showing better fit of one model versus the other. 

 ATH vs Tofts [%] ATH vs Brix [%] Tofts vs Brix [%] 

2 2

1 2R R (TWIST) - - 60 

BIC1<BIC2 (TWIST) 65 64 - 

AIC1<AIC2(TWIST) 59 56 - 

2 2

1 2R R  (FLASH) - - 77 

 

 

Figure 6. Goodness-of-fit for FLASH data. RSS values of Brix versus Tofts. 
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Figure 5 reports the results of the goodness-of-fit analysis for TWIST data. With reference to the part (a) the graphs must 

be interpreted as follows. Each point represents a whole Ct(t): the value of the x- and y-coordinates are the values of the 

AIC for Tofts and ATH model respectively. The red line indicate equal goodness-of-fit (identity). The points above the 

identity line denote cases in which the Tofts model gave better fit than ATH; points below lines denote cases in which 

ATH model gave better fit than Tofts. Similarly, figure 6 reports the results of RSS goodness-of-fit analysis for FLASH 

data. The interpretation of the figure is the same as figure 5. 

Table 2 reports, in the case of TWIST data, per each couple of models and per each metric (RSS, BIC, AIC), the 

percentage of voxels for which the metric computed for one model is lower than the same metric computed for the other 

model. Note that, as regards the comparisons among ATH, Tofts and Brix models we considered only the metrics BIC and 

AIC because the number of model parameters is different; on the contrary, in the case of Brix vs Tofts comparison we 

considered only the RSS. In the case of FLASH data, the comparison between Brix and Tofts models showed that 77% of 

voxels had lower RSS for Brix than for Tofts. 

In order to evaluate consistency among the parameters estimated with the different models in table 3 and 4 we reported the 

median of each parameter on TWIST data and on FLASH data respectively. Moreover, with the aim to evaluate the 

reliability of the estimates, we reported also the median value of the standard deviations that have been calculated on the 

repetitions of Monte Carlo simulation. 

Table 3. Reliability of fit parameters on TWIST data. Per each model the table reports the median value of each parameter 

± the median of standard deviation calculated on 100 ripetitions of the Monte Carlo simulation. 

 K
trans

 [min
-1

] kep [min
-1

] vp 
A 

[mmol/kg] 
kel [min

-1
] 

F[mL 100 g
-1

 

min
-1

] 
E Tc [s] 

Tofts 0.005±0.0001 0.013±0.0001 
0.097±0.02

3 
     

Brix  0.031±0.003  
0.435±0.01

5 

0.0002±0.000

1 
   

ATH 0.004±0.0001 0.070±0.004 
0.591±0.15

5 
  0.099±0.033 0.035±0.252 6.001±0.00001 

 

Table 4. Reliability of fit parameters on FLASH data. Per each model the table reports the median value of each parameter 

± the median of standard deviation calculated on 100 repetitions of the Monte Carlo simulation. 

 Ktrans [min-1] kep [min-1] vp A [mmol/kg] kel [min-1] 

Tofts 0.007±0.001 0.010±0.0001 0.002±0.027   

Brix  0.016±0.004  0.678±0.074 0.001±0.0004 

4  Discussion 
Many tracer kinetic models have been developed in the DCE-MRI context [11-25]. They can be roughly subdivided into  

CC [8-11, 15] and DP models [12, 19, 20]. Although DP models might be more realistic, to date most of clinical studies have been 

conducted using CC models [13, 14, 16, 20-22]. In particular, in breast DCE-MRI commonly used were the Tofts [13, 14, 16] and 

Brix models [20-22]; however, to the best of our knowledge, apart from a simulation study by Zwick et al. [13], there is no 

study comparing them on real breast DCE-MRI data. Moreover, to date, there is no study explicitly comparing CC and DP 

models on real breast DCE-MRI data. Therefore, the objective of this study was two-fold: on the one hand we aimed to 

compare DP (ATH) to CC models (Tofts and Brix) on real breast DCE-MRI, on the other hand we compared Tofts to Brix 

on real breast DCE-MRI data. 



www.sciedu.ca/jbgc                                                          Journal of Biomedical Graphics and Computing, December 2012, Vol. 2, No. 2 

Published by Sciedu Press                                                                                                                                                                                     33

We analyzed breast DCE-MRI data from four subjects with histologically proven invasive ductal carcinoma; they 

underwent DCE-MRI examinations with two different sequences: TWIST and FLASH. The TWIST data were used for 

DP-CC comparison. This was done because the ATH model requires a short sampling interval lower than the mean 

capillary transit time (Tc). FLASH data were used to perform the comparison between Brix and Tofts models in a typical 

clinical setting (as in previous studies). Models have been compared using different goodness-of-fit metrics (RSS, BIC, 

AIC). 

We found that on TWIST data ATH obtained better fits than Tofts (59% of voxels according to AIC and 65% according to 

BIC) and Brix (56% of voxels according to AIC and 64% according to BIC) although the percentages were not huge. The 

estimated parameters obtained with the different models were comparable and fell within a physiological range. As 

regards the reliability of the estimates it turned out that no model was capable of estimating all the parameters with 

reliability lower than about 10% and in some cases the reliability was very low. 

In the analysis of FLASH data we found that Brix obtained better fit than Tofts in 77% of voxels. Also in this case the 

estimated parameters were comparable, however the reliability of the estimates obtained using Brix was higher than Tofts. 

The better performances of ATH were in part expected considering that this model is in principle more realistic and that 

Cp(t) has been derived from real data. However, the improvement in terms of goodness-of-fit was not decisive, probably 

because of several reasons: first, the temporal resolution achievable in current clinical settings could be not yet sufficient 

to satisfy the requirements on the capillary mean transit time; second, the typical signal-to-noise ratio achievable in current 

clinical setting could be not adequate to discriminate finer features of the CA time-course; finally, a major limitation of this 

study was the small number of subjects involved: this fact implies that the range of physiological parameters explored was 

limited, although they should be representative of important types of carcinomas, however it is worth to note that also in 

previous studies reporting comparison between models the number of subjects was small [28]. 

As regards the comparison between Brix and Tofts it should be noted that, even if they have the same number of 

parameters, Brix includes a mono-exponential Cp(t) within the model itself while Tofts uses a bi-exponential AIF. This 

could explain the better performance of Brix with respect to Tofts on FLASH data: at low temporal resolution the 

mono-exponential AIF is sufficient to capture essential features of the data. On the contrary, on TWIST data Tofts seems 

to behave better than Brix although the difference is not huge: at high temporal resolution the mono-exponential model 

becomes not adequate and the bi-exponential approach is required. 

As regards the comparison between Tofts and Brix models our results are in line with recent literature. Zwick et al. [13] 

reported the only comparison, to the best of our knowledge, on simulated DCE-MRI data and they concluded that Brix 

could be more robust than Tofts because it seems less affected by AIF variations. 

As regards the comparison between DP and CC models conflicting results can be found in the literature. A theoretical 

study has been conducted by Muzic and Saidel [45] on PET receptors: they concluded that CC models outputs yielded good 

fits to all the DP model outputs and the values of the corresponding parameters were in close agreement, but given the 

temporal resolution typically available with PET, the use of a DP model had no advantage over a CC model for PET 

receptor quantification. Another study by Cheong et al. [28] reported a comparison of DP and CC models in 

DCE-Computerized Tomography (DCE-CT) of Intracranial Meningioma and concluded that DP models (including ATH) 

not only possess more realism theoretically but they were found to consistently give better fit than the CC models, 

although linear correlations were found between the kinetic parameters of the two models. 

Our results do not allow to propend towards one model or the other: although DP models have been argued on physical and 

physiological grounds [12], the question whether they can actually give better fit than CC models in breast DCE-MRI 

performed with current clinical settings, has not found yet a conclusive answer. 
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One important issue in comparing models is the use of an appropriate criterion. In this study we adopted three commonly 

used indices having a common basis (Kullback-Leibler divergence [41]) and are largely accepted in the statistical 

community. We found that the results obtained with different indices were in agreement with each other. 

5  Conclusion 
To the best of our knowledge, this is the first evaluation of different kinetic models (conventional compartmental and 

distributed parameters) on breast DCE-MRI data. Although not conclusive, our results suggest that distributed parameters 

models (such as ATH) can achieve better fit than conventional compartmental ones (in particular Tofts and the Brix). 

Further investigation is required on this issue given the important clinical implications. 

This study also provided a comparison, on the basis of real breast data, between Tofts and Brix model in clinical setting 

(low temporal resolution). The results indicate that the Brix model can achieve better fit in this case. 
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