
Journal of Artificial Intelligence Research 32 (2008) 419 - 452 Submitted 11/07; published 06/08

Dynamic Control in Real-Time Heuristic Search

Vadim Bulitko BULITKO@UALBERTA.CA

Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, CANADA

Mitja Luštrek MITJA.LUSTREK@IJS.SI

Department of Intelligent Systems, Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, SLOVENIA

Jonathan Schaeffer JONATHAN@CS.UALBERTA.CA

Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, CANADA

Yngvi Björnsson YNGVI@RU.IS

School of Computer Science, Reykjavik University

Kringlan 1, IS-103 Reykjavik, ICELAND

Sverrir Sigmundarson SVERRIR.SIGMUNDARSON@LANDSBANKI.IS

Landsbanki London Branch, Beaufort House,

15 St Botolph Street, London EC3A 7QR, GREAT BRITAIN

Abstract

Real-time heuristic search is a challenging type of agent-centered search because the agent’s

planning time per action is bounded by a constant independent of problem size. A common problem

that imposes such restrictions is pathfinding in modern computer games where a large number of

units must plan their paths simultaneously over large maps. Common search algorithms (e.g., A*,

IDA*, D*, ARA*, AD*) are inherently not real-time and may lose completeness when a constant

bound is imposed on per-action planning time. Real-time search algorithms retain completeness

but frequently produce unacceptably suboptimal solutions. In this paper, we extend classic and

modern real-time search algorithms with an automated mechanism for dynamic depth and subgoal

selection. The new algorithms remain real-time and complete. On large computer game maps, they

find paths within 7% of optimal while on average expanding roughly a single state per action. This

is nearly a three-fold improvement in suboptimality over the existing state-of-the-art algorithms

and, at the same time, a 15-fold improvement in the amount of planning per action.

1. Introduction

In this paper we study the problem of agent-centered real-time heuristic search (Koenig, 2001).

The distinctive property of such search is that an agent must repeatedly plan and execute actions

within a constant time interval that is independent of the size of the problem being solved. This

restriction severely limits the range of applicable heuristic search algorithms. For instance, static

search algorithms such as A* (Hart, Nilsson, & Raphael, 1968) and IDA* (Korf, 1985), re-planning

algorithms such as D* (Stenz, 1995), anytime algorithms such as ARA* (Likhachev, Gordon, &

Thrun, 2004) and anytime re-planning algorithms such as AD* (Likhachev, Ferguson, Gordon,

Stentz, & Thrun, 2005) cannot guarantee a constant bound on planning time per action. LRTA*

c©2008 AI Access Foundation. All rights reserved.

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

can, but with potentially low solution quality due to the need to fill in heuristic depressions (Korf,

1990; Ishida, 1992).

As a motivating example, consider an autonomous surveillance aircraft in the context of disas-

ter response (Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjou, & Shimada, 1999). While

surveying a disaster site, locating victims, and assessing damage, the aircraft can be ordered to fly

to a particular location. Radio interference may make remote control unreliable thereby requiring a

certain degree of autonomy from the aircraft by using AI. This task presents two challenges. First,

due to flight dynamics, the AI must control the aircraft in real time, producing a minimum number

of actions per second. Second, the aircraft needs to reach the target location quickly due to a limited

fuel supply and the need to find and rescue potential victims promptly.

We study a simplified version of this problem which captures the two AI challenges while ab-

stracting away from robot-specific details. Specifically, in line with most work in real-time heuristic

search (e.g., Furcy & Koenig, 2000; Shimbo & Ishida, 2003; Koenig, 2004; Botea, Müller, & Scha-

effer, 2004; Hernández & Meseguer, 2005a, 2005b; Likhachev & Koenig, 2005; Sigmundarson &

Björnsson, 2006; Koenig & Likhachev, 2006) we consider an agent on a finite search graph with the

task of traveling a path from its current state to a given goal state. Within this context we measure

the amount of planning the agent conducts per action and the length of the path traveled between the

start and the goal locations. These two measures are antagonistic as reducing the amount of plan-

ning per action leads to suboptimal actions and results in longer paths. Conversely, shorter paths

require better actions that can be obtained by larger planning effort per action.

We use navigation in grid world maps derived from computer games as a testbed. In such games,

an agent can be tasked to go to any location on the map from its current location. Examples include

real-time strategy games (e.g., Blizzard, 2002), first-person shooters (e.g., id Software, 1993), and

role-playing games (e.g., BioWare Corp., 1998). Size and complexity of game maps as well as the

number of simultaneously moving units on such maps continues to increase with every new gener-

ation of games. Nevertheless, each game unit or agent must react quickly to the user’s command

regardless of the map’s size and complexity. Consequently, game companies impose a time-per-

action limit on their pathfinding algorithms. For instance, Bioware Corp., a major game company

that we collaborate with, sets the limit to 1-3 ms for all units computing their paths at the same time.

Search algorithms that produce an entire solution before the agent takes its first action (e.g., A*

of Hart et al., 1968) lead to increasing action delays as map size increases. Numerous optimizations

have been suggested to remedy these problems and decrease the delays (for a recent example de-

ployed in a forthcoming computer game refer to Sturtevant, 2007). Real-time search addresses the

problem in a fundamentally different way. Instead of computing a complete, possibly abstract, so-

lution before the first action is to be taken, real-time search algorithms compute (or plan) only a few

first actions for the agent to take. This is usually done by conducting a lookahead search of fixed

depth (also known as “search horizon”, “search depth” or “lookahead depth”) around the agent’s

current state and using a heuristic (i.e., an estimate of the remaining travel cost) to select the next

few actions. The actions are then taken and the planning-execution cycle repeats (e.g., Korf, 1990).

Since the goal state is not reached by most such local searches, the agent runs the risks of heading

into a dead end or, more generally, selecting suboptimal actions. To address this problem, real-time

heuristic search algorithms update (or learn) their heuristic function with experience. Most existing

algorithms do a constant amount of planning (i.e., lookahead search) per action. As a result, they

tend to waste CPU cycles when the heuristic function is fairly accurate and, conversely, do not plan

enough when the heuristic function is particularly inaccurate. Additionally, they compute heuris-

420

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

tic with respect to a distant global goal state which can put unrealistic requirements on heuristic

accuracy as we demonstrate in this paper.

In this paper we address both problems by making the following three contributions. First, we

propose two ways for selecting lookahead search depth dynamically, on a per action basis. Second,

we propose a way for selecting intermediate subgoals on a per action basis. Third, we apply these

extensions to the classic LRTA* (Korf, 1990) and the state-of-the-art real-time PR LRTS (Bulitko,

Sturtevant, Lu, & Yau, 2007) and demonstrate the improvements in performance. The resulting

algorithms are the new state of the art in real-time search. To illustrate, on large computer game

maps the new algorithms find paths within 7% of the optimal while expanding only a single state

for any action. For comparison, the previous state-of-the-art, PR LRTS, is 15 times slower per

action while finding paths that are between two and three times more suboptimal. Furthermore, the

dynamically controlled LRTA* and PR LRTS are one to two orders of magnitude faster per action

than A*, weighted A* and the state-of-the-art Partial Refinement A* (PRA*) (Sturtevant & Buro,

2005). Finally, unlike A* and its modern extensions used in games, the new algorithms are provably

real-time and do not slow down as maps become larger.

The rest of the paper is organized as follows. In Section 2 we formulate the problem of real-time

heuristic search and show how the core LRTA* algorithm can be extended with dynamic lookahead

and subgoal selection. Section 3 analyzes related research. Section 4 provides intuition for dynamic

control in search. In Section 5 we describe two approaches to dynamic lookahead selection: one

based on induction of decision-tree classifiers (Section 5.1) and one based on precomputing a depth

table using state abstraction (Section 5.2). In Section 6 we present an approach to selecting subgoals

dynamically. Section 7 evaluates the efficiency of these extensions in the domain of pathfinding. We

conclude with a discussion of applicability of the new approach to general planning.

This paper extends our conference publication (Bulitko, Björnsson, Luštrek, Schaeffer, & Sig-

mundarson, 2007) with a new set of features for the decision tree approach, a new way of selecting

subgoals, an additional real-time heuristic search algorithm (PR LRTA*) extended with dynamic

control, numerous additional experiments and a more detailed presentation.

2. Problem Formulation

We define a heuristic search problem as a directed graph containing a finite set of states and weighted

edges, with a single state designated as the goal state. At every time step, a search agent has a single

current state, vertex in the search graph, and takes an action by traversing an out-edge of the current

state. Each edge has a positive cost associated with it. The total cost of edges traversed by an agent

from its start state until it arrives at the goal state is called the solution cost. We require algorithms

to be complete and produce a path from start to goal in a finite amount of time if such a path exists.

In order to guarantee completeness for real-time heuristic search we make the assumption of safe

explorability of our search problems. Namely, all costs are finite and the goal state is reachable from

any state that the agent can possibly reach from its start state.

Formally, all algorithms discussed in this paper are applicable to any such heuristic search prob-

lem. To keep the presentation focused and intuitive as well as to afford a large-scale empirical

evaluation, we will use a particular type of heuristic search problems, pathfinding in grid worlds,

for the rest of the paper. However, we will discuss applicability of the new methods we suggest to

other heuristic search problems in Section 5.3 and to general planning problems in Section 9.

421

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

In computer-game map settings, states are vacant square grid cells. Each cell is connected to

four cardinally (i.e., west, north, east, south) and four diagonally neighboring cells. Outbound

edges of a vertex are moves available in the corresponding cell and in the rest of the paper we

will use the terms action and move interchangeably. The edge costs are 1 for cardinal moves and√
2 for diagonal moves. An agent plans its next action by considering states in a local search space

surrounding its current position. A heuristic function (or simply heuristic) estimates the (remaining)

travel cost between a state and the goal. It is used by the agent to rank available actions and select

the most promising one. In this paper we consider only admissible heuristic functions which do not

overestimate the actual remaining cost to the goal. An agent can modify its heuristic function in any

state to avoid getting stuck in local minima of the heuristic function, as well as to improve its action

selection with experience.

The defining property of real-time heuristic search is that the amount of planning the agent does

per action has an upper bound that does not depend on the problem size. We enforce this property

by setting a real-time cut-off on the amount of planning for any action. Any algorithm that exceeds

such a cut-off is discarded. Fast planning is preferred as it guarantees the agent’s quick reaction to a

new goal specification or to changes in the environment. We measure mean planning time per action

in terms of CPU time as well as a machine-independent measure – the number of states expanded

during planning. A state is called expanded if all of its successor states are considered/generated

in search. The second performance measure of our study is sub-optimality defined as the ratio of

the solution cost found by the agent to the minimum solution cost. Ratios close to one indicate

near-optimal solutions.

The core of most real-time heuristic search algorithms is an algorithm called Learning Real-

Time A* (LRTA*) (Korf, 1990). It is shown in Figure 1 and operates as follows. As long as the goal

state sglobal goal is not reached, the algorithm interleaves planning and execution in lines 4 through 7.

In our generalized version we added a new step at line 3 for selecting a search depth d and goal sgoal

individually at each execution step (the original algorithm uses fixed d and sglobal goal for all planning

searches). In line 4, a d-ply breadth-first search with duplicate detection is used to find frontier states

precisely d actions away from the current state s. For each frontier state ŝ, its value is the sum of

the cost of a shortest path from s to ŝ, denoted by g(s, ŝ), and the estimated cost of a shortest path

from ŝ to sgoal (i.e., the heuristic value h(ŝ, sgoal)). We use the standard path-max technique (Mero,

1984) to deal with possible inconsistencies in the heuristic function when computing g + h values.

As a result, g + h values never decrease along any branch of such a lookahead tree. The state that

minimizes the sum is identified as sfrontier in line 5. The heuristic value of the current state s is

updated in line 6 (we keep separate heuristic tables for the different goals). Finally, we take one step

towards the most promising frontier state sfrontier in line 7.

3. Related Research

Most algorithms in single-agent real-time heuristic search use fixed search depth, with a few notable

exceptions. Russell and Wefald (1991) proposed to estimate the utility of expanding a state and use

it to control lookahead search on-line. To do so one needs to estimate how likely an additional search

is to change an action’s estimated value. Inaccuracies in such estimates and the overhead of meta-

level control led to “reasonable but unexciting” benefits in combinatorial puzzle and pathfinding.

An additional problem is the relatively low branching factor of combinatorial puzzles which makes

it difficult to eliminate parts of search space early on. The same problem is likely to occur in grid-

422

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

LRTA*(sstart, sglobal goal)

1 s ← sstart

2 while s �= sglobal goal do

3 select search depth d and goal sgoal

4 expand successor states up to d actions away, generating a frontier

5 find a frontier state sfrontier with the lowest g(s, sfrontier) + h(sfrontier, sgoal)
6 update h(s, sgoal) to g(s, sfrontier) + h(sfrontier, sgoal)
7 change s one step towards sfrontier

8 end while

Figure 1: LRTA* algorithm with dynamic control.

based pathfinding. Finally, their method adds substantial implementation complexity and requires

non-trivial changes to the underlying search algorithm. In contrast, our approach to search depth

selection can be easily interfaced with any real-time search algorithm with a search depth parameter

without modifying the existing code.

Ishida (1992) observed that LRTA*-style algorithms tend to get trapped in local minima of their

heuristic function, termed “heuristic depressions”. The proposed remedy was to switch to a limited

A* search when a heuristic depression is detected and then use the results of the A* search to

correct the depression at once. This is different from our approach in two ways: first, we do not

need a mechanism to decide when to switch between real-time and A* search and thus avoid the

need to hand-tune control parameters of Ishida’s control module. Instead, we employ an automated

approach to decide on search horizon depth for every action. Additionally, we do not spend extra

time filling in all heuristic values within the heuristic depression by A* estimates.

Bulitko (2003a) showed that optimal search depth selection can be highly beneficial in real-

time heuristic search. He linked the benefits to avoiding the so-called lookahead pathologies where

deeper lookahead leads to worse moves but did not suggest any practical way of selecting looka-

head depth dynamically. Such a way was proposed in 2004 via the use of a generalized definition

of heuristic depressions (Bulitko, 2004). The proposed algorithm extends the search horizon incre-

mentally until the search finds a way out of the depression. After that all actions leading to the found

frontier state are executed. A cap on the search horizon depth is set by the user. The idea of pre-

computing a depth table of heuristic values for real-time pathfinding was first suggested by Luštrek

and Bulitko (2006). This paper extends their work as follows: (i) we introduce intermediate goals,

(ii) we propose an alternative approach that does not require map-specific pre-computation and (iii)

we extend and evaluate a state-of-the-art algorithm in addition to the classic LRTA*.

There is a long tradition of search control in two-player search. High-performance game-playing

programs for games like chess and checkers rely extensively on search to decide on which actions

to take. The search is performed under strict real-time constraints where programs have typically

only minutes or seconds for deliberating on the next action. Instead of using a fixed-depth looka-

head strategy the programs employ sophisticated search control mechanisms for maximizing the

quality of their action decisions within the given time constraints. The search control techniques

can be coarsely divided into three main categories: move ordering, search extensions/reductions,

and time allotment. One of the earlier works on dynamic move ordering is the history heuris-

tic technique (Schaeffer, 1989), and more recent attempts include work on training neural net-

works (Kocsis, 2003). There exist a large variety of techniques for adjusting the search horizon

423

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

for different branches within the game tree; interesting continuations are explored more deeply

while less promising ones are terminated prematurely. Whereas most of the early techniques were

static, the research focus has shifted towards more dynamic control as well using machine-learning

approaches for automatic parameterization (Buro, 2000; Björnsson & Marsland, 2003). To the best

of our knowledge, none of these techniques have been applied to single-agent real-time search.

4. Intuition for Dynamic Search Control

It has been observed in the literature that common heuristic functions are not uniformly inaccu-

rate (Pearl, 1984). Namely, they tend to be more accurate closer to the goal state and less accurate

farther away. The intuition for this fact is as follows: heuristic functions usually ignore certain con-

straints of the search space. For instance, the Manhattan distance heuristic in a sliding tile puzzle

would be perfectly accurate if the tiles could pass through each other. Likewise, Euclidian distance

on a map ignores obstacles. The closer a state is to a goal the fewer constraints a heuristic function

is likely to ignore and, as a result, the more accurate (i.e., closer to the optimal solution cost) the

heuristic is likely to be.

This intuition motivates adaptive search control in real-time heuristic search. First, when heuris-

tic values are inaccurate, the agent should conduct a deeper lookahead search to compensate for the

inaccuracies and maintain the quality of its actions. Deeper lookaheads have been generally found

beneficial in real-time heuristic search (Korf, 1990), though lookahead pathologies (i.e., detrimental

effects of deeper lookaheads on action quality) have been observed as well (Bulitko, Li, Greiner, &

Levner, 2003; Bulitko, 2003b; Luštrek, 2005; Luštrek & Bulitko, 2006). As an illustration, consider

Figure 2. Every state on the map is shaded according to the minimum lookahead depth that an

LRTA* agent should use to select an optimal action. Darker shades correspond to deeper lookahead

depths. Notice that many areas are bright white, indicating that the shallowest lookahead of depth

one will be sufficient. We use this intuition for our first control mechanism: dynamic selection of

lookahead depth in Section 5.

Figure 2: A partial grid world map from a computer game “Baldur’s Gate” (BioWare Corp., 1998).

Shades of grey indicate optimal search depth values with white representing one ply.

Completely black cells are impassable obstacles (e.g., walls).

424

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

Dynamic search depth selection helps eliminate wasted computation by switching to shallower

lookahead when the heuristic function is fairly accurate. Unfortunately, it does not help when the

heuristic function is grossly inaccurate. Instead, it calls for very deep lookahead in order to select

an optimal action. Such a deep search tremendously increases planning time and, sometimes, leads

to violating a real-time cut-off on planning time per move. To address this issue, in Section 6 we

propose our second control mechanism: dynamic selection of subgoals. The idea is straightforward:

if being far from the goal leads to grossly inaccurate heuristic values, let us move the goal closer

to the agent, thereby improving heuristic accuracy. We do this by computing the heuristic function

with respect to an intermediate, and thus nearby, goal as opposed to a distant global goal — the

final destination of an agent. Since an intermediate goal is closer than the global goal, the heuristic

values of states around an agent will likely be more accurate and thus the search depth picked by

our first control mechanism is likely to be shallower. Once the agent gets to an intermediate goal, a

next intermediate goal is selected so that the agent makes progress towards its actual global goal.

5. Dynamic Search Depth Selection

First, we define optimal search depth as follows. For each (s, sglobal goal) state pair, a true optimal ac-

tion a∗(s, sglobal goal) is to take an edge that lies on an optimal path from s to sglobal goal (there can be

more than one optimal action). Once a∗(s, sglobal goal) is known, we can run a series of progressively

deeper LRTA* searches from state s. The shallowest search depth that yields a∗(s, sglobal goal) is the

optimal search depth d∗(s, sglobal goal). Not only may such search depth forfeit LRTA*’s real-time

property but it is also impractical to compute. Thus, in the following subsections we present two

different practical approaches to approximating optimal search depth. Each of them equips LRTA*

with a dynamic search depth selection (i.e., realizing the first part of line 3 in Figure 1). The first

approach uses a decision-tree classifier to select the search depth based on features of the agent’s

current state and its recent history. The second approach uses a pre-computed depth database based

on an automatically built state abstraction.

5.1 Decision-Tree Classifier Approach

An effective classifier needs input features that are not only useful for predicting the optimal search

depth, but are also efficiently computable by the agent in real time. The features we use for our

classifier were selected as a compromise between these two considerations, as well as for being do-

main independent. The features were calculated based on properties of states an agent has recently

visited, as well as features gathered by a shallow pre-search from an agent’s current state. Example

features are: the distance from the state the agent was in n steps ago, estimate of the distance to

agent’s goal, the number of states visited during the pre-search phase that have updated heuristics.

In Appendix A all the features are listed and the rationale behind them is explained.

The classifier predicts the optimal search depth for the current state. The optimal depth is the

shallowest search depth that returns an optimal action. For training the classifier we must thus label

our training states with optimal search depths. However, to avoid pre-computing optimal actions, we

make the simplifying assumption that a deeper search always yields a better action. Consequently, in

the training phase the agent first conducts a lookahead search to a pre-defined maximum depth, dmax,

to derive the “optimal” action (under our assumption). The choice of the maximum depth is domain

dependent and would typically be set as the largest depth that still guarantees the search to return

within the acceptable real-time requirement for the task at hand. Then a series of progressively

425

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

shallower searches are performed to determine the shallowest search depth, d∗DT, that still returns

the “optimal” action. During this process, if at any given depth an action is returned that differs

from the optimal action, the progression is stopped. This enforces all depths from d∗DT to dmax to

agree on the best action. This is important for improving the overall robustness of classification, as

the classifier must generalize over a large set of states. The depth d∗DT is set as the class label for the

vector of features describing the current state.

Once we have a classifier for choosing the lookahead depth, LRTA* can be augmented with it

(line 3 in Figure 1). The overhead of using the classifier consists of the time required for collecting

the features and running them through the classifier. Its overhead is negligible as the classifier itself

can be implemented as a handful of nested conditional statements. Collecting the features takes

somewhat more time but, with a careful implementation, such overhead can be made negligible as

well. Indeed, the four history-based features are all efficiently computed in small constant time, and

by keeping the lookahead depth of the pre-search small (e.g., one or two) the overhead of collecting

the pre-search features is usually dwarfed by the time the planning phase (i.e., the lookahead search)

takes. The process of gathering training data and building the classifier is carried out off-line and its

time overhead is thus of a lesser concern.

5.2 Pattern Database Approach

A naı̈ve approach would be to precompute the optimal depth d∗ for each (s, sgoal) state pair. There

are two problems with this approach. First, d∗(s, sgoal) is not a priori upper-bounded independently

of the map size, thereby forfeiting LRTA*’s real-time property. Second, pre-computing d∗(s, sgoal)
or a∗(s, sgoal) for all pairs of (s, sgoal) states on, for instance, a 512 × 512 cell computer game map

has prohibitive time and space complexity. We solve the first problem by capping d∗(s, sgoal) at a

fixed constant c ≥ 1 (henceforth called cap). We solve the second problem by using an automat-

ically built abstraction of the original search space. The entire map is partitioned into regions (or

abstract states) and a single search depth value is pre-computed for each pair of abstract states. Dur-

ing run-time a single search depth value is shared by all children of the abstract state pair (Figure 3).

The search depth values are stored in a table which we will refer to as pattern database or PDB for

short. In the past, pattern databases have been used to store approximate heuristic values (Culberson

& Schaeffer, 1998) and important board features (Schaeffer, 2000). Our work appears to be the first

use of pattern databases to store search depth values.

Computing search depths for abstract states speeds up pre-computation and reduces memory

overhead (both important considerations for commercial computer games). In this paper we use

previously published clique abstraction (Sturtevant & Buro, 2005). It preserves the overall topology

of a map but requires storing the abstraction links explicitly.1 The clique abstraction works by

finding fully connected subgraphs (i.e., the cliques) of the original graph and abstracting all states

within such a clique into a single abstract state. Two abstract states are connected by an abstract

action if and only if there is a single original action that leads from a state in the first clique to a

state in the single clique (Figure 4). The costs of the abstract actions are computed as Euclidean

distances between average coordinates of all states in the cliques.

In typical grid world computer-game maps, a single application of clique abstraction reduces

the number of states by a factor of two to four. On average, at the abstraction level of five (i.e., after

five applications of the abstraction procedure), each region contains about one hundred original

1. An alternative is to use the regular rectangular tiles (e.g., Botea et al., 2004).

426

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

Figure 3: A single optimal lookahead depth value shared among all children of an abstract state.

This is a memory-efficient approximation to the true per-ground-state values in Figure 2.

Level 0 (original graph) Level 1 Level 2

Figure 4: Two iterations of the clique abstraction procedure produce two abstract levels from the

ground-level search graph.

(or ground-level) states. Thus, a single search depth value is shared among about ten thousand

state pairs. As a result, five-level clique abstraction yields a four orders of magnitude reduction in

memory and about two orders of magnitude reduction in pre-computation time (as analyzed later).

On the downside, higher levels of abstraction effectively make the search depth selection less and

less dynamic as the same depth value is shared among progressively more states. The abstraction

level for a pattern database is a control parameter that trades pre-computation time and pattern

database size for on-line performance of the algorithm that uses such a database.

Two alternatives to storing the optimal search depth are to store an optimal action or the optimal

heuristic value. The combination of abstraction and real-time search precludes both of them. Indeed,

sharing an optimal action computed for a single ground-level representative of an abstract region

among all states in the region may cause the agent to run into a wall (Figure 5, left). Likewise,

sharing a single heuristic value among all states in a region leaves the agent without a sense of

427

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

A

G

5.84

5.84

5.84

5.84

5.84

5.84

5.84

5.84

5.84

5.84

5.84

A

5.84 G

5.84

Figure 5: Goal is shown as G, agent as A. Abstract states are the four tiles separated by dashed lines.

Diamonds indicate representative states for each tile. Left: Optimal actions are shown for

each representative of an abstract tile; applying the optimal action of the agent’s tile in the

agent’s current location leads into a wall. Right: Optimal heuristic value (h∗) for lower

left tile’s representative state (5.84) is shared among all states of the tile. As a result, the

agent has no preference among the three legal actions shown.

direction as all states in its vicinity would look equally close to the goal (Figure 5, right). This is in

contrast to sharing a heuristic value among all states within an abstract state (known as “pattern”)

when using optimal non-real-time search algorithms such as A* or IDA* (Culberson & Schaeffer,

1996). In the case of real-time search, agents using either alternative are not guaranteed to reach

a goal, let alone minimize travel. On the contrary, sharing the search depth among any number of

ground-level states is safe because LRTA* is complete for any search depth.

We compute a single depth table per map off-line (Figure 6). In line 1 the state space is ab-

stracted ℓ times. Lines 2 through 7 iterate through all pairs of abstract states. For each pair (s′, s′goal),
representative ground-level states s and sgoal (i.e., ground-level states closest to centroids of the re-

gions) are picked and the optimal search depth value d∗ is calculated for them. To do this, Dijkstra’s

algorithm (Dijkstra, 1959) is run over the ground-level search space (V,E) to compute the true

minimal distances from any state to sgoal. Once the distances are known for all successors of s, an

optimal action a∗(s, sgoal) can be computed greedily. Then the optimal search depth d∗(s, sgoal) is

computed as previously described and capped at c (line 5). The resulting value is stored for the pair

of abstract states (s′, s′goal) in line 6. Figures 2 and 3 show optimal search depth values for a single

goal state on a grid world game map with and without abstraction respectively.

During run-time, an LRTA* agent going from state s to state sgoal takes its search depth from the

depth table value for the pair (s′, s′goal), where s′ and s′goal are images of s and sgoal under an ℓ-level

abstraction. The additional run-time complexity is minimal as s′, s′goal, d(s′, s′goal) can be computed

with a small constant-time overhead on each action.

In building such a pattern database Dijkstra’s algorithm is run Vℓ times2 on the graph (V,E)
– a time complexity of O(Vℓ(V log V + E)) on sparse graphs (i.e., E = O(V)). The optimal

search depth is computed V 2

ℓ
times. Each time, there are at most c LRTA* invocations with the total

2. For brevity, we use V and E to mean both sets of vertices/edges and their sizes (i.e., |V | and |E|).

428

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

BuildPatternDatabase(V,E, c, ℓ)

1 apply an abstraction procedure ℓ times to (V,E) to compute abstract space Sℓ = (Vℓ, Eℓ)
2 for each pair of states (s′, s′goal) ∈ Vℓ × Vℓ do

3 select s ∈ V as a representative of s′ ∈ Vℓ

4 select sgoal ∈ V as a representative of s′goal ∈ Vℓ

5 compute c-capped optimal search depth value d∗ for state s with respect to goal sgoal

6 store capped d∗ for pair (s′, s′goal)

7 end for

Figure 6: Pattern database construction.

complexity of O(bc) where b is the maximum degree of V . Thus, the overall time complexity is

O(Vℓ(V log V +E +Vℓ bc)). The space complexity is lower because we store optimal search depth

values only for all pairs of abstract states: O(V 2

ℓ
). Table 1 lists the bounds for sparse graphs.

Table 1: Reduction in complexity due to state abstraction.

no abstraction ℓ-level abstraction reduction

time O(V 2 log V) O(VℓV log V) V/Vℓ

space O(V 2) O(V 2

ℓ
) (V/Vℓ)

2

5.3 Discussion of the Two Approaches

Selecting the search depth with a pattern database has two advantages. First, the search depth values

stored for each pair of abstract states are optimal for their non-abstract representatives, unless either

the value was capped or the states in the local search space have been visited before and their heuris-

tic values have been modified. This (conditional) optimality is in contrast to the classifier approach

where no optimal actions are ever computed as deeper searches are merely assumed to lead to a

better action. The assumption does not always hold – a phenomenon known as lookahead pathol-

ogy, found in abstract graphs (Bulitko et al., 2003) as well as in grid-based pathfinding (Luštrek &

Bulitko, 2006). The second advantage is that we do not need features of the current state, recent

history and pre-search. The search depth is retrieved from the depth table simply on the basis of the

current state’s identifier, such as its coordinates.

The decision-tree classifier approach has two advantages over the depth table approach. First,

the classifier training does not need to happen in the same search space that the agent operates in. As

long as the training maps used to collect the features and build the decision tree are representative

of run-time maps, this approach can run on never-before-seen maps (e.g., user-created maps in

a computer game). Second, there is a much smaller memory overhead with this method as the

classifier is specified procedurally and no pattern database needs to be loaded into memory.

Note that both approaches assume that there is a structure to the heuristic search problem at

hand. Namely, the pattern database approach shares a single search depth value across a region of

states. This works most effectively if the states in the region are indeed such that the same lookahead

depth is the best for all of them. Our abstraction mechanism forms regions on the basis of the search

graph structure, with no regard for search depth. As the empirical study will show, clique abstraction

429

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

seems to be the right choice for pathfinding. However, the choice of the best abstraction technique

for a general heuristic search problem is an open question.

Similarly, the decision-tree approach assumes that states that share similar feature values will

also share the best search depth value. It appears to hold to a large extent in our pathfinding domain

but feature selection for arbitrary heuristic search problems is an open question as well.

6. Dynamic Goal Selection

The two methods just described allow the agent to select an individual search depth for each state.

However, as in the original LRTA*, the heuristic is still computed with respect to the global goal

sgoal. To illustrate: in Figure 7, the map is partitioned into eight abstract states (in this case, 4 × 4
square tiles) whose representative states are shown as diamonds (1–8). An optimal path between

the agent (A) and the goal (G) is shown as well. A straight-line distance heuristic will ignore the

wall between the agent and the goal and will lead the agent in a south-western direction. An LRTA*

search of depth 11 or higher is needed to produce an optimal action (such as ↑). Thus, for any

cap value below 11, the agent will be left with a suboptimal action and will spend a long time

above the horizontal wall raising heuristic values. Spending large amounts of time in corners and

other heuristic depressions is the primary weakness of real-time heuristic search agents and, in this

example, is not remedied by dynamic search depth selection due to the cap.

A

3 4

87

1 2

65 G

Figure 7: Goal is shown as G, agent as A. Abstract states are the eight tiles separated by dashed

lines. Diamonds indicate ground-level representative for each tile. An optimal path is

shown. Entry points of the path into abstract states are marked with circles.

5a compute sintermediate goal goal for (s, sgoal)
5b compute capped optimal search depth value d∗ for s with respect to sintermediate goal

6 store (d∗, sintermediate goal) for pair (s′, s′goal)

Figure 8: Switching sgoal to sintermediate goal; replaces lines 5–6 of Figure 6.

430

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

Figure 9: The three maps used in our experiments.

To address this issue, we switch to intermediate goals in our pattern-database construction as well as

on-line LRTA* operation. In the example in Figure 7 we now compute the heuristic around A with

respect to an intermediate goal marked with a double-border circle on the map. Consequently, an

eleven times shallower search depth is needed for an optimal action towards the next abstract state

(right-most upper tile). Our approach replaces lines 5 - 6 in Figure 6 with those in Figure 8. In line

5a, we compute an intermediate goal sintermediate goal as the ground-level state where an optimal path

from s to sgoal enters the next abstract state. These entry points are marked with circles in Figure 7.

We compared entry states to centroids of abstract states as intermediate goals (Bulitko et al., 2007)

and found the former superior in terms of algorithm’s performance. Note that an optimal path is

easily available off-line after we run the Dijkstra’s algorithm (Section 5.2).

Once an intermediate goal is computed, line 5b computes a capped optimal search depth for s
with respect to the intermediate goal sintermediate goal. The depth computation is done as described

in Section 5.2. The search depth and the intermediate goal are then added to the pattern database

in line 6. At run-time, the agent executes LRTA* with the stored search depth and computes the

heuristic h with respect to the stored goal (i.e., sgoal is set to sintermediate goal in line 3 of Figure 1). In

other words, both search depth and agent’s goal are selected dynamically, per action.

This approach works because heuristic functions used in practice tend to become more accu-

rate for states closer to the goal state. Therefore, switching from a distant global goal to a nearby

intermediate goal makes the heuristics around the current state s more accurate and leads to a shal-

lower search depth necessary to achieve an optimal action. As a result, not only does the algorithm

run more quickly with the shallower search per move but also the search depth cap is reached less

frequently and therefore most search depth values actually result in optimal moves.

7. Empirical Evaluation

This section presents results of an empirical evaluation of algorithms with dynamic control of search

depth and goals against classic and state-of-the-art published algorithms. All algorithms avoid re-

expanding states during planning for each move via a transposition table. We report sub-optimality

in the solution found and the average amount of computation per action, expressed in the number

of states expanded. We believe that all algorithms can be implemented in such a way that a single

expanded state takes the same amount of time. This was not the case in our testbed as some code

was more optimized than other. For that reason and to avoid clutter, we report CPU times only in

Section 7.7. We used a fixed tie-breaking scheme for all real-time algorithms.

431

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

We use grid world maps from a computer game as our testbed. Game maps provide a realistic

and challenging environment for real-time search and have been seen in a number of recent publica-

tions (e.g., Nash, Daniel, & Felner, 2007; Hernández & Meseguer, 2007). The original maps were

sized 161×161 to 193×193 cells (Figure 9). In line with Sturtevant and Buro (2005) and Sturtevant

and Jansen (2007), we also experimented with the maps upscaled up to 512 × 512 – closer in size

to maps used in modern computer games. Note that while all three maps depicted in the figure are

outdoor-type maps, we also ran preliminary experiments in indoor-type game maps (e.g., the one

shown in Figure 2). The trends were similar and we decided to focus on the larger outdoor maps.

There were 100 search problems defined on each of the three original size maps. The start and

goal locations were chosen randomly, although constrained such that optimal solution paths cost

between 90 and 100 in order to generate more difficult instances. The upscaled maps had the 300
problems upscaled as well. Each data point in the plots below is an average of 300 problems (3
maps ×100 runs each). A different legend entry is used for each algorithm, and multiple points

with the same legend entry represent alternative parameter instantiation of the same algorithm. The

heuristic function used is octile distance – a natural extension of the Manhattan distance for maps

with diagonal actions. To enforce the real-time constraint we disqualified all parameter settings that

caused an algorithm to expand more than 1000 states for any move on any problem. Such points

were excluded from the empirical evaluation. Maps were known a priori off-line in order to build

decision-tree classifiers and pattern databases.

We use the following notation to identify all algorithms and their variants: AlgorithmName

(X, Y) where X and Y are defined as follows. X denotes search depth control: F for fixed search

depth, DT for search depth selected dynamically with a decision tree, ORACLE for search depth

selected with a decision-tree oracle (see the next section for more details) and PDB for search depth

selected dynamically with pattern databases. Y denotes goal state selection: G when the heuristic

is computed with respect to a single global goal, PDB when the heuristic is computed with respect

to an intermediate goal with pattern databases. For instance, the classic LRTA* is LRTA* (F, G).

Our empirical evaluation is organized into eight parts as follows. Section 7.1 describes six

algorithms that compute their heuristic with respect to a global goal and discusses their performance.

Section 7.2 describes five algorithms that use intermediate goals. Section 7.3 compares global and

intermediate goals. Section 7.4 studies the effects of path-refinement with and without dynamic

control. Secton 7.5 pits the new algorithms against state-of-the-art real-time and non-real-time

algorithms. We then provide an algorithm selection guide for different time limits on planning per

move in Section 7.6. Finally, Section 7.7 considers the issue of amortizing off-line pattern-database

build time over on-line pathfinding.

7.1 Algorithms with Global Goals

In this subsection we describe the following algorithms that compute their heuristic with respect to

a single global goal (i.e., do not use intermediate goals):

1. LRTA* (F, G) is Learning Real-Time A* (Korf, 1990). For each action it conducts a breadth-

first search of fixed depth d around the agent’s current state. Then the first move towards

the best depth d state is taken and the heuristic of the agent’s previous state is updated using

Korf’s mini-min rule.3 We used d ∈ {4, 5, . . . , 20}.

3. Instead of using LRTA* we could have used RTA*. Our experiments showed that in grid pathfinding there is no

significant performance difference between the two for a search depth beyond one. Indeed for deeper searches the

432

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

2. LRTA* (DT, G) is LRTA* in which the search depth d is dynamically controlled by a decision

tree as described in Section 5.1. We used the following parameters: dmax ∈ {5, 10, 15, 20}
and a history trace of length n = 60. For building the decision-tree classifier in WEKA (Wit-

ten & Frank, 2005) the pruning factor was set to 0.05 and the minimum number of data items

per leaf to 100 for the original size maps and 25 for the upscaled ones. As opposed to learning

a tailor-made classifier for each game map, a single common decision-tree classifier was built

based on data collected from all the maps (using 10-fold cross-validation). This was done to

demonstrate the ability of the classifier to generalize across maps.

3. LRTA* (ORACLE, G) is LRTA* in which the search depth is dynamically controlled by

an oracle. Such an oracle always selects the best search depth to produce a move given by

LRTA* (F, G) with a fixed lookahead depth dmax (Bulitko et al., 2007). In other words,

the oracle acts as a perfect decision-tree and thus sets an upper bound on LRTA* (DT, G)

performance. The oracle was run for dmax ∈ {5, 10, 15, 20}, and only on the original size

maps as it proved prohibitively expensive to compute it for upscaled maps. Note that this is

not a practical real-time algorithm and is used only as a reference point in our experiments.

4. LRTA* (PDB, G) is LRTA* in which the search depth d is dynamically controlled by a

pattern database as described in Section 5.2. For original size maps, we used an abstraction

level ℓ ∈ {0, 1, . . . , 5} and a depth cap c ∈ {10, 20, 30, 40, 50, 1000}. For upscaled maps,

we used an abstraction level ℓ ∈ {3, 4, . . . , 7} and a depth cap c ∈ {20, 30, 40, 50, 80, 3000}.

Considering the size of our maps, a cap value of 1000 or 3000 means virtually capless search.

5. K LRTA* (F, G) is a variant of LRTA* proposed by Koenig (2004). Unlike the original

LRTA*, it uses A*-shaped lookahead search space and updates heuristic values for all states

within it using Dijkstra’s algorithm.4 The number of states that K LRTA* expands per move

took on these values: {10, 20, 30, 40, 100, 250, 500, 1000}.

6. P LRTA* (F, G) is Prioritized LRTA* – a variant of LRTA* proposed by Rayner, Davison,

Bulitko, Anderson, and Lu (2007). It uses a lookahead of depth 1 for all moves. However, for

every state whose heuristic value is updated, all its neighbors are put onto an update queue,

sorted by the magnitude of the update. Thus, the algorithm propagates heuristic function

updates in the space in the fashion of Prioritized Sweeping (Moore & Atkeson, 1993). The

control parameter (queue size) was set to {10, 20, 30, 40, 100, 250, 500, 1000} for original

size maps and {10, 20, 30, 40, 100, 250} for upscaled maps.

In Figure 10 we evaluate the performance of the new dynamic depth selection algorithms on the

original size maps. We see that both the decision-tree and the pattern-database approach do improve

significantly upon the LRTA* algorithm, expanding two to three times fewer states for generating

solutions of comparable quality. Furthermore, they perform on par with current state-of-the-art real-

time search algorithms without abstraction, as can seen when compared with K LRTA* (F, G). The

solutions generated are of acceptable quality for our domain (e.g., 50% suboptimal), even when

expanding only 100 states per action. Also of interest is that the decision-tree approach performs

likelihood of having multiple actions with equally low g+h cost is very high, reducing the distinction between RTA*

and LRTA*. By using LRTA* we can have agents learn over repeated trials.

4. We also experimented with A*-shaped lookahead in our new algorithms and found it inferior to breadth-first looka-

head for deeper searches.

433

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

0 100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Mean number of states expanded per move

S
u

b
o

p
ti
m

a
lit

y
 (

ti
m

e
s
)

Original size maps Real−time cut−off: 1000

LRTA* (F, G)

LRTA* (ORACLE, G)

LRTA* (DT, G)

LRTA* (PDB, G)

P LRTA* (F, G)

K LRTA* (F, G)

Figure 10: Global-goal algorithms on original size maps.

quite close to its theoretical best case, as seen when compared to LRTA* (ORACLE, G). This

shows that the features we use, although seemingly simplistic, do a good job at predicting the most

appropriate search depth.

We ran similar sets of experiments on the upscaled maps. However, none of the global goal

algorithms generated solutions of acceptable quality given the real-time cut-off (the solutions were

between 300 and 1700% suboptimal). The experimental results for the upscaled maps are provided

in Appendix B. This shows the inherent limitations of global goal approaches; in large search

spaces they cannot compete on equal footing with abstraction-based methods. This brings us to the

intermediate goal selection methods.

7.2 Algorithms with Intermediate Goals

In this section we describe the algorithms that use intermediate goals during search. To the best

of our knowledge, there is only one previously published real-time heuristic search algorithm that

does so. Thus, we compare it to the new algorithms proposed in this paper. Given that intermediate

goals increase the performance of all algorithms significantly, we present results only on the more

challenging upscaled maps. The full roster of algorithms used in this section is as follows:

1. PR LRTA* (F, G) is Path Refinement Learning Real-Time Search (Bulitko et al., 2007).

The algorithm has two components: it runs LRTA* with a fixed search depth d and a global

goal in an abstract space (abstraction level ℓ in a clique abstraction hierarchy) and refines

the first move using a corridor-constrained A* running on the original ground-level map.5

Constraining A* to a small set of states, collectively called a corridor by Sturtevant and Buro

5. The algorithm was actually called PR LRTS (Bulitko et al., 2007). Based on findings by Luštrek and Bulitko (2006),

we modified it to refine only a single abstract action in order to reduce its susceptibility to lookahead pathologies.

This modification is equivalent to substituting the LRTS component with LRTA*. Hence, in the rest of the paper, we

call it PR LRTA*.

434

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

(2005) or tunnel by Furcy (2006), speeds it up and makes it real-time if the corridor size

is independent of map size (Bulitko, Sturtevant, & Kazakevich, 2005). While the heuristic

is computed in the abstract space with respect to a fixed global goal, the A* component

computes a path from the current state to an intermediate goal. This qualifies PR LRTA* to

enter this section of empirical evaluation. The control parameters are as follows: abstraction

level ℓ ∈ {3, 4, . . . , 7}, LRTA* lookahead depth d ∈ {1, 3, 5, 10, 15} and LRTA* heuristic

weight γ ∈ {0.2, 0.4, 0.6, 1.0} (γ is imposed on g in line 5 of Figure 1).

2. LRTA* (F, PDB) is LRTA* with fixed search depth that uses a pattern database only to select

intermediate goals. The control parameters are as follows: abstraction level ℓ ∈ {3, 4, . . . , 7}
and search depth d ∈ {1, 2, . . . , 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.

3. LRTA* (PDB, PDB) is LRTA* generalized with dynamic search depth and intermedi-

ate goal selection with pattern databases as presented in Sections 5.2 and 6. The con-

trol parameters are as follows: abstraction level ℓ ∈ {3, 4, . . . , 7} and lookahead cap

c ∈ {20, 30, 40, 50, 80, 3000}.

4. PR LRTA* (PDB, G) is PR LRTA* whose LRTA* component is equipped with dy-

namic search depth but uses a global (abstract) goal with respect to which it com-

putes its abstract heuristic. The pattern database for the search depth is constructed

for the same abstraction level ℓ that the LRTA* component runs on, making the com-

ponent as optimal as the lookahead cap allows. We used abstraction level ℓ ∈
{3, 4, . . . , 7} and lookahead cap c ∈ {5, 10, 15, 20, 1000}. We also ran a ver-

sion of PR LRTA* (PDB, G) where the pattern database is constructed at abstrac-

tion level ℓ2 above the level ℓ where LRTA* operates (Table 2). We used (ℓ, ℓ2) ∈
{(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (1, 4), (2, 6), (3, 7), (4, 8), (5, 9)}.

5. PR LRTA* (PDB, PDB) is the same as the two-database version of PR LRTA* (PDB, G)

except it uses the second database for goal selection as well as depth selection. We used

(ℓ, ℓ2) ∈ {(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (1, 4), (2, 6), (3, 7), (4, 8), (5, 9)} (Table 2).

Table 2: PR LRTA* (PDB, G and PDB) uses LRTA* at abstraction level ℓ to define a corridor within

which it refines the path using A*. Dynamic depth (and goal) selection is performed either

at abstraction level ℓ or ℓ2 > ℓ.

Abstraction level Single abstraction PR LRTA*(PDB,G) Dual abstraction PR LRTA*(PDB,{G,PDB})

ℓ2 - dynamic depth (and goal) selection

ℓ
abstract-level LRTA* abstract-level LRTA*

dynamic depth selection

0 corridor-constrained ground-level A* corridor-constrained ground-level A*

The pattern database for the algorithms presented above stores a depth value and an intermediate

ground-level goal for each pair of abstract states. We present performance results for algorithms

with intermediate goals in Sections 7.3–7.6 and then analyze the complexity of pattern database

computation and its effects on performance in Section 7.7.

435

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

12

14

16

18

20

Mean number of states expanded per move

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real−time cut−off: 10000

LRTA* (F, G)

LRTA* (F, PDB)

Figure 11: Effects of intermediate goals: LRTA* (F, G) versus LRTA* (F, PDB).

7.3 Global versus Intermediate Goals

Sections 7.1 and 7.2 presented algorithms with global and intermediate goals respectively. In this

section we compare algorithms across the two groups. To include LRTA* (PDB, G), we increased

the real-time cut-off from 1000 to 10000 for all graphs in this section. We start with the base-

line LRTA* with fixed lookahead. The effects of adding intermediate goal selection are dramatic:

LRTA* with intermediate goals (F, PDB) finds five times better solutions while being three orders

of magnitude faster than LRTA* with global goals (F, G) (see Figure 11). We believe that this is a

result of the octile distance heuristic being substantially more accurate around a goal. Consequently,

LRTA* (F, PDB) is benefiting from a much better heuristic function.

In the second experiment, we equip both versions with dynamic search depth control and com-

pare LRTA* (PDB, G) with LRTA* (PDB, PDB) in Figure 12. The performance gap is now less

dramatic: while the planning speed-up is still around three orders of magnitude, the suboptimality

advantage went down from five to two times. Again, note that we had to increase the real-time

cut-off by an order of magnitude to get more points in the plot.

Finally, we evaluate what is more beneficial: dynamic depth control or dynamic goal control by

comparing the baseline LRTA* (F, G) with LRTA* (PDB, G) and LRTA* (F, PDB) in Figure 13. It is

clear that dynamic goal selection is a much stronger addition to the baseline LRTA* than dynamic

search depth selection. Dynamic depth selection sometimes actually performs worse than fixed

depth, as evidenced by the data points above the LRTA* (F, G) line. This happens primarily with

high abstraction levels and small caps. When the optimal lookahead depth is computed at a high

abstraction level, the same depth value is shared among many ground-level states. The selected

depth value can be beneficial near the entry point into the abstract state, but if the abstract state

is too large, the depth is likely to become inappropriate for ground-level states further away. For

example, if the optimal depth at the entry point is 1, it can be worse than a moderate fixed depth

436

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

0 100 200 300 400 500 600 700 800

2

4

6

8

10

12

14

Mean number of states expanded per move

S
u

b
o

p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real−time cut−off: 10000

LRTA* (PDB, G)

LRTA* (PDB, PDB)

Figure 12: Effects of intermediate goals: LRTA* (PDB, G) versus LRTA* (PDB, PDB).

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

12

14

16

18

20

Mean number of states expanded per move

S
u
b
o
p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real−time cut−off: 10000

LRTA* (F, G)

LRTA* (F, PDB)

LRTA* (PDB, G)

Figure 13: Dynamic search depth control versus dynamic goal control.

in ground-level states far from the entry point. Small caps compound the problem by sometimes

preventing the selection of the optimal depth even at the entry point.

While not shown in the plot, running both (i.e., LRTA* (PDB, PDB)) leads to only marginal fur-

ther improvements. This is because the best parameterizations of LRTA* (F, PDB) already expands

only a single state per move virtually at all times. Consequently, the only benefit of adding dynamic

depth control is a slight improvement in suboptimality — more on this in the next section.

437

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

Mean number of states expanded per move

S
u

b
o

p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real−time cut−off: 1000

LRTA* (F, PDB)

LRTA* (PDB, PDB)

PR LRTA* (F, G)

PR LRTA* (F, PDB)

PR LRTA* (PDB, PDB)

PR LRTA* (PDB, G)

Figure 14: Effects of path refinement: LRTA* versus PR LRTA*.

7.4 Effects of Path Refinement

Path-refinement algorithms (denoted by the ‘PR’ prefix) run learning real-time search (LRTA*) in an

abstract space and refine the path by running A* at the ground level. Non-PR algorithm do not run

A* at all as their real-time search happens in the ground-level space. We examine the effects of path-

refinement by comparing LRTA* and PR LRTA*. Note that even the statically controlled baseline

PR LRTA* (F, G) uses intermediate goals in refining its abstract actions. We match it by using

dynamic intermediate goal selection in LRTA*. Thus, we compare four versions of PR LRTA*: (F,

G), (PDB, G), (F, PDB) and (PDB, PDB) to two versions of LRTA*: (F, PDB) and (PDB, PDB).

The results are found in Figure 14. For the sake of clarity, we show the high performance area by

capping the number of states expanded per move at 25 and suboptimality at 1.5.

The best parameterizations of LRTA* find near-optimal solutions while expanding just one state

per move at virtually all times. This is astonishing performance because one state expansion per

move corresponds to search depth of one and is the fastest possible operation of any algorithm in

our framework. Thus, LRTA* (F, PDB) and LRTA* (PDB, PDB) are virtually unbeatable in terms of

planning time. On the other hand, PR LRTA* incurs planning overhead due to its path-refinement

component (i.e., running a corridor-constrained A*). As a result, PR LRTA* also finds nearly-

optimal solutions but incurs at least five times higher planning cost per move. Dynamic control in

PR LRTA* results in moderate performance gains.

7.5 Comparison to the Existing State of the Art

Traditionally, computer games have used A* for pathfinding needs (Stout, 2000). As map size and

the number of simultaneously planning agents increase, game developers find even highly optimized

implementations of A* insufficient. As a result, variants of A* that use state abstraction have been

used (Sturtevant, 2007). Another way of speeding up A* is to introduce a weight in computing travel

cost through a state. If this is done as f = γg + h, γ ≥ 0 then values of γ below 1 make the agent

438

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

more greedy (more weight is put on h) which usually leads to fewer states expanded at the price of

suboptimal solutions. In this section, we compare the new algorithms to weighted A* (Korf, 1993)

and state-of-the-art Partial Refinement A* (PRA*) (Sturtevant & Buro, 2005). Note that neither

algorithm is real-time and, thus, the planning times per move are map-size specific. That is, with

larger maps, A*’s and PRA*’s planning times per move will increase as these algorithms compute a

complete (abstract) path between start and goal states before they take the first move. For instance,

for the maps we used PRA* expands 3454 states on its most expensive move. Weighted A* with

γ = 1

5
expands 40734 states and the classic A* expands 88138 states on their worst moves. Thus, to

include these two algorithms in our comparison we had to effectively remove the real-time cut-off.

The results are found in Table 3. Dynamically controlled LRTA* is one to two orders of mag-

nitude faster in average planning time per move. It produces shorter paths than the existing state-

of-the-art real-time algorithm (PR LRTA*) and the fastest weighted A* we tried. The original A*

is provably optimal in solution quality and PRA* is nearly optimal. We argue that with hundreds

of units simultaneously planning their paths in a computer game, LRTA* (PDB, PDB)’s low plan-

ning time per move and real-time guarantees are worth its 6.1% path-length suboptimality (e.g., 106
screen pixels versus the optimal 100 screen pixels).

Table 3: Comparison of high-performance algorithms, best values are in bold. Standard errors are

reported after ±.

Algorithm, parameters Planning per move Suboptimality (times)

PR LRTA* (F, G), ℓ = 4, d = 5, γ = 1.0 15.06 ±0.0722 1.161 ±0.0177

LRTA* (PDB, PDB), ℓ = 3, c = 3000 1.032 ±0.0054 1.061 ±0.0027

A* 119.8 ±3.5203 1 ±0.00

weighted A*, f = 1

5
g + h 24.86 ±1.4404 1.146 ±0.0072

PRA* 10.83 ±0.0829 1.001 ±0.0003

7.6 Best Solution Quality Under a Time Limit

In this section we identify the algorithms that deliver the best solution quality under a time limit.

Specifically, we impose a hard limit on planning time per move, expressed in the number of states

expanded. Any algorithm that exceeds the limit on even a single move made in any of the 300

problems on upscaled maps is excluded from consideration. Among the remaining algorithms, we

select the one with the highest solution quality (i.e., the lowest suboptimality). The results are found

in Table 4. All algorithms expand at least one state per move for some move, leaving the first row

empty. LRTA* (F, PDB) d = 1, ℓ = 3 is the best choice when the time limit is between one and

eight states expanded per move. As the limit rises, more expensive but more optimal algorithms

become affordable. Note that all the best choices are dynamically controlled algorithms until the

time limit rises to 3454 states. At this point, non-real-time PRA* takes over ending the domain

of real-time algorithms. Such cross-over point is specific to problem and map sizes. With larger

problems/maps, PRA*’s maximum planning time per move will necessarily increase, making it the

best choice only for progressively higher planning-time-per-move limits.

439

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Table 4: Best solution quality under a strict limit on planning time per move. Planning time is

in the states expanded per move. For the sake of readability, suboptimality is shown as

percentage (e.g., 1.102267 = 10.2267%).

Planning time limit Algorithm, parameters Suboptimality (%)

0 - -

[1, 8] LRTA* (F, PDB) d = 1, ℓ = 3 10.2267%
[9, 24] LRTA* (F, PDB) d = 2, ℓ = 3 8.6692%
[25, 48] LRTA* (F, PDB) d = 3, ℓ = 3 5.6793%
[49, 120] LRTA* (F, PDB) d = 4, ℓ = 3 5.6765%
[121, 728] LRTA* (F, PDB) d = 6, ℓ = 3 5.6688%
[729, 753] LRTA* (F, PDB) d = 14, ℓ = 4 5.6258%
[754, 1223] PR LRTA* (PDB, G) c = 15, γ = 1.0, ℓ = 3 4.2074%
[1224, 1934] PR LRTA* (PDB, G) c = 20, γ = 1.0, ℓ = 3 3.6907%
[1935, 3453] PR LRTA* (PDB, G) c = 1000, γ = 1.0, ℓ = 3 3.5358%

[3454, 88137] PRA* 0.1302%
[88138,∞) A* 0%

7.7 Amortization of Pattern-database Build Time

Our pattern-database approach invests time into computing a PDB for each map. In this section

we study the amortization of this off-line investment over multiple problem instances. PDB build

times on a 3 GHz Pentium CPU are listed in Table 5 for a single map. Consider algorithm LRTA*

(PDB, PDB) with a cap c = 20 and with pattern databases built at level ℓ = 3. On average, it has

solution suboptimality of 1.058 while expanding 1.536 states per move in 31.065 microseconds. Its

closest statically controlled competitor is PR LRTA* (F, G) with ℓ = 4, d = 15, γ = 0.6 which has

suboptimality of 1.059 while expanding an average of 28.63 states per move in 131.128 microsec-

onds. Thus, LRTA* (PDB, PDB) is about 100 microseconds faster on each move. Consequently,

4.7 × 108 moves are necessary to recoup the off-line PDB build time of 13 hours. With each move

taking about 31 microseconds, LRTA* will have a lower total run-time after the first four hours

of pathfinding. We computed such recoup times for all parameterizations of LRTA* (PDB, PDB)

whose closest statically controlled competitor was slower per move. The results are found in Table 6

and demonstrate that LRTA* (PDB, PDB) recoups the PDB build time in the first 1.4 to 27 hours of

its pathfinding time. Note that the numbers are highly implementation and domain-specific. In par-

ticular, our code for building PDBs leaves substantial room for optimization. For the completeness

sake, we report detailed times in Appendix C.

8. Discussion of Empirical Results

In this section we recap the trends we have observed in the previous sections. Dynamic selection of

lookahead with either the decision-tree or the PDB approach helps reduce planning time per move

as well as solution suboptimality (Section 7.1). As a result, LRTA* becomes competitive with such

modern algorithms as Koenig’s LRTA*. However, all real-time search algorithms with global goals

do not scale well to large maps.

440

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

Table 5: Pattern database for an average 512×512 map, computed for intermediate goals. Database

size is listed as the number of abstract state pairs. Suboptimality and planning per move

are listed for a representative algorithm: LRTA* (PDB, PDB) with a cap c = 20.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 2 years - -

1 7.4 × 108 est. 1.5 months - -

2 5.9 × 107 est. 4 days - -

3 6.1 × 106 13 hours 1.5 1.058
4 8.6 × 105 3 hours 3.2 1.059
5 1.5 × 105 1 hour 41.3 1.535
6 3.1 × 104 24 minutes 104.4 2.315
7 6.4 × 103 10 minutes 169.3 2.284

Table 6: Amortization of PDB build times. For each dynamically controlled LRTA*, we list the

statically controlled PR LRTA* that is the closest in terms of solution suboptimality.

LRTA* (PDB, PDB) PR LRTA* (F, G) Amortization moves Amortization run-time

c = 20, ℓ = 3 ℓ = 4, d = 15, γ = 0.6 4.7 × 108 4 hours

c = 20, ℓ = 4 ℓ = 4, d = 15, γ = 0.6 1.2 × 108 1.4 hours

c = 30, ℓ = 3 ℓ = 4, d = 15, γ = 0.6 5.1 × 108 5.1 hours

c = 40, ℓ = 3 ℓ = 4, d = 15, γ = 0.6 5.3 × 108 6 hours

c = 40, ℓ = 4 ℓ = 4, d = 15, γ = 0.4 3.4 × 108 9.3 hours

c = 50, ℓ = 3 ℓ = 4, d = 15, γ = 0.6 6.2 × 108 9 hours

c = 50, ℓ = 4 ℓ = 4, d = 15, γ = 0.6 6.7 × 108 21.1 hours

c = 80, ℓ = 3 ℓ = 4, d = 15, γ = 0.6 1.1 × 109 27 hours

Adding intermediate goals brings even the classic LRTA* on par with the previous state-of-the-

art real-time search algorithm PR LRTA* and is a much stronger addition than dynamic lookahead

depth selection (Section 7.3). Using both dynamic lookahead depth and subgoals brings further

improvements. As Section 7.5 details, LRTA* equipped with both dynamic lookahead depth and

subgoal selection expands barely over a state per move and has less than 7% solution suboptimality.

While it is not better than previous state-of-the-art algorithms PR LRTA*, PRA* and A* in both

solution quality and planning time per move, we believe that the trade-offs it makes are appealing in

practice. To aid practitioners further, we provide an algorithm selection guide in Section 7.6 which

makes it clear that LRTA* with dynamic subgoal selection are the best algorithms when the time

per move is severely limited. The speed advantage they deliver over the state-of-the-art PR LRTA*

algorithm allows them to recoup the PDB build time in several hours of pathfinding.

9. Current Limitations and Future Work

This project opens several interesting avenues for future research. In particular, it would be worth-

while to investigate performance of the algorithms in this paper in dynamic environments (e.g., a

bridge gets destroyed in a real-time strategy game or the goal moves away from the agent).

441

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Another area of future research is application of the proposed algorithms to general planning.

Heuristic search has been a successful approach in planning with such planners as ASP (Bonet,

Loerincs, & Geffner, 1997), the HSP-family (Bonet & Geffner, 2001), FF (Hoffmann, 2000),

SHERPA (Koenig, Furcy, & Bauer, 2002) and LDFS (Bonet & Geffner, 2006). In line with recent

planning work (Likhachev & Koenig, 2005) and Bonet and Geffner (2006), we did not evaluate

proposed algorithms for general STRIPS-style planning problem. Nevertheless, we do believe that

our new real-time heuristic search algorithms may also offer benefits to a wider range of planning

problems. Indeed, the core heuristic search algorithm extended in this paper (LRTA*) was previ-

ously applied to general planning (Bonet et al., 1997). The extensions we introduced may have a

beneficial effect in a similar way to how the B-LRTA* improved the performance of ASP planner.

Subgoal selection has been long studied in planning and is a central part of our intermediate-goal

depth-table approach. Decision trees for search depth selection are induced from sample trajec-

tories through the space and appear scalable to general planning problems. The only part of our

approach that requires solving numerous ground-level problems optimally is pre-computation of

optimal search depth in the PDB approach. We conjecture that the approach will still be effective if,

instead of computing the optimal search depth based on an optimal action a∗, one were to solve a

relaxed planning problem and use the resulting action in place of a∗. The idea of deriving heuristic

guidance from solving relaxed problems is quite common to both planning and the heuristic search

community.

10. Conclusions

Real-time pathfinding is a non-trivial problem where algorithms must trade solution quality for the

amount of planning per move. These two measures are antagonistic and thus we are interested in

Pareto optimal algorithms which are not outperformed in both measures by any other algorithms.

The classic LRTA* provides a smooth trade-off curve, parameterized by the lookahead depth. Since

its introduction in 1990, a variety of extensions have been proposed. The most recent extension,

PR LRTS (Bulitko et al., 2005) was the first application of automatic state abstraction in real-time

search. In a large-scale empirical study with pathfinding on game maps, PR LRTS outperformed

many other algorithms with respect to several antagonistic measures (Bulitko et al., 2007).

In this paper we also employ automatic state abstraction but instead of using it for path-

refinement, we pre-compute pattern databases and use them to select the amount of planning and

intermediate goals dynamically, per move. Several mechanisms for such dynamic control are pro-

posed and can be used with virtually any existing real-time search algorithm. As a demonstration,

we equip both the classic LRTA* and the state-of-the-art PR LRTS with our dynamic control. The

resulting improvements are substantial. For instance, LRTA* equipped with PDB-based control for

lookahead and intermediate goal selection significantly outperforms the existing state of the art (PR

LRTS) simultaneously in planning per move and solution quality. Furthermore, on average it ex-

pands only a little more than one state per move which is the minimum amount of planning for an

LRTA*-based algorithm.

The new algorithms compare favorably to A* and its state-of-the-art extension, PRA*, which

are presently popular industrial choices for pathfinding in computer games (Stout, 2000; Sturtevant,

2007). First, per-move planning time of our algorithms is provably unaffected by any increase in

map size. Second, we are two orders of magnitude faster than A* and one order of magnitude

faster than PRA* in planning time per move. These improvements come at the price of about 7%

442

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

suboptimality, likely to be unnoticed by a computer game player in most scenarios. Thus it appears

that not only the new algorithms redefine the state of the art in the real-time search arena but also

that they are well-suited for industrial applications.

Acknowledgments

Sverrir Sigmundarson was at the School of Computer Science, Reykjavik University during this

project. We appreciate consultation by Robert C. Holte and detailed feedback from the anonymous

reviewers. This research was supported by grants from the National Science and Engineering Re-

search Council of Canada (NSERC); Alberta’s Informatics Circle of Research Excellence (iCORE);

Slovenian Ministry of Higher Education, Science and Technology; Icelandic Centre for Research

(RANNÍS); and by a Marie Curie Fellowship of the European Community programme Structuring

the ERA under contract number MIRG-CT-2005-017284. Special thanks to Nathan Sturtevant for

his development and support of HOG.

Appendix A. Decision-Tree Features

We devised two different categories of classifier features: the first consists of features based on the

agent’s recent history, whereas the second contains features sampled by a shallow pre-search from

the agent’s current state. Thus, collectively, the features in the two categories make predictions

based on both the agent’s recent history as well as its current situation.

The first category has the four features listed in Table 7. These features are computed at each

execution step. Some of them are aggregated over the most recent states the agent was in, which is

done in an incremental fashion for an improved performance. The parameter n is set by the user and

controls how long a history to aggregate over. We use the notation s−1 to refer to the state the agent

was in one step ago, s−2 for the state two steps ago, etc.; the agent thus aggregates over states s−1,

..., s−n. Feature f1 provides a rough estimate of the location of the agent relative to the goal. The

distance to the goal state can affect the required lookahead depth, for example because heuristics

closer to the goal are usually more accurate. This feature makes it possible for the classifier to make

decisions based on that if deemed necessary. Features f2 (known as mobility) and f3 provide a

measure of how much progress the agent has made towards reaching the goal in the past few steps.

Frequent state revisits may indicate a heuristic depression and a deeper search is usually beneficial

in such situations (Ishida, 1992). Feature f4 is a measure of inaccuracies and inconsistencies in the

heuristic around the agent; again, many heuristic updates may warrant a deeper search.

The features in the second category are listed in Table 8. They are also computed at each execu-

tion step. Before the planning phase starts, a shallow lookahead pre-search is performed to gather

information about the nearby part of the search space. The types of features in this category can

be coarsely divided into features that (i) compute the fraction of states on the pre-search lookahead

frontier that satisfy some property, (ii) compare the action chosen by the pre-search to previous

actions (either of the previous state or taken the last time the current state was visited), and (iii)

check heuristic estimates of the immediate successors of the current state. Feature f5 is a rough

measure of the density of obstacles in the agent’s vicinity: the more obstacles there are, the more

beneficial a deeper search might be. Feature f6 is an indicator of the “difficulty” of traversing the

local area. If the proportion is high, many states have been updated, possibly suggesting a heuristic

depression. As for feature f7, if a pre-search selects the same action again this might indicate that

443

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Table 7: History based classifier features.

Feature Description

f1 The initial heuristic estimate of the distance from the current state to the goal:

hoctile(s, sglobal goal).

f2 The heuristic estimate of the distance between the current state and the state the

agent was in n steps ago: h(s, s−n).

f3 The number of distinct states the agent visited in the last n steps:

|{s−1, s−2, ..., s−n}|.
f4 The total volume of heuristic updates over the last n steps:

∑
n

i=1
hafter update(s−i)−

hbefore update(s−i) (line 6 in Figure 1).

Table 8: Pre-search based classifier features.

Feature Description

f5 The ratio of the actual number of states on the pre-search frontier to the expected

number of states if there were no obstacles on the map.

f6 The fraction of frontier states with an updated heuristic value.

f7 A boolean feature telling whether the action chosen by the pre-search is the same

as the action chosen by the planning phase the last time this state was visited. If

this is the first time the state is visited this feature is false.

f8 A boolean feature telling whether the direction suggested by the pre-search is the

same as the direction the agent took the previous step.

f9 The ratio between the current state’s heuristic and the best successor state suggested

by the pre-search: h(s, sgoal)/h(s̃, sgoal).

f10 A boolean feature telling whether the best action proposed by the pre-search phase

would lead to a successor state with an updated heuristic value.

f11 A boolean feature telling whether the heuristic value of the current state is larger

than the heuristic value of the best immediate successor found by the pre-search.

the heuristic values in this part of the search space are already mutually consistent and thus only a

shallow lookahead is needed; the same applies to feature f8. Features f9 to f11 compare the current

state to the successor state suggested by the pre-search.

Appendix B. Experiments on Upscaled Maps Using Global Goals

Empirical results of running the global-goal algorithms on upscaled maps are shown in Figure 15.

The LRTA* (DT, G) shows a significant improvement over LRTA* (F, G), making it comparable in

quality to the existing state-of-the-art algorithms: on par with P LRTA* (F, G) and slightly better

than K LRTA* (F, G) when allowed to expand over 200 states per move. It is also worth noting that

LRTA* (PDB, G) is no longer competitive with the other algorithms and, in fact, does not make

the real-time cut-off of 1000 states for any of its parameters combinations (and thus is not shown in

the plot). The reason lies with the fact that the problems are simply too difficult for LRTA* to find

an optimal move with a small lookahead depth. For instance, with abstraction level ℓ = 3 and cap

444

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

c = 80, LRTA* (PDB, G) has suboptimality of 1.36. Unfortunately, its lookahead depth hits the cap

in 11% of all visited states. As a result, the algorithm expands an average of 1214 states per move

which disqualifies it under a cut-off of 1000.

0 100 200 300 400 500 600 700 800

2

4

6

8

10

12

14

16

18

20

Mean number of states expanded per move

S
u

b
o

p
ti
m

a
lit

y
 (

ti
m

e
s
)

Upscaled maps Real−time cut−off: 1000

LRTA* (F, G)

LRTA* (DT, G)

P LRTA* (F, G)

K LRTA* (F, G)

Figure 15: Performance of global-goal algorithms on upscaled maps.

Looking collectively at the small and upscaled up map results, LRTA* (DT, G) demonstrates

excellent performance among the global goal algorithms as it is both robust with respect to map

upscaling and one of the more efficient ones (the only comparable algorithm is K LRTA* (F, G)).

However, within the provided 1000 states cut-off limit, none of the real-time global-goal algorithms

returned solutions that would be considered of an acceptable quality in pathfinding. Indeed, even

the best solutions found are approximately four times worse than the optimal.

Appendix C. Pattern Database Build Times

In order to operate LRTA* and PR LRTA* that use both lookahead depth and intermediate goals con-

trolled dynamically, we build pattern databases. Each pattern database is built off-line and contains

a single entry for each pair of abstract states. There are three types of entries: (i) intermediate goal

which is a ground-level entry state in the next abstract state; (ii) capped optimal lookahead depth

with respect to the intermediate goal and (iii) optimal lookahead depth with respect to the global

goal. When running algorithms with capped lookaheads (i.e., c < 1000) we need two databases

per map: one containing intermediate goals and one containing capped optimal lookahead depths.

When running effectively uncapped algorithms (i.e., c = 1000 or c = 3000) we also need a third

database with lookahead depths for global goals (see Appendix D for further discussion). Tables 5

and 9–12 report build times and LRTA* (PDB, PDB) performance when capped (i.e., when we have

to build only two pattern databases). Tables 13 and 14 report build times and performance with

effectively no cap (i.e., when we have built all three pattern databases).

Finally, in the interest of speeding up experiments we did not in fact compute pattern databases

for all pairs of abstract states. Instead, we took advantage of prior benchmark problem availability

445

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Table 9: Pattern databases for an average 512 × 512 map, computed for intermediate goals.

Database size is listed as the number of abstract state pairs. Suboptimality and planning

per move are listed for LRTA* (PDB, PDB) with a cap c = 30.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 2 years - -

1 7.4 × 108 est. 1.5 months - -

2 5.9 × 107 est. 4 days - -

3 6.1 × 106 13.4 hours 2.1 1.058
4 8.6 × 105 3.1 hours 12.3 1.083
5 1.5 × 105 1.1 hours 60.7 1.260
6 3.1 × 104 24 minutes 166.6 1.843
7 6.4 × 103 11 minutes 258.8 1.729

Table 10: Pattern databases for an average 512 × 512 map, computed for intermediate goals.

Database size is listed as the number of abstract state pairs. Suboptimality and planning

per move are listed for LRTA* (PDB, PDB) with a cap c = 40.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 2 years - -

1 7.4 × 108 est. 1.5 months - -

2 5.9 × 107 est. 4 days - -

3 6.1 × 106 13.1 hours 2.7 1.058
4 8.6 × 105 3.1 hours 10.2 1.060
5 1.5 × 105 1.0 hours 53.4 1.102
6 3.1 × 104 24 minutes 217.3 1.474
7 6.4 × 103 10 minutes 355.4 1.490

and computed PDBs only for abstract goal states that come into play in the problems that our agents

were to solve. Thus, the times in the tables are our estimates for all possible pairs.

Appendix D. Intermediate Goals and Loops

As shown by Korf in his original paper, LRTA* is complete for any lookahead depth when its

heuristic is taken with respect to a single global goal. Such completeness guarantee is lost when one

uses intermediate goals (i.e., for LRTA* (F, PDB), LRTA* (PDB, PDB) as well as the PR LRTA*

counter-parts). Indeed, while in an abstract tile A, the dynamic goal control module will guide

the agent towards an entry state in tile B. However, on its way, the agent may stumble in different

abstract tile C. As soon as it happens, the dynamic control module may select an entry state in tile

A as its new intermediate goal. The unsuspecting agent heads back to A and everything repeats.

To combat such loops we equipped all algorithms that use intermediate goals with a state reen-

trance detector. Namely, as soon as an agent re-visits a ground-level state, the dynamic control

switches from an intermediate goal to the global goal. Additionally, a new lookahead depth is se-

lected. Ideally, such lookahead depth should be the optimal depth with respect to the global goal,

446

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

Table 11: Pattern databases for an average 512 × 512 map, computed for intermediate goals.

Database size is listed as the number of abstract state pairs. Suboptimality and planning

per move are listed for LRTA* (PDB, PDB) with a cap c = 50.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 2 years - -

1 7.4 × 108 est. 1.5 months - -

2 5.9 × 107 est. 4 days - -

3 6.1 × 106 13.6 hours 3.5 1.058
4 8.6 × 105 3.1 hours 11.1 1.059
5 1.5 × 105 1.0 hours 68.5 1.098
6 3.1 × 104 24 minutes 279.4 1.432
7 6.4 × 103 11 minutes 452.3 1.386

Table 12: Pattern databases for an average 512 × 512 map, computed for intermediate goals.

Database size is listed as the number of abstract state pairs. Suboptimality and planning

per move are listed for LRTA* (PDB, PDB) with a cap c = 80.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 2 years - -

1 7.4 × 108 est. 1.5 months - -

2 5.9 × 107 est. 4 days - -

3 6.1 × 106 13.5 hours 6.6 1.058
4 8.6 × 105 3.2 hours 22.9 1.059
5 1.5 × 105 1.0 hours 109.7 1.087
6 3.1 × 104 25 minutes 523.3 1.411
7 6.4 × 103 10 minutes 811.5 1.301

capped at c. Unfortunately, computing optimal lookahead depths for global goals is quite expensive

off-line (Tables 13 and 14). Given that loops occur fairly infrequently, we do not normally compute

optimal lookahead depths for global goals. Instead, when a state re-visit is detected, we switch to

global goals and simply set the lookahead to cap c. Doing so saves off-line PDB computation time

but sometimes causes the agent to conduct a deeper search (c plies) than really necessary.6

An alternative solution to be investigated in future research is to progressively increase looka-

head on-line when re-visits are detected (i.e., every time a re-visit occurs, lookahead depth at that

state is increased by a certain number of plies).

6. The only exception to this practice were the cases of c = 1000 and c = 3000 where setting lookahead depth d to c

would have immediately disqualified the algorithm, provided a reasonable real-time cut-off. Consequently, for these

two cap values, we did invest a large amount of time and computed effectively uncapped optimal lookahead depth

with respect to global goals.

447

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Table 13: Pattern databases for an average 512 × 512 map, computed for global goals. Database

size is listed as the number of abstract state pairs. Suboptimality and planning per move

are listed for LRTA* (PDB, PDB) with a cap c = 3000.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 350 years - -

1 7.4 × 108 est. 25 years - -

2 5.9 × 107 est. 2 years - -

3 6.1 × 106 73 days 1.0 1.061
4 8.6 × 105 10.3 days 4.8 1.062
5 1.5 × 105 1.7 days 27.9 1.133
6 3.1 × 104 9.8 hours 86.7 3.626
7 6.4 × 103 2.5 hours 174.1 3.474

Table 14: Pattern databases for an average 512 × 512 map, computed for global goals. Database

size is listed as the number of abstract state pairs. Suboptimality and planning per move

are listed for LRTA* (PDB, G) with a cap c = 20.

Abstraction level Size Time Planning per move Suboptimality (times)

0 1.1 × 1010 est. 12 years - -

1 7.4 × 108 est. 6 months - -

2 5.9 × 107 est. 13 days - -

3 6.1 × 106 38.0 hours 349.9 6.468
4 8.6 × 105 7.5 hours 331.6 8.766
5 1.5 × 105 2.3 hours 281.0 10.425
6 3.1 × 104 52 minutes 298.1 8.155
7 6.4 × 103 21 minutes 216.1 14.989

448

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

References

BioWare Corp. (1998). Baldur’s Gate., Published by Interplay, http://www.bioware.com/bgate/,

November 30, 1998.

Björnsson, Y., & Marsland, T. A. (2003). Learning extension parameters in game-tree search. Inf.

Sci, 154(3–4), 95–118.

Blizzard (2002). Warcraft 3: Reign of chaos. http://www.blizzard.com/war3.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1–2),

5–33.

Bonet, B., & Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic search

in deterministic and non-deterministic settings, and its application to MDPs. In Proceedings

of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 142–

151, Cumbria, UK.

Bonet, B., Loerincs, G., & Geffner, H. (1997). A fast and robust action selection mechanism for

planning.. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pp.

714–719, Providence, Rhode Island. AAAI Press / MIT Press.

Botea, A., Müller, M., & Schaeffer, J. (2004). Near optimal hierarchical path-finding. Journal of

Game Development, 1(1), 7–28.

Bulitko, V. (2003a). Lookahead pathologies and meta-level control in real-time heuristic search.

In Proceedings of the 15th Euromicro Conference on Real-Time Systems, pp. 13–16, Porto,

Portugal.

Bulitko, V. (2003b). Lookahead pathologies and meta-level control in real-time heuristic search. In

Proceedings of the 15th Euromicro Conference on Real-Time Systems, pp. 13–16.

Bulitko, V. (2004). Learning for adaptive real-time search. Tech. rep. http://arxiv.org/abs/cs.AI/

0407016, Computer Science Research Repository (CoRR).

Bulitko, V., Björnsson, Y., Luštrek, M., Schaeffer, J., & Sigmundarson, S. (2007). Dynamic Con-

trol in Path-Planning with Real-Time Heuristic Search. In Proceedings of the International

Conference on Automated Planning and Scheduling (ICAPS), pp. 49–56, Providence, RI.

Bulitko, V., Li, L., Greiner, R., & Levner, I. (2003). Lookahead pathologies for single agent search.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp.

1531–1533, Acapulco, Mexico.

Bulitko, V., Sturtevant, N., & Kazakevich, M. (2005). Speeding up learning in real-time search via

automatic state abstraction. In Proceedings of the National Conference on Artificial Intelli-

gence (AAAI), pp. 1349–1354, Pittsburgh, Pennsylvania.

Bulitko, V., Sturtevant, N., Lu, J., & Yau, T. (2007). Graph Abstraction in Real-time Heuristic

Search. Journal of Artificial Intelligence Research (JAIR), 30, 51–100.

Buro, M. (2000). Experiments with Multi-ProbCut and a new high-quality evaluation function for

Othello. In van den Herik, H. J., & Iida, H. (Eds.), Games in AI Research, pp. 77–96. U.

Maastricht.

Culberson, J., & Schaeffer, J. (1996). Searching with pattern databases. In CSCI (Canadian AI

Conference), Advances in Artificial Intelligence, pp. 402–416. Springer-Verlag.

449

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Culberson, J., & Schaeffer, J. (1998). Pattern Databases. Computational Intelligence, 14(3), 318–

334.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.. Numerische Mathematik,

1, 269–271.

Furcy, D. (2006). ITSA*: Iterative tunneling search with A*. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), Workshop on Heuristic Search, Memory-Based

Heuristics and Their Applications, Boston, Massachusetts.

Furcy, D., & Koenig, S. (2000). Speeding up the convergence of real-time search. In Proceedings

of the National Conference on Artificial Intelligence (AAAI), pp. 891–897.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of

minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

Hernández, C., & Meseguer, P. (2005a). Improving convergence of LRTA*(k). In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), Workshop on Planning

and Learning in A Priori Unknown or Dynamic Domains, Edinburgh, UK.

Hernández, C., & Meseguer, P. (2005b). LRTA*(k). In Proceedings of the 19th International Joint

Conference on Artificial Intelligence (IJCAI), Edinburgh, UK.

Hernández, C., & Meseguer, P. (2007). Improving real-time heuristic search on initially unknown

maps. In Proceedings of the International Conference on Automated Planning and Scheduling

(ICAPS), Workshop on Planning in Games, p. 8, Providence, Rhode Island.

Hoffmann, J. (2000). A heuristic for domain independent planning and its use in an enforced hill-

climbing algorithm. In Proceedings of the 12th International Symposium on Methodologies

for Intelligent Systems (ISMIS), pp. 216–227.

id Software (1993). Doom., Published by id Software, http://en.wikipedia.org/ wiki/Doom, Decem-

ber 10, 1993.

Ishida, T. (1992). Moving target search with intelligence. In Proceedings of the National Conference

on Artificial Intelligence (AAAI), pp. 525–532.

Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., & Shimada, S. (1999).

Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents

research. In Man, Systems, and Cybernetics, pp. 739–743.

Kocsis, L. (2003). Learning Search Decisions. Ph.D. thesis, University of Maastricht.

Koenig, S. (2004). A comparison of fast search methods for real-time situated agents. In Proceed-

ings of the International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pp. 864–871.

Koenig, S. (2001). Agent-centered search. AI Magazine, 22(4), 109–132.

Koenig, S., Furcy, D., & Bauer, C. (2002). Heuristic search-based replanning. In Proceedings of the

Int. Conference on Artificial Intelligence Planning and Scheduling, pp. 294–301.

Koenig, S., & Likhachev, M. (2006). Real-time adaptive A*. In Proceedings of the International

Joint Conference on Autonomous Agents and Multiagent Systems, pp. 281–288.

Korf, R. (1985). Depth-first iterative deepening : An optimal admissible tree search. Artificial

Intelligence, 27(3), 97–109.

450

DYNAMIC CONTROL IN REAL-TIME HEURISTIC SEARCH

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42(2–3), 189–211.

Korf, R. (1993). Linear-space best-first search. Artificial Intelligence, 62, 41–78.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S. (2005). Anytime dynamic A*: An

anytime, replanning algorithm. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS).

Likhachev, M., Gordon, G. J., & Thrun, S. (2004). ARA*: Anytime A* with provable bounds on

sub-optimality. In Thrun, S., Saul, L., & Schölkopf, B. (Eds.), Advances in Neural Informa-

tion Processing Systems 16. MIT Press, Cambridge, MA.

Likhachev, M., & Koenig, S. (2005). A generalized framework for lifelong planning A*. In Pro-

ceedings of the International Conference on Automated Planning and Scheduling (ICAPS),

pp. 99–108.

Luštrek, M. (2005). Pathology in single-agent search. In Proceedings of Information Society Con-

ference, pp. 345–348, Ljubljana, Slovenia.

Luštrek, M., & Bulitko, V. (2006). Lookahead pathology in real-time path-finding. In Proceedings of

the National Conference on Artificial Intelligence (AAAI), Workshop on Learning For Search,

pp. 108–114, Boston, Massachusetts.

Mero, L. (1984). A heuristic search algorithm with modifiable estimate. Artificial Intelligence, 23,

13–27.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and

less time. Machine Learning, 13, 103–130.

Nash, A., Daniel, K., & Felner, S. K. A. (2007). Theta*: Any-angle path planning on grids. In

Proceedings of the National Conference on Artificial Intelligence, pp. 1177–1183.

Pearl, J. (1984). Heuristics. Addison-Wesley.

Rayner, D. C., Davison, K., Bulitko, V., Anderson, K., & Lu, J. (2007). Real-time heuristic search

with a priority queue. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pp. 2372–2377, Hyderabad, India.

Russell, S., & Wefald, E. (1991). Do the Right Thing: Studies in Limited Rationality. MIT Press.

Schaeffer, J. (1989). The history heuristic and alpha-beta search enhancements in practice. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-11(1), 1203–1212.

Schaeffer, J. (2000). Search ideas in Chinook. In van den Herik, H. J., & Iida, H. (Eds.), Games in

AI Research, pp. 19–30. U. Maastricht.

Shimbo, M., & Ishida, T. (2003). Controlling the learning process of real-time heuristic search.

Artificial Intelligence, 146(1), 1–41.

Sigmundarson, S., & Björnsson, Y. (2006). Value Back-Propagation vs. Backtracking in Real-

Time Search. In Proceedings of the National Conference on Artificial Intelligence (AAAI),

Workshop on Learning For Search, pp. 136–141, Boston, Massachusetts, USA.

Stenz, A. (1995). The focussed D* algorithm for real-time replanning. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), pp. 1652–1659.

Stout, B. (2000). The basics of A* for path planning. In Game Programming Gems. Charles River

Media.

451

BULITKO, LUŠTREK, SCHAEFFER, BJÖRNSSON, SIGMUNDARSON

Sturtevant, N. (2007). Memory-efficient abstractions for pathfinding. In Proceedings of the third

conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 31–36, Stan-

ford, California.

Sturtevant, N., & Buro, M. (2005). Partial pathfinding using map abstraction and refinement. In

Proceedings of the National Conference on Artificial Intelligence, pp. 1392–1397.

Sturtevant, N., & Jansen, R. (2007). An analysis of map-based abstraction and refinement. In

Proceedings of the 7th International Symposium on Abstraction, Reformulation and Approx-

imation, Whistler, British Columbia.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques

(2nd edition). Morgan Kaufmann, San Fransisco.

452

