
Dynamic control of a queue with adjustable service rate

Jennifer M. George
Melbourne Business School

200 Leicester St, Carlton
VIC 3053, Australia

Phone: (613) 9349-8145
Fax: (613) 9349-8133

Email: j.george@mbs.unimelb.edu.au

J. Michael Harrison
Graduate School of Business

Stanford University, Stanford
CA 94305, USA

Phone: (650) 723-4727
Fax:

Email: harrison michael@gsb.stanford.edu



Dynamic control of a queue with adjustable service rate

May 23, 2000

Abstract

We consider a single-server queue with Poisson arrivals, where holding costs are

continuously incurred as a non-decreasing function of the queue length. The queue

length evolves as a birth-and-death process with constant arrival rate λ = 1 and with

state-dependent service rates µn that can be chosen from a fixed subset A of [0,∞).

Finally, there is a non-decreasing cost-of-effort function c(·) on A, and service costs

are incurred at rate c(µn) when the queue length is n. The objective is to minimize

average cost per time unit over an infinite planning horizon. The standard optimality

equation of average-cost dynamic programming allows one to write out the optimal

service rates in terms of the minimum achievable average cost z∗. Here we present a

method for computing z∗ which is so fast and so transparent that it may reasonably be

described as an explicit solution for the problem of service rate control. The optimal

service rates are non-decreasing as a function of queue length, and are bounded if

the holding cost function is bounded. From a managerial standpoint it is natural to

compare z∗, the minimum average cost achievable with state-dependent service rates,

against the minimum average cost achievable with a single fixed service rate. The

difference between those two minima represents the economic value of a responsive

service mechanism, and numerical examples are presented which show that it can be

substantial.
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1 Introduction and Summary

This paper is concerned with dynamic control of the service rate in a single-server queuing

system with Poisson arrivals and exponentially distributed service times. The objective is

to minimize average cost per time unit over an infinite planning horizon, where cost has two

elements: holding cost (or congestion cost) that increases with queue length, and a cost of

effort that increases with the service level chosen. Many papers have been written on different

versions of this problem over the last thirty years, dealing with both characterization and

computation of optimal policies. Here we develop a new method for computing optimal

policies, which has a number of important virtues: (a) its applicability does not depend on

any extraneous technical assumptions about the problem data; (b) it proceeds by solving

a sequence of approximating problems that are natural and interesting in their own right,

each involving a truncation of the holding cost function; (c) the optimal policies for the

approximating problems converge monotonically to a policy that is optimal under the original

cost structure; (d) at each stage in the computation one has an implementable policy and

a bound on its performance, relative to an optimal policy, under the original cost structure;

and (e) our method appears to be more efficient than any proposed in earlier work, although

data are not available for direct comparisons. In fact, the computations are so fast and so

transparent that our approach can reasonably be said to provide an explicit solution for the

problem of service rate control.

Throughout this paper the discrete units that flow through the queueing system will be

referred to as “jobs” rather than “customers”. As is customary, we use the term “queue
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holding cost = hn

n = number of jobs in system

Choose service rate µn
for each state n

cost of effort
= c(µn)

�

Figure 1: A Queueing System with Adjustable Service Rate

length” to mean the number of jobs in the system, including the job being served if there

is one. The queue length evolves as a birth-and-death process with constant arrival rate

λ = 1 and with state-dependent service rates µn that can be chosen from a closed subset

A of [0,∞). It is assumed that A contains both the point x = 0 and some x > 1 (recall

that λ = 1 by convention). Also given is a function c(·) on A, where c(x) is a cost rate

associated with service rate x. Imagining that a service rate x reflects or represents a level

of effort by the server, we shall often refer to c(x) as an effort cost. We assume that c(·) is

non-decreasing and left-continuous with c(0) = 0. (The last of those assumptions is just a

matter of convention, or a convenient normalization.) Also, if A is unbounded we further

require that

inf {x−1c(x) : x ∈ A, x ≥ y} ↑ ∞ as y ↑ ∞. (1)

Despite its technical appearance, this assumption is substantive and indispensable. That

assertion will be explained carefully in an appendix, but a quick summary of the argument

is the following. If the infimum in (1) were to approach a finite limit α as y ↑ ∞, then the
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server would effectively be able to eject jobs from the system instantenously, at a cost of α

per job ejected. To avoid nonsensical conclusions in that case, one must adopt an alternative

model formulation in which the ejection capability is explicitly recognized as a second mode

of control.

As a final model element, we suppose that holding costs (or congestion costs) are contin-

uously incurred at rate hn when the queue length is n. The vector h = (h0, h1, ...) is assumed

to be non-decreasing and to have less-than-geometric growth, as follows:

∞∑
n=0

hnθ
n <∞ for all θ ∈ [0, 1). (2)

This is a significant restriction from a mathematical standpoint, and it could be substantially

weakened without changing any of our basic results (the arguments that would need to be

modified come in section 7), but it makes for a clean theoretical development and is still

quite mild from a practical standpoint. In particular, it is satisfied if one has a polynomial

bound on hn.

For us a policy is a vector µ = (µ1, µ2, ...) with all components belonging to the set A.

One interprets µn as the service rate to be used when the queue length is n. The problem

is to choose a policy µ which minimizes the associated long-run average cost rate, including

both holding costs and the cost of effort. Thus we are considering a Markov decision process

with continuous time parameter, countable state space, time-invariant data and a long-run

average cost criterion. In the language of dynamic programming, we are restricting attention

to stationary Markov policies.

As stated earlier, we shall develop an explicit solution for this problem, imposing no as-
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sumptions beyond the ones already set forth. The mathematical treatment is self-contained,

making no use of general dynamic programming theory except to motivate the basic opti-

mality equation (see section 3). The optimal policy that we obtain is monotone, meaning

that the optimal service rate increases as a function of queue length, which is consistent with

known results that will be reviewed shortly.

The paper is structured as follows. Section 2 gives a precise statement of the mathematical

problem to be solved, and section 3 summarizes what is known about the problem from past

work. The latter discussion includes a statement of the optimality equation (or Hamilton-

Jacobi-Bellman equation) that is the starting point for our analysis, and in section 3 our

approach to its solution is also described in broad outline. A reduced form of the optimality

equation is derived in section 4, and the sufficiency of that equation for optimality of a given

policy is rigorously proved. After some technical preliminaries have been dispensed with

in section 5, we show in section 6 how to solve the optimality equation when holding costs

are truncated, and then the method of approximation by means of successive truncations

is developed in section 7, along with error bounds on the approximations and a rigorous

proof of monotone convergence. Section 8 presents a family of numerical examples with

quadratic cost of effort and holding costs of the form hn = s(n − M + 1)+, where s and

M are positive constants. In discussing those examples we compare the minimum cost

achievable with state-dependent service rates against the minimum achievable with a single

service rate. The difference between those two minima represents the economic value of a

responsive service mechanism, and our examples show that it can be substantial. Finally,

we explain in the appendix how our problem formulation must be modified if one wants to
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consider cost-of-effort functions c(·) for which assumption (1) fails.

2 Problem Formulation

Because our dynamic control problem has a countably infinite state space, an action set A

which is only required to be closed, and potentially unbounded costs, it does not fit neatly

within any standard theory of Markov decision processes. For example, no general result

can be invoked to assure the existence of an optimal policy, cf. section 7.1. of [7], nor to

assure that solutions of the Hamilton-Jacobi-Bellman equation (see section 3) correspond

to optimal policies. Also, the standard technique of uniformization (cf. chapter 11 of [5]

or chapter 5 of [1]) is not generally applicable to our model, because the set A of potential

service rates may be unbounded and thus there is no positive lower bound on the expected

time between state transitions, independent of the service rate chosen.

Thus we shall analyze the problem of service rate control “from first principles”. The

following definitions, which rely on readers’ familiarity with the theory of birth and death

processes, are intended to facilitate a streamlined treatment that is still mathematically

rigorous.

A policy is simply defined as a vector µ = (µ1, µ2, ...) with µn ∈ A for all n. A policy µ

is said to be ergodic if there exists a probability distribution p = (p0, p1, ...) satisfying the

balance equations (recall that λ = 1 by convention)

pn = pn+1µn+1 for all n ≥ 0. (3)

The ergodic or stationary distribution p is known to be unique if it exists: if µn > 0 for all
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n then one has

pn = p0

n∏
i=1

µ−1i for n ≥ 0, (4)

where p0 is the appropriate normalization constant; if some service rates are zero but there

exists a largest state N with µN = 0, then one has p0 = ... = pN−1 = 0, and the remaining

elements of p are given by the obvious modification of (4); finally, if µn = 0 for infinitely

many states n, then the policy µ cannot be ergodic. The stationary distribution p associated

with an ergodic policy µ will hereafter by denoted be p(µ) = (po(µ), p1(µ), ...). The long-run

average cost rate, or objective value, associated with an ergodic policy µ is

z(µ) =
∞∑
n=0

pn(µ)[hn + c(µn)]. (5)

Because h is bounded below and c(·) ≥ 0, the quantity z(µ) is well defined but may be

infinite. Assumption (2) guarantees the existence of an ergodic policy µ with z(µ) < ∞,

because one can simply take µn = x for all n ≥ 1, where x > 1 and x ∈ A: the stationary

distribution p(µ) is then geometric with parameter θ = x−1, so (2) implies that z(µ) < ∞.

Now define

z∗ = inf z(µ),

where the infimum is taken over ergodic policies (obviously, z∗ < ∞). An ergodic policy µ

is said to be optimal if z(µ) = z∗.

In the case of bounded holding costs, where hn ↑ h∞ <∞, one encounters the following

possibility. It may be that z∗, which is defined as an infimum over ergodic policies, is larger

than h∞, which is achievable as the long-run average cost rate under the non-ergodic do-

nothing policy µ = (0, 0, ...). We shall say that our dynamic control problem is degenerate
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if z∗ ≥ h∞, taking the view that further analysis of degenerate problems is uninteresting.

That is, once a problem has been found to be degenerate, we implicitly declare the analysis

to be complete, although there are other questions that could conceivably be investigated,

some of which are quite subtle. To the best of our knowledge, the case with bounded holding

costs has not been examined in any previous work, and thus the phenomenon of degeneracy

has not previously been considered.

3 Literature Review

There are two streams of research that are relevant to the analysis undertaken in this paper,

one concerned with characterization of optimal policies and the other with computation. To

the best of our knowledge, the most general results in the former stream are those of Stidham

and Weber [8], while the current state of knowledge with regard to computation of optimal

policies is represented by the work of Wijngaard and Stidham [10], Jo [4], and Sennet [7].

In this section we shall summarize their results, simultaneously laying some groundwork for

later analysis; readers interested in the historical development of the subject may consult

the bibliographies of the works discussed here, especially [7].

With regard to characterization of optimal policies, there are several levels of analysis to

be considered, and like the authors named above, we shall discuss these only in the context of

the semi-Markov decision process (SMDP) that is obtained when one constrains the decision

maker to maintain a constant service rate between times when the queue length changes.

That is, we allow the decision maker to choose a new service rate whenever a new job arrives
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or a service is completed, but not at any other time. Given the memoryless property of the

exponential distributions that underlie our model, and the infinite planning horizon, it is

more or less obvious that no advantage can be gained from more frequent changes of service

rates.

In our context a “stationary” policy is one that chooses the same service rate µn whenever

a transition to state n occurs. Under relatively general conditions, Stidham and Weber [8]

prove that there exists a stationary policy that is optimal within the larger class of potentially

non-stationary policies, making heavy use of their own results in an earlier paper [9]. In

proving the existence of a stationary optimal policy for the problem of service rate control,

Stidham and Weber [8] impose two assumptions that do not necessarily hold in our model:

the set A must be bounded, so that there exists a largest available service rate µ, and the

holding cost vector h must be unbounded. However, neither of those assumptions is essential,

and presumably the Stidham-Weber analysis can be extended to justify our restriction to

stationary policies, but we shall not do so.

The most important result obtained by Stidham and Weber [8] is their elegant proof that

there exists a monotone optimal policy for the problem of service rate control; that is, they

prove the existence of an optimal policy in which the service rate increases as a function of

queue length. Several authors had proved this under stronger assumptions, beginning with

Crabill [2, 3]. Although the conditions imposed by Stidham and Weber [8] are extremely

weak by historical standards, they are still stronger than our assumptions, and the existence

of a montone optimal policy will be obtained as a by-product of our explicit computations.

In the approach developed by Wijngaard and Stidham [10] for the computation of optimal
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policies, one begins with the standard optimality equation, or Hamilton-Jacobi-Bellman

equation, for a semi-Markov decision process with average-cost criterion, cf. page 268 of

Bertsekas [1] or page 554 of Puterman [5]. For the problem considered in this paper (recall

that λ = 1 by convention), the optimality equation can be written as follows:

vn = inf
x∈A
{( 1

1 + x
)[c(x) + hn − z] + (

x

1 + x
)vn−1 + (

1

1 + x
)vn+1} for n ≥ 1 (6)

and

v0 = (h0 − z) + v1. (7)

Here one interprets z as a guess at the minimum average cost rate, or objective value, that

was denoted by z∗ in section 2. One interprets vn as the minimum expected cost incurred

until the next entry into an arbitrary reference state m ≥ 0, starting in state n, under

the z-revised cost structure that charges holding cost at rate hi − z in state i ≥ 0. This

interpretation depends on the fact that 1/(1 + x) represents the expected time until the

next state change when service rate x is chosen in any state n ≥ 1; also, x/(1 + x) is the

probability that the transition is to state n− 1, and 1/(1+x) is the probability it is to state

n+ 1.

The vector of unknowns v = (v0, v1, ...) is often called a relative cost function in average-

cost dynamic programming, and one observes that even if z is treated as a known constant,

the relative costs are only determined up to an additive constant by (6) and (7). Thus it is

natural to define the relative cost differences

yn = vn − vn−1 for n = 1, 2, ...,
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and then re-express (6)-(7) as follows:

0 = sup
x∈A
{( 1

1 + x
)[z − hn − c(x)] + (

x

1 + x
)yn − ( 1

1 + x
)yn+1} for n ≥ 1, (8)

and

y1 = z − h1. (9)

Proceeding as in Wijngaard and Stidham [10], one notes that (8) holds if and only if the

quantity in braces is non-positive for all x ∈ A, with equality for some x ∈ A. Multiplying

through by (1 + x) and rearranging terms, we can then re-express (8) as

yn+1 = sup
x∈A
{z − hn − c(x) + ynx} for n ≥ 1 (10)

Together, (9) and (10) constitute the analog for our problem of the transformed optimality

equation (2) in [10]. It should be emphasized that the derivation sketched above serves only

as motivation in our treatment of the service rate optimization problem; the only property of

this optimality equation that we actually require (Proposition 1 in section 4) will be proved

from first principles.

Given a value for z, the corresponding value of y1 is obviously determined by (9), and then

the values of y2, y3, ... are recursively determined by (10). Thus one is led to the following

question: what is the auxiliary condition that distinguishes the optimal objective value z∗ ?

Wijngaard and Stidham [10] assume that costs in their model satisfy a condition of less-than-

geometric growth, which is precisely analogous to our assumption (2), and then observe that

all trial values of z other than z∗ cause the computed values of y1, y2, ... to either decrease

too quickly (if z < z∗) or else increase too quickly (if z > z∗). This leads them to a method
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for successively refining an initial estimate of z∗, and they prove that the refined estimates

do indeed converge to the optimal objective value z∗. However, that proof requires a number

of extra assumptions that are not necessarily satisfied in our model, most notable being an

assumption of “uniform tendency to the left” for large states.

Our computational method is based on the following key observation: if hn = hn+1 = ...

for some n ≥ 1, then the required auxiliary condition for z is simply that yn+1 = yn (see

section 5). There is only one value of z satisfying this auxiliary condition, and its computation

is virtually trivial; the complete vector y of relative cost differences has yi = yn for all

i ≥ n, and the optimal policy has µi = µn for all i ≥ n. By considering a sequence of

truncated holding cost functions one generates a monotone sequence of approximations for

both the optimal objective value and the optimal control policy. This method requires no

extra assumptions for its justification, the computations are lightning fast, all intermediate

quantities have ready interpretations, and the associated performance bounds are sharper

than those obtained with the Wijngaard-Stidham method. On the other hand, our approach

is tailored to a single problem, exploiting all of its special structure, while theirs is applicable

to a large class of problems whose transition structure is skip-free-to-the-right.

The computational approach propounded by Jo [4] does not begin with the Hamilton-

Jacobi-Bellman equation. Rather, he works directly with the algebraic expressions (3)-(5)

that define the average cost z(µ) for a stationary policy µ, and then uses optimization theory

to write out necessary conditions for the optimality of a given policy. He assumes both convex

holding costs and existence of a largest service rate µ ∈ A, observing that in this case there

exists a threshold level N such that the optimal service rate is µn = µ for all states n ≥ N .
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His computational method, which proceeds by generating a sequence of paired estimates for

the optimal objective value z∗ and the threshold level N , is close to ours in spirit, but it

requires extra assumptions and is more complicated. Also, the justification of optimality

is incomplete (the necessary conditions are never shown to be sufficient), and prior results

are cited incorrectly. For example, Jo states on page 433 that “convexity of the holding

costs is the weakest possible condition to achieve monotonicity of the optimal service rates;”

Stidham and Weber [8] observe on page 611 that convexity is needed with a discounted cost

criterion, but this assumption is superfluous in the average-cost case.

The recent book by Sennet [7] considers a wide variety of dynamic control problems

associated with queueing models, and it develops a general computational method for such

problems. Our problem of service rate control with average cost criterion is considered in

section 10.4, assuming that A is a finite set, where Sennett illustrates the application of her

general method in this paricular context. The approach is to consider approximations of

the original problem that have a finite state space, applying to each such problem a general

solution technique such as value iteration. As one would expect given its broad applicability,

this computational approach is not as efficient as our customized method, nor does it provide

interesting characterizations of the optimal policy as a by-product.

4 The Optimality Equation

To further reduce our optimality equation (9)-(10), it is natural to define the function

φ(y) = sup
x∈A
{yx− c(x)} y ≥ 0; (11)
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then (9)-(10) is equivalently expressed as

y1 = z − h0 (12)

and

yn+1 = φ(yn)− hn + z for n ≥ 1. (13)

Given the assumptions on c(·) and A that were set forth in section 1, it is straightforward

to prove the following: first, the supremum in (11) is finite for all y ≥ 0, and second, there

exists a smallest x∗ ∈ A that achieves the supremum. Hereafter that smallest maximizer

x∗ will be denoted by ψ(y). Some important properties of the functions φ and ψ will be

compiled in the next section.

We now provide a “verification lemma” which allows one to rigorously prove the optimal-

ity of a policy derived from a solution of (12)-(13), provided that the relative cost differences

yn are bounded. As we shall see later, one cannot expect bounded solutions of the optimality

equation to exist in general, but the verification lemma can be used as part of a monotone

approximation argument.

Proposition 1 Let z and (y1, y2, ...) be a solution of the optimality equation (12)-(13) such

that y1, y2, ... are bounded. Then z ≤ z(µ) for every ergodic policy µ, and hence z ≤ z∗.

Moreover, if the policy µ∗ defined by µ∗n = ψ(yn) for n ≥ 1 is ergodic, then z(µ∗) = z = z∗,

implying that µ∗ is optimal.

Remark. The assumed monotonicity of h is not actually used in the following proof.
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Proof. From the definition (11) of φ(·) we have that

xyn − c(x) ≤ φ(yn) for all x ≥ 0 and n ≥ 1. (14)

Now let µ be an arbitrary ergodic policy. Setting x = µn in (14) and using (13) to substitute

for φ(yn), we have

µnyn − c(µn) ≤ yn+1 + hn − z for n ≥ 1. (15)

Multiplying both sides of (15) by pn(µ), then making the substitution µnpn(µ) = pn−1(µ) by

(3), we can rearrange terms to get

pn(µ)[hn + c(µn)− z] ≥ pn−1(µ)yn − pn(µ)yn+1 for n ≥ 1. (16)

Because y is bounded, both terms on the right side of (16) are summable over n ≥ 1 and the

difference of those two sums is p0(µ)y1. By definition, the first two terms on the left side of

(16) sum to z(µ)− p0(µ)h0 and thus we have from (16) that

z(µ)− p0(µ)h0 − z[1− p0(µ)] ≥ p0(µ)y1. (17)

Now (12) says that y1 = z − h0, so (17) reduces to z(µ) ≥ z, as desired. To prove the last

statement of the proposition, note that if we set x = ψ(yn) in (14), then (14) holds with

equality for all n ≥ 1 by definition of the maximizer ψ(·). Then (15) and (16) hold with

equality as well when we take µn = µ∗n = ψ(yn). Thus (17) holds with equality when µ∗ is

substituted for µ, implying that z(µ∗) = z, because y1 = z − h0 by (12). �
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5 Properties of the Functions φ and ψ

This section constitutes something of a technical diversion, and to keep attention focused on

the main flow of ideas, it may be advisable to just skim it on first reading. We consider the

function φ(·) defined by (11) and the associated maximizer ψ(·). First, because the cost-of-

effort function c(·) is left-continuous by assumption, and because ψ(y) was defined as the

smallest x ∈ A that achieves the supremum in (11), the function ψ(·) is itself left-continuous

and non-decreasing. Next, fixing y0 ≥ 0, let x0 = ψ(y0) so that

φ(y0) = y0x0 − c(x0). (18)

For arbitrary y ≥ 0 we then have

φ(y) = sup
x∈A
{yx− c(x)} ≥ yx0 − c(x0). (19)

Combining (18) and (19) gives

φ(y) ≥ φ(y0) + x0(y − y0) for all y ≥ 0. (20)

This state of affairs is portrayed graphically in Figure 2, and it follows easily from (20) that

φ(·) is convex on [0,∞). A finite-valued convex function is continuous and is differentiable

almost everywhere, and (20) implies that the derivative φ′(·) equals ψ(·) wherever the former

exists. Thus we have

φ(y) =

∫ y
0

ψ(u) du for all y ≥ 0, (21)

with the integral understood in the ordinary Riemann sense (because ψ is left-continuous

and non-decreasing, it is Riemann integrable). Finally, defining a ≥ 0 via

a = sup {y ≥ 0 : φ(y) = 0} = inf {x−1c(x) : x ∈ A and x > 0} (22)
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φ(y)

a y0

slope
x0 = ψ(y0)

y

Figure 2: The Function φ(·) and Maximizer ψ(·)

(see Figure 2), we observe that ψ(·) is strictly positive and non-decreasing on (a,∞).

An interesting and important aspect of the function φ(·) and its associated maximizer

ψ(·) is that neither one is affected if we replace the original cost-of-effort function c(·) by

its convex hull ĉ(·). Following Rockafellar [6], one can define the convex hull ĉ(·) as the

largest convex function f on [0,∞) such that c(x) ≥ f(x) for all x ∈ A; in the case where

A is bounded and thus has a largest element b < ∞, this means that ĉ(·) is a finite-valued

convex function on [0, b] which is extended to all of [0,∞) by setting ĉ(x) = ∞ for x > b.

Let us define A∗ as the set of all points x ∈ A such that c(x) = ĉ(x). Then for each

y0 ≥ 0, the maximizer x0 = ψ(yo) lies in A∗, as follows: the definitive relationship (18) gives

c(x) ≥ c(x0) + y0(x − x0) for all x ∈ A; that is, our cost function c(x) is minorized by the

affine (and hence convex) function f(x) = c(x0) + yo(x − x0), with c(x0) = f(x0), so one

concludes that ĉ(x0) = c(x0). Thus service rates x that are not on the convex hull can be

excluded from the problem without affecting its optimal solution. This fact has long been
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Figure 3: The Function φ(·) when A is a Finite Set

recognized, and Jo [4] calls it Crabill’s exclusion principle.

For example, suppose that A contains just the five points 0 = x0 < x1 < ... < x4 pictured

in the left panel of Figure 3, and that the associated cost rates c(xi) are as shown in that

figure. The convex hull ĉ(·) is shown by a solid line in the left panel, and here one finds that

A∗ = {0, x1, x2, x4}. Because c(x3) > ĉ(x3), there is no value of y ≥ 0 such that ψ(y) = x3,

and thus the service rate x3 cannot appear in the optimal control policy µ∗ to be derived

below. In this case φ(·) is the piecewise-linear, convex curve shown in the right panel of

Figure 3: its break points are a = y1 = c(x1)/x1, y2 = (c(x2) − c(x1))/(x2 − x1), and

y4 = (c(x4)− c(x2))/(x4 − x2); the four line segments that make up the graph of φ(·) have

slopes zero, x1, x2 and x4 respectively as one proceeds from left to right.

Continuing with this same example, suppose now that all service rates x ∈ [0, x4] are

available with associated cost rates ĉ(x), so that the cost-of-effort function is piecewise

linear and convex. One finds that this expanded capability is actually irrelevant because
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the maximizer ψ(y) always comes from the finite set A∗ identified above, and hence the

optimal policy µ∗ derived below has µ∗n ∈ A∗ for all n ≥ 1.

In certain ways, the following “standard case” makes for the simplest analysis. First

suppose that all non-negative service rates x are available to the system controller, meaning

that A = [0,∞). Also, assume that the cost-of-effort function c(x) is strictly convex, strictly

increasing and continuously differentiable on [0,∞) with c(0) = 0. Finally, to satisfy (1)

we require that c′(x) ↑ ∞ as x ↑ ∞. Defining a = c′(0), which is consistent with (22), the

maximizer ψ(·) is then the (continuous) inverse of c′(·) on [a,∞). That is, one has

φ(y) = 0 and ψ(y) = 0 for 0 ≤ y ≤ a, (23)

ψ(y) = {x ≥ 0 : c′(x) = y} for y > a (24)

and

φ(y) = yψ(y)− c(ψ(y)) for y > 0. (25)

6 Truncated Holding Costs

In this section we show how to solve a problem with “truncated holding costs”, where hi

is set equal to hn for all i ≥ n. (We take n ≥ 1 to be fixed for purposes of this initial

discussion, but it will be allowed to vary in the mathematical development that follows.)

The optimality equation (13) reduces to yi+1 = φ(yi)− hn + z for all i ≥ n, so if we can find

a value of z such that yn+1 = yn it follows that yn+j = yn for all j ≥ 1. In this section we

show that there is indeed a unique value of z giving yn+1 = yn. Proposition 1 will then be
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used to verify the optimality of a policy µ that is derived from z in the obvious way (it has

µn = µn+1 = ...). All the quantities of interest will prove to be monotone non-decreasing in n,

and that monotonicity will be used heavily in the next section, both to characterize optimal

policies for the general case and to show how nearly optimal policies can be computed.

To simplify the development that follows, let us extend φ(·) from [0,∞) to all of R by

setting

φ(y) = 0 for all y < 0. (26)

Then φ(·) is convex (hence continuous) and non-decreasing on R. Next, for each z ∈ R let

us define y1(z) = z − h0 as in (12), then define y2(z), y3(z), ... recursively by means of (13).

This defines a sequence of functions yn : R→ R indexed by n ≥ 1, and using the properties

of φ(·) stated immediately above, one easily obtains the following by induction.

Proposition 2 For each n ≥ 1 the function yn(·) is continuous, strictly increasing and

unbounded both above and below.

Recalling the definition (22) of a, let us now define y0(z) = a for all z ∈ R (this simplifies

the recursive formulas that follow), then set

∆n(z) = yn(z)− yn−1(z) for z ∈ R and n ≥ 1. (27)

In particular, then, ∆1(z) = y1(z)− y0(z) = z − h0 − a. Further setting

δn = hn − hn−1 for n ≥ 1, (28)
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observe that δn ≥ 0 for all n ≥ 1, because h is assumed to be non-decreasing. It is immediate

from (13) that

∆n+1(z) = [φ(yn(z))− φ(yn−1(z))]− δn for x ∈ R and n ≥ 1. (29)

We now identify values zn (n = 1, 2, ...) such that ∆n(zn) = 0 for all n ≥ 1. These will

shortly be shown to equal the minimum average costs achievable with certain truncated

holding costs.

Proposition 3 There exists a unique monotone sequence h0 + a = z1 ≤ z2 ≤ ... such that

∆n(zn) = 0 for all n ≥ 1. Moreover,

a = y0(zn) ≤ ... ≤ yn−1(zn) = yn(zn) for all n ≥ 1. (30)

Remark The following proof shows how a simple one-dimensional search can be used to

compute each successive value z1, z2, ... . Given the simplicity of this computational task, we

shall treat z1, z2, ... as “known constants” hereafter.

Proof. As noted immediately above, ∆1(z) = z − h0 − a, so the only value of z1 giving

∆1(z1) = 0 is z1 = h0 + a, implying that y1(z1) = a. Moreover, ∆1(·) is continuous and

strictly increasing on [z1,∞).

Arguing by induction, let us now fix n ≥ 1, assume there exist unique values z1 ≤ ... ≤ zn

satisfying ∆1(z1) = ... = ∆n(zn) = 0, and further assume that ∆i(·) is continuous and

strictly increasing and unbounded on [zi,∞) for all i = 1, ..., n. Because ∆n(zn) = yn(zn)−
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yn−1(zn) = 0, we have from (29) that ∆n+1(zn) = −δn ≤ 0. Now for any z ≥ zn we know

that ∆n(z) ≥ 0 so (21) can be used to rewrite (29) as

∆n+1(z) =

∫ yn−1(z)+∆n(z)
yn−1(z)

ψ(u) du− δn for z ≥ zn. (31)

From this, Proposition 2, the induction hypotheses concerning ∆n(·), and the fact that

ψ(·) is strictly positive and non-decreasing on (a,∞), we have that ∆n+1(·) is continuous,

strictly increasing and unbounded on [zn,∞). Thus there exists a unique zn+1 ≥ zn such

that ∆n(zn+1) = 0, which extends the induction hypothesis to n + 1 and completes the

proof of the first statement. Property (30) follows from the monotonicity of each function

∆i(·) that was proved as a byproduct. That is, one knows that zn ≥ zi, and hence that

∆i(zn) = yi(zn)− yi−1(zn) ≥ 0, for each i = 1, ..., n− 1. �

Proposition 4 Fix n ≥ 1 and consider the modified control problem with holding cost vector

(h0, h1, ..., hn−1, hn, hn, hn, ...). The optimal objective value for that modified problem (that

is, the infimum of average costs achievable with ergodic policies) is greater than or equal to

zn+1. If zn+1 < hn then that optimal objective value actually equals zn+1, and the policy µ

defined by

µi =




ψ(yi(zn+1)) for i = 1, ...n,

ψ(yn(zn+1)) for i > n

(32)

is ergodic with z(µ) = zn+1, and thus it is optimal. If zn+1 ≥ hn then the modified control

problem is degenerate (see section 2).
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Proof. Observe that (y1(zn+1), ..., yn(zn+1), yn(zn+1), ...) is non-negative and bounded, and

that together with zn+1 it satisfies the optimality equation (12)-(13) when the modified

(truncated) holding cost vector is substituted for the original one. The desired conclusions

are then immediate from Proposition 1 except for the following: it remains to show that if

zn+1 < hn (which equals h∞ for the problem under discussion) then the policy µ identified

above is ergodic. That is, we need to show that zn+1 < hn implies ψ(yn(zn+1)) > 1.

Accordingly, assume zn+1 < hn, so that the affine function l(y) = hn − zn+1 + y (for

y ≥ 0) has slope 1 and l(0) > 0. (Readers may find it helpful to imagine this line added

to Figure 2.) The defining property of zn+1 is that yn(zn+1) = yn+1(zn+1), but we also have

yn+1(zn+1) = φ(yn(zn+1))−hn+ zn+1 by (13), so yn(zn+1) must be a solution of the equation

l(y) = φ(y). Because l(0) > 0 and φ(0) = 0, the line l(·) can only intersect the convex

function φ(·) at one point, and because l(·) has slope 1, the intersection must be at a point

y where the slope x = ψ(y) that supports φ(·) is strictly greater than 1 (see Figure 2). That

is, it must be that ψ(yn(zn+1)) > 1. �

7 Optimal and Nearly Optimal Policies

In this section we consider the nth problem with truncated holding costs, which was solved in

the previous section, and show that its optimal solution converges monotonically, as n→∞,

to an optimal solution under our original cost structure. Moreover, the final inequality

displayed in this section provides a performance bound for the policy derived from the nth

truncation, comparing its average cost under the original cost structure against the minimum
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average cost z∗.

Recall from section 2 that z∗, defined as the infimum of average cost rates achievable

with ergodic policies using our original holding cost vector h, is necessarily finite. Of course,

the corresponding infimum with truncated holding costs is less than or equal to z∗, and the

sequence z1, z2, ... identified in Proposition 3 is non-decreasing, so from Proposition 4 we

have

zn ↑ z∞ ≤ z∗ as n ↑ ∞. (33)

Next, Propositions 2 and 3 give the following:

yi(zn) ↑ y∗i = yi(z∞) for i ≥ 1, (34)

and

a < y∗1 ≤ y∗2 ≤ ... . (35)

That is, the sequence y∗1, y
∗
2, ... derived from z∞ by means of our optimality equation (12)-

(13) is non-decreasing. From the proof of Proposition 3 it is clear that if z < z∞ (and hence

z < zn for some n ≥ 1), then the sequence y1(z), y2(z), ... cannot be non-decreasing, and

thus we have the following.

Proposition 5 z∞ is the infimum of those z ∈ R for which the sequence y1(z), y2(z), ...

derived from z via (12)-(13) is non-decreasing.

Recall from section 4 that the maximizer ψ(·) is strictly positive, left-continuous and

non-decreasing on (a,∞). Thus (34) and (35) imply that

ψ(yi(zn)) ↑ µ∗i = ψ(y∗i ) as n ↑ ∞ for each i ≥ 1, (36)
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and

0 < µ∗1 ≤ µ∗2 ≤ ... . (37)

In this section we confirm that the policy µ∗ defined by (36) is indeed optimal, with associated

average cost rate z∗ = z∞, provided that our dynamic control problem is non-degenerate.

Dispensing first with the degenerate case, the following is immediate from (33) and the

definition of degeneracy (see section 2).

Proposition 6 Suppose that hn ↑ h∞ < ∞ as n ↑ ∞, and that moreover z∞ ≥ h∞. Then

our original dynamic control problem is degenerate.

Proposition 7 If z∞ < h∞ (that is, excluding the degenerate case treated in Proposition 6)

then z∞ = z∗ = z(µ∗), so µ∗ is an optimal policy. Moreover, the policies µ1, µ2, ... derived

from z1, z2, ... via (32) satisfy z(µn)→ z∗ as n→∞.

Proof. Because the degenerate case is excluded, one has zn ≤ z∞ < h∞ for all n ≥ 1,

which implies the following: there exists an integer N ≥ 1 such that

zn ≤ z∞ < hn for all n ≥ N. (38)

Given (38), one can now argue exactly as in the proof of Proposition 4 that

ψ(yn(zn+1)) > 1 for all n ≥ N. (39)

Hereafter, for each n ≥ N let us denote by µn = (µn1 , µ
n
2 , ...) the policy defined by (32). In

particular, then, we have that

µni = ψ(yn(zn+1)) for all i ≥ n ≥ N, (40)
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so (39) shows that µn is an ergodic policy for all n ≥ N (recall that λ = 1 by convention in

our formulation). Moreover, denoting by p(µn) the stationary distribution under policy µn

as in section 2, we have from (3) and (40) that

pn+j(µ
n) = pn(µ

n)(µnn)
−j for all j ≥ 0, (41)

provided n ≥ N , so we have from assumption (2) that

z(µn) =
∞∑
i=0

pi(µ
n)[hi + c(µni )] <∞ (42)

for all n ≥ N . Finally, defining truncated holding cost vectors hn via

hni = hi ∧ hn for i ≥ 0 and n ≥ N, (43)

we have from Proposition 4 that

zn+1 =

∞∑
i=0

pi(µ
n)[hni + c(µni )] for n ≥ N. (44)

Combining (41)-(44), one then has that

z(µn) = zn+1 + pn(µ
n)

∞∑
j=0

(hn+j − hn)(µ
n
n)
−j. (45)

Because z(µn) is the average cost rate achieved by a specific (and readily computable) policy

µn, we know from (33) that

zn+1 ≤ z∗ ≤ z(µn). (46)

Thus, defining

gn(x) =

∞∑
j=0

(hn+j − hn)x
−j for x > 1 and n ≥ 1, (47)
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we have from (45) that

zn+1 ≤ z∗ ≤ zn+1 + pn(µ
n)gn(µ

n
n) for n ≥ N. (48)

Because µni is non-decreasing in both i and n, it is easy to show that pn(µ
n)→ 0 as n→∞,

and gn(µ
n
n) → 0 as n → ∞ as well by assumption (2) (here one uses the fact that 0 ≤

hn+j −hn ≤ hn+j). Thus we have from (48) that zn → z∗ as n→∞, meaning that z∞ = z∗.

Now (36) says that µni ↑ µ∗i as n ↑ ∞ for each i ≥ 1, from which it follows that pi(µ
n)→

pi(µ
∗) for each i ≥ 0 as n ↑ ∞. Also, c(µni ) → c(µ∗i ) for each i ≥ 1 as n ↑ ∞, because c(·)

was assumed to be left-continuous on A, and these facts together imply that z(µn)→ z(µ∗)

as n ↑ ∞. But z(µn)→ z∞ by (45), and this completes the proof. �

Of course, calculating the policy µn for any given n is a finite computational task, and one

can use (45) to bound the difference between its average cost rate and the optimal average

cost rate z∗, as follows:

0 ≤ z(µn)− z∗ ≤ pn(µ
n)gn(µ

n), (49)

where gn(·) is defined by (47). To make practical use of this bound, one must be able to

compute gn(x) for given n and x, as is the case when hn is defined by a polynomial formula

for sufficiently large n (such an example is treated in the next section).

8 Numerical Examples

In this section we consider a family of numerical examples that fit the “standard case”

identified at the end of section 5. To be specific, the cost-of-effort function c(x) in all our
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examples is c(x) = 0.5x2 for x ≥ 0, implying that a = c′(0) = 0, that c′(x) = x, and hence

by (24) and (25) that

ψ(y) = y and φ(y) = 0.5y2 for all y ≥ 0.

With regard to holding costs, we assume that hn = s(n−M + 1)+ for all n ≥ 0, where s is

strictly positive and M ≥ 1 is an integer: thus holding costs are zero until the queue length

n reaches a minimum value M , after which hn increases linearly with slope s as n increases.

A holding cost vector of this form captures the notion that congestion costs are negligible

until the queue length n exceeds some “acceptable level”, that being M − 1 in our notation.

Of course, linear holding costs are represented by the case M = 1. In a sense, the holding

cost vector is “most convex” when M has an intermediate value, because small values of M

approximate the linear case, and as M gets large, holding costs become a negligible problem

element (that is, h approaches the zero vector).

Tables 1 and 2 and Figures 4 through 7 give numerical results for 48 different cases,

corresponding to eight different values of the slope s and six different values of M . The

different values of M are easy to interpret, but to put in perspective the different s values,

it is useful to note the following. If both arrivals and services were deterministic (that is,

perfectly regular) then the system manager could implement a constant service rate µ = 1,

matching the arrival rate λ = 1, and still never have more than one job in the system. The

average cost-of-effort per time unit would then be c(1) = 0.5, and using the convexity of c(·)

and Jensen’s inequality, one sees that this is a lower bound on the long-run average effort

cost per time unit under any ergodic policy. Thus, we shall refer to c(1) = 0.5 as the baseline
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0.1 0.4472 0.3873 0.2236 0.2127 0.2236 0.1746 0.3276 0.2462 0.1274 0.1007 0.2002 0.1455

0.2 0.6325 0.5669 0.3162 0.3083 0.3162 0.2586 0.4262 0.3234 0.1579 0.1224 0.2682 0.2011

0.3 0.7746 0.7062 0.3873 0.3807 0.3873 0.3255 0.4942 0.3758 0.1781 0.1358 0.3161 0.2399

0.4 0.8944 0.8242 0.4472 0.4411 0.4472 0.3830 0.5477 0.4162 0.1936 0.1456 0.3541 0.2706

0.5 1.0000 0.9284 0.5000 0.4943 0.5000 0.4342 0.5923 0.4496 0.2063 0.1535 0.3860 0.2961

1 1.4142 1.3391 0.7071 0.7026 0.7071 0.6365 0.7500 0.5647 0.2500 0.1790 0.5000 0.3857

1 0 4.4721 4.3901 2.2361 2.2343 2.2361 2.1558 1.5436 1.0848 0.4581 0.2758 1.0854 0.8089

100 14.1421 14.0576 7.0711 7.0705 7.0711 6.9871 2.9779 1.8500 0.8218 0.3925 2.1561 1.4575

0.1 0.2610 0.1661 0.0859 0.0529 0.1751 0.1133 0.1780 0.0782 0.0459 0.0160 0.1321 0.0622

0.2 0.3255 0.2049 0.1004 0.0588 0.2251 0.1462 0.2114 0.0893 0.0504 0.0160 0.1609 0.0733

0.3 0.3681 0.2294 0.1094 0.0618 0.2586 0.1676 0.2324 0.0958 0.0531 0.0159 0.1792 0.0799

0.4 0.4005 0.2474 0.1161 0.0638 0.2844 0.1836 0.2479 0.1004 0.0550 0.0157 0.1929 0.0846

0.5 0.4270 0.2619 0.1214 0.0653 0.3056 0.1965 0.2603 0.1039 0.0565 0.0156 0.2038 0.0883

1 0.5171 0.3086 0.1389 0.0696 0.3782 0.2391 0.3012 0.1145 0.0612 0.0151 0.2399 0.0994

1 0 0.9152 0.4814 0.2109 0.0794 0.7043 0.4020 0.4611 0.1469 0.0781 0.0129 0.3830 0.1340

100 1.5118 0.6705 0.3135 0.0843 1.1983 0.5862 0.6631 0.1740 0.0979 0.0107 0.5652 0.1633

0.1 0.1379 0.0452 0.0309 0.0069 0.1071 0.0383 0.1139 0.0294 0.0232 0.0036 0.0908 0.0258

0.2 0.1601 0.0498 0.0331 0.0065 0.1270 0.0433 0.1304 0.0318 0.0245 0.0033 0.1059 0.0285

0.3 0.1738 0.0524 0.0344 0.0063 0.1394 0.0461 0.1405 0.0331 0.0253 0.0031 0.1153 0.0299

0.4 0.1838 0.0542 0.0353 0.0061 0.1485 0.0481 0.1479 0.0340 0.0258 0.0030 0.1221 0.0309

0.5 0.1918 0.0556 0.0360 0.0060 0.1558 0.0496 0.1537 0.0346 0.0262 0.0029 0.1275 0.0317

1 0.2175 0.0596 0.0382 0.0056 0.1793 0.0540 0.1723 0.0366 0.0275 0.0027 0.1448 0.0339

1 0 0.3139 0.0710 0.0456 0.0043 0.2683 0.0667 0.2404 0.0418 0.0317 0.0019 0.2088 0.0399

100 0.4278 0.0796 0.0535 0.0033 0.3743 0.0763 0.3182 0.0456 0.0359 0.0014 0.2822 0.0442
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Figure 4: Holding and Effort Costs as a Proportion of Total Costs (s = 0.1)
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Figure 5: Value of Responsiveness (Controllable µ versus Fixed µ)
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operating cost hereafter. The smallest value of s considered in our study is s = 0.1, in which

case the baseline operating cost is equivalent to the holding cost for five jobs. At the other

extreme we consider a largest slope of s = 100, which means that the holding cost for just

one job is 200 times larger than the baseline operating cost.

For each of the 48 parameter combinations described above, we determine the minimum

average cost rate z∗ achievable through dynamic control of the service rate, calling this the

Controllable µ Solution, and compare that against the lowest average cost rate achievable

using a single service rate in every state n, called the Fixed µ Solution. With a fixed

service rate the system operates as an ordinary M/M/1 queue, so one can develop a formula

for the average total cost and then use calculus to optimize the service rate. To derive

the Controllable µ Solution, we use the truncated-holding-cost approximations described in

sections 5 and 6, increasing the truncation level until the bound (49) guarantees that the

average cost under our “nearly optimal” policy is no more than one tenth of one percent

above the true optimal value. (The required truncation level n typically exceeded M by only

4 or 5.) To avoid unnecessary verbiage, the policy derived by these means, and its associated

costs, are referred to as “optimal” rather than “nearly optimal”.

All of the quantities reported in our tables and graphs are long-run average values, but

that modifying phrase is deleted in the headings, and in the text that follows, to avoid

tedious repetition. Thus, for example, we speak of the “holding cost” under a given policy

rather than the “long-run average holding cost per time unit”. Also, all of the costs reported

are incremental costs, by which we mean increases in average cost per time unit over the

baseline operating cost of c(1) = 0.5 described above. That is, the baseline value of 0.5 has
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been subtracted from all of the effort costs, and hence all of the total costs, reported in our

tables and graphs. All of the costs reported are rates, in units like dollars per hour.

Table 1 shows the total incremental cost for both our Controllable µ Solution and the

Fixed µ Solution with different parameter combinations, further breaking that total cost into

its holding cost and effort cost constituents. In all cases, the Controllable µ Solution yields

both lower holding cost and lower effort cost. Figure 4 presents these cost comparisons in

graphical form for the smallest of our eight holding cost slope parameters (s = 0.1). Notice

that asM increases the effort costs are proportionally larger when compared to holding costs

and that the flexibility in service rates allowed by the Controllable µ model therefore is able

to drive both holding and effort costs down.

Figure 5 shows that responsiveness tends to be more valuable as M increases and for
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1 2 3 4 5 6 7 8 9

0.1 1.4472 0.8864 1.1793 1.3818 1.5412 1.6741 1.7877 1.8843 1.9618 2.0107

1 2.4142 1.8391 2.5301 3.0399 3.4595 3.8232 4.1475 4.4400 4.6960 4.8651

1 0 5.4721 4.8901 6.8466 8.3279 9.5669 10.6527 11.6304 12.5235 13.3093 13.4586

100 15.1422 14.5576 20.5191 25.0737 28.9038 32.2725 35.3143 38.1081 40.6716 41.6471

1 2 3 4 5 6 7 8 9

0.1 1.3502 0.6660 0.8878 1.0602 1.2280 1.4201 1.5743 1.7053 1.8201 1.9223

1 1.7564 0.8086 1.1356 1.4534 1.8649 2.5476 3.0538 3.4713 3.8338 4.1575

1 0 2.4086 0.9814 1.4629 2.0514 3.0855 5.7415 7.4637 8.8346 10.0065 11.0461

100 3.3966 1.1705 1.8555 2.8919 5.3521 15.4930 21.1873 25.6206 29.3777 32.6965

1 2 3 4 5 6 7 8 9

0.1 1.2643 0.5782 0.7453 0.8559 0.9445 1.0242 1.1027 1.1861 1.2816 1.3995

1 1.4798 0.6145 0.8033 0.9372 1.0537 1.1696 1.2985 1.4576 1.6768 2.0204

1 0 1.7661 0.6469 0.8561 1.0133 1.1603 1.3200 1.5181 1.7992 2.2654 3.2129

100 2.1304 0.6740 0.9011 1.0800 1.2572 1.4643 1.7461 2.1985 3.0907 5.4502

1 2 3 4 5 6 7 8 9

0.1 1.2142 0.5452 0.6938 0.7858 0.8539 0.9098 0.9590 1.0050 1.0502 1.0966

1 1.3586 0.5596 0.7162 0.8161 0.8926 0.9580 1.0185 1.0783 1.1410 1.2105

1 0 1.5366 0.5710 0.7339 0.8403 0.9240 0.9978 1.0688 1.1421 1.2232 1.3190

100 1.7485 0.5796 0.7475 0.8590 0.9485 1.0294 1.1094 1.1950 1.2936 1.4163

1 2 3 4 5 6 7 8 9

0.1 1.1815 0.5294 0.6695 0.7535 0.8133 0.8601 0.8992 0.9337 0.9653 0.9953

1 1.2896 0.5366 0.6805 0.7681 0.8316 0.8823 0.9258 0.9651 1.0023 1.0388

1 0 1.4175 0.5418 0.6886 0.7789 0.8452 0.8990 0.9459 0.9892 1.0310 1.0733

100 1.5645 0.5456 0.6945 0.7868 0.8551 0.9112 0.9608 1.0072 1.0528 1.0998

Fixed

Fixed

Fixed

Fixed

Fixed

µ

µ

µ

µ

µ

Controllable µ

Controllable µ

Controllable µ

Controllable µ

Controllable µ

M = 1

M = 5

M = 10

M = 15

M = 20

s

s

s

s

s

Table 2: Service Rates
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Figure 7: Controllable Service Rates (M = 5)

larger values of s. The “value of responsiveness” is the percentage decrease in Total Cost

achieved by the Controllable µ policy, relative to the best Fixed µ policy. It is noteworthy

that forM = 1 in Figure 5, the value of responsiveness decreases in s for straight linear costs

but for more convex costs (M > 1) the value of responsiveness is increasing in s. This is

an example where linear holding costs give a result that is not representative of the general

case.

Service rates for the Controllable µ solution are unbounded as the queue length increases,

because h is unbounded. Table 2 sets out service rates for a selection of M and s values.

The optimal Fixed µ service rate is given in the first column and the first nine service rates

(that is, service rates for queue lengths 1 through 9) for the Controllable µ solution are given.

Figures 6 and 7 illustrate an interesting phenomenon: whereas service rates for M = 1 are
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concave, the service rates for higher values of M are S-curves, growing rapidly just before

M (where the holding costs become positive) and then looking similar to the M = 1 curve

for higher values of the service rate.

Appendix: Instantaneous Ejection Capability

To understand what happens when assumption (1) fails, suppose that A = [0, b] and c(x) =

αx for x ∈ A, where α > 0. Specializing results derived in sections 5 and 6, one has the

following: either the problem is degenerate (this can only happen if h is bounded, of course)

or else the optimal policy µ∗ has µ∗n = b for all n ≥ 1. Now what happens if we let b ↑ ∞ in

this model? Strictly speaking, the limiting problem is one in which no optimal policy exists,

but the real answer is that one must switch to a different formulation to capture the limiting

scenario in a mathematically meaningful fashion, as follows. If the system begins in some

state n > 0 and service rate µn = b is chosen, where b is large, then it is very likely one will

see a service completion before the next arrival occurs. The expected time required for that

service completion is b−1, and the expected effort cost incurred before the service completion

is c(b)b−1 = (αb)b−1 = α. Taking the limit as b ↑ ∞, one sees that the original model

becomes one in which the system manager can, at any desired time, effect an instantaneous

downward transition for a fixed charge of α. That is, starting with a queue length n ≥ 1,

the system manager can immediately eject i ≤ n of those jobs at a cost of iα, if that is

deemed desirable. The natural “limiting model” is one in which both instantaneous ejection

and service at a finite rate are available as control modes, but given the linear cost-of-effort
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function that we have hypothesized, one ultimately finds that the latter option is dominated.

To be more specific, one ultimately finds that just two possibilities exist: either the limiting

problem is degenerate, or else it is optimal to instantaneously eject each new job at the

moment of its arrival.

Extending this discussion to a more interesting and more general setting, imagine that

c(x) is piecewise linear and convex, like the solid line in the left panel of Figure 3, with its

last linear segment having slope α and right endpoint b. The right way to formulate the

limiting control problem (as b ↑ ∞) is to retain the discrete control modes that correspond

to the breakpoints of the piecewise linear function c(·), but add an ability to eject any job at

any time for a charge of α. Finite service rates other than the breakpoints can be eliminated

from the formulation, because the supremum in (11) is achieved either at a breakpoint or

else at x =∞ (corresponding to ejection in the proposed formulation).

Finally, extending these observations to an arbitrary problem where (1) fails to hold, let

us suppose that the infimum in (1) increases to α < ∞ as y ↑ ∞, rather than increasing

without bound. To avoid an outcome where no optimal policy exists, one can simply add

an ability to eject any job at any desired time for a charge of α. This will “close” the

model in the sense described above, or at least we presume it will. Problems of this hybrid

type, where the system manager can either serve at a finite rate or effect instantaneous

transitions, incorporate an “admission control” capability of the sort described in section

11.5.4 of Puterman [5]. It seems likely that all of the results developed here can be extended

to such hybrid formulations, but we have not investigated that matter.
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