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Brownian networks are a class of linear stochastic control systems that
arise as heavy traffic approximations in queueing theory. Such Brownian
system models have been used to approximate problems of dynamic rout-
ing, dynamic sequencing and dynamic input control for queueing networks.
A number of specific examples have been analyzed in recent years, and
in each case the Brownian network has been successfully reduced to an
“equivalent workload formulation” of lower dimension. In this article we
explain that reduction in general terms, using an orthogonal decomposition
that distinguishes between reversible and irreversible controls.

1. Introduction and summary. This article is concerned with a class of
stochastic system models, originally defined in [2] and there called “Brown-
ian networks,” that arise as heavy traffic approximations in queueing theory.
To be more specific, these Brownian system models arise as approximations
of queueing networks where system managers can exercise various types of
dynamic control. In recent years such Brownian approximations have been
employed successfully to study problems of dynamic sequencing [1, 4, 5], dy-
namic routing [6, 8, 9, 10, 16] and dynamic input control [15, 17].

Brownian networks have proved to be much more tractable than the con-
ventional queueing models they replace. In particular, a key feature of the
Brownian networks studied thus far is what Reiman [12] called “state space
collapse.” That is, a stochastic control problem associated with a Brownian
network typically can be reduced to another problem which has a state space
of lower dimension but is “equivalent” in an appropriate sense. The derivation
of this “equivalent workload formulation” has been carried out on an ad hoc
basis in the earlier work previously cited, but here we seek to explain it in
general terms.

The next few paragraphs are devoted to a mathematical description of a
Brownian network and a statement of our main result. In later sections we
discuss examples and special cases that serve to explicate the relationship
between Brownian networks and conventional queueing models. Readers will
find that our notation differs somewhat from that used in [2] and other ante-
cendent work, simply because more letters are needed here.

Throughout the paper, let (Q, %, P) be a fixed probability space on which
is defined a filtration {7, ¢ > 0}. All stochastic processes to be considered are
defined on this probability space, have time domain [0, c0) and have RCLL
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sample paths. In the usual way, a process n = {n(¢), ¢t > 0} is said to be
adapted if n(t) is measurable with respect to % for each fixed ¢ > 0. Let
X ={X(¢), t = 0} be an m-dimensional Brownian motion with respect to
{Z;, t > 0}. We denote by u and 3 the drift vector and covariance matrix of
X, respectively, and assume that X(0) = 0 almost surely.

The data of a Brownian network are an m x n input-output matrix R, a
p x n capacity consumption matrix K and an m-dimensional initial inventory
vector z > 0. (Here m, n and p are all positive integers.) An admissible control
is an n-dimensional process Y = {Y (¢), ¢ > 0} such that

(1D Y is adapted,

(2) U(") is nondecreasing with U(0) > 0, and
3) Z(t) > 0 for all ¢ > 0, where

4) Z(t)=z+ X(t)+ RY(¢) for all £ > 0 and
5) U(@)=KY(t) forall £ >0.

In the applications described later, m represents the number of stocks or inven-
tories maintained by a system manager, n represents the number of activities
available to the system manager, and p represents the number of servers or
processing resources whose capacities are consumed by those activities. Com-
ponents of the control Y represent cumulative time allocations to the vari-
ous activities, usually expressed as deviations (which can be either positive or
negative) from some nominal allocation. Components of Z represent inventory
levels, and components of U represent cumulative idleness, or cumulative un-
used capacity, for the various servers. A pair of processes (Z, U) is said to be
achievable if there exists an admissible control Y such that (4) and (5) hold.

The preceding paragraph specifies what we call a Brownian network, or
Brownian system model, and to associate with this model a clear-cut stochas-
tic control problem one must further specify an objective function. Strictly
speaking, the objective is irrelevant to the mathematical results developed in
this paper. However, our theory is motivated by problems in which cumulative
cost incurred up to time ¢ has the form

(6) C(t) = /0 "W(Z(s))ds + cU(2),

where A: R™ — R is a measurable inventory holding cost function and c is a
p-vector of linear cost rates associated with idleness of the p different pro-
cessing resources. The important point here is that cost depends on the chosen
control Y only through its associated inventory process Z and cumulative idle-
ness process U.

In queueing network applications it is often natural to express congestion
costs in terms of the total delays (also called throughput times or sojourn
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times) experienced by jobs entering the network. This would seem to be in-
consistent with (6), where congestion costs are expressed as a function of the
inventory or queue length process Z. However, under heavy traffic conditions
that justify a Brownian network formulation, Reiman’s “snapshot principle”
[11, 12, 13] suggests that one can represent the total delay experienced by
an arriving job as a linear combination of the queue lengths seen by that job
upon arrival. This allows cumulative cost to be expressed in the form (6), as
Van Mieghem [14] has shown in the case of single-server systems.

For some applications it is desirable to replace (3) by a more general re-
striction of the following form: Z(¢) € S for all ¢ > 0, where S is a specified
convex polyhedral state space. In the Appendix it is shown that such a model
can always be reduced to a Brownian network of the standard form considered
here.

The statement of our main result involves two new matrices, M and G,
that are defined in terms of K and R. To motivate these definitions, consider
the Brownian network model (1)—(5) with arbitrary initial state z, and suppose
that an immediate impulse control Y (0) = y is applied at time ¢ = 0. According
to (4) and (5), the corresponding initial values of Z and U are Z(0) = z+ &
and U(0) = u, where 6 = Ry and u = Ky. From (2) and (3) one sees that
the impulse control is admissible only if z+ 6 > 0 and u > 0. Hereafter we
shall refer to y as a control increment and to 6 as a displacement. If u = 0
(that is, Ky = 0), then the system manager can immediately apply another
control increment of —y, which causes a displacement of —8 and thus returns
the system to state z. Thus a control increment y is said to be reversible if
Ky = 0. Let us define the linear spaces

(7 #={yeR" Ky=0} and
(8) N =R#A={6eR™ =Ry, Ky=0},

calling % the space of reversible control increments and .#" the space of re-
versible displacements. Also, let .# be the orthogonal complement of .#". We
denote by g the dimension of .#” (0 < g < m), so .# is of dimension

9 d=m—q.

Finally, let N be any ¢ x m matrix whose rows span .#" and M be any d x
m matrix whose rows span .#. Such matrices can be computed mechanically
from K and R, of course, and more will be said about that in Section 2.
Given an arbitrary state vector z € RT, let w = Mz and w = Nz; these vec-
tors are effectively the projections of z onto the spaces .# and .#/, respectively.
The essential insight embodied in Theorem 1 below is that any two state vec-
tors whose difference is a reversible displacement are equivalent, because a
system manager can instantaneously exchange either of those state vectors
for the other without affecting the cumulative idleness process U, and hence
without incurring any cost. Thus, to describe more compactly the state of the
system at any given time, we can simply discard the reversible component
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w of z, retaining its orthogonal complement w as an adequate summary of
system status for purposes of future decision making.

This observation leads to an alternative model formulation, described
precisely below, in which system status at time ¢ is represented by the
d-dimensional process W(t) = M Z(t). By definition, the rows of M are
orthogonal to all reversible displacements, meaning that MRy = 0 if Ky = 0;
one can choose the rows of M to be any maximal set of linearly independent
m-vectors having that property. In Section 2 it is shown that

(10) MR = GK

for at least one d x p matrix G (in general, G is not unique), and that con-
versely, one can choose M to be any d x m matrix of rank d such that (10)
holds. There we also show how, given a matrix M whose rows span .#, one
can mechanically compute a matrix G satisfying (10).

Recalling that the m-dimensional Brownian motion X and the initial inven-
tory vector z € R are taken as primitive in our original Brownian network
model (1)-(5), let us now define

(11) w=Mz and

12) &(t)=M X(t) forall¢=>0.

Obviously, w is a d-vector and & = {£(¢): ¢ > 0} is a d-dimensional Brownian
motion with drift vector My and covariance matrix MM . One can now left-
multiply both sides of (4) by M, then use (5) and (10)—(12) to obtain the basic
system equation W(¢) = w + &(¢) + GU(¢) for all ¢ > 0. This tells us that
our reduced system descriptor W evolves in the absence of control as the
d-dimensional Brownian motion ¢, and that it depends on the chosen control
Y only through its associated cumulative idleness process U.

With that motivation and preliminary development, our main result can
be stated. A pair of processes (Z, U) is said to be achievable in the reduced
Brownian network if

(13) Z and U are adapted,

(14) U(") is nondecreasing with U(0) > 0,
(15) U(t) € column space of K for all ¢ > 0,
(16) Z(t)>0forall £ >0, and

a7 W(t) =M Z(¢t) for all ¢ > 0, where
(18) Wit)=w+ &)+ GU(¢) for all ¢ > 0.

For comparison, recall that the pair (Z, U) is said to be achievable in our
original Brownian network if there exists a process Y satisfying (1)—(5).
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THEOREM 1. A pair (Z,U) is achievable in the original Brownian network
if and only if it is achievable in the reduced Brownian network.

REMARK 1. In all of the applications described in later sections, and in all
other interesting applications of which we are aware, the capacity consumption
matrix K has rank p (i.e., its rows are linearly independent). In that case,
the column space of K is all of R?, and condition (15) can simply be deleted
when describing the reduced Brownian network.

REMARK 2. The equivalence expressed by Theorem 1 is valid for any choice
of the basis matrix M (that is, for any d x m matrix M whose rows span .#)
and for any G that is consistent with that choice in the sense that (10) holds.

Theorem 1 will be proved in the next section, where some additional nota-
tion is introduced for that purpose. Sections 4—6 show how the theorem applies
to various special cases of interest in queueing theory, and in particular, how
it generalizes various results that have been proved in the literature. In the
course of that discussion we explain why in certain contexts it is natural to
describe the process W in (17) as a workload process, and to describe (13)—(18)
as an “equivalent workload formulation” of the original Brownian network. In
Section 7 two important open problems are described briefly.

Theorem 1 does not explicitly address problems of optimal system control.
Rather, it characterizes the set of achievable trajectories (Z, U) from which
a system manager may choose. In Section 3 we prove another theorem which
shows in a general setting the implications of that equivalence for optimal
control, making no reference to the specially structured matrices K and R
that arise in queueing network models. (Readers will see that many variants of
this theorem are possible.) The next few paragraphs are devoted to an informal
statement of the result to be proved in Section 3, with enough connective logic
to make the result at least plausible. To ease the exposition, several technical
assumptions are suppressed for the time being.

Let us assume a cost structure of the form (6), with the vector ¢ of idleness
cost rates and the holding cost function A(-) both nonnegative. For the sake
of concreteness, let us further suppose that the objective is to minimize ex-
pected discounted costs over an infinite planning horizon. (One could equally
well consider a finite planning horizon, either with or without discounting.)
Thus, denoting by y > 0 the interest rate for discounting, the system manager
seeks to

(19) minimize E{ /0 T e n(Z(t)) dt + ch(t)]}.

One should think of m and n as large integers (on the order of hundreds, say)
while p is relatively small (less than ten, say). The applications described later
should make it clear why such a cost structure and such parameter ranges
are natural. Recall that the control Y and inventory process Z in our original
Brownian network are of dimension n and m, respectively, while the processes
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U and W appearing in the reduced Brownian network are of dimension p and
d, respectively, where d < p by definition.

Using Theorem 1, the high-dimensional state descriptor Z(¢) can be elim-
inated from our reduced Brownian network, at least in a formal sense, as
follows. First, conditions (16) and (17) are completely equivalent to the re-
quirement that

(20) W(t)e S forallt >0,
where S is a convex cone in R defined by
(21) S ={w:w= Mz, z>0}

To maintain feasibility, the system manager need only observe the low-
dimensional process W, driven by a low-dimensional Brownian motion ¢, and
continuously choose increments of the low-dimensional, nondecreasing control
U so as to assure that the process W remains within the cone S. Given a
feasible choice of U, one can immediately identify the best associated choice
of the process Z: at each time ¢, given the value of W(¢) € S, the system
manager should choose

(22) Z(t) = argmin{h(z): Mz = W(t), z > 0}.
Thus, defining f: S — R via
(23) f(w) =min{h(z): Mz=w, z>0}, weS,

it follows from Theorem 1 that our original control problem reduces to this:
choose a p-dimensional control U to

(24) minimize E{ /0 T e [F(W(t))dt + ch(t)]},
subject to

(25) U is adapted,

(26) U(-) is nondecreasing with U(0) > 0,

27 U(t) € column space of K for all ¢ > 0, and
(28) W(t) € S for all £ > 0, where

(29) W) =w+ &)+ GU(t) for all t > 0.

Paraphrasing, one might say that the reduced Brownian network model gives
rise to a hierarchical view of system control: first the system manager must
choose an irreversible control component U so as to keep W within the “fea-
sible region” S defined by (21), and then a reversible control component can
be chosen so as to realize any process Z which is consistent with W in the
sense that W(¢) = MZ(t). To repeat, section 3 is devoted to a proof that our
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original control problem, specified by (1)—(5) and (19), is equivalent to the re-
duced problem (24)—(29) under additional regularity assumptions on the cost
function A.

Readers will find that no property of Brownian motion is ever invoked in
Section 2 or 3. The proof of Theorem 1 involves basic linear algebra applied
on a path-by-path basis, and the control problem equivalence proved in Sec-
tion 3 derives similarly from sample path relationships. Thus all of our results
actually hold when X is an arbitrary stochastic process, but in our view the
system models and control problems studied here are most interesting in the
Brownian case. Also, as Sections 4-6 suggest, it is applications to Brownian
models of queueing networks that motivate the general theory developed in
this paper, and we have chosen a title to emphasize that connection.

Primes are used throughout the paper to denote transposes, and vector
inequalities should be interpreted componentwise as usual. Also, the letters e
and I will be used to denote a column vector of ones and an identity matrix,
respectively, of any dimension. The appropriate dimension will usually be clear
from context, but parenthetical remarks about the dimension of e or I are
inserted at several points to eliminate potential confusion.

2. Proof of Theorem 1. Before stating the proof, we need some addi-
tional notation and preliminary propositions. Let r be the rank of the capacity
consumption matrix K (thus r < p), and let &7 be the row space of K. In Sec-
tion 1 we defined % as the null space of K, so 4 is of dimension n —r, and the
linear spaces .o and £ are orthogonal. Hereafter, let A be an r xn orthonormal
matrix whose rows span .7, and let B be an (n — r) x n orthonormal matrix
whose rows span %. Thus (A’, B') is an orthonormal basis matrix for R™ and
we have AA’ =1, BB =1, AAA+ B'B = I and AB’' = 0. Our definition (8)
of the linear space .#” can be equivalently stated as follows: .#" is the column
space of RB’. In Section 1 we denoted by ¢ the dimension of .#” (or equiva-
lently, the rank of RB’), and by N a q x n matrix whose rows span .#". To be
concrete, one can take the rows of N to be any ¢ linearly independent rows
of BR'. The basis matrices A, B and N are considered to be fixed throughout
the following discussion.

Because A and K have the same row space .o/, we know that A = LK for
some r x p matrix L (not necessarily unique). For future purposes it will be
convenient to fix a choice of L and then define the d x m matrix

(30) H=LA.

The usefulness of this matrix H derives from the following observation: we
have y = A’Ay + B'By for any m-vector y; now making the substitution
A = LK, that identity can be rewritten as

(31) y=H'u+ B'v where u = Ky and v = By.

The component H'u in (31) is the projection of y onto &7, while B'v is the
projection of y onto %. Because KB’ = 0 as a matter of definition, the following
proposition is immediate from (31).
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PROPOSITION 1. KH'u = u for all u € column space of K.

Let us consider now the matrices M and G that appear in the reduced
Brownian network model (13)—(18). By definition, M can be chosen as any
d x m matrix satisfying MRB’' = 0; given numerical values for B and R, one
can use that relationship and Gaussian elimination to mechanically compute
M. The following proposition provides an alternative and very useful charac-
terization.

PROPOSITION 2. Let M be a d x m matrix of rank d. The rows of M span
A if and only if

(32) MR = GK

for some d x p matrix G (not necessarily unique).

REMARK. Given a d x m matrix M whose rows span .#, the following proof
shows that one G satisfying (32) is

(33) G = MRH'.

PROOF. Suppose first that M satisfies (32) for some G. Then MRB' = 0,
because KB’ = 0 by the definition of B. Thus each row of M is orthogonal to
A, because .4 is the column space of RB’. Moreover, the d rows of M are
linearly independent, so they span the d-dimensional orthogonal space .#.
Conversely, suppose that the rows of M span .#, implying that MRB’' = 0.
Now (31) can be equivalently expressed as I = H'K + B’'B, and multiplying
both sides of that identity by MR gives MR = MRH'K, so (32) holds with
G=MRH'. O

Turning now to the proof of Theorem 1, let M and G be an arbitrary but
fixed pair of matrices, where M is full rank d x m, G is d x p and both jointly
satisfy (32). Thus the rows of M span .# by Proposition 2. Let us first suppose
that (Z, U) is an achievable pair in the original Brownian network. Thus there
exists a control Y such that Y, X, U, Z and z jointly satisfy (1)—(5). From (1),
(4) and (5) if follows that Z and U are both adapted to X, which is condition
(13) of the reduced Brownian model. Moreover, condition (14) is identical to
(2), condition (15) is immediate from (5) and condition (16) is identical to (3).
We define W(t) = MZ(¢) for all ¢ > 0, which is condition (17) of the reduced
Brownian network. Finally, defining w and ¢ by means of (11) and (12), we
premultiply both sides of (4) by M and use the fundamental identity (32) to
obtain (18). Thus Z, U, W, ¢ and w jointly satisfy (13)—(18), so the pair (Z, U)
is achievable in our reduced Brownian network model.

To prove the converse, let (Z, U) be a pair of processes that is achievable in
the reduced Brownian network. Thus Z, U, W, ¢ and w jointly satisfy (13)—
(18). By the definition of N, the ¢ x (n — r) matrix NRB' is of rank ¢ (recall
that ¢ < n —r), so there exists at least one (n — r) x ¢ matrix @ satisfying

(34) (NRB)®@ =1 (the g x g identity matrix).
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Let us now define a control Y via

(35) Y(t)= H'U(t)+ B'V(t) forallt>0,
where
(36) V(t)= @QN[Z(t) —z— X(¢t)— RH'U(t)] for all ¢ > 0.

Our goal is to show that this control Y is admissible in the original Brown-
ian network and that it yields the pair (Z, U). That is, we seek to show
that Y, X, U, Z and z jointly satisfy (1)—(5). Condition (1) is immediate from
(13), (35) and (36), while conditions (2) and (3) are identical to (14) and
(16), respectively. Moreover, premultiplying both sides of (35) by K gives
KY(t) = KH'U(t), because KB = 0 by the definition of B. Combining this
with (15) and Proposition 1 gives KY (¢) = U(¢) for all ¢ > 0, which is (5),
and thus it remains only to show that the control Y defined by (35) and (36)
satisfies (4).

Recall that MRB' = 0 by the definition of M. Thus, premultiplying both
sides of (35) by MR and then using (32), we have MRY (¢) = GKH'U(%). It
has already been noted that KH'U(t) = U(t) by (15) and Proposition 1, so we
have MRY (¢) = GU(t). Combining that with (11), (12), (17) and (18) yields

(37) MZ(t) = Mz + MX(t)+ MRY () for all ¢ > 0.

Next, premultiplying both sides of (36) by NRB’, substituting (34) on the
right-hand side, then rearranging terms and substituting (35), we have

(38) NZ(t) = Nz + NX(t) + NRY(¢) forall ¢ > 0.

By definition, the m x m matrix formed by combining rows of M and N is
nonsingular, so (37) and (38) together imply Z(¢) = z + X(¢) + RY (¢), which
is (4). Thus the pair (Z, U) is achievable in the original Brownian network,
which completes the proof of Theorem 1.

3. Reducing the dimension of optimal control problems. Let us con-
sider now the two problems of optimal system control discussed at the end of
Section 1: the original problem is to choose a control Y satisfying (1)—(5) so
as to minimize the discounted expected cost functional appearing in (19); and
the reduced problem is to choose a control U satisfying (25)-(29) so as to
minimize the expected discounted cost in (24). The original problem involves
an m-dimensional state descriptor Z, while the reduced problem involves a
d-dimensional state descriptor W.

In addition to the measurability of 2 and the nonnegativity of ¢ and & as-
sumed in Section 1, which assure that expected discounted costs are always
well defined (but possibly infinite), we impose the following regularity assump-
tions on 4. First, for each w in the “feasible region” S defined by (21), there
exists a z* in the set {Mz = w, z > 0} which minimizes & over that set.
Moreover, one can choose the minimizer so that z* = g(w), where g: S — R™
is continuous. Given a process W = {W(¢), ¢ > 0} taking values in S (recall
that the word “process” automatically implies RCLL paths), we write g(W) to
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mean the process Z = {Z(t), ¢t > 0} with Z(¢) = g(W(¢)) for all ¢ > 0; the
continuity of g assures that g(W) also has RCLL paths. For each w € S let

f(w) = h(g(w)) = min{h(z): Mz = w, z > 0},
as in (23). For each control Y satisfying (1)—(5) we define the objective value

(V) = E{/Om e [R(Z (1)) dt + cdU(t)] }
and similarly, for each control U satisfying (25)—-(29) let
V() = E{/OOO e AW () di + ch(t)]}.

Throughout this section, an “admissible control in the original control prob-
lem” is a process Y satisfying (1)-(5). Similarly an “admissible control in the
reduced control problem” is a process U satisfying (25)—(29). Let ®* = inf ®(Y)
and ¥* = inf ¥(U), where the infima are taken over admissible controls in
the original and reduced control problems, respectively. An admissible control
Y for the original problem is said to be “optimal” if ®(Y) = ®*, and similarly
for the reduced problem.

PROPOSITION 3. Suppose that U is an admissible control in the reduced
problem, with corresponding workload process W = w + ¢ + GU, and define
Z* = g(W). Then there exits an admissible control Y* in the original problem
that achieves the pair (Z*,U), and ®(Y*) = ¥ (U).

PrROOF. By hypothesis, U satisfies the constraints (25)—(29) of the reduced
control problem, and it follows that U and Z* jointly satisfy (13)-(18). That
is, the pair (Z*, U) is achievable in our reduced Brownian network model, so
Theorem 1 shows that there exists an admissible control Y* in the original
Brownian network model which achieves (Z*, U). Finally, from the definitions
of f and g, one has that

Y(U) = E{/:o e [I(Z*(t)) dt + ch(t)]} = B(Y™). o

PROPOSITION 4. Suppose that (U, Z) is a pair of processes achieved by an

admissible control Y in the original control problem. Then U is an admissible
control in the reduced problem, and V(U) < ®(Y).

PrOOF. By hypothesis, the pair (U, Z) is achievable in our original Brown-
ian network model, so Theorem 1 says that (U, Z) is also achievable in the
reduced network, which means that U and Z jointly satisfy (13)—(18). From
(16) and (17) it follows that the process W = w + ¢ + GU satisfies W(¢) € S
for all # > 0, and hence that U satisfies (25)—(29). That is, U is an admissible
control in our reduced Brownian control problem. Defining Z* and Y* exactly
as in Proposition 3, we have that ¥(U) = ®(Y*). From the definition of g it
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is immediate that A(Z*(¢)) < h(Z(t)) for all £ > 0 and hence ®(Y*) < &(Y).
Thus V(U)=d(Y*) < P(Y). O

THEOREM 2. The original and reduced control problems are equivalent in
the following sense.

(i) Suppose that Y is an optimal control in the original problem, with as-
sociated cumulative idleness process U = KY. Then U is an optimal control
in the reduced problem, and ®(Y) = ¥ (U).

(i1) Suppose that U is an optimal control in the reduced problem, with asso-
ciated workload process W = w+&+GU, and define Z* = g(W). There exists an
admissible control Y* in the original problem which achieves the pair (Z*, U),
that control Y* is optimal in the original problem, and V(U) = (Y*).

PROOF. (i) Because Y is admissible in the original problem, Proposition 4
says that U is admissible in the reduced problem and ¥(U) < ®(Y). Suppose
U is not optimal in the reduced problem, meaning that there exists another
admissible control U* with ¥(U*) < ¥(U). Then by Proposition 3 there exists
an admissible control Y* in the original problem with ®(Y*) = ¥(U*) <
Y(U) = &(Y), which contradicts the assumed optimality of Y.

(i1) Proposition 3 assures the existence of an admissible control Y* in the
original problem which achieves (Z*, U) and satisfies ®(Y*) = W(U). Suppose
Y* is not optimal in the original problem, meaning that there exists another
admissible control Y’ with ®(Y’) < ®(Y™*). Then by Proposition 4 there is an
admissible control U’ in the reduced problem with W(U’) < ®(Y') < &(Y*) =
W(U), but this contradicts the assumed optimality of U. O

4. Dynamic sequencing in open queueing networks. Brownian net-
works were introduced in [2] as heavy traffic approximations of complex queue-
ing networks in which system managers exercise dynamic control in various
forms. The theory was originally motivated by problems of dynamic sequencing
(or dynamic scheduling) in open multiclass networks. Let us briefly summa-
rize these sequencing problems in the context of a concrete example, adopting
the framework proposed in [2] but using somewhat different notation and ter-
minology. Consider the system pictured in Figure 1, which was introduced and
discussed at some length in [3]. We have external arrivals of three different
types (called A, B and C) and there are three servers (represented by circles).
As shown in the figure, type A jobs may follow either of two different routes,
and for purposes of this section let us assume that the routes of type A jobs
are determined by a sequence of independent coin flips as they arrive. We de-
fine a different “job class” for each combination of job type and stage of route
completion, including one class for type A jobs seeking a first service at sta-
tion 1 when following the upper route and another class for A jobs following
the lower route. There are eight such classes in total, and their numbering
is indicated in the open-ended rectangles in Figure 1. (These rectangles rep-
resent infinite-capacity buffers in which the various classes reside.) For con-
creteness, let us assume that the mean service times for the different classes
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N2
Type A
Input '

]

Type B Type C
Input Input

FiG. 1. An open three-station network.

are given by
(39) (Tl7 cee 78) = (2! 3> 17 17 1’ ]-a 27 1),

and that jobs of types A, B and C arrive according to independent Poisson
processes at average rates of 1/2, 1/4 and 1/4, respectively. With the random
routing of type A jobs described above, we then have the following vector « of
external arrival rates into the various classes:

(40) (ay, ..., o) = (1/4, 0, 1/4, 1/4, 0, 1/4, 0, 0).

Each job class i = 1, ..., 8 is handled by a unique server ¢(i) and we have in
this example that

o(l)=0(7)=1, 0(2)=0(5)=2 and
0(3)=0(4) =0(6) =0(8)=3.

(41)

Finally, routing in a multiclass network is summarized by a Markov class-
transition matrix P (also called the switching matrix or routing matrix) as
follows: when a job of class i finishes service at station (i), it immediately
turns into a job of class j with probability P;;, independent of all previous
history. For our example P is 8x8 with Pyy = Py = Pg; = P7g =1and P;; =0
otherwise. For a general open network P is transient and the probability that
a class i job leaves the network after completing service is 1 —3_; P;;. Thus
we can define (recall that primes denote transposes)

(42) Q=I-P)'=I+P+P>+...) and A= Qaq,
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so that A is the vector of total arrival rates into the various job classes, in-
cluding both external arrivals and internal transitions.

Assuming that external arrivals and job routes are uncontrollable, the only
decision-making capability that the system manager has involves the sequence
in which jobs of various classes will be served at each station. That is, each
time server k completes the service of a job, the system manager can choose a
job from any of the classes i € €(%k) whose queue is nonempty at that moment.
In general, systems of the type under discussion have p different processing
resources, m different stocks of material, and m different processing activities,
where resource k refers to server &, stock i refers to jobs of class i, and activity
J corresponds to the processing of class i jobs by server o(i). Later we shall
consider systems in which the number of activities n is strictly larger than
the number of job classes (stocks) m. Proceeding as in [2], we define an m x m
diagonal matrix D, a p x m resource consumption matrix K and an m x m
input-output matrix R as follows:

(43) D = diag(ry, ..., 7,),
(44) Kl-j =1 ifo(j)=1iand Kij = 0 otherwise, and
(45) R=(1- P/)D‘l.

Thus K;; = 1 if server i is responsible for activity j (the processing of class j
jobs) and K;; = 0 otherwise. R;; represents the average rate at which activity
J depletes stock i (the queue of class i jobs) when server o(j) is devoted
exclusively to that activity. For the example pictured in Figure 1, we have

1 1
(46) K = 1 1
11 1 1
and
- 12 -
-1/2 1/3
1
1
47) R = 11
1
-1 1/2

~1/2 1

Sections 2-5 of [2] explain how a dynamic sequencing problem of the gen-
eral type described above can be approximated by a dynamic control problem
for a properly chosen Brownian network. The approximating Brownian net-
work is described by (1)-(5), with the capacity consumption matrix K and
input—output matrix R derived from data of the original queueing system via
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(44) and (45). The drift vector u and covariance matrix 3, for the approximat-
ing Brownian network are derived from data of the queueing model through
straightforward calculations that need not be repeated here. The controlled
stochastic process Z appearing in (1)—(5) approximates a scaled queue length
process, or scaled inventory process, with one component for each job class, and
the nondecreasing process U approximates a scaled cumulative idleness pro-
cess, with one component for each server. Finally, the m-dimensional control Y
in (1)—(5) approximates a vector of scaled deviation controls, each component
of which expresses the cumulative time allocation to jobs of a particular class
as a deviation from the long-run average allocation required by that class.
Let us consider now the application of Theorem 1 to a Brownian network
whose data K and R are derived from queueing network data via (44) and (45).
From (44) it follows that the rank of K equals its row dimension p (the number
of servers). Also, the rows of K are orthogonal, because the constituencies of
the various servers are disjoint, so the orthonormal matrix A in Section 2
can be formed by simply rescaling the rows of K. Recall that # consists of all
y € R™ such that Ky = 0. By definition, ./ is the space of vectors z € R™ such
that z = Ry for some y € . Now R is invertible in the current context by
(42) and (45), with R~! = D@, so .+ = {z € R™: R~'z € %}, or equivalently,

(48) A ={zeR™ KR '2=0}.

Next, .# is defined as the orthogonal complement of .#" and M can be chosen
as any matrix whose row span is .#, so by (48) we can take

(49) M =KR'=KDQ=KD(I - P)

Reviewing the definitions of ¢ and d given in Section 1, readers will see that
g = m — p and d = p in the current context. Finally, from (49) we have
MR = GK where

(50) G =1 (the p x p identity matrix).

Equations (49) and (50) provide the essential data for the reduced Brownian
network model (13)—(18) that was introduced in Section 1. As observed in
Section 6 of [2], one interprets the (%, j)th element of M as the expected total
time that server 2 must devote to a class j job before it ultimately exits the
network. Thus, recalling that Z(¢) represents a vector of (scaled) queue lengths
for the various classes at time ¢, one may interpret the p-dimensional process
W(t) = MZ(¢) in (17) as follows: W,(¢) represents the (scaled) expected total
time required from server %k to complete the processing of all jobs present
anywhere in the network at time ¢. In brief, W, (¢) is the total workload for
server k embodied in jobs present at time ¢, and we call W the workload process
for our Brownian network model. Theorem 1 says that the original Brownian
network model (1)—(5) is equivalent to the reduced Brownian network (13)—
(18), although the latter formulation appears to be much simpler.

For a general interpretation of the reduced Brownian network, let us as-
sume for concreteness an objective of the form (19), so the system manager’s
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dynamic control problem is ultimately expressed in reduced form by (24)-
(29). As mentioned at the end of Section 1, the reduced formulation involves
a hierarchical control structure. At the higher level, the manager chooses a
(scaled) cumulative idleness process U, thus reflecting a policy as to when the
various servers will and will not be working. This resource utilization plan
must be one that keeps the (scaled) workload process W within the feasible
region S defined by (21), which means that W(¢) must at all times be consis-
tent with some choice of nonnegative (scaled) queue length vector Z(¢). In the
context under discussion here, the “reversible control increments” described
in Section 1 correspond to redistributions of server effort, relative to a set of
nominal allocations, that do not create idleness. Given a choice of U, the sys-
tem manager can allocate or distribute the busy time of each server so as to
realize any vector queue length process Z which is consistent with the work-
load process W achieved by U. This means that, in the idealized limiting case
represented by the Brownian network model, any queue length vector can be
swapped instantaneously for any other queue length vector that has the same
expected total work content for each server. Further discussion of this “equiv-
alent workload formulation” for open networks with dynamic sequencing can
be found in Section 6 of [2].

5. Effect of dynamic routing in open queueing networks. In our
previous discussion of the three-station example pictured in Figure 1, matters
were simplified by the assumption that type A jobs were randomly routed via
independent coin flips. In this section we consider the more interesting prob-
lem in which type A jobs can be dynamically routed to either the upper route
pictured in Figure 1 or the lower one, depending on system status. Moreover,
any of the three input processes can be turned off (or equivalently, jobs of any
type can be rejected upon arrival) at any time. For simplicity, we assume that
the routing of each type A job must be decided at the moment of its arrival.
The Brownian approximation for this network control problem was derived in
Sections 2 and 3 of [3], and we shall recapitulate only the essential aspects of
that derivation in the following paragraph.

With dynamic routing and dynamic input control eliminated from consider-
ation, we previously identified eight “processing activities” in the three-station
example, corresponding to service of the eight job classes defined in Figure 1,
each conducted by one of three servers. To extend that formulation it is concep-
tually easiest to speak in terms of three fictional “input servers” numbered 4,
5 and 6, who generate arrivals of types A, B, and C, respectively. We associate
with the input servers four new “activities,” as follows:

activity 9 = creation of class 1 jobs (by server 4),
activity 10 = creation of class 3 jobs (by server 4),

activity 11 = creation of class 4 jobs (by server 5),

activity 12 = creation of class 6 jobs (by server 6).
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Hereafter when we say that “server 4 is engaged in activity 9” this is under-
stood to mean that the type A input process is turned on and any resulting
arrival will be routed to buffer 1, so the instantaneous Poisson arrival rates
to buffers 1 and 3 are A; = 1/2 and A3 = 0, and similarly for activities 10,
11 and 12. For concreteness, we allow the input servers to work at less than
full capacity and server 4 to divide its time between activities 9 and 10 if
doing so is deemed desirable. Such actions correspond to randomized accep-
tance of new arrivals and randomized routing to type A arrivals, respectively.
Similarly, servers 1, 2 and 3 are allowed to divide their time among activities
available to them, processing several job classes simultaneously, provided that
the total rate of effort allocation does not exceed 100 percent.

In the problem conceptualization outlined above, one takes the view that
all job flows are the consequence of some “activity” undertaken by one of the
system’s six “servers.” In the obvious way, the 8 x 8 input—output matrix R
defined by (47) is extended to an 8 x 12 matrix with one column for each activ-
ity as follows (nonzero elements in the last four columns reflect the average
arrival rates assumed for jobs of the three types):

1/2 ~1/2
~1/2 1/3
1 -1/2

1 ~1/4
(51) R=
1 ~1/4
-1 172

-1/2 1

Similarly, the 3 x 8 capacity consumption matrix K defined by (46) is extended
to the following 6 x 12 matrix, whose last three rows correspond to the new
input servers and last four columns correspond to the new input activities:

-1 1 -

(52) K =

1

Let us consider now the application of Theorem 1 to a Brownian network
whose data R and K are given by (51) and (52). Beginning with this numeri-
cal data, one can mechanically compute the matrices M and G for a reduced
Brownian network as follows: first normalize the rows of K to obtain an or-
thonormal matrix A; then determine a complementary matrix B such that
(A’, B') is a basis for R'?, using Gaussian elimination to solve the system of
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linear equations BA’ = 0; finally, again using Gaussian elimination, deter-
mine M by solving MRB' = 0, and then set G = MRH' in accordance with
the remark following Proposition 2, so that MR = GK. One possible outcome
of this computation is

(58) M_20220642
1333416 3 3

and

50 G:[1 02 -1 -1/2 —3/2}‘

01 3 —-32 -1 -3/2

Of course, any other 2 x 8 matrix having the same row space as (53) may be
obtained for M, depending on how the computations are structured, and then
G must be chosen so that MR = GK.

In the preceding paragraph we have emphasized the fact that one can me-
chanically compute the data of a reduced Brownian network, given the frame-
work laid out in Sections 1 and 2. However, to get more insight into the effects
of dynamic routing, we now describe a more conceptual approach to analysis
of the three-station example. It will be helpful to partition the matrices R and
K specified by (51) and (52) as follows:

K, 0
(55) R=[R, R;] and K:[ o KJ,

where R, and R, are 8 x 8 and 8 x 4, respectively, and K; and K, are 3 x 8
and 3 x 4, respectively. Readers will note that R; = (I — P')D~!, where P and
D are defined as in the previous section, implying that

R'=DQ=D(I+P+P?+....
A general vector z € .4 has the form z = R;y; + Ryyy where K;y; = 0 and
K5y, =0. That is, 4/ = 4] & 45 where
N ={zeR® z=R,y,, K1y, =0, y, € R®}
and
Ny ={zeR® 2= Ryy,, Koy, =0, y, e R*}.

In the obvious way, let us denote by .#; the orthogonal complement of .#1.
Proceeding exactly as in the previous section, one finds that .#; is the row
space of
2 0 0 0 0 2 2
(56) M,=KR{'=K:DQ=|3 3 0 1 1 0 0
0 0110211

0
0|,

and M is the “workload content matrix” for our multiclass network; that is,
its (%, j)th element is the expected total work for server £ embodied in a class
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Jjjob(k=1,2,3and j=1,...,8). On the other hand, readers can verify that
A5 is the one-dimensional vector space spanned by

(57) N, =[1,0,-1,0,0,0,0,0].

By definition, .# is the orthogonal complement of .#", so it consists of all
eight-vectors z in the row space of M, that are also orthogonal to N,. That
is, one can take M = AM; where the rows of A are a maximal set of linearly
independent three-vectors such that AM; N, = 0. From (56) and (57) one finds
that M N is the 3 x 1 matrix (2, 3, —1)/, so we can take

10 2
(58) A= ,
[0 1 3]

and then M = AM, is the same 2 x 8 matrix displayed earlier in (53). From (58)
and the previous interpretation of M; we have the following interpretation of
the “workload process” W(¢) = M Z(t) that appears in our reduced Brownian
network model. Its first component W (%) represents the total work for server
1 embodied in all customers that are present in the network at time ¢, plus two
times the total work for server 3 embodied in those customers, and its second
component Wy (¢) similarly represents total work for server 2 plus three times
the total work for server 3. Thus one might say that the two components of
W(¢) represent weighted total workloads for two overlapping resource pools,
the first composed of servers 1 and 3 and the second composed of servers 2
and 3.

The state space S for our workload process W(t) = MZ(t) consists of all
two-vectors w representable as positive linear combinations of the columns of
the matrix M displayed in (53). The extreme rays of this positive cone S are
the vectors (0, 3) and (4, 3), so it is the shaded region pictured in Figure 2.
In the reduced Brownian network for our three-station example with dynamic
routing, a system manager must first choose a six-vector U of cumulative
idleness controls so as to keep W within the feasible region S. The main system

U, U,
U1 /
—>
1)

(1,0) (0, 2,3)

/S

(-1,-1.5) (-0.5,-1) (-1.5,-1.5)

Wi

F1G. 2. State space S and the directions of available control for the three-station open network.
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equation W(t) = w + £(¢) + GU(¢) says that W evolves as a Brownian motion
£ in the absence of server idleness, and by idling server % the system manager
can instantaneously displace W in a direction given by the kth column of the
matrix G displayed in (54). Those six directions of available control are also
pictured in Figure 2, each being labeled with its associated control component.
Having chosen an idleness control U in the reduced Brownian network, and
thus determined the workload process W, the system manager can at each
instant ¢ choose any desired queue length vector Z(¢) which is consistent
with W(¢), meaning that W(¢) = MZ(¢).

Kelly and Laws [6] provide an excellent survey of research to date on Brown-
ian models of dynamic alternate routing. In each of the studies that they sum-
marize, as in our three-station example, alternate routing capabilities lead to a
reduced Brownian network of lower dimension than the one which would have
obtained without such capabilities. That is, if dynamic routing capabilities are
intelligently exercised in heavily loaded networks, subtle and surprising types
of resource pooling generally occur. Readers will find that all of the examples
discussed by Kelly and Laws lead to Brownian models having the special struc-
ture portrayed in (55): R; and K; are the input—output matrix and capacity
consumption matrix, respectively, that would have obtained without dynamic
routing, while R, and K, describe the dynamic routing capabilities that are
available. Thus one ultimately expresses system status by means of a “work-
load process” W(¢) = MZ(t) where M = AM| and AM N, = 0, exactly as in
our three-station example. One might describe A as a pooling matrix: its row
dimension d is less than or equal to its column dimension p, and d — p is the
reduction in effective system dimension due to dynamic routing capabilities.
The generality of this representation will be discussed further in Section 7.

In each of the examples discussed by Kelly and Laws [6], the reduction
in effective system dimension referred to above is equal to the number of
“degrees of freedom” in routing new arrivals, but that effect is not general:
adding an element of routing discretion to a queueing network model may
reduce by one the effective system dimension, but only if the new capability is
in some sense “linearly independent” of other model elements. To make this
statement precise, one must connect the row dimension of our pooling matrix
A with structural features of the matrices M; and N,. Development of that
general idea would seem to be a promising area for future research.

6. Dynamic sequencing in closed queueing networks. Consider a
multiclass queueing network model like the one described in Section 3, except
that there are no external arrivals (i.e., A ;=0 for each class j) and the
switching matrix P is stochastic (i.e., each row of P sums to one). Thus any
jobs initially present at time O circulate perpetually among stations of the
network, with no arrivals and no departures, and we assume that the number
of jobs in the network is relatively large. Also, P is assumed to be irreducible,
which means that a job of any given class eventually visits all other classes
with probability one. All of the notation established in Section 3 carries over

to the closed network case except as noted later.
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Because the m x m matrix P is irreducible, the rank of I — P is m — 1.
Thus the input—output matrix R = (I — P')D! is also of rank m — 1, so
there exists an m-vector B satisfying RB = 0, and B is unique up to a scale
constant. One obvious solution of this identity is 8 = D, where 7 is the
stationary distribution of P (note that all components of B are then strictly
positive), but the following alternative scaling will prove to be convenient:
defining a p-vector p of relative traffic intensities via p = K3, we scale 8 so
that max(py, ..., p,) = 1. This same scaling convention was used in Section 8
of [2], where B was interpreted as a set of nominal activity rates. That is, p,
represents the largest possible long-run utilization rate for server &, and g
is the fraction of time that server & = o(j) would devote to service of class j
if it were to attain utilization rate p,.

The problem of interest is that of dynamic sequencing in the multiclass
closed network. The associated Brownian network model was developed in
Section 8 of [2], and here we shall repeat only its salient features. First, one
can choose a state space scaling such that the initial queue length vector z
in the fundamental system equation (4) satisfies ¢’z = 1. That is, in forming
the Brownian system model we express the queue length for each job class
as a fraction of the fixed population size. Second, the Brownian motion X
appearing in (4) also satisfies ¢’ X (¢) = 0: that is, its drift vector u satisfies
e'u = 0, and its covariance matrix 3, satisfies ¢’2e = 0. Finally, ¢’ R = 0 because
e P’ = ¢, so premultiplying both sides of (4) by ¢’ gives ¢’ Z(¢) = ¢’z = 1, which
is consistent with the physical model under consideration.

To develop an equivalent workload formulation for this closed Brownian
network, let us first define the m x m matrix (recall that 7 is the stationary
distribution of P, represented as a column vector)

1
(59) II=en =lim =~ ) P’
1—o0o0 1

Jj=1
In our earlier treatment of open networks, the matrix @ defined in (42) played
a central role. For a closed network model with irreducible switching matrix,

the appropriate analog is
(60) Q=UI-P +1I)L.

Kemeny and Snell [7] call the transpose of @ the fundamental matrix of the
Markov chain with transition matrix P;in addition to proving existence of the
inverse that defines @, they derive a number of useful identities, including

(61) Qm=.

PROPOSITION 5. For the closed Brownian network described above, the
space .# has dimension p.

PROOF. The p rows of K are linearly independent, so its null space % has
dimension m — p. Recall that B denotes an (m — p) x m orthonormal matrix
whose rows span %, and that .#” is the column space of RB’. Suppose that the
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m — p columns of RB’ are linearly dependent. Then there exists a nontrivial
vector y € &% satisfying Ry = 0. As noted above, this implies y = ¢ for some
constant c. But KB = p, so B8 is not an element of %, and we have arrived
at a contradiction. That is, the m — p rows of RB’ are linearly independent,
implying that .#” has dimension m — p, and hence its orthogonal complement
.# has dimension p. O

PROPOSITION 6. Let G be any (p — 1) x p matrix of rank p — 1 such that
Gp =0,and let M = GKDQ. Define a p x m matrix M by adding to M a final

row of ones, and a p x p matrix G by adding to Ga final row of zeros. Then
M is of rank p, and MR = GK.

COROLLARY. The rows of M span 4.

PROOF. First observe that DQR = DQ(I — P)D' = DQ(I — P' +1I' —
IYD™! = D(I — QII')D! = (I — DQII'D™1). Now II' = me/, so QII' = I’
by (61). Moreover, D7 = c¢f3 where c is a positive normalization constant,
so DQII'D™! = cBeP‘l. Recalling that p = KB, we then have KDQR =
K — cpe’D7!. Since Gp = 0 by assumption, this implies that

(62) MR = GKDQR = GK.

Recall that ¢ R = 0 because ¢’ P’ = ¢'. The final row of M is ¢/, so the final row
of MR is zero. The final row of G is also zero by definition, and combining this
with (62) gives MR = GK.

To complete the proof of Proposition 6, it remains only to show that M has
rank p. Given the full row rank of G and the special structure of K, it is easy
to show by contradiction that GK has rank p—1. Since the m x m matrix D@
is nonsingular, it follows that M= éKDQ has full row rank. Finally, to prove
by contradiction that ¢’ (the last row of M) does not lie in the row span of M ,
suppose that v'M = ¢ for some nontrivial vector v. Substituting the definition
of M. , this is equivalently stated as v/aKDQ = ¢'. Postmultiplying both sides
of that equation by (I — P'+II')D~!, and noting again that ¢’ P’ = ¢'Il' = ¢/, we
then obtain v'GK = ¢’ D~ Now postmultlplylng by the vector 8 and recalling
that KB = p, we have v Gp = ¢ D 1p. Since Gp = 0 by assumption while
e’ D 'p > 0, this is a contradiction. The proof of Proposition 6 is thus complete,
and the corollary is immediate from Proposition 2. O

Any pair of matrices M and G defined as in Proposition 6 will suffice for the
purposes of the reduced Brownian network model (13)—(18). The last element
of the workload process W(t) = MZ(t) is then €' Z(¢), and it has already been
noted that ¢ Z(¢) = 1 for all ¢ > 0 in a closed network model, regardless of
what control Y is chosen. Thus one can simply delete the last component of W.
That is, one ultimately arrives at a reduced Brownian network model where
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the state of the system at time ¢ is summarized by a p — 1 dimensional process
W(t) = M Z(t) satisfying

(63) W) =w+ &)+ GU(t) forallt>0,

where & = Mz and g(t) =MX (t). To develop an interpretation of this process
we begin with the identity

(64) Q=1+ (P -11),

i=1

which is a standard result in Markov chain theory (cf. [7]). Let us now define
the infinite series of p x m matrices

(65) H(n):KD<I+ZPi) forn=1,2,....

i=1

(The letters H and n were used with other meanings in previous sections, but
they have not been needed in the discussion of closed network models, so the
temporary reuse of notation should cause no confusion.) One may interpret
H;(n) as the expected total work required from server % in completing the
first n services for a job that bggins in class l Combini/r\lg (64) and (65) with
the definition of M gives M = GKDQ = lim[GH(n)—nGKDII']. It was noted
in the proof of Proposition 6 that GKDIl' = 0 because @p = 0 by definition,
and thus we have the following:

(66) M = lim GH(n).

n—oo
Assuming, without loss of generality, that p, = 1 (recall that maxp, =1 as a
matter of convention), one feasible choice of G is
1 —P1
1 —P2

Q)
I

(67)
—P2
1 _ppfl
and with this choice (66) becomes

(68) ﬂk]’ = ,}LHC}O [ij(n) - Pkaj(n)]

forall kR =1,...,p—1and j = 1,...,m. In the terminology of Harrison
and Wein [5] and (/leevalier and Wein [1], (68) is a measure of workload im-
balance. That is, M;; represents in a certain sense the difference between
the expected future work for server 2 embodied in a job of class j and the
expected future work for server p embodied in that same job. Thus each com-
ponent £ =1, ..., p—1 of the process W(t) =Mz (¢) expresses the imbalance
between work for server & and work for server p embodied in the queue length
vector Z(t).
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In their treatment of multiclass closed network models, both Harrison and
Wein [5] and Chevalier and Wein [1] develop a reduced Brownian network with
a (p — 1)-dimensional state descriptor W(t) =MZ (t) as above, calling W(t)
the workload imbalance process and M the workload imbalance profile matrix.
In fact, several alternative definitions of the workload imbalance process are
advanced in those papers and shown to be equivalent. Our definition of W(t) is
also equivalent to any one of those definitions in the following sense. Denoting
by A the difference of our workload imbalance profile matrix M=G KDQ® and
any of the corresponding matrices used by Harrison and Wein [5] or Chevalier
and Wein [1], it can be shown that A = ue’, where u is some (p —1)-vector and

e is the p-vector of ones. Thus our workload imbalance process W(t) differs
from that in the earlier papers by a vector of the form ue’'Z(¢), but € Z(¢) =1
for all ¢ > 0 as noted earlier, so the difference is a constant vector u which
is uncontrollable and can therefore be ignored. Two appealing features of the
definition M = @KDQ in Proposition 6 are its symmetry with respect to both
servers and job classes, and the connection it makes with the fundamental
matrix @ of classical Markov chain theory.

7. Two open problems. In Section 5 we analyzed a three-station open
network model with dynamic alternate routing, and derived an attractive rep-
resentation for the matrix M appearing in its equivalent workload formula-
tion. To be specific, it was found that M = A M, where M is the nonnegative
workload profile matrix for a corresponding open network with random rout-
ing, and A is a nonnegative pooling matrix. One naturally asks whether this
result is general, and if so, exactly how M; and A are defined in terms of the
original network data. Of course, one further wants a characterization of A
that gives insight as to which alternate routing capabilities are most effective
in reducing system dimension. Kelly and Laws [6] argue that such insights
are among the most important ones to be gained from heavy traffic analysis
of queueing networks, and sharp general results may in fact be attainable.

In traditional queueing network models, each processing activity involves
a single server acting on a single job of a particular class. In some applica-
tions, however, two or more servers may be required simultaneously for some
processing activities, as when a machine and an operator work together in
manufacturing. When a stochastic processing network involves such simulta-
neous resource requirements, the capacity consumption matrix K for its nat-
ural Brownian analog may have more than one nonzero element per column.
It would be interesting to know how that structural change manifests itself in
the Brownian network’s equivalent workload formulation, and in particular,
whether any novel types of resource pooling may result.

APPENDIX

Our standard formulation (1)—(5) of a Brownian network model includes
the state-space constraint Z(¢) > 0. However, more general state-space con-



770 J. M. HARRISON AND J. A. VAN MIEGHEM

straints can actually be accommodated within the standard formulation as
follows. Let S be a convex polyhedral subset of R™ and suppose that (3) is
replaced by the requirement that Z(¢) € S for all ¢ > 0. Of course, S can be
represented as S = {x € R™: A x < b} for some matrix A and vector 6. Defin-
ing z*=b— Az, R* = —AR and X*(¢t) = —AX(t), we then replace conditions
(3) and (4) by

(69) Z*(t) >0 for all ¢t >0, where

(70) Z*(t) =2+ X*(t) + R*Y(¢) forallt> 0.

The definition of an admissable control Y is completed by adding conditions
(1), (2) and (5) to (69) and (70). This brings us to a Brownian network model
having the standard form (1)—(5).

Acknowledgments. We are grateful to Jim Dai and Ruth Williams for
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