
Dynamic Controllability of Controllable
Conditional Temporal Problems with Uncertainty

Jing Cui, Patrik Haslum
ANU & DATA61

Canberra, Australia
{cui.jing—patrik.haslum}@anu.edu.au

Abstract

Dynamic Controllability (DC) of a Simple Temporal Problem
with Uncertainty (STPU) uses a dynamic decision strategy,
rather than a fixed schedule, to tackle temporal uncertainty.
We extend this concept to the Controllable Conditional Tem-
poral Problem with Uncertainty (CCTPU), which extends the
STPU by conditioning temporal constraints on the assign-
ment of controllable discrete variables. We define dynamic
controllability of a CCTPU as the existence of a strategy that
decides on both the values of discrete choice variables and
the scheduling of controllable time points dynamically. This
contrasts with previous work, which made a static assignment
of choice variables and dynamic decisions over time points
only. We propose an algorithm to find such a fully dynamic
strategy. The algorithm computes the “envelope” of outcomes
of temporal uncertainty in which a particular assignment of
discrete variables is feasible, and aggregates these over all
choices. When an aggregated envelope covers all uncertain
situations of the CCTPU, the problem is dynamically control-
lable. However, the algorithm is not complete. Experiments
on an existing set of CCTPU benchmarks show that there are
cases in which making both discrete and temporal decisions
dynamically it is feasible to satisfy the problem constraints,
while assigning the discrete variables statically it is not.

Introduction

Vidal and Fargier (1999) introduced Dynamic Controllabil-
ity (DC) of Simple Temporal Problems with Uncertainty
(STPU), which postpones decisions on time points to enable
a dynamic strategy to deal with temporal uncertainty rather
than a fixed schedule. Yu, Fang, and Williams (2014) ex-
tended the STPU to the Controllable Conditional Temporal
Problem with Uncertainty (CCTPU) by considering control-
lable choices as discrete variables. However, their notion of
dynamic controllability of an CCTPU makes a fixed assign-
ment of values to discrete variables, reducing it to an STPU
that is dynamically controllable. To implement the original
intent of dynamic control, in this paper, we extend it to the
discrete variables of the CCTPU.

The CCTPU builds on the from Conditional Temporal
Problem (CTP) (Tsamardino, Vidal, and Pollack 2003) and
he Simple Temporal Problem with Uncertainty (STPU) (Vi-
dal and Fargier 1999). CTP is an extension of temporal

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constraint-satisfaction problems adding observation nodes
and labels to all non-observation nodes in the network.
The label of a node in a CTP represents the situations
in which the node will be executed. The STPU model of
uncertain events in temporal problems and three levels of
controllability were introduced by Vidal & Fargier (1999),
among which dynamic controllability (DC) is the most use-
ful one in real situations. Yu et al. (2014) introduced a
relaxation method to solve over-constrained CCTPUs, by
making a static assignment of choice variables and relax-
ing time constraints to produce a dynamically controllable
STPU. From them, we borrow the idea of using STPU DC
checking algorithms (Morris, Muscettola, and Vidal 2001;
Morris 2014) to find conflicts, which represent the reason
why an STPU is not DC, but extend it to extract all conflicts.

In this paper, we introduce a definition of dynamic con-
trollability of a CCTPU that considers making assignments
of both time points and discrete choices dynamically. To
implement the DC checking process, some assumptions are
needed: (1) each discrete choice is made at one time point,
which prior to any other time points related to the choice; (2)
only the uncontrollable events definitely completed before
the time point to make choice can be treated as an observ-
able condition; and (3) each discrete choice is made follow-
ing the observation of one, or a sequence of, uncertain time
points. These assumptions are more conservative than the
original concept of dynamic controllability. Our DC algo-
rithm is sound, but incomplete in that it finds only dynamic
strategies under these assumptions.

Last but not least, a similar problem – dynamic control-
lability of Conditional Simple Temporal Networks with Un-
certainty (CSTNU) – has been studied in (Hunsberger, Pose-
nato, and Combi 2012; Combi, Hunsberger, and Posenato
2014), which consider conditions as uncontrollable and ob-
servable propositions. But we only discuss controllable dis-
crete variables that do not depend on observations.

An Illustrative Example

To illustrate the motivation for dynamic controllability of a
CCTPU, we take the example of Mr. P’s travel plan after
work. After leaving work at 5pm, Mr. P is going grocery
shopping before having dinner, then catching a bus home.
Shopping may take 30 to 50 minutes, depending on how
crowded it is. For dinner, Mr. P has two options: He can have

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

61



a quick dinner at KFC, which only takes 20-30 minutes, or
go for his favourite steak. This takes longer, 40-60 minutes,
but the restaurant is closer to the bus stop. The bus leaves
at 6.50pm. Mr. P neither wants to miss this bus, which will
make him wait an hour for the next bus, nor arrive at bus stop
before than 6.40pm, to avoid staying out in the cold weather.
Mr. P needs to decide his schedule for these two hours.

The CCTPU in Figure 1 models Mr. P’s problem. The dis-
crete variable c1 models the choice of dinner (c1 = K for
KFC and c1 = S for steak). Contingent links (dashed lines:
E1 → E1′, E2 → E2′ and E3 → E3′) represent un-
certainty, such as the time it takes to shop and have dinner.
Those durations are not decided by Mr. P but depend on fac-
tors outside his control. The other links express constraints
on the solution, in the form of bounds on the difference be-
tween two time points. Some links have labels, which are the
assignments of the discrete choice variable that active those
links. For example, constraints E1′ → E3, E3 → E3′ and
E3′ → E only need to be met if c1 = K.

S E1 E1′

E2

E3

E2′

E3′

E
[0, 5] [15

, 20
]

c1
=
K

[5, 15]c
1 =

S

[15, 20]c
1 =

K

[5,
15
]

c1
=
S

[30, 50]

[20, 30]
c1 = K

[40, 60]
c1 = S

[100, 110]

Figure 1: The CCTPU of Mr. P’s travel problem.

Unfortunately, because of the uncertainty, neither of the
two dinner options, if chosen in advance, lead to a sched-
ule that is guaranteed to satisfy Mr. P’s requirements. If he
goes to KFC and the uncontrollable links C1 and C2 take
their lower bounds, the total duration from S to E is a max-
imum of 95 minutes, breaking the lower bound of the S–E
requirement link. If he goes for steak and links C1 and C3
take their upper bounds, the minimum time from S to E is
2 hours, breaking the upper bound instead. But Mr. P does
not have to make the decision about dinner when he leaves
work. He only needs to make it after buying groceries. If he
spent more than 40 minutes shopping, he can choose KFC;
otherwise he can enjoy the steak and catch the bus on time.

Although artificial, the example shows the benefit of
postponing decisions, including decisions about discrete
choices, when faced with uncertainty. (Indeed, that is the
motivation for the concept of dynamic controllability orig-
inally proposed for the STPU.) There may be no fixed as-
signment of discrete variables that is feasible, while making
those assignments during execution based on observations
of uncontrollable events may provide a feasible strategy.

Problem Statement
The Controllable Conditional Temporal Problem with Un-
certainty (CCTPU) extends the STPU with controllable dis-
crete choices. It was introduced by Yu, Fang, and Williams

(2014). We adopt their definition, but omit the reward and
cost functions since we consider feasibility only.

Definition 1. A Controllable Conditional Temporal
Problem with Uncertainty (CCTPU) is a 5-tuple <
V,E,C,D, �E >, where

• V is the set of time points, where V = V C ∪ V U and
V U = V \V C. V C is the set of controllable time points,
V U is the set of uncontrollable time points which can be
observed,

• E is the set of constraints of form lij ≤ vj − vi ≤ uij ,
where E = EC ∪EU and EU = E \EC. EC is the set
of controllable constraints between pairs of time points,
EU is a set of uncontrollable constraints, denoted as con-
tingent links, the exact duration of euij is not controllable
but within the range [lij , uij ],

• C is a set of controllable discrete variables,
• D(c) is the domain of variable c ∈ C,
• �E is a mapping that attaches to each link in E a (possibly

empty) conjunction of assignments to variables in C.

The Controllable Conditional Temporal Problem (CCTP)
is a special case of CCTPU where V U = ∅. Note that when
C = ∅ the CCTPU reduces to an STPU.

The following definitions extend concepts from the the-
ory of controllability of an STPU (Vidal and Fargier 1999;
Morris, Muscettola, and Vidal 2001; Hunsberger 2009) to
the CCTPU.

Definition 2. A schedule S for a CCTPU is a tuple 〈A, T 〉.
A is an assignment of each discrete variable c to a value in
its domain, i.e., A(c) ∈ D(c), ∀c ∈ C. A link e ∈ E is
activated if A |= �E(e). T is a mapping T : V → 
, where
T (v) is the scheduled time of time point v ∈ V .

A schedule is consistent if it satisfies all the constraints
of links activated by the assignments of discrete variables.

Definition 3. A projection p of a CCTPU is constructed by
replacing every uncontrollable link eui = [li, ui] in EU by
the singleton eui = [pi, pi], where pi ∈ [li, ui].

Each projection of a CCTPU is a possible outcome of un-
certainties that may occur, and it is a classical CCTP.

Definition 4. An execution strategy for a CCTPU is a tuple
〈DT,ES〉, where DT : C → V maps each discrete variable
c to the time point DT (c) at which the choice for c will be
made, and ES : P → S is a mapping from the set P of all
projections of the CCTPU to the set S of schedules.

An STPU is a special CCTPU without discrete variables,
and its execution strategy ES is viable iff ES(p) is consis-
tent for every projection p ∈ P . Based on the above, Vidal
and Fargier (1999) introduced three levels of controllability
for the STPU: weak, strong and dynamic. Extending strong
controllability to the CCTPU is straightforward:

Definition 5. A CCTPU is strongly controllable when
there is execution strategy 〈DT,ES〉 such that DT (c) = 0
for all c ∈ C, ES is viable, and satisfying ES(p1)(x) =
ES(p2)(x) and ES(p1)(c) = ES(p2)(c) for each control-
lable time point x, discrete variable c and any two projec-
tions p1 and p2.

62



Strong controllability means there is a universal schedule
which satisfies all constraints in every projection of the prob-
lem. This means the schedule can be made before execution.

Yu, Fang, and Williams (2014) define a dynamically con-
trollable solution of a relaxed CCTPU as a fixed assignment
of the discrete variables such that the resulting STPU is dy-
namically controllable. Specifically, there is a viable execu-
tion strategy 〈DT,ES〉 such that DT (c) = 0 for all c ∈ C,
and for any two projections p1 and p2, ES(p1){≺ t} =
ES(p2){≺ t} ⇒ ES(p1)(x) = ES(p2)(x) for each con-
trollable time point x, t = ES(p1)(x) (Hunsberger 2013)
and ES(p1){c} = ES(p2){c} for each c ∈ C. That is, de-
cisions on discrete variables are strongly controllable.

Dynamic Controllability of the CCTPU and
Conservative Assumptions

Dynamic controllability means there is a viable execu-
tion strategy whose decisions depends only on observations
made before the decision. Before we present our definition
of dynamic controllability of a CCTPU, we discuss some
assumptions we make about the execution strategy.
Assumption 1. Assignment A(c) is made once, at the time
point DT (c), which must occur no later than any link e ∈ E
such that �E(e) mentions c.

It is conservative because if there are more than two possi-
ble values for c, separate decisions that c = dci can be made
at different time points. For example, if we have the choice
of performing a task today, tomorrow, or the day after, we
could decide now to not do it today without committing to
which of the other two days it will be done. By adopting as-
sumption 1, we may give up some execution flexibility. To
some extent, this can be recovered by remodelling the prob-
lem. In the example above, the choice between today or any
of later days can be represented by one binary variable, and
the choice between the other two days by another.

Based on assumption 1, we define a CCTPU execution
strategy 〈DT,ES〉 as viable iff (1) DT (c) precedes the start
of every link e ∈ E such that c appears in �E(e) and (2)
ES(p) is consistent for every projection p ∈ P .

For dynamic controllability of an STPU, the observed
situation (Vidal and Fargier 1999), or prehistory (Morris,
Muscettola, and Vidal 2001; Hunsberger 2009), at any time
consists of the observed durations of contingent links that
have finished before that time. Given a schedule S of STPU,
the prehistory of a time point x is

S{≺ x} = {pij |S(vi) + pij ≤ S(x)},
where pij is the observed duration of contingent link eij .
However, we restrict the prehistory of discrete choice vari-
ables to only those contingent links that must always finish
before the variable’s decision time point.
Definition 6. For any pair of time points vi, vj ∈ V , vi
precedes vj , vi � vj , iff S(vi) ≤ S(vj), for every consistent
schedule S.
Assumption 2. Given a projection p, the prehistory of a
discrete variable c is the observed durations of contingent
links which must finish before or at DT (c) in every execu-
tion, denoted Pp{� c} = {pij |vj � DT (c)}.

Furthermore, the prehistory of a set of discrete variables
is the union of the prehistories of the variables in the set,

Pp{≺ Cs} =
⋃

c∈Cs

Pp{≺ c}.

Assumption 2 is conservative because contingent links
that start, but have not yet ended, before the decision time
point of a discrete variable are also observations that could
be used in making the decision. In a dynamic strategy for an
STPUs, they appear as “wait” constraints (Morris, Muscet-
tola, and Vidal 2001). We now define dynamic controllabil-
ity of a CCTPU as follows.

Definition 7. A CCTPU is dynamically controllable if
there is a viable execution strategy 〈DT,ES〉 such that for
any two projections p1 and p2, ES(p1){≺ t} = ES(p2){≺
t} ⇒ ES(p1)(x) = ES(p2)(x), where t = ES(p1)(x),
for each controllable time point x, and Pp1

{≺ c} = Pp2
{≺

c} ⇒ ES(p1)(c) = ES(p2)(c) for each each discrete vari-
able c.

Finally, we make one more assumption about the dynamic
execution strategy:

Assumption 3. For each discrete variable c, DT (c) is end
point of a contingent link.

This assumption implies that the observation made before
choice c is a single contingent link, or a sequence of contin-
gent links. If two time points are separated by a requirement
link, like t1 and r1 in Figure 2, making the decision at t1
enables scheduling different durations for t1 → r1 accord-
ing to the choice for c. Making the decision at t2, on the
other hand, while allowing the observed duration of the con-
tingent link(s) after r2 to be used in choosing the value of
c, also means the preceding controllable events (r1, r2, etc.)
must be scheduled the same whichever choice is made for c.
However, Assumption 3 does rule out strategies that wait for

s t1 r1 r2 t2 c

Figure 2: Alternatives for DT (c). Squares are uncontrollable
time points, circles controllable time points and the diamond
is the latest decision time of c.

parallel contingent links to finish before making a decision.

Relaxing the Assumptions Assumptions 2 and 3 are es-
sentially restrictions on the dynamic execution strategies
that can be found by the algorithm we present in the next sec-
tion. Removing them from the definition of dynamic control-
lability is straightforward (making the prehistory of a dis-
crete variable S{≺ DT (c)}). Assumption 1 is not as easy.
A dynamic strategy has to ensure that discrete choices are
made so that there is no ambiguity about the activation of a
link when the starting time point of the link is scheduled.

63



Approach

Central to our algorithm for finding a dynamic execution
strategy is the notion of the “envelope” of a partial assign-
ment of the discrete variables.
Definition 8. Given a partial assignment to a subset of dis-
crete variables, CAss ⊆ C, the dynamically controllable
envelope of an unassigned variable, c ∈ (C − CAss), is the
set of prehistories of c for which there exists a viable dy-
namic execution strategy.

In other words, the envelope of a decision, given a par-
tial assignment, is the subset of possible outcomes of ear-
lier contingent links for which a viable strategy exists. It is
similar to the notion of a relaxation of an over-constrained
CCTPU (Yu, Fang, and Williams 2014), which also allows
tightening contingent links, but captures all ways of making
the subproblem dynamically controllable. An example of a
DC envelope, for the problem in Figure 4, is given by equa-
tion 8 at the end of the Approach section.

The DC envelope of a set of discrete variables is a com-
bination of the variables’ envelopes. For contingent link in
the prehistory of two or more variables, all conditions on the
link apply, so that the envelope is the intersection. Where
two variables have different links in their prehistory, the en-
velope is defined over the union of their prehistories.

A CCTPU is dynamically controllable if the DC envelope
of any partial assignment covers all possible outcomes of
uncertainties in the problem. This means the partial assign-
ment can be made statically, and there exists a dynamic strat-
egy for the future (discrete and scheduling) choices. Hence,
our approach (1) builds a search tree by expanding on vari-
ables, (2) extracts the dynamically controllable envelopes of
STPUs at leaves and (3) aggregates those envelopes as the
dynamically controllable envelopes of non-leaf nodes. If the
DC envelope of any node covers all uncertainty, a dynamic
execution strategy can be extracted from this node.

Next we describe the general idea of the approach; the
details are introduced in the following four subsections.

Dynamic Controllability Checking for CCTPU

Our dynamic controllability checking algorithm for a
CCTPU (Algorithm 1) is a recursive tree search. Each leaf
node is the STPU obtained from a full assignment to discrete
variables, while interior nodes are CCTPUs with partial as-
signments. The root is the original CCTPU. Every other
node has one parent that eliminates the assignment to the
“latest” variable. The chronological order of variables is de-
fined in the next subsection.

The algorithm traverses the tree depth-first, assigning
variables in chronological order. NextUnassignedVariable
(line 1) returns the next variable to be assigned. If every
variable has been assigned, the current node is a leaf (lines
2 – 6); in this case, we extract the conflict resolution con-
straints that must be satisfied to make the leaf dynamically
controllable and record those in Node.S as its DC enve-
lope. DCEnvelopeSTPU is a variation of Morris’s (2014)
DC checking algorithm, which identifies a non-DC STPU
by finding a semi-reducible negative cycle, we will call it
negative cycle in this paper, during propagation according to

dynamic controllability reduction rules. DCEnvelopeSTPU
expands it by propagating through non-shortest paths and
recording all negative cycles. A non-leaf node (lines 7 –13)
is expanded by assigning values to the next variable and ex-
ploring those nodes recursively. After the child branches of a
node have been explored, their DC envelopes are combined
and recorded as the DC envelope of current node (line 11).
If the envelope of a node is dynamically controllable, then
so is the CCTPU and the algorithm returns successfully.

The following subsections explain the three key subrou-
tines: DCEnvelopeSTPU, Union (line 11), which combines
envelopes from branches of the same node, and isDC (line
12), which checks if the current solution includes a dynamic
strategy for the original problem.

Input: A Node =< N,A, S > includes a CCTPU N , a vector of
assignments A and the solution of the current node S.

Output: TRUE/FALSE
Algorithm: TreeSearch

1 c ← NextUnassignedVariable(Node)
2 if isNull(c) then
3 Node.S ←DCEnvelopeSTPU(Node)
4 if isDC(Node.S) then
5 return TRUE
6 return FALSE
7 for dci in D(c) do
8 NewNode ← Assign(Node, c, dci)
9 if TreeSearch(NewNode) then

10 return TRUE
11 Node.S ← Union(Node.S,NewNode.S)
12 if isDC(Node.S) then
13 return TRUE
14 return FALSE

Algorithm 1: Checking dynamic controllability of a
CCTPU.

Branching Rule

The order in which the algorithm assigns variables obeys the
execution process. During execution, a decision can observe
and depend on previous assignments. Even when some vari-
ables are decided in parallel, the branching rule assigns them
in a sequence that respects to this order.

To find the chronological order, we build a dependency
tree among variables. If a variable’s decision time point is
after any links that may be activated by another discrete vari-
able, there is a dependency from the earlier to the later vari-
able. For example, in Figure 4 the choice between c2 = 1
and c2 = 2 depends on the choice for c1. Dependencies
among discrete variables form a directed tree. A topological
sort of this tree provides a chronological order, in which
every variable does not depend on any variable after it.

Computing the DC Envelope of an STPU

The DC envelope of an STPU (leaf node) is the observable
condition under which the STPU is dynamically control-
lable. Finding the DC envelope of an STPU is to find the sub-
set of prehistories in which all conflicts can be avoided. This
is similar to relaxing an over-constrained (non-DC) prob-
lem. Yu, Fang, and Williams (2014) formulate the relaxation

64



problem as a linear program with a set of constraints derived
from the conflicts of the STPU, which represent the reasons
why it is not dynamically controllable. A conflict is a nega-
tive cycle in the network after applying DC reduction rules.
They can be represented as follows:∑

i∈confj

xi < 0, (1)

where xi are the original bounds (li or ui) of links ei in the
conflict. One conflict resolution constraint is∑

i′∈confj∩ER

x′
i′ +

∑
i∈confj\ER

xi ≥ 0 (2)

where ER is the set of relaxable links and x′
i′ are variables

for the relaxed bounds. Another way to resolve conflicts with
connected lower- and upper-case labels of the same node is
to break the reduction since the cross-case reduction rule has
a label condition (Morris and Muscettola 2005):

(CROSS-CASE REDUCTION) If x ≤ 0, B = C,

A
B:x←−− C

c:y←−− D adds A
B:(x+y)←−−−−− D.

For example, in equation 3, the conflict can be resolved by
increasing C ← D to −9, which will make back propaga-
tion of C −10←−− D stop at B so that the back propagation of
A

−10←−− B has to stop before B
b:1←−− A because it does not

satisfy the label condition.

A
B:−10←−−−− B

1←− (C
−10←−− D

9←− B
b:1←−− A) (3)

Therefore, the resolution of a single conflict may be a dis-
junction with one linear constraint of the form 2 and other
linear constraints over the links whose relaxations can break
the reductions:∨

k∈resj

∑
i′∈resjk∩ER

x′
i′ +

∑
i∈resjk\ER

xi ≥ 0 (4)

where resj is the set of conflict resolutions of confj .
Yu, Fang, and Williams solve an LP over constraints of

the form (2) to find a single relaxation. However, provided
we find all conflicts in the STPU, the set of conflict res-
olution constraints of the form 4 represents the space of
all relaxations, which is the same as the DC envelope. Ex-
tracting all conflicts can be done by adapting current DC
checking methods (Morris 2006; 2014; Hunsberger 2013;
Shah et al. 2007; Nilsson, Kvarnström, and Doherty 2013)
and keeping a record of the conflicts.

Our algorithm to find the DC envelope of an STPU builds
on the current fastest DC checking algorithm (Morris 2014).
In order to find all negative cycles, the Dijkstra propagation
is replaced by DFS. It is summarised in Algorithms 2, 3 and
4. Algorithm 4 and Lines 5 – 8 of Algorithm 3 are our DFS
process, while the rest is the same as Morris’s method.

Algorithm 2 calls BackPropagation once on every neg-
ative link. BackPropagation (Algorithm 3) terminates if
the current node recursively reached itself through a nega-
tive path (lines 1 – 2) or if propagation from current node
has already been completed (lines 3 – 4). dis[i] is the dis-
tance from i to the end of source in the current round of

propagation. In DFS (Algorithm 4), lines 2 – 5 search for
negative cycles containing the negative link ending in n in
an ancestor call. This link will cause a termination because
of being called, which will prevent finding the negative cy-
cle. NegPathEnds keeps a record of negative paths to neg-
ative links being called. If a path e in NegPathEnds[n]

starts from source, a negative cycle consists of source e−→ n

and n
dis[n]−−−→ source is added (Line 5). Lines 7 – 8 pre-

vent cross-case reductions that do not satisfy the label con-
dition. As proven by Morris (2014), the algorithm only prop-
agates through non-negative links ending in n (Line 9 –
17). If the propagated path is positive, a new edge is added
(Line 12), else, propagation continues to call DFS (Line 16).
When encountering a negative link, the algorithm will call
BackPropagation again (Line 19). bReturn marks the
existence of a recursively called negative link. If the fol-
lowing propagation causes a recursive call, the current path

n
dis[n]−−−→ source may cause negative cycles finding which is

prevented by termination. Therefore, this negative path and

added negative paths (n
dis[n]−−−→ source+source

e1−→ x) can
be used when tracing back to the previous existence of the
ancestor call (Line 26).

Algorithm: DCEnvelopeSTPU(N )
Input: An STPU N .
Output: A set of conflicts NegCycles

1 NegCycles = ∅
2 for e in negative links do
3 BackPropagation(e, NegCycles)
4 return NegCycles
Algorithm 2: Extracting the DC envelope of an STPU.

Algorithm: BackPropagation(srcLink,NegCycles)
Input: A negative link srcLink, the set of negative cycles

NegCycles.
Output: Return the propagation result and an updated

NegCycles
1 if ancestor call with same srcLink then
2 return False
3 if prior terminated call with srcLink then
4 return True
5 dis = {infinity}
6 dis[srcLink.start] = srcLink.weight
7 if DFS(srcLink.start, srcLink.end,NegCycles) then
8 return True
9 return False
Algorithm 3: Extracting the DC envelope of an STPU.

The algorithm extracts all conflicts caused by the bounds
of the CCTPU with a specific assignment. The solution
space of relaxed STPUs that avoid those conflicts is the DC
envelope, defined by x′

i′ satisfying the following constraints:∧
j∈Conf

∨
k∈resj

∑
i′∈resjk∩ER

x′
i′ +

∑
i∈resjk\ER

xi ≥ 0 (5)

The complexity of our conflict extraction method is
O(E3) in the worst case, when all links are negative and

65



Algorithm: DFS(n, source,NegCycles)
Input: Current node n, the source of back-propagation source

and the set of conflicts NegCycles.
Output: Return DFS result and an updated NegCycles

1 bReturn = True
2 if n is the end of a negative link in ancestor call then
3 for e in NegPathEnds[n] do
4 if e.start == source then
5 NegCycle.add(e+ dis[n])
6 for e ends with n do
7 if e is unusable then
8 continue
9 if e.weight ≥ 0 then

10 NewE = e+ dis[n]
11 if NewE.weight ≥ 0 then
12 addEdge(NewE)
13 else
14 TmpDis = dis[e.start]
15 dis[e.start] = NewE
16 bReturn& =

DFS(e.start, source,NegCycles)
17 dis[e.start] = TmpDis
18 else
19 if !BackPropagation(e,NegCycles) then
20 bReturn = False
21 NegPathEnds[n].add(dis[n])
22 for e1 in NegPathEnds[source] do
23 if e1 starts at n then
24 continue
25 else
26 NegPathEnds[n].add(e1 + dis[n])
27 return bReturn

Algorithm 4: Extracting the DC envelope of an STPU.

the network is fully connected. It is slower than the state-of-
art DC checking methods and CDRU. However, it returns
the complete set of conflict resolution constraints, not only
whether conflicts exist, or one relaxation.

Combining DC Envelopes

The combining process aims to answer under which condi-
tion an assignment of the current discrete variable, c, can be
made at its decision time point DT (c) such that the future
part of the problem is dynamically controllable. This condi-
tion is the DC envelope of the current node.

The envelope of an STPU is a conjunction of conflicts, as
in equation (7). In combining envelopes, we may split ob-
servable uncertainty, which is before DT (c), so that each
child branch only tackles part of it. This may resolve con-
flicts, or at least relax them, meaning less strict constraints
on the prehistory may replace the original conflict resolu-
tion. Therefore, a conflict can be resolved through several
combining processes.

Ideally, dynamic choices should be based on the whole
prehistory before DT (c). Conflicts with different paths have
different prehistories before DT (c). Recall our Assumption
3, that DT (c) is the end point of a contingent link. Since
no more than one contingent link can finish at a node, this
means we only consider one contingent link (or the sum
of sequence of contingent links) as the latest observation in

each combining process.
The envelope of the node of assigning discrete variable c

is a disjunction of child nodes’ envelopes:

Φ =
∨

dcl∈D(c)

∧
j∈Conf

∨
k∈resj

∑
i′∈resjk∩ER

x′
i′ ≥ ajkl, (6)

where ER = {ei ∈ EU ∩ Pp(� c)} and ajkl =
−∑

i∈resjk\ER xi is the sum of bounds of links after
DT (c).

The envelope can be expanded into a conjunction of dis-
junctions, as shown in equation (7). Each conjunct takes
one conflict resolution (which is a disjunction of linear con-
straints) from every child node branch in equation (6), so
the number of conjuncts can be the product of the number of
constraints in each child node’s envelope. Transforming the
envelope into this form, same as that of equation (5), makes
the combining process uniform at all levels of the tree.

Φ =
∧∨ ∑

i′∈resjk∩ER

x′
i′ ≥ ajkl (7)

For each branch of the conjunction (7), either the contin-
gent link observed just before the decision time point is part
of each constraint in the disjunction, or it is not. In the lat-
ter case, the branch can not be combined by splitting un-
certainty between the disjuncts. We just keep those con-
straints to the next combining process. In the former case,
however, the uncertainty of the common contingent links
can be shared by different child node envelopes. We try the
end node of every contingent link that precedes the latest
decision time of c as DT (c), replacing the variables repre-
senting its lower and upper bounds by a single variable xij .
Then, the envelope answers under which condition for all
xij ∈ [lcij , u

c
ij ] there exists a choice dci such that xij satisfies

constraints in the envelope of the child node with c = dci.
A branch can be removed from the conjunction when it

covers the whole uncertainty, which means its negation is
infeasible within the original bounds of the problem. As the
negation is a conjunction of linear constraints, we can use an
LP solver to perform this test.

Following our assumptions, the DC envelope (1) is repre-
sented by constraints on bounds of links prior to the decision
time point of the variable, (2) enables different assignments
to the variable, which also implies different following sched-
ules, and (3) contains a dynamic strategy over the prehistory
that is consistent for different assignments.

The reduction of a disjunction of constraints with a com-
mon contingent link is illustrated in in Figure 3. Figure
3(a) shows an easy situation, where EI

c = {[−Inf, a]},
EII

c = {[b, Inf ]} and a ≥ b, so the union of envelopes I
and II covers the whole space. This means that for all sit-
uations in the prehistory, no matter what is observed, there
will always be a feasible option that leads to a dynamic strat-
egy. Figure 3(b) illustrates a general and feasible situation.
Envelopes I and II covers the area from the lower bound of
EI

c to the upper bound of EII
c . The intersections of the ob-

servation bounds [lc, uc] with the edges are p1 and p2. The
combined envelope indicates that if the prehistory is within

66



[lp, up], there will be a feasible choice for c. Figure 3(c) il-
lustrates an infeasible situation. The uncertainty is so large
that the combined envelope cannot provide a viable range
for the prehistory before the observation.

DC Checking for the Combined Envelope

This subsection aims to answer what kind of combined en-
velopes means the problem is solved or unsolvable.

A node is dynamically controllable if its DC envelope
covers all uncertain situations implied by the problem. If
the negation of an envelope is infeasible within the original
bounds of the problem, which means every uncertain situa-
tion can be solved within one disjunctive branch, the prob-
lem is dynamically controllable. The envelope is disjunctive,
a separate check is done for each disjunct.

If the problem is not solved during the combining process
at any interior node of the search tree and the DC envelope of
the root is still not dynamically controllable, then a dynamic
strategy satisfying our assumptions does not exist.

We explain the combining process and node checking
with an example with two discrete variables, shown in Fig-
ure 4. This problem cannot be solved with a fixed assign-
ment, because the STPU in each leaf node contains conflicts.

The algorithm first arrives at the leaf {c1 = 1, c2 = 1}
and extracts the conflict

A
b:1−−→ B

1−→ C
d1:1−−→ D1

1−→ E
f1:1−−→ F1

1−→ G
−10−−→ A

Then in leaf {c1 = 1, c2 = 2}, the conflicts are

(1) A
B:−10←−−−− B

0←− C
D1:−10←−−−−− D1

0←− E
F2:−40←−−−− F2

0←− G
50←− A

(2) A
b:1−−→ B

1−→ C
d1:1−−→ D1

1−→ E
f2:2−−→ F2

1−→ G
−10−−→ A

Potential DT (c2) is B or D1. Because making decision of
c2 at B will never satisfy the branch {c1 = 1, c2 = 2}, we
illustrate the solution of making decision at D1. The enve-
lope at node {c1 = 1} is the solution space of the following
constraints:

l′AB + u′
BC + l′CD1

+ u′
D1E

+lEF1
+ uF1G − lAG ≥ 0

∨

⎧⎪⎨
⎪⎩

−u′
AB − l′BC − u′

CD1
− l′D1E−uEF2

− lF2G + uAG ≥ 0
l′AB + u′

BC + l′CD1
+ u′

D1E
+lEF2 + uF2G − lAG ≥ 0

(8)

With variables x representing observations and p represent-
ing preconditions, the constraints are expanded as

{
p′AB + p′BC + x′

CD1
≥ 7 (c2 = 1)

∨ p′AB + p′BC + x′
CD1

≤ 10 (c2 = 2)

∧
{

p′AB + p′BC + x′
CD1

≥ 7 (c2 = 1)
∨ p′AB + p′BC + x′

CD1
≥ 6 (c2 = 2)

(9)

The first branch in equation 9 can be cut, because its nega-
tion causes infeasibility. The other branch’s negation is still

feasible, which means it does not cover all uncertainty in
its prehistory. Recovering variables to their original bounds,
the left constraint l′AB + u′

BC + lCD1 ≥ 6 must be kept to
the next combining process. In the next step, our algorithm
explores node {c1 = 2}. Using the same process, the en-
velope of node {c1 = 2} is {u′

AB + l′BC + uCD2
≤ 20}.

The decision time point is DT (c1) = B, the observation

is A
[1,10]−−−→ B and the prehistory before the observation is

empty. The combining process results

p∅ + xAB ≥ 4 (c1 = 1)
∨ p∅ + xAB ≤ 4 (c1 = 2)

whose negation is infeasible. The problem is dynamically
controllable.

The dynamic strategy is: (1) if pAB ≥ 4 at B, then make
assignment c1 = 1, otherwise c1 = 2; (2) after choosing
c1 = 1, C is scheduled based on pAB , so that AD1 will
always be longer than 6. At D1 if pAD1

≥ 7, then choose
c2 = 1, if pAD1 ∈ [6, 10], choose c2 = 2, (3) after choosing
c1 = 2, C is scheduled immediately after B, and c2 = 1 at
D2, (4) the scheduling of other controllable time points are
inferred by the reduction rules of dynamic control.

Soundness and Completeness If the algorithm finds a
node whose envelope passes the DC check, then the CCTPU
is dynamically controllable. The strategy is to make choices
according to the partial assignment statically, and following
the observation of one of the contingent links for the remain-
ing variables. It is valid within the bounds on the prehistory,
which are verified by the final DC check to contain all po-
tential outcomes uncertain links. However, the algorithm is
not complete, in the sense that it will find only strategies that
meet Assumptions 2 and 3.

Experimental Results

We illustrate DC checking for CCTPU by comparing imple-
mentations of DC checking methods for the CCTPU with
and without dynamic discrete choices. The DC checking
method for the CCTPU which does not make assignments
to discrete variables dynamically only considers scheduling
time points dynamically. Our implementation of this method
checks every leaf node (full set of assignments) and consid-
ers the CCTPU dynamically controllable if there is one leaf
that induces a dynamically controllable STPU .

Experimental Setup

We use the benchmark generator (Yu 2016) based on Zipcar
problems (Yu and Williams 2013; Yu, Fang, and Williams
2014). Its application background is a car-sharing network.
Each test case consists of missions with temporal require-
ments, each mission has a sequence of activities and each
activity can be done by choosing one option. An option con-
tains controllable and uncontrollable links. All links are rep-
resented by their lower and upper bounds.

We use discrete variables to represent the choices for
activities and attach assignments as labels to the links of
each option. All temporal links are randomly generated ex-
cept for the requirement on the overall duration of the mis-

67



prehistory

observation

Env I

Env II

(a) An feasible example

prehistory

observation

Env I
Env II

lc uc

p1
p2

lp

up

(b) A possibly feasible example

prehistory

observation

Env I
Env II

l′c uc

p′1
p2

l′p

up

(c) An infeasible example

Figure 3: Combined Envelope

A B C

D2

D1

E

F2

F1

G
[1, 10] [0, 1]

[1
, 1
0]

c 1
=
1

[10, 16]
c
1 =

2 [0
, 1
]

c 1
=
2

[0, 1]c
1 =

1 [1
, 3
0]

c 2
=
1

[2, 40]
c
2 =

2

[0, 1]c
2 =

1

[0
, 1
]

c 2
=
2

[10, 50]

Figure 4: An example of CCTPU with two discrete variables

sions, which randomly deviates by ±20% from the esti-
mated bounds of the sequence of activities.

There are 16000 test cases ranging from 1–8 discrete vari-
ables with 1–10 options for each variable. In terms of the
size of networks, the number of nodes, links and contingent
links are varying from 11–170, 11–330 and 4–162, respec-
tively.

Results

The result is shown in Figure 5. The tests are grouped by
DC checking results in the a chart. The white bars represent
the result of implementation with fixed assignment. 77.1%
of the test cases are infeasible when using only fixed assign-
ment. But only 22.4% are still infeasible while assigning dis-
crete variables dynamically. The number of feasible results
with fixed assignment is slightly fewer with implementation
of dynamic assignment, because a combined solution can be
found earlier in some test cases which contains a dynami-
cally controllable STPU with fixed assignment.

The runtime difference between two implementations is
not obvious. It shows that making assignment dynamically
does not cost much extra runtime. Furthermore, the imple-
mentation with dynamic assignment solves slightly more
problems in time limitation above 1 second, which can be
inferred that test cases that have dynamic strategy with
dynamic assignment terminate before exploring the whole
search tree.

Figure 5: Results

Conclusion and Future Work

In this paper, we extend dynamic controllability to CCTPU
with making assignment to discrete variables dynamically.
Comparing to the previous work of making assignment stat-
ically, some test cases in the current CCTPU benchmarks
are dynamically controllable with dynamic decisions on dis-
crete variables but not dynamically controllable with fixed
assignment.

In future work, we will try to remove Assumptions 2
and 3, which limit the dynamic strategies that our algorithm
can find. Another extension is to see how much improve-
ment can be made in solving optimisation problems over a
CCTPU when considering making choices dynamically.

References

Combi, C.; Hunsberger, L.; and Posenato, R. 2014. An al-
gorithm for checking the dynamic controllability of a condi-
tional simple temporal network with uncertainty - revisited.
In Proc. 5th International Conference on Agents and Artifi-
cial Intelligence (ICAART), 314–331.
Hunsberger, L.; Posenato, R.; and Combi, C. 2012. The dy-
namic controllability of conditional STNs with uncertainty.
In Proc. Planning and Plan Execution for Real-World Sys-
tems: Principles and Practices (PlanEx) Workshop, 2–4.
Hunsberger, L. 2009. Fixing the semantics for dynamic
controllability and providing a more practical characteriza-
tion of dynamic execution strategies. In Proc. 16th Interna-
tional Symposium on Temporal Representation and Reason-
ing (TIME), 155–162.

68



Hunsberger, L. 2013. Magic loops in simple temporal net-
works with uncertainty. In Proceedings of the Fifth Inter-
national Conference on Agents and Artificial Intelligence
(ICAART), 332–350.
Morris, P., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In In Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI-2005,
1193–1198. AAAI Press / The MIT Press.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. 17th
International Conference on Artificial Intelligence (IJCAI),
494–499.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In Proc. 12th International Confer-
ence on Principles and Practice of Constraint Programming
(CP), 375–389.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Proc. 11th Integration of AI and OR Tech-
niques in Constraint Programming (CPAIOR), 464–479.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2013. Incre-
mental dynamic controllability revisited. In Proceedings of
the 13th International Conference on International Confer-
ence on Automated Planning and Scheduling (ICAPS), 337–
341.
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P.
2007. A fast incremental algorithm for maintaining dis-
patchability of partially controllable plans. In Proceed-
ings of the Seventeenth International Conference on Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 296–303.
Tsamardino, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8(4):365–388.
Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical AI
11(1):23–45.
Yu, P., and Williams, B. 2013. Continuously relaxing over-
constrained conditional temporal problems through general-
ized conflict learning and resolution. In Proc. 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2429–2436.
Yu, P.; Fang, C.; and Williams, B. C. 2014. Resolving un-
controllable conditional temporal problems using continu-
ous relaxations. In Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS), 341–349.
Yu, P. 2016. BCDR Test Generator. https://github.com/yu-
peng/BCDRTestGenerator.

69


